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Non-technical summary 

Research Question 

How large is the precision that we can expect from a certain forecast, i.e. how large is 
the uncertainty surrounding the forecast? An easy way to assess this uncertainty is given 
by looking at the magnitude of the errors of past forecasts. However, in practice, 
sometimes there are hardly any past forecast errors for the horizon of interest available, 
because this horizon has been introduced quite recently. How can a reliable assessment 
of the forecast uncertainty be achieved in such a case? 

Contribution 

This paper suggests to additionally use the past forecast errors of other horizons, for 
which a larger sample is available, for the assessment of the uncertainty of the forecasts 
for the new horizon. The estimation method proposed relies on the fact that forecast 
errors of different horizons tend to move closely together. This method can be easily 
implemented, because it does not require the estimation of any additional parameters. 

Results 

In simulations, it turns out that the suggested estimation method works better than the 
usual approach where only the few past errors of the forecast horizon of interest are 
employed in order to assess this horizon’s forecast uncertainty. The estimation method 
is also applied to the forecast errors of the Bank of England and of the Federal Open 
Market Committee. In both cases, the estimated forecast uncertainty appears more 
plausible than the forecast uncertainty obtained with the usual approach. 



 

Nicht-technische Zusammenfassung 

Fragestellung 

Wie hoch ist die Präzision, die wir von einer Prognose erwarten dürfen, bzw. wie hoch 
ist die Unsicherheit, die diese Prognose umgibt? Eine einfache Art, um zu einer 
Einschätzung dieser Unsicherheit zu gelangen, besteht in der Betrachtung des 
Ausmaßes vergangener Prognosefehler. Es gibt jedoch Situationen in der Praxis, in 
denen nur sehr wenige vergangene Prognosefehler für den interessierenden 
Prognosehorizont verfügbar sind, weil dieser Prognosehorizont erst vor kurzem

 eingeführt wurde. Wie kann eine verlässliche Einschätzung der Prognoseunsicherheit in 
solch einem Fall erreicht werden? 

Beitrag 

In dieser Arbeit wird vorgeschlagen, auch die vergangenen Prognosefehler anderer 
Prognosehorizonte, für die eine größere Stichprobe vorliegt, zu verwenden, um zu einer 
Einschätzung der Unsicherheit für den neuen Prognosehorizont zu gelangen. Die 
vorgeschlagene Schätzmethode basiert darauf, dass die Prognosefehler verschiedener 
Horizonte meistens einen starken Gleichlauf aufweisen. Die Methode ist leicht 
implementierbar, da keine zusätzlichen Parameter geschätzt werden müssen. 

Ergebnisse 

In Simulationen erweist sich, dass die vorgeschlagene Schätzmethode bessere 
Ergebnisse liefert als der übliche Ansatz, bei dem nur die wenigen verfügbaren 
Prognosefehler des neuen Prognosehorizonts verwendet werden, um die Unsicherheit 
für diesen Horizont zu bestimmen. Auch bei einer Anwendung der Schätzmethode auf 
die Prognosefehler der Bank of England und des Federal Open Market Committee zeigt 
sich, dass die Schätzung der Prognoseunsicherheit plausiblere Ergebnisse liefert als der 
übliche Ansatz. 
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1 Introduction

In recent times, the forecast horizons of many important macroeconomic forecasts have

increased. For example, since 2009, in addition to their forecasts for the current year

and the next two years, the members of the Federal Open Market Committee (FOMC)

have provided forecasts for the “longer run” in their Economic Projections, which might

correspond to a horizon of about 5 years.1 In the same year, in the Survey of Professional

Forecasters conducted by the Federal Reserve Bank of Philadelphia, the forecast horizon

for the annual forecasts of real GDP, the unemployment rate, and 3-month and 10-year

Treasuries was extended from 2 to 4 years. In the Survey of Professional Forecasters con-

ducted by the European Central Bank (ECB), since 2013, respondents have been asked

about their 2-year ahead forecasts for real GDP growth, HICP inflation and the unem-

ployment rate also in the first 2 quarters of the current year. Before 2013, forecasts for this

horizon had been asked for only in the last 2 quarters.2 Starting in 2014, the ECB staff

and the Eurosystem staff have published 3-year-ahead forecasts for real GDP growth and

HICP inflation in every quarter. Before 2014, such forecasts had only been made in the

last quarter of the current year, while the largest forecast horizon in the first 3 quarters

was equal to 2 years. The Bank of England (henceforth BoE) extended its forecast horizon

for real GDP growth and CPI inflation from 8 to 12 quarters in 2004.

Many central banks and other institutions issuing forecasts provide measures of forecast

uncertainty that are based on past forecast errors. The model-based approach for the

estimation of forecast uncertainty, as described, for instance, in Ericsson (2002), is used

only rarely because, as noted by Wallis (1989, pp. 55-56), “This approach is of little help

to the practitioner. It neglects the contribution of the forecaster’s subjective adjustments

[...]. More fundamentally, the model’s specification is uncertain. At any point in time

competing models coexist, over time model specifications evolve, and there is no way

of assessing this uncertainty. Thus, the only practical indication of the likely margin of

1The FOMC states “The longer-run projections are the rates of growth, inflation, and unemployment to
which a policymaker expects the economy to converge over time—maybe in five or six years—in the absence
of further shocks and under appropriate monetary policy.”
http://www.federalreserve.gov/monetarypolicy/fomc_projectionsfaqs.htm

2 In addition, the ECP SPF contains a longer-run type forecast for a forecast horizon of 4 or 5 years.
When the survey started in 1999, this forecast was asked for only in the first quarter. Since 2001, it is
included in every quarter.
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Figure 1: Forecast errors of the Bank of England for quarterly real GDP growth in the
UK for the quarterly horizons h = 1 to h = 13. h = 1 corresponds to the nowcast.

future error is provided by the past forecast errors” [emphasis added]. Commonly, only

the institutions’own forecast errors are used for estimating its forecast uncertainty. In

general, the error-based forecast uncertainty measure is regarded as information about

the unconditional uncertainty that can serve as a benchmark when statements about the

current forecast uncertainty are made. For example, the FOMC members state whether

the uncertainty attached to their current forecasts is larger than, smaller than, or broadly

similar to the past forecast uncertainty.

If the past forecast uncertainty is to be estimated, the question arises how this can be

accomplished in a reasonably precise manner if only very few observations are available,

because a new forecast horizon was introduced only a short time ago. For example, for the

FOMC forecasts, we will observe the first “longer run” forecast errors once the data for

2014 is released, if one assumes that the “longer run”corresponds to a forecast horizon of

about 5 years. The first forecast errors of the ECB staff and the Eurosystem staff March

forecasts will become available in 2017. Also for the BoE, whose growth forecast errors

are displayed in Figure 1, the sample of forecast errors for the new forecast horizons still

appears relatively short, taking their high persistence into account. This work is concerned

with the estimation of forecast uncertainty for such horizons as soon as the first forecast

errors are observed.

In the literature, the construction of uncertainty measures from past forecast errors
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goes back to the work of Williams and Goodman (1971). Recently, new contributions have

been made inter alia by Lee and Scholtes (2014), Jordà, Knüppel and Marcellino (2013)

and Knüppel (2014). Studies that focus on the uncertainty of central bank forecasts are

provided by, for example, Reifschneider and Tulip (2007) and Tulip and Wallace (2012).3

Knüppel (2014) showed how to exploit the information contained in forecast errors of

smaller forecast horizons for the estimation of the forecast uncertainty of larger horizons

using the SUR estimator derived under the assumption of forecast optimality. This es-

timator relies on the correlations between forecast errors from different horizons for the

same period, which are present for optimal as well as for non-optimal forecasts, and which

also are a typical feature of empirical forecast errors like those displayed in Figure 1.

However, a certain data structure labeled as recent-forecast-errors structure is required

for this SUR estimator, leading to its independence from unknown parameters. This data

structure differs from the structure that is observed when additional forecast horizons are

introduced after the first forecasts were produced.

In the present study, these restrictions on the data structure are relaxed. It turns out

that the SUR estimator continues to be independent from unknown parameters in the case

of optimal forecasts, in circumstances not considered in that work. These circumstances

include the case where new, larger forecast horizons are introduced. In this case, the SUR

estimator delivers even larger effi ciency gains than in the case of the recent-forecast-errors

structure for optimal as well as for non-optimal forecasts.

2 The Estimation of Forecast Uncertainty

2.1 Fixed-Horizon Forecasts

A large part of the following expositions is taken from Knüppel (2014). Consider a sta-

tionary data-generating process with Wold representation given by

yt = µ+

∞∑
i=0

biεt−i

3Reifschneider and Tulip (2007) use a different approach than the other studies mentioned, because
they estimate their uncertainty measure from the errors of a panel of forecasters.
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with E [εt] = 0, E
[
ε2t
]
= σ2 and b0 = 1. E [•] is the expectation operator. It is assumed

that the fourth moment of εt exists, so that the kurtosis

α = E
[
ε4t
]
/σ4

is finite.

The optimal h-step-ahead forecast is

yt+h,t = µ+

∞∑
i=0

bh+iεt−i.

Hence, the h-step-ahead forecast error equals

et+h,t := yt − yt+h,t =
h−1∑
i=0

biεt+h−i. (1)

Thus, et+h,t is the error of the forecast made in period t for period t + h, and has a

moving-average representation of order h− 1.

The variance of the h-step-ahead forecast error is given by

E
(
e2t+h,t

)
= σ2h = σ2

h−1∑
i=0

b2i .

The variances for all H∗ forecast horizons of interest are collected in the (H∗ × 1) vector

σ2, so that

σ2 =
(
σ21, σ

2
2, . . . , σ

2
H

)′
,

where H denotes the largest forecast horizon and H∗ ≤ H. The corresponding estimates

of forecast uncertainty will be denoted as

σ̂2m =
(
σ̂2m,1, σ̂

2
m,2, . . . , σ̂

2
m,H

)′
where m will refer to the estimation method used.

Since the DGP is stationary, the covariance between the squared forecast errors e2t1+h1,t1

and e2t1+h2,t2 tends to become very small when |h2 − h1| becomes large. Assuming that

the covariance actually equals zero if h1 6= h2 gives rise to the possibility of estimating
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forecast uncertainty by seemingly unrelated regressions (SUR).

Under this assumption, and defining p = t2 − t1 and q = t4 − t3, the covariance of the

squared forecast errors equals

ωs = E
[(
e2t2,t1 − E

(
e2t2,t1

)) (
e2t4,t3 − E

(
e2t4,t3

))]
=


0 if t2 6= t4

σ4 (α− 1)
s−1∑
i=0

b4i + 2σ
4
s−1∑
i=0

s−1∑
j=0,j 6=i

b2i b
2
j if t2 = t4

(2)

with s = min (p, q) and using the convention
∑0
i=0

∑0
j=0,j 6=i xij = 0. If the kurtosis equals

α = 3, the last term in (2) simplifies to 2σ4
(∑s−1

i=0 b
2
i

)2
.

If the forecasts are non-optimal, the errors of forecasts for a certain period nevertheless

tend to be strongly correlated due to the shock in that period. This makes the SUR

estimation of forecast uncertainty a promising approach also in the case of non-optimal

forecasts.

Concerning the data structure, suppose that the first forecast was made in period

t = 0, and that the last available forecast errors are observed in period t = T . Define a

(T ×H) index matrix J, where the element in the tth row and the jth column of J, jth

is determined by the existence of the h-step-ahead forecast error for period t, i.e. by the

error of the h-step-ahead forecast that was produced in period t − h. The element jth

equals

jth =

 1 if et,t−h exists

0 else
.

I assume that there is at least 1 1-step-ahead and 1 H-step-ahead forecast error. The

corresponding (T ×H) matrix of squared forecast errors is given by E2

E2 =



ẽ21,0 ẽ21,−1 · · · ẽ21,1−H

ẽ22,1 ẽ22,0 · · · ẽ22,2−H

ẽ23,2 ẽ23,1 · · · ẽ23,3−H
...

...
. . .

...

ẽ2T,T−1 ẽ2T,T−2 · · · ẽ2T,T−H


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with elements

ẽ2t,t−h =

 e2t,t−h if e2t,t−h exists

c else
,

where c is an arbitrary value that will receive a weight of 0 in the estimation. If only

the elements ẽ2t,t−h with t− h < 0 equal c, the data structure is equivalent to the “recent

forecast errors”structure considered in Knüppel (2014).

Hence, for example, if 1- and 2-step-ahead forecasts were produced since t = 0, if the

last observation came from t = 7, if additional 4-step-ahead forecasts were produced in

t = 1 and t = 3, and if no forecast errors were available for t = 3, J and E2 would equal

J =



1 0 0 0

1 1 0 0

0 0 0 0

1 1 0 0

1 1 0 1

1 1 0 0

1 1 0 1



, E2 =



e21,0 c c c

e22,1 e22,0 c c

c c c c

e24,3 e24,2 c c

e25,4 e25,3 c e25,1

e26,5 e26,4 c c

e27,6 e27,5 c e27,3



. (3)

In order to estimate a model with correlated error terms by SUR, one needs to construct

a covariance matrix and a regressor matrix of the error terms collected in E2. If J only

consists of 1’s, the (TH × TH) SUR covariance matrix of vec
(
E2
)
is given by

ΩSUR =



ω1 ω1 ω1 . . . ω1

ω1 ω2 ω2 . . . ω2

ω1 ω2 ω3 . . . ω3
...

...
...

. . .
...

ω1 ω2 ω3 . . . ωH


⊗ IT . (4)

where In denotes the (n× n) identity matrix. Accounting for the possibility that elements

of J can equal 0 requires modifications of the SUR covariance matrix. Denote the number

of columns of J with at least one element equal to 1 by H∗, and let the unity vector ei,H
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denote the ith column of IH . Then define the (H ×H∗) selection matrix S as

S =

[
e1,H e2,H . . . eH,H

]

where the vector ei,H is contained only if the ith column of J has at least one element

equal to 1.

Moreover, define the (TH × TH) diagonal matrix

D =diag (vec (J)) .

Then the (TH∗ × TH∗) SUR covariance matrix to be used for the estimation is given by

Ω∗SUR =
(
S′ ⊗ IT

) (
DΩSURD′ + ITH −D

) (
S′ ⊗ IT

)′
where ⊗ denotes the Kronecker product. The modification involving the D matrix is

required in order to account for the zero elements in J. The modification using the

selection matrix S deletes all elements related to forecast horizons for which no forecast

errors exist.

Now define the (T ×H∗) matrices

J∗ = JS

E∗2 = E2S

and the (TH∗ ×H∗) regressor matrix

X =(IH∗ ⊗ 1T )� (1H∗ ⊗ J∗)

where 1n denotes an (n× 1) vector of ones, and � denotes the Hadamard product.

Then the SUR estimator of forecast uncertainty is calculated as

σ̂2SUR =
(
X′Ω

∗−1
SURX

)−1
X′Ω∗−1SURvec

(
E∗2
)

(5)
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and the OLS estimator, which yields the sample means, as

σ̂2OLS =
(
X′X

)−1
X′vec

(
E∗2
)
. (6)

For the following considerations, it is helpful to define the matrix

A =
(
X′Ω

∗−1
SURX

)−1
X′Ω∗−1SUR (7)

so that XA is the projection matrix.

Conjecture 1 If for all t and for all h > 1, j∗th = 1 implies that j
∗
ti = 1 for every integer

i with 0 < i < h, then A only depends on J.

This conjecture states that, if the forecast error et,t−h is available, then the availability

of all other forecast errors for the same period from smaller horizons et,t−h+1, et,t−h+2, . . .

implies that A only depends on known quantities. Neither the dynamics of yt nor the

kurtosis of the shocks affect the estimator. This result also holds if et,t−h+i (with i > 0) is

not available, but the (h− i)th column of J contains 0’s only, i.e. if there are no forecast

errors for the horizon h− i. A proof of the conjecture for the special case of H∗ = 2 can

be found in Appendix A.1.

The condition of this conjecture is fulfilled in the case where a new larger forecast

horizon is introduced after the first forecasts were produced. A simple example is given by

the presence of T 1-step-ahead forecast errors et,t−1 with t = 1, 2, ..., T and 1 2-step-ahead

forecast error eT,T−2, which would lead to the matrix

J = J∗=

 1T−1 0T−1

1 1

 . (8)

The condition of the conjecture is fulfilled because, in the last row, j∗T2 = 1 and j
∗
T1 = 1.

The condition would be violated if j∗T1 = 0. In the example given by (3), the condition is

fulfilled as well.

If the condition is fulfilled, the matrix A can be determined without using (5).4 In

4Like the conjecture itself, the validity of the construction proposed has not been confirmed analytically
for H∗ > 2. However, in simulations considering many different matrices J where the condition of the
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order to do so, partition A into the H∗ submatrices Ah∗ of dimension (H∗ × T ) with

h∗ = 1, 2, ...,H∗.

A =

[
A1 A2 . . . AH∗

]
Then, for each h∗, calculate

wh∗ =
(
1′TJ∗eh∗,H∗

)−1
.

If h∗ < H∗, determine

Oh∗ = (J
∗eh∗,H∗)� (J∗eh∗+1,H∗)

Nh∗ = (J
∗eh∗,H∗)� (1T − J∗eh∗+1,H∗)

woh∗ = −wh∗
(
1′TNh∗

) (
1′TOh∗

)−1
.

Oh∗ is a vector that equals 1 in those periods t where a forecast error exists in the (h∗)th

and in the (h∗ + 1)th column of E∗2 (periods with ‘overlapping’ forecast errors) and 0

otherwise. Nh∗ is a vector that equals 1 in those periods t where a forecast error exists in

the (h∗)th column, but not in the (h∗ + 1)th column of E∗2 (periods with ‘non-overlapping’

forecast errors) and 0 otherwise. wh∗ and woh∗ are scalar weights. Use these quantities to

calculate Ah∗ as

Ah∗ =



0(h∗−1)×T

wh∗ (J
∗eh∗,H∗)′

woh∗O
′
h∗ + wh∗N

′
h∗

...

woh∗O
′
h∗ + wh∗N

′
h∗


. (9)

If h∗ = H∗, AH∗ equals

AH∗ =

 0(H∗−1)×T

wH∗ (J∗eH∗,H∗)′

 . (10)

Note that wh∗ is equal to the OLS weight for an observation belonging to the (h∗)th

column of E∗2. For the example (8), one hence obtains w1 = 1/T and w2 = 1. For the

conjecture is fulfilled, and considering many different values of α and the bi’s, the construction described
always yielded the same result as (7) .
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same example, A is given by

A =

 (1/T ) · 1′T−1 1/T 0′T−1 0

(1/T ) · 1′T−1 −(T − 1)/T 0′T−1 1

 .
This example illustrates how the SUR estimator uses information from smaller forecast

horizons to calculate uncertainty for larger horizons. The 1-step-ahead error that is affected

by the same shock as the 2-step-ahead error receives a negative weight in the estimation

of the 2-step-ahead uncertainty. In order for the estimator to remain consistent, the T − 1

other 1-step-ahead errors must receive weights which equal −1/(T − 1) times the negative

weight. Note that for large T , σ̂2SUR,2 ≈ σ̂2OLS,1 − e2T,T−1 + e2T,T−2.

This example also shows that the SUR estimator can, in principle, generate negative

estimates for σ̂2SUR,h∗ . In order to avoid such results, one could consider the modified

estimator

σ̂2SUR = max
(
0H∗ ,Avec

(
E∗2
))

where max (·) is applied elementwise. This estimator can be expected to be upward biased,

but to yield a lower mean squared error than σ̂2SUR.
5

2.2 Fixed-Event Forecasts

There are at least two important types of fixed-event forecasts. For example, the ECB

staff and the Eurosystem staff forecasts are made for changes of annual averages several

times each year. In contrast to that, the FOMC forecasts are concerned with changes from

the 4th quarter of a certain year to the 4th quarter of the following year (henceforth q4/q4

forecasts).6 In what follows, I focus on the latter type of fixed-event forecasts, assuming

that 4 forecasts per year are made.7 Adapting the formulas to the situation where there

are monthly forecasts of changes from the 12th month of a certain year to the 12th month

of the following year is straightforward.

5Alternatively, one could also use the function max
(
λσ̂2OLS ,Avec

(
E∗2

))
with 0 ≤ λ ≤ 1.

6 In both cases, the forecast for the unemployment rate concerns the level itself, and not the change in
the level.

7 If the fixed-event forecasts are concerned with annual averages, the SUR estimator is found to depend
on unknown parameters. It remains to be investigated if effi ciency gains can still be obtained simply by
assuming certain values for the bi’s and for α, for example by setting α = 3 and bi = c for i > 0 with c
close to zero.
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The variable of interest xs is defined by

xs = yt + yt−1 + yt−2 + yt−3

where s refers to the year and t denotes the last quarter in year s. xs denotes the change

from the 4th quarter in s− 1 to the 4th quarter of s. yt denotes the change from quarter

t− 1 to quarter t. The corresponding forecast errors for xs are given by

us,t−1 = et,t−1

us,t−2 = et,t−2 + et−1,t−2

us,t−3 = et,t−3 + et−1,t−3 + et−2,t−3

us,t−4 = et,t−4 + et−1,t−4 + et−2,t−4 + et−3,t−4

us,t−5 = et,t−5 + et−1,t−5 + et−2,t−5 + et−3,t−5

...

us,t−H = et,t−H + et−1,t−H + et−2,t−H + et−3,t−H

where H is typically a multiple of 4. For example, if forecasts for xs are made for the

current and the next year in the 1st, 2nd, and 3rd quarter, and for the next year and the

year after that in the 4th quarter, if the first forecast was made in the 4th quarter of the

year s = 0, the last realization is observed for the year s = 2, and the last quarter of the

year s = 2 is denoted as t = 8, then one obtains

J =

 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1


E2 =

 u21,3 u21,2 u21,1 u21,0 c c c c

u22,7 u22,6 u22,5 u22,4 u22,3 u22,2 u22,1 u22,0

 .
In this example, H = 8.
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If J only contains 1’s, the SUR covariance matrix of vec
(
E2
)
equals

ΩSUR =



ω1 ω1 ω1 ω1 ω1 ω1 · · · ω1

ω1
2∑
i=1

ωi
2∑
i=1

ωi
2∑
i=1

ωi
2∑
i=1

ωi
2∑
i=1

ωi · · ·
2∑
i=1

ωi

ω1
2∑
i=1

ωi
3∑
i=1

ωi
3∑
i=1

ωi
3∑
i=1

ωi
3∑
i=1

ωi · · ·
3∑
i=1

ωi

ω1
2∑
i=1

ωi
3∑
i=1

ωi
4∑
i=1

ωi
4∑
i=1

ωi
4∑
i=1

ωi · · ·
4∑
i=1

ωi

ω1
2∑
i=1

ωi
3∑
i=1

ωi
4∑
i=1

ωi
5∑
i=2

ωi
5∑
i=2

ωi · · ·
5∑
i=2

ωi

ω1
2∑
i=1

ωi
3∑
i=1

ωi
4∑
i=1

ωi
5∑
i=2

ωi
6∑
i=3

ωi · · ·
6∑
i=3

ωi

...
...

...
...

...
...

. . .
...

ω1
2∑
i=1

ωi
3∑
i=1

ωi
4∑
i=1

ωi
5∑
i=2

ωi
6∑
i=3

ωi · · ·
H∑

i=H−3
ωi



⊗ IT . (11)

While the SUR covariance matrix differs from its counterpart in the fixed-horizon case,

all other formulas continue to apply. Most importantly, the conjecture made in the fixed-

horizon case is valid in the fixed-event case as well, and the matrix A for the fixed-event

case can be determined in the same manner as in the fixed-horizon case, i.e. by using (9)

and (10).

The latter result points to a more general applicability of the conjecture. Indeed,

simulations suggest that it always appears to hold if ΩSUR can be expressed as

ΩSUR = Ψ⊗ IT

with Ψ having full rank and the elements of Ψ having the property

ψij = ψmin(i,j)min(i,j)

with ψij ∈ R. Obviously, the Ψ matrices in (4) and (11) have this property.

3 Monte Carlo Simulations

As shown by Grenander and Rosenblatt (1957), OLS estimation is asymptotically as ef-

ficient as SUR estimation if the regressors consist exclusively of constants, so that SUR

12



estimation can be helpful in small samples only. If a new forecast horizon is introduced,

the first sample that can be used for estimating its forecast uncertainty only contains one

observation for this horizon and, hence, can certainly be considered as small. In order to

illustrate this, Monte Carlo simulations are employed in what follows. In these simulations,

the forecaster produces forecasts for yt+h using the zero-mean first-order autoregressive

(henceforth AR(1)) model

ŷt+h = ρ̂yt

The data-generating processes (DGPs) for yt considered are described by

yt = µ+ xt

xt = ρ1xt−1 + ρ2xt−2 + εt

with εt iid normal and V ar (yt) = 1. The four parametrizations investigated and their

descriptions are given by

optimal: µ = 0, ρ1 = ρ̂, ρ2 = 0

biased-mean: µ = 2, ρ1 = ρ̂, ρ2 = 0

biased-AR(1)-coeffi cient: µ = 0, ρ1 = ρ̂+ 0.2, ρ2 = 0

AR(1)-model for AR(2)-DGP: µ = 0, ρ1 = −ρ̂ (ρ2 − 1) , ρ2 = −0.5

Note that especially the biased-mean forecast is severely misspecified, having a mean

that differs from the true value by 2 standard deviations of yt.

In the simulations, forecasts for these processes are made for the sample sizes T =

1, 2, ..., 40. Starting in period t = 0, forecasts for 1 to 4 periods ahead are produced.

Starting in period t = 10, additionally, forecasts for 5 periods ahead are made. σ2 is

estimated recursively as the sample size grows, using the SUR estimator (5) and the OLS

estimator (6). The forecast uncertainty for h = 5 can be estimated only if T ≥ 15. For

ρ̂, the values 0.5, 0.8 and 0.95 are considered in the cases of optimal forecasts, biased-

mean forecasts, and the AR(1) forecasts for the AR(2)-DGP. In the case of the biased

AR(1)-coeffi cient, the values 0.3, 0.6 and 0.75 are employed for ρ̂.

13



The measure of effi ciency gains of the SUR estimator for the 5-step-ahead forecasts is

defined by

100 ln

(√
E

[(
σ̂2OLS,5 − σ25

)2]
÷ E

[(
σ̂2SUR,5 − σ25

)2])
.

Hence, values larger than 0 indicate effi ciency gains of the SUR estimator. The unit is

percent (with respect to the standard deviation of the OLS estimator).

As shown in Figure 2, large effi ciency gains are possible with the SUR estimator. With

ρ = 0.5 they can exceed 100 percent when the sample size is small. They decrease with

the sample size, but remain elevated even when the full sample is available. With ρ = 0.8,

the effi ciency gains are smaller but still large for all sample sizes considered, and they

also decrease with the sample size. With ρ = 0.95, the effi ciency gains are still notable in

almost all cases and can reach more than 40%. The effi ciency gains first increase with the

sample size, and then decrease as the sample size becomes larger. If the forecasts are not

optimal, the effi ciency gains tend to be smaller than in the case of optimal forecasts, but

the differences are relatively small.

However, since the SUR estimator neglects the autocorrelation of forecast errors, the

OLS estimator can be more effi cient in certain situations. These cases are characterized

by strongly autocorrelated forecast errors in connection with very few observations before

the increase in the forecast horizon takes place, and very few subsequent observations.

This situation is illustrated in Figure 3, where the same settings as in the previous

simulations are used, but the 5-step-ahead forecasts do not start in t = 10, but in t =

max (0, T − 5). Thus, for every sample size with T ≥ 5 considered, there is only a single

5-step-ahead forecast error available. If the sample size equals T = 5 or T = 6, that is

if the 5-step-ahead forecasts start in t = 0 (the special case of the recent-forecast-errors

structure) or t = 1, effi ciency losses of the SUR estimator can be observed if the DGP is

suffi ciently persistent. However, in the cases which are more relevant in the context of this

paper, i.e. the cases where the forecast horizon is increased several periods after the first

forecasts for lower horizons are made, the effi ciency gains are always positive and often

large. Hence, employing the SUR estimator in the case of an increased forecast horizon is

even more recommendable than in the case of the recent-forecast-errors structure analyzed

in Knüppel (2014).
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Figure 2: Effi ciency gains of SUR estimator (5) for new forecast horizon h = 5, for which
first forecast is made in t = 10. Sample size increases from T = 1 to T = 40. Results are
based on 10,000 Monte Carlo simulations.
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Figure 3: Effi ciency gains of SUR estimator (5) for new forecast horizon h = 5, for which
first forecast is made in t = max (0, T − 5), so that at most 1 forecast error for this horizon
is available. Sample size increases from T = 1 to T = 40. Results are based on 10,000
Monte Carlo simulations.
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4 Applications

In the following, two applications of the SUR estimator are presented. They are based on

the forecasts for real GDP growth of the BoE for the UK, and of the FOMC forecasts for

the US. A common feature of both forecasts is the presence of nowcasts, i.e. the smallest

forecast horizon corresponds to a forecast for the current period. Thus, when forecasts

are made up to H − 1 periods ahead, forecasts for H horizons are available. The BoE

forecasts have a fixed horizon, whereas the FOMC forecasts are fixed-event forecasts.

Concerning the data from the BoE, quarterly growth forecasts have been available for

up to 8 quarters ahead since 1998q1. In 2004q3, the largest forecast horizon increased

from 8 to 12 quarters. Thus, the first forecast errors for these horizons became available

in 2006q4 to 2007q3, while up to 35 forecast errors for the smaller horizons already existed

in 2006q3. The forecast errors are calculated using second vintages from the real-time

database of the BoE which ends in 2013q1.

The full-sample estimates of the forecast uncertainty σ2 are depicted in Figure 4.

Clearly, the OLS results for h ≥ 10 are affected by the fact that they are estimated based

on a subset of the full sample where the (squared) forecast errors tended to be large.

Since the SUR estimator employs the entire sample for the estimation for all horizons, the

forecast uncertainty evolves relatively smoothly with the increase in the forecast horizon.

The recursive estimates of forecast uncertainty which start in 2006q4 are displayed

in Figure 5. While the SUR and OLS estimates attained similar values from 2006 to

the beginning of 2008, the large forecast errors for the end of 2008 and for 2009 lead to a

strong increase in the OLS estimates. The increase is more subdued for the SUR estimates,

because they employ a larger sample. The OLS estimates peak in 2009q4 and decrease

strongly afterwards, while the SUR estimates remain relatively stable after 2009q4.

Concerning the data from the FOMC, I use the quarterly forecasts for the q4/q4

growth rate that have been available since October 2007.8 These forecasts, the so-called

Summaries of Economic Projections, contain nowcasts, 1-year-ahead, 2-year-ahead, and,

depending on the quarter when the forecast is made, also 3-year-ahead forecasts. Moreover,

since the 1st quarter of 2009, the FOMC has published “longer-run”forecasts, which are

8The forecasts were previously only made on a semi-annual basis.
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Figure 4: Estimates of the uncertainty σ2 concerning the Bank of England’s forecasts for
quarterly real GDP growth in the UK for the quarterly horizons h = 1 to h = 13. h = 1
corresponds to the nowcast.
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Figure 5: Evolution of the recursive estimates of the uncertainty σ2 concerning the Bank
of England’s forecasts for real GDP growth in the UK for the quarterly horizons h =
10, 11, 12, 13
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Figure 6: Estimates of the uncertainty σ2 concerning the FOMC’s fixed-event forecasts
for q4/q4 real GDP growth in the US for the quarterly horizons h = 1 to h = 24. h = 1
corresponds to the nowcast, i.e. the forecast made in the 4th quarter for the current
year. h = 21, 22, 23, 24 correspond to the long-run forecasts. It is assumed that the q4/q4
growth rate for 2014 equals 2.1%.

assumed to represent 5-year-ahead forecasts. Thus, this is a case where H∗ < H.9 Hence,

the largest forecast horizon is 23 quarters, corresponding to the long-run forecast made in

the first quarter of the year. The forecasts are given as ranges only. I calculate a point

forecast as the mean of the lower and the upper end of the “central tendency”(henceforth

referred to as mean forecast).

Once the data for 2014 is released, the first errors for the long-run forecasts can be

calculated. In what follows, I assume that the q4/q4 growth rate for 2014 equals 2.1%,

which is the mean forecast by the FOMC in September 2014. Moreover, I assume that the

mean forecasts in December 2014 will be equal to the mean forecast in September 2014.

Under these assumptions, the estimates of forecast uncertainty σ2 depicted in Figure 6

are obtained.

Obviously, the OLS estimates of long-run forecast uncertainty deliver implausibly small

9The timing of the FOMC forecasts changed in 2013. From October 2007 until mid-2012, forecasts
were made in January, April, June, and October/November. Since mid-2012, they have been produced in
March, June, September and December. One could try to construct March and September forecasts before
mid-2012 by interpolation in order to achieve a better synchronization of the forecast dates, but here I
abstain from doing so. In what follows, the pre-2012 forecasts from June are considered as forecasts from
the 3rd quarter. In 2012, 5 forecasts were actually made. The April forecasts are not part of the data set
used here.
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values, which is due to the fact that they are based on one observation only. The SUR

long-run estimates are larger because they make use of all observations. Nevertheless, both

estimators yield values that are smaller than many of the estimates for smaller horizons,

which does not appear very plausible and indicates the need for a larger sample.

5 Conclusion and Outlook

In this paper, the restriction on the data structure that was imposed in Knüppel (2014)

for the SUR estimation of forecast uncertainty for multi-step-ahead forecasts, labeled as

recent-forecast-errors structure, is relaxed. It turns out that the SUR estimator continues

to have the useful property found in Knüppel (2014), namely its independence from un-

known parameters in the case of optimal forecasts, in circumstances not considered in that

work. These circumstances include the empirically relevant case where new, larger forecast

horizons are introduced. The SUR estimator is found to provide potentially large effi ciency

gains in this case which exceed those observed in the recent-forecast-errors case. Appli-

cations to the fixed-horizon growth forecasts of the Bank of England and the fixed-event

growth forecasts of the FOMC illustrate the usefulness of the proposed SUR estimator.
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A Appendix

A.1 Proof of Conjecture for H∗ = 2

Suppose that H∗ = 2. In this case, the proof of the conjecture for parameter independence

is very similar to the one in Knüppel (2014) which follows the setup of Im (1994). It

requires that all rows that only contain 0’s be deleted from X, and that the remaining

rows are reorganized (if necessary) such that the resulting matrix X̃ can be written as

X̃ =

 1T 0T

0T−M 1T−M

 =


1M 0M

1T−M 0T−M

0T−M 1T−M

 .
where M is the number of periods where only 1-step errors are available, so that T −M is

the number of 2-step errors available. The corresponding SUR covariance matrix equals

Ω̃SUR=

 g1IT

[
0T−M g1IT−M

]′
[

0T−M g1IT−M

]
g2IT−M



=


g1IM 0′T−M 0′T−M

0T−M g1IT−M g1IT−M

0T−M g1IT−M g2IT−M

 ,

so that the corresponding matrix Ã is given by

(
X̃′Ω̃−1SURX̃

′)−1
X̃′Ω̃−1SUR =

 1
T 1′M

1
T 1′T−M 0′T−M

1
T 1′M − M

T (T−M)1
′
T−M

1
T−M 1′T−M


which neither depends on g1 nor on g2.
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