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Non-technical summary

Research Question

In this paper, I analyze how agents form their expectations about the future development
of the term structure of interest rates based on macroeconomic information.

Contribution

I adjust an established approach in two ways in order to better understand the expectation
formation of the agents: First, I restrict the information that the agents can use for pricing
bonds to what is actually available to them at each point in time. Second, I analyze
whether agents act rationally and (equally) exploit all the information that is observable,
or whether the expectation formation of agents is more influenced by recent developments
(learning approach). In the latter case, agents behave with only bounded rationality.

Results

My results suggest that agents behave with only bounded rationality: Instead of taking
equal account of all available information, they tend to focus on the latest economic and
financial developments when forming their expectations about future yields. Yet the re-
sults also indicate that the agents’ focus on the latest developments may lead them to
make higher forecasting errors than if they dedicate equal attention to older information.
The evaluation of the model also sheds light on the time variation of both the economic
dynamics and the macro-financial linkage. Particularly in times of crisis, the estimation
results for the agents acting with bounded rationality do indeed show a faster adjust-
ment to the latest economic situation. The macro-financial linkage is likewise stronger in
turbulent economic periods.



Nicht-technische Zusammenfassung

Fragestellung

In diesem Papier untersuche ich, wie Marktteilnehmer ihre Erwartungen iiber die zukiinf-
tige Entwicklung der Zinsstrukturkurve auf Basis von makrookonomischen Informationen

bilden.

Beitrag

In zwei Aspekten passe ich einen etablierten Modellansatz an, um die Erwartungsbil-
dung der Marktteilnehmer genauer nachzuvollziechen: Erstens beschrianke ich zu jedem
Zeitpunkt des Untersuchungszeitraums den Datenkranz, den die Marktteilnehmer zur
Bewertung von Anleihen nutzen, auf die zu diesem Zeitpunkt tatséichlich bekannten In-
formationen. Zweitens untersuche ich, ob die Marktteilnehmer vollkommen rational sind
und alle ihnen zur Verfiigung stehenden Informationen (mit gleichem Gewicht) nutzen,
oder aber Informationen aus der jiingeren Vergangenheit bei ihrer Erwartungsbildung
stiarker gewichten (Learning-Ansatz). Diese Marktteilnehmer handeln nicht vollkommen
rational.

Ergebnisse

Meine Ergebnisse deuten darauf hin, dass die Marktteilnehmer eher nicht vollkommen
rational handeln: Anstatt alle ihnen zur Verfiigung stehenden Informationen gleichméaflig
gewichtet zu nutzen, neigen sie vielmehr dazu, sich in ihrer Erwartungsbildung eher auf
jingere Entwicklungen von Wirtschaft und Finanzmérkten zu konzentrieren. Die Ergeb-
nisse deuten jedoch darauf hin, dass die Marktteilnehmer mit dieser Fokussierung auf
die jiingeren Entwicklungen groflere Vorhersagefehler machen, als wenn sie élteren In-
formationen gleichermafien Aufmerksamkeit widmeten. Mit der Schitzung kann die zeit-
liche Varianz sowohl der 6konomischen Dynamik als auch deren Verhéltnis zu finanzwirt-
schaftlichen Entwicklungen néher beleuchtet werden. Insbesondere fiir Krisenzeiten zeigt
sich, dass sich die Schétzergebnisse fiir die begrenzt rationalen Marktteilnehmer schneller
an das gednderte wirtschaftliche Umfeld anpassen. Auch die Verbindung zwischen der
makrotkomischen und finanzwirtschaftlichen Entwicklung ist in ékonomisch unruhigen
Phasen stérker.
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Expectations about macroeconomic developments are important determinants of
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1 Introduction

In this paper, I analyze how agents form their expectations about the future development
of the term structure of interest rates based on macroeconomic information. I analyze
whether agents act rationally and equally exploit all the information that is available,
or whether they behave with only bounded rationality and form their expectations by
putting a higher weight on recent developments (learning approach).

Macroeconomic information can help to explain the dynamics of the term structure
of interest rates at least in part. For instance, Ang and Piazzesi (2003) use inflation and
output related data and prove the usefulness of these variables both for in-sample analysis
and out-of-sample forecasting. While Ang and Piazzesi (2003) rely additionally on latent
factors, there are merely factors extracted from a huge panel of macroeconomic time
series used by Moench (2008) to perform a forecasting analysis for the term structure
of interest rates. Generally, I follow the setup of Moench (2008) to estimate the U.S.
term structure of interest rates with information extracted from macroeconomic data.
The main focus of this paper, however, is the implementation of a different approach to
estimating the expectations of the agents. First of all, I will consider which information
was actually available for the agents to price the bonds at each point in time. The
information set will be restricted to that, and in each period, as new information arrives,
the model will be reestimated. Current yields and expectations about future yields that
are derived from these estimates are hence derived in a time-consistent manner as in
an out-of-sample forecasting analysis. This real time estimation procedure fits well with
the motivation of Moench (2008) for extracting information from an extensive data set:!
Central banks base their decisions on the evaluation of multitudinous time series. Whether
central bankers or bond investors, all agents update their evaluations when new data
becomes available. New observations may influence their decision making more than data
which is already decades old. Therefore, the interpretation of the modeling approach
can be amplified to steer the agents’ attention to the parts of such huge data sets which
are intuitively most relevant, namely the most recent observations. Hence, second, I
will apply a parsimonious and purely econometric mechanism that puts an emphasis on
more recent information in the coefficient estimation. Laubach et al. (2007) present such
an approach to discount older in favor of newer macroeconomic information for a term
structure estimation and already suggest its combination with a factor model. They also
relate it to the literature on learning; the rational expectations assumption thus does not
need to be rejected completely, but expectations are rather assumed to have bounded
rationality (Evans and Honkapohja, 1994).2 The learning approach works in complement
with the factor extraction to obtain the most relevant information from a huge data set
- the latter along the cross section, the former along the time dimension.

The estimation results reflect the considerable time variation in the relation of the
yield data to the macroeconomic factors. Their correlation reached their highest levels

IThe notion of ‘real time estimation’ refers to the estimation approach. The data that are used for
the estimation, however, are revised. See Section 5 for details.

2For ease of exposition, I refer to the estimation approach with discounting as learning ap-proach and
to the approach without discounting as benchmark approach. Since the benchmark approach implies also
a reestimation of the model coefficients in every period, however, agents in the benchmark approach can
also be considered as learners who do not discount (Laubach et al., 2007).



shortly after the burst of the dotcom bubble at the beginning of the 2000s as well as during
the recent crisis. The overall volatility of the state variables of the affine term structure
estimation likewise supports the application of an estimation approach that incorporates
time variation. In line with the literature, I also find the volatility of both types of state
variables, the macroeconomic factors and the short-term interest rate, to be higher, for
instance, at the end of the 1980s than between 2002 and 2007. A comparison of both
in-sample fit and out-of-sample forecasting performance of the real time approach without
discounting (henceforth, benchmark approach) and of the learning scheme is undertaken
in order to understand which approach better approximates the expectation formation of
agents: If investors have rational expectations and take all available information equally
into account, then the estimated coefficients of the benchmark approach should provide
a better in-sample fit. If they update their expectations by focussing on the most recent
economic developments, the estimated coefficients of the learning scheme should fit the
yield data better. I find that the learning scheme generally delivers better forecasts for
longer maturities over shorter horizons than the benchmark approach. I interpret this
pattern as an indication that the learning approach is indeed better able to reflect the
agents’ actual expectations for future yields. This strategy, however, is not necessarily
recommendable in the long run: The benchmark approach produces better out-of-sample
forecasts over longer horizons for shorter maturities. Given that realized yields are better
forecasted by the benchmark approach, investors would in the end be better off if they
had formed their expectations by dedicating equal attention to older information.

The remainder of this paper is organized as follows. First, I motivate the learning
approach in a parsimonious regression analysis (Section 2). Then, I present the underlying
model (Moench, 2008) and the estimation methodology in Section 3. In Section 4, I
discuss the incorporation of a learning approach into such a model. Section 5 provides a
description of the data that is used for the implementation of the model. The estimation
results of the affine term structure model are shown in Section 6. These contain both
in-sample yield estimates and out-of-sample yield forecasts, as well as a brief analysis of
the relation to the underlying economy’s dynamics. Section 7 provides a robustness check
of the main results.

2 Real Time Estimation and DLS: A Brief Motiva-
tion

Discounting information from past observations is the basic mechanism that I aim to
exploit in the analyses of this paper. Therefore, I will start by illustrating the effects of
this concept in a parsimonious least square exercise. I regress the ten-year bond yield on a
state vector containing the short rate r; and four contemporaneous macroeconomic factors
F, which summarize the common dynamics of a macroeconomic data set (see Section 3
and 5 for details). This unrestricted regression can be described by

Y;l20m:oc+ﬁ~ (F{,rt)/—l-ut. (1)

It is straightforward to estimate this regression using ordinary least squares (OLS) for
the entire sample. If one wishes to allow the coefficients to vary over time, one can
repeatedly reestimate the regression for expanding samples: Starting from an initializing



subsample t = 1,...,t;., one continuously expands and reestimates the equation and
strings each subsample’s last period yield estimate together to assemble the real time
estimates §/2°™ for the entire sample ¢ = t;,;.,...,T. Laubach et al. (2007) discuss the
advantages of such repeated real time estimations, namely that they may improve the
estimation accuracy in comparison to a full sample estimation, and that it restricts the
information set of the econometrician at each point in time to what was then actually
observable. Therefore, they call their recursively repeated estimation of a VAR a quasi-
real-time learning approach, as it simulates the situation of a bond investor who evaluates
the yields based on information that is currently available and updates its estimation
when new information arrives. The learning effect may be intensified when one allows the
bond investor or the econometrician to focus particularly on the most recent information
(see also Piazzesi and Schneider, 2006). Downweighting information from observations
further in the past places a greater weight on more recent information for the coefficient
estimation. Downweighting is attained using discounted least squares (DLS), which I will
discuss in more detail in Section 4. It implies that data receive less and less weight in the
estimation as they become older. For instance, the discounting rate that I choose gives a
four year old observation only about half of the weight of a recent observation.

I hence estimate the regression in Equation (1) three times, once with OLS over the
full sample, once repeatedly for each period with OLS (OLS real time estimation), and
once repeatedly for each period with discounted least squares (DLS real time estimation).
For these three regressions, Figure 1 compares the resulting yield estimates §{?° with the
data. The time span from January 1983 to January 1994 serves as the initialization period
for both of the real time estimations, thus I compare the results of the approaches for
the period from January 1994 to April 2010. Contrary to the results of Laubach et al.
(2007), my OLS real time estimates are less precise than the OLS full sample estimates
(the root mean squared errors are 1.01 compared to 0.90). In this application, the advan-
tages of reestimations in the real time estimation are apparently overcompensated by the
disadvantageous limitation of the information set. However, focusing on the information
provided by the most recent data improves the precision remarkably, as can be seen from
the lowest panel of Figure 1. The root mean squared error (RMSE) of the DLS real time
estimation is 0.70.

Obviously, discounting old information requires the real time procedure of repeated
estimations. Evaluating Equation (1) only once using DLS for the full sample induces
a y;2"-estimate that clearly misses both the level and the variation of the data at the
beginning of the sample. This can be seen from Figure 2. It also highlights how the DLS
real time estimates become successively more precise than the OLS real time estimates
towards the end of the sample.

In the following sections, I will apply more elaborate mechanisms for estimating bond
yields based on macroeconomic factors. Specifically, I will estimate the macroeconomic
dynamics in a factor-augmented VAR and use the coefficients from it for the yield es-
timation with an affine term structure model. At both of the two stages, however, I
apply discounting in order to give more weight to the most recent observations. To assess
the impact of discounting, I compare the results to a real time estimation of the model
without discounting (henceforth, the benchmark model).
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Figure 1: Full sample estimation and real time estimation of the ten-year bond yield: The
upper figure plots the OLS full sample estimate against the data, the figure in the middle
the OLS real time estimate, and the lower one the DLS real time estimate.

3 The Benchmark Model

I estimate a no-arbitrage affine term structure model in which the underlying state vari-
ables follow a factor-augmented vector autoregression (FAVAR). The approach is taken
from Moench (2008), and I refer the reader to his paper for a thorough description of the
procedure, since I present here only the elements that are most relevant for the imple-
mentation.

FAVAR models were introduced to the monetary policy literature by Bernanke, Boivin,
and Eliasz (2005) and have proven to be an appropriate approach for taking information
from extensive data sets into account. Since the number of state variables that can
be incorporated into affine term structure (ATS) models is very limited, the reduction of
dimensionality that such factor methods allow is particularly interesting for the estimation
of ATS models. ATS models have become workhorse models for researchers who want
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Figure 2: OLS and DLS regression estimates of the ten-year yield on four contemporaneous
macro-factors and the three-month yield.

to analyze the term structure of interest rates in tractable no-arbitrage models. Their
development dates back at least to Duffie and Kan (1996). For a review of the model
class see, for instance, Piazzesi (2010).

As T will explain below in detail, I use some 150 transformed time series of various
economic activities as macroeconomic data. Using principal components, the common
dynamics of all the time series can be condensed into a few (k) factors. That keeps the
number of parameters that have to be estimated throughout the analysis low without
restricting the information set to only a few selected observable time series. The factors
F, that summarize the macroeconomic data X; and their loadings C'tF are hence estimated
by

X, =CF . F +¢, (2)

where the error term ¢, is a vector whose length is equal to the number of time series in
X;. It is assumed to be normal and to have mean zero (see Bernanke et al., 2005). The
state equation of the model is

Zi = Wy + @iy 1 + wy, (3)

where Z; contains both the macroeconomic factors and the short-term interest rate r;
and their lags, Z; = (F}, 7y, F{_y,7¢-1, ..., F{_,.1,7¢—py1)". The vector p, is the companion
form of the (kK + 1) x 1 vector p;. ¢, is the companion form of ¢,(L), a (k+ 1) x (k+ 1)
matrix of lag polynomials of order p, and w; is the companion form of an error term of
size (k+1) x 1.

The application of model selection criteria supports the choice of the lag length p = 4
as in Moench (2008). I choose to extract k = 4 factors from the macroeconomic data, as
an ATS estimation with a higher number of factors would be barely feasible.?

3 Among others, Ang and Piazzesi (2003) and Hamilton and Wu (2012) discuss the problem of over-
fitting in ATS models with a large number of parameters that need to be estimated.



The model parameters are estimated in the same two-step procedure as in Moench
(2008). First, the FAVAR parameters p,, ¢,, and w; are estimated using ordinary least
squares. Then these parameters are taken as given for the estimation of the term structure
model parameters A\g; and A;;, which form the market price of risk according to A, =
Aot + A1,:Z;. Then the model implied yield for a bond maturing in n-quarters, Qt(n), can
be calculated:*

9" = ~(Aunfn) = (BLu/n) - 2 @

where
A - At n—1 + Btn 1( Qt)\(] t) (]_/2) . B;,nflgtBt,n—l, (5)
Bg,n = Bg,n—l(q)t — Ay — 0 (6)

The coefficient ¢ is a (k+1)-p x 1 vector of zeros with a one on its (k+1)’s entry. €2, is the
variance-covariance matrix of the residuals of regression Equation (3). A is zero, as By
is a vector of zeros. In this way, the recursive formulas above deliver for the three-month
(n = 1 quarter) yield the coefficients A;; = 0 and B;; = ¢, which leads by Equation (4)
to the identity Qt(l) = r;. From that point on, yields of higher maturities are obtained by
adding information contained in the FAVAR estimates for p,, ®,;, and €2,.

The model implied yields are estimated by minimizing the sum of squared errors, Sfm,

with respect to the risk parameters Ao, and A; ;:

S ZZ D) (7)

t=1 n=1

Hence, the estimation is performed with a general method of moments (GMM) estimator
in which the weighting matrix is an identity matrix.®

The subscript ¢ indicates the time variation of the coefficients at all stages of the es-
timation. The time variation enters via the repeated reestimation of the model. Starting
from an initialization sample, the model is always reestimated after expanding the sub-
sample by one period until the end of the sample, T, is reached. As already discussed
above, the actual yield estimates that are subsequently evaluated are the chained last
period’s estimates from each of the considered subsamples. This expanding window ap-
proach both restricts the data set to what is actually observed and enables all parameters
to vary over time. Alternatively, a time-varying parameter VAR could be applied (see,
for example, Canova, 1993, and Sims, 1993, or, particularly for the case of a FAVAR,
Koop and Korobilis, 2014). However, this would induce further structural assumptions
that are avoided in the parsimonious approach applied here. Moreover, expanding win-
dow estimation intuitively fits well with the view of a real time investor who updates his
expectations when new data becomes available.

4As explained in Section 5, I use the three-month yield as the short rate. It is therefore more convenient
to state the ATS model in terms of a quarterly frequency.

SHamilton (1994), for example, describes the GMM estimator and discusses the choice of the weighting
matrix.



4 The Learning Approach

4.1 The Exponential Weighting Scheme

The application of a FAVAR model allows the information of a data set to be captured
efficiently with a large cross sectional dimension in a few common factors. The method-
ology which is described below aims additionally to focus on the data set’s information
along the time dimension that is most important for nowcasting and forecasting. This is
achieved by downweighting past information compared to information from more recent
observations. Old observations are not completely discarded from the sample, but they
are assumed to be of minor relevance. The methodology can be related to the litera-
ture on learning, and it was shown that the discounting of older information is, at least
asymptotically, not a deviation from the rational expectations assumption.

The standard formula for a weighted least squares estimator can be found, for example,
in Pollock (1999) as B, = (X/T\X,)"'X|IY;, where Ty = diag (7', ...,7",7°) is the
discount matrix with the discount rate 7 on its diagonal.® Montgomery and Johnson
(1976) relate the asymptotic properties of the DLS estimator to standard OLS estimators
and also show that the DLS estimator is unbiased. Applying the estimator to the FAVAR
equation (3) yields the coefficient estimates [fi, ¢Et] = (Z,_T1Z, 1) Z]_\T:Z,.

There are various applications of learning approaches in term structure models, includ-
ing, for example, Kozicki and Tinsley (2001), Piazzesi and Schneider (2006) and Laubach
et al. (2007). Kozicki and Tinsley (2001) show that the assumption on the limiting condi-
tional forecast of the short rate process is a crucial determinant of long-horizon forecasts.
As the “endpoint” of the short rate process depends on the information set it is condi-
tioned on, this finding is directly related to the pseudo real time estimation applied in
this paper. Given that the benchmark approach and the exponential weighting scheme
differ in the degree of persistence of the state variables, this paper also builds on the find-
ing of Kozicki and Tinsley (2001) that the assumed persistence of the short rate process
influences its endpoint and thus the forecasts. However, while agents learn about the evo-
lution of the short rate and the macroeconomy in this paper, Kozicki and Tinsley (2001)
consider agents that learn about inflation expectations. The short rate endpoint is then
directly calculated from the implied expected inflation value. Technically, I will instead
follow Laubach et al. (2007) in their approach to downweighting old information. I differ
from their methodology only slightly to account for having factors as state variables and
not observed macroeconomic time series. Recursively updating the coefficients for each
period as Laubach et al. (2007) do is unsuitable in a factor model due to the factors’
limited identification. However, both extracting principal components and estimating the
FAVAR coefficients using linear regressions is fast, hence the costs of estimating them
from scratch at each point in time are negligible.

As discussed by Laubach et al. (2007), discounted least squares converge to constant
gain learning. Specifically, the gain term 11__771 converges to 1 —v in ¢. Evans and Honkapo-
hja (2001), for example, consider agents in such constant gain models to be of bounded

6Note that this estimator is equivalent to GLS if I'; was the variance-covariance matrix of the re-
gression’s residuals (Pollock, 1999). Since I impose T'; exogenously, and + is a discount factor, I use,
like Pollock (1999), the notion discounted least squares to distinguish it from standard generalized least
squares.



rationality to emphasize that the rationality assumption is not entirely abandoned.

In addition, the ATS estimation needs to be adjusted to the learning approach. The
FAVAR-DLS parameters are estimated to fit the latest data best. Consequently, past
errors in Equation (7) have to be downweighted accordingly:

T N
S =222 " =) @ - ), (®)
t=1 n=1

As outlined above, if the discounting matrix was replaced by the inverse variance-covariance
matrix, this estimator would coincide with the optimal weighted GMM estimator. The
choice of the discount factor remains with the applicant. See Section 4.2 for a rational-
ization of my choice.

Such an exponential weighting scheme alleviates the adjustment to structural changes
in the economy, because the meaning of old information smoothly decreases over time.
Particularly, the exponential weighting scheme suits structural changes that do not occur
abruptly, but rather evolve over months or even years. Typical events discussed in the
literature as pivotal points of fundamental relations fit well with this characteristic. Even
changes that appear to happen overnight, such as the appointment of Paul Volker as new
central bank chairman, affect structural relations in the economy rather gradually. How-
ever, a model that incorporates regime switching may be a better choice if the structural
changes do occur from one period to the next, or if one is interested in analyzing the
difference itself between two regimes.”

An alternative but similar way of dealing with structural breaks is simply to discard
older data completely from the estimation sample (Pollock, 1999). However, an expo-
nential weighting scheme has at least two advantages compared to such a rolling sample
estimation: First, one has to justify the choice of the memory horizon. For example, why
should a 10-year old observation still be of relevance for the model, but an observation
one month older than that completely discarded? Second, one easily runs into numerical
problems by estimating short sub-samples. This point is of particular importance for an
affine term structure application, as such models require a relatively large time dimension.
These two drawbacks make the exponential weighting scheme appear the better choice
when one wishes to apply a parsimonious learning scheme to an ATS yield estimation.

4.2 The Choice of the Discount Rate

As discussed in Section 4.1, the discount rate v is exogenous in my model and can be
freely chosen. Piazzesi and Schneider (2006) set their discount rate to 0.99, which leaves
observations that are 17 years old half of the weight of the most recent observation in
their estimation of quarterly data. Laubach et al. (2007) set the discount rate to the
value that minimizes the one-month forecast error of the VAR of the macroeconomic time
series. In my model, with principal components as state variables and a focus rather on
the ATS model, such an approach is not very suitable. Due to the limited identification
of the factors of the FAVAR, which may represent different aspects of the data in different

“For a term structure of interest estimation that incorporates regime switching, see, for example, Dai,
Singleton, and Yang (2007).



periods, factor forecast precision matters in my model only as much as it leads to yield
forecast precision. Optimizing the forecast precision of the ATS estimation over different
discounting rates, on the other hand, would require massive computational efforts. In or-
der to understand the influence of the discount rate value on bond yield estimates, I run a
parsimonious least squares yield estimation, described in Section 7, for different values of
~. It turns out that the question of which value of 7 is optimal depends crucially on both
the forecasting horizon and the maturity under consideration. Figure 3 shows the RMSEs
for the in-sample estimation and the 12-months ahead forecast. The longer the forecasting
horizon, the more disadvantageous strong discounting is. Stronger discounting, neverthe-
less, improves the in-sample fit of long maturity yields (this higher precision of long term
yield estimates is also reflected in the results of Laubach et al., 2007). To avoid pushing
the results of my analyses too much in one of these directions, I choose v = 0.985 for
this paper, a value lying in between the values of Laubach et al. (2007) and Piazzesi and
Schneider (2006). 0.985 is the value that optimizes the in-sample fit and out-of-sample
forecasting performance of the 12-month bond yield. Figure 4 shows the average RMSE
for the 12-month yield for all considered forecasting horizons, h = {0, 1,6,12}. The mini-
mal RMSE of 0.55 is obtained with v = 0.985. It may be interesting to explore whether
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Figure 3: Root mean squared errors of the discounted least squares regression in depen-
dence of the discount rate ~ for different maturities, describing the in-sample fit in the
left panel, and the 12 months forecasts in the right one.

the relations of the RMSEs to the maturity and forecasting horizons in the search for
the optimal y-choice are only specific to the considered sample. That could be checked
through similar analyses over different samples or for different countries. For data other
than yields, a forecasting exercise for different discount rates could be undertaken, for
example, with the Survey of Professional Forecasters on expected inflation, because this
survey also reports the forecasters’ expectations of the variables over different horizons.
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Figure 4: Root mean squared errors for the 12-month yield estimates from the discounted
least squares regression, averaged over all considered forecasting horizons, h = {0, 1,6, 12},
in dependence of the discount rate v: The minimum is reached at v = 0.985.

5 Data

5.1 Macroeconomic Data Set and Yield Data

I estimate the U.S. term structure of interest rates using macroeconomic data and yield
data on a monthly frequency, ranging from January 1982 to April 2011. I use some
150 time series that provide measures for various economic activities such as industrial
production, employment, wages, inflation, new orders, surveys, and outstanding loans.

There are two aspects of the data that are not in line with the real time approach that
I take in the estimation: I do not consider publication lags in the data, but treat an obser-
vation for a certain month as already observable at the end of that month. Additionally,
the time series may have been revised after their first publication. Instead of considering
the original vintages of the data set, I use the data in their revised version. Although
pure real time data are available for some of the series,® it is not possible to compile a
data set comparable to the one I use over almost 30 years for a monthly frequency from
such sources. Bernanke and Boivin (2003) found that an increased number of time series
is more important for forecasting performance in factor analyses than the use of real time
data instead of revised data. Giannone, Reichlin, and Sala (2005) also argue that revision
errors are typically idiosyncratic to specific series and thus vanish when common factors
are extracted. However, due to the use of revised data in a real time estimation exercise,
they call their approach “pseudo real time”. A detailed list of the time series I use is
included in Appendix A.2. The original data are transformed before factors are extracted
as described in the next section.

8See, in particular, the ALFRED data base of the St. Louis Fed.
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For the term structure of interest rates, I use freely available continuously compounded
(zero coupon) yield data from Gurkaynak, Sack and Wright,? see Gurkaynak, Sack, and
Wright (2007) for a thorough description of the data. As is pointed out there, the Svens-
son parameters'® that the authors provide do not allow yields of very short maturities to
be backed out, because they exclude all bonds that have maturities of fewer than three
months from their parameter estimation. Therefore, the shortest maturity yield that I
incorporate into my analysis is the three-month yield. The three-month yield receives
thus a distinctive role in my ATS model estimation, as the shortest yield serves as a state
variable. The other yields that are used for estimation are those of bonds of 6, 9, 12, 24,
36, 48, 60, 84, and 120 months to maturity.

5.2 Preparing the Data: Transformations and Time Series Se-
lection

The factor analysis requires preparative transformations of the data. In order to ob-
tain stationary factors, some of the macroeconomic time series need to be considered in
first differences. Note, however, that this widely used pre-adjustment does not guaran-
tee consistent factor estimates: As discussed by Bai and Ng (2004), the presence of a
nonstationary idiosyncratic component in a time series can cause the extracted principal
components to be inconsistent factor estimates.

Particularly the real time estimation procedure and the application of DLS make the
imposition of stationarity a challenging task: Time series are not only required to be
stationary over the entire sample from 1983 to 2010. They also need to be stationary
for the sample that is actually available at each point in time, from the starting time
of the real time estimation in January 1994 until April 2010. Moreover, the estimation
using discounted least squares makes an autoregression of a time series even more prone
to nonstationarity due to its focus on the latest evolution of the series.

The severity of the stationarity issue becomes obvious in a simple regression analysis.
[ run AR(1)-regressions for each time series of the data set separately, starting in January
1994 and then expanding the sample continuously by one period until reaching the last of
the 328 observations in the data set. With some transformation effort, all of the considered
time series are stationary in 202 OLS-AR(1) evaluations. However, in 428 of the 21426
regressions that are undertaken, estimates are nonstationary if the AR(1) coefficients are
estimated using DLS. Thus, more time series need to be differentiated for the application
of DLS. This removes information from the data and therefore has negative effects on the
precision of the following estimations.

If T wanted to transform all time series to expose stationary dynamics in all DLS
regressions, I would have to differentiate almost all series, especially since for certain
groups of time series it is desirable that they enter the analysis in the same conceptual
manner. For example, if total capacity utilization is considered in logarithms, capacity
utilization of the durable goods production should not be considered in first differences
but also in logarithms. In any case, imposing a certain transformation scheme for the

9See http://www.federalreserve.gov/econresdata/researchdata.htm.
10For a description of the parameters and the corresponding functional form describing the yield curve,
see also Svensson (1994).
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entire sample may not only lead to over-differentiating; it actually also does not follow
the real time orientation of my approach.

Given these prerequisites, I apply a transformation procedure that reduces the need for
differentiation. In line with the real time approach, I choose the transformation scheme
for all points in time separately: To achieve this, I first define a preferred transformation
setup, namely a setup that leads the OLS-AR(1) coefficients of all time series at each point
in time to be stationary. This scheme incorporates only limited differencing. I also specify
logical groups of time series that should be transformed in the same way, for example a
group containing all series related to capacity utilization. Then, I check separately for
all periods whether all series are stationary given the preferred transformation scheme. If
one series is not, I deviate from the preferred scheme and apply first differences not only
on that series but also on all others in its group. The outcome was that factors resulting
from data treated using such a real time transformation approach do indeed preserve more
valuable information for the term structure estimation. The list in Appendix A.2 provides
details on the preferred transformation scheme and the grouping of the time series.

An additional source of nonstationarity of the AT'S-model’s state variables is, of course,
the short rate. I cannot react to a nonstationary short rate process by taking first dif-
ferences, as the ATS equations (4) to (6) imply its inclusion in levels. Fortunately, the
short rate exposes nonstationary dynamics only three times under the assumption that
it is estimated with DLS as a fourth order autoregressive process as in the FAVAR de-
scribed in Equation (3). Therefore, after assembling the state variables, I follow several
contributions to the literature on learning and project the last period’s estimates for the
FAVAR for the current period if it exposes nonstationary dynamics.!

Another preparative task is selecting those series from the extensive data set that
are of relevance for estimating interest rates. I choose a parsimonious procedure, namely
discarding those series from the analysis that do not exceed a correlation of 0.04 to the
short-term interest rate. To remain consistent, I repeat the selection at each point in time.
Therefore, the number of series from which the principal components are extracted varies
between 93 and 123 in the learning approach and between 97 and 123 in the benchmark
approach. The difference is caused by divergent data transformations in both approaches.
More elaborate techniques for data selection are available,'? but their application would
go beyond the scope of this paper.

Before the factors are finally extracted through principal component analysis, the
time series are also standardized to have zero mean and unit variance. This guarantees
that each series’ movements, if the series is originally of low or high variance, has the
same relevance in the principal component analysis. Appendix A.1 provides plots of the
macroeconomic factors.

6 Affine Term Structure Model Estimation

I start the evaluation of the benchmark model and of the exponential weighting scheme
by comparing their in-sample fit of the yield data. The real time estimation is deduced
for the subsample from January 1994 to April 2010. There is no specific reason for the

HSee, for example, Marcet and Sargent (1989), Evans and Honkapohja (1994), or Laubach et al. (2007).
12Gee, for example, the least angle regression of Efron, Hastie, Johnstone, and Tibshirani (2004).
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choice of the starting date, except that especially the real time estimation of the ATS
model requires a fairly long initialization period.
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Figure 5: Estimates for the six and sixty-month yields in comparison to the yield data:
In the upper (lower) panel, the estimates from the benchmark approach (exponential
weighting scheme) are shown for the subsample from 01:1994 to 04:2010.

Because of the point specific estimation, the in-sample estimation coincides with a zero
step ahead forecast. Therefore, the RMSEs for the estimations can be found separately
for each maturity in column h = 0 of Table 1. The RMSEs are relatively high given
that the term structure of interest rates can already be fitted very well with three latent
factors (Litterman and Scheinkman, 1991). However, no latent factors are used in this
estimation. Moench (2008), who does not use latent factors either, reports RMSEs for
short-horizon forecasts that indicate just a slightly better fitting ability for a forecasting
period from 1994 to 2003. As in the least squares analysis in Section 2, the average
RMSE of the benchmark estimation over the full sample is slightly lower than for the
benchmark real time estimation (0.63 compared to 0.67). Again, if one does not restrict
the information set to what was actually known at each point in time, one overstates the
agents’ ability to price bond yields. The exponential weighting scheme delivers slightly
more precise estimates (RMSE=0.66). The table reveals differences over the maturity
spectrum, namely that long yields are fitted better with the exponential weighting scheme,
while the benchmark model is advantageous for shorter maturity yields. This pattern will
be discussed in Section 6.2. The fitting abilities of the different approaches also differ over
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the course of time. Figure 5 depicts the yield estimates of both approaches, displayed in
the upper two graphs for the benchmark model, and in the lower two graphs for the
exponential weighting scheme. It appears that the focus on more recent developments
in the exponential weighting scheme makes its estimates react faster to the latest trends.
The two-year increase in the six-month yield starting in mid-2004, for example, is followed
more precisely by ¢ than by ™. Also, in the case of the 60-month yield, one sees that
U7 reacts faster to the end of the upward trends in the summers of both 2000 and 2006.
However, the higher meaning of newer information disturbs y;" of any maturity when the
financial market turmoil escalated at the beginning of 2008. Apparently, the focus on the
most recent developments helps little when current perspectives are very uncertain.

Additionally, it is worth noting that the means and variances of the yield data of all
maturities are better fitted with the exponential weighting scheme, with the sole exception
of the variance in the ten-year yield, which is fitted more precisely with the benchmark
model. Nevertheless, the comparison of the fitting ability makes it hard to claim that
one of the approaches does far better overall, but rather reveals different strengths and
weaknesses that can be linked to their underlying characteristics.

Corr. 1st PC to Y(12m) Corr. 2nd PC to Y(12m)
0.6 8-2
0.4 0.4
0.2 0.2
0 0
1990 1995 2000 2005 2010 1990 1995 2000 2005 2010
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Figure 6: Absolute values of correlations of state variables with the one-year bond yield
for the period of 06:1988 to 04:2010. For the macroeconomic factors, the simple mean of
correlations of the four factors to the one-year bond is shown.
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6.1 Economic Relations and Dynamics
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Figure 7: Time variation of macroeconomic factor and interest rate volatility for the
subsample from 06:1988 to 04:2010. The graphs plot the diagonal elements of the degrees
of freedom-adjusted variance-covariance matrix of the FAVAR, ¥, = €, - Q). For the
macroeconomic factors, the variances are accumulated as the arithmetic mean of the four
variances.

Once the model is estimated for each point in time, the results also allow light to
be shed on the dynamic relations of the factors to the yield data. I derive correlations
of the state variables with the yield of a bond maturing in 12 months. Correlations are
calculated for a rolling window of five years for the sample from June 1988 to April 2010.
Figure 6 shows these correlations in absolute values. Their time variation appears to be
high. Generally, and not surprisingly, the correlation is highest between the three-month
and 12-month yield.'®* Among the macroeconomic factors, the second factor appears to
be the most relevant state variable according to this correlation criterion. I also provide
the arithmetic mean of the separate correlations of the macroeconomic factors as an
accumulated measure. It allows the overall meaning of the macroeconomic factors to be
assessed, as a drop in the correlation of one factor may be compensated by a peak in
another factor’s correlation. The measure of the accumulated correlations peaks in times
of major financial market stress. The reaction is just slightly delayed, as the financial
market stress first has to be reflected in the macroeconomic data. Hence, the highest
level is reached in early 2002 in the aftermath of the burst of the dotcom bubble and the
recession following the terror attacks of September 2011. The indicator declines afterwards
in the tranquil economic period around the middle of the decade, before starting to
rise again due to the recent financial crisis. The economic interpretation of this pattern

13The drop in this correlation down to 0.74 in April 1999 originates from a five-year estimation window
that covers an eightfold inversion of the relation of the 12-month yield to the three-month yield.
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depends on the actual drivers of these increases in correlation, and the model setup in this
paper is not the most appropriate to analyze it further. Studies like Backus and Wright
(2007), Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009) decompose long
term yields and relate their components to business cycle developments. They find that
term premia (or unexpected yield components) behave countercyclically. Nevertheless, on
the aggregated level that is considered here, it is interesting to see that macroeconomic
information appears to be particularly helpful for forecasting yields in times of crisis.
I also find that most of the correlations of the factors to the yields are higher when
the factors are considered in lags. The stronger correlation in lags may be caused in
part by the fact that macroeconomic data are usually published with some delay and/or
that macroeconomic data may indeed contain predictive information for forecasting yields
(Moench, 2008). There is no clear trend regarding the meaning of factors for yields of
different maturities. Overall, the correlations do not indicate a lower or higher meaning
of macroeconomic factors for yields of shorter or longer maturities. However, the third
and fourth factors provide more information related to the longer maturities, while the
second factor is more correlated with the shorter maturities. The first factor’s correlation,
by contrast, is highest for intermediate maturities. Again, it is important to mention that
these results are heavily driven by the transformations that were imposed on the data.'*
A lack of interpretability remains one of the obvious disadvantages of using principal
components to summarize macroeconomic data.

The derivation of the real time estimates also allows us to consider the time variation
of the volatility of the state variables. To illustrate the time variation of the factors’
variances, I sum them up again for all four principal components. Looking at Figure 7
makes it clear, first of all, that there is considerable time variation in the subsample from
June 1988 to April 2010 that would go unnoticed in a full sample estimation. The OLS
estimated volatility decreases over most of the sample, interrupted once by a rise at the
end of the 1990s. The short rate likewise exhibits a decline in volatility until late-2007.
That is in line with the findings of Laubach et al. (2007), who interpret this gradual
reduction as an outcome of the great moderation of interest rates and other key economic
indicators after the turbulent economic times of the 1970s.

DLS volatilities are generally higher, and the ups and downs as observed for the OLS
estimates are stronger. For the macroeconomic factors, this overlays a clear downward
trend seen in the OLS volatilities. This is no surprise, as the idea of DLS is to focus on
the latest developments. The short rate volatilities originating from the OLS and DLS
estimations are far more similar to each other. They diverge just at the end of the sample.
The start of the financial crisis is thus reflected less clearly in the OLS evaluation. The
DLS estimator, however, appears once more to react faster to the change in the economic
environment.

14Note that the imposed transformations necessary for stationarity of the data do not vary from period
to period as in the other parts of the paper, because that would add another source of variance volatility.
Hence, for the calculation of the correlation figures and the state variable volatilities, I apply a constant
transformation regime and accept the projection facility to be triggered more often.

16



Table 1: Root mean squared errors of ATS estimation

’ Benchmark: \ \ \ \ ‘
Maturity h=0 | h=1 | h=6 | h=12
y(3m) 0.00 | 0.25 | 0.87 | 1.44
y(6m) 0.48 | 0.50 | 1.09 | 1.66
y(9m) 0.60 | 0.62 | 1.12 | 1.64
y(12m) 0.56 | 0.58 | 1.06 | 1.60
y(24m) 0.59 | 0.64 | 1.07 | 1.57
y(36m) 0.65 | 0.70 | 1.09 | 1.56
y(48m) 0.71 | 077 | 1.11 | 1.54
y(60m) 0.76 | 0.81 | 1.14 | 1.53
y(84m) 0.82 | 0.88 | 1.16 | 1.49
y(120m) 088 | 0.94 | 1.14 | 1.42

Exponential Weighting;: \ \ \ \ ‘
Maturity h=0 | h=1 | h=6 | h=12
y(3m) 0.00 | 0.23 | 0.87 | 1.49
y(6m) 0.51 | 0.55 | 1.06 | 1.65
y(9m) 0.65 | 0.64 | 1.10 | 1.63
y(12m) 0.66 | 0.72 | 1.22 | 1.78
y(24m) 0.53 | 0.65 | 1.08 | 1.57
y(36m) 0.62 | 0.74 | 1.14 | 1.60
y(48m) 0.68 | 0.78 | 1.16 | 1.57
y(60m) 0.69 | 079 | 1.13 | 1.53
y(84m) 0.77 | 0.86 | 1.14 | 1.50
y(120m) 0.84 | 092 | 1.14 | 1.46

| RMSEPM™ — RMSEFW: | | \ \ \
Maturity h=0 | h=1 | h=6 | h=12
y(3m) 0.00 | 0.02 | -0.01 | -0.05
y(6m) -0.04 | -0.05 | 0.02 | 0.01
y(9m) -0.06 | -0.02 | 0.02 | 0.00
y(12m) -0.11 | -0.14 | -0.16 | -0.18
y(24m) 0.06 | -0.02 | -0.01 | 0.00
y(36m) 0.03 | -0.04 | -0.05 | -0.04
y(48m) 0.03 | -0.01 | -0.04 | -0.03
y(60m) 0.07 | 0.02 | 0.00 | -0.01
y(84m) 0.05 | 0.02 | 0.02 | 0.00

y(120m) 0.04 | 0.01 | 0.00 | -0.04

RMSEs for in-sample estimates and out-of-sample forecasts for the benchmark model (upper panel)
and the exponential weighting scheme (middle panel), separately for all maturities and for forecasting
horizons of h={1,6,12} months. The h=0 values are the values for the real time estimation and thus
provide information on the in-sample fit. The lower panel depicts the difference between the upper and
the middle panel. I use data from the period from 01:1983 to 04:2010 to estimate and forecast for the
time span from 01:1994 to 04:2011.
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6.2 Out-of-sample Forecasting

After the in-sample analyses in the previous sections, I will assess the out-of-sample fore-
casting performance of both the benchmark model and the exponential weighting scheme.
Out-of-sample forecasts can be easily calculated once real time estimates have been ob-
tained. The FAVAR coefficients, both from the benchmark model and the exponential
weighting scheme, are used to obtain state vector forecasts according to

h—1
Zt+h\t = ¢?Zt + Z (Z)il:l’ta (9>
=0
as it is described, for example, in Moench (2008). Given the state vector forecast, the
FAVAR parameter estimates, and the ATS risk parameters Ao and 5\1, the yield forecasts
are calculated according to Equations (4) to (6). I evaluate the forecasting performance
using root mean squared errors that are reported in the upper two panels of Table 1. The
RMSEs are higher overall than in comparable studies, especially Moench (2008). This is,
first of all, due to the forecasting sample. I use data from January 1983 to April 2010 to
forecast for the time span from January 1994 to April 2011, hence the sample includes
about two and a half turbulent years of the recent financial crisis. Moreover, as discussed
in Section 5.2, my modeling approach with real time estimations and discounting requires
more first differencing to induce stationarity, which also removes information from the
data that may be useful for forecasting.

The lower forecasting accuracy of the exponential weighting scheme over longer hori-
zons reflects the findings of Clark and McCracken (2007). Among the techniques which
they compare in order to deal with structural instabilities in VAR frameworks, DLS is
one of the least successful methods in terms of forecasting performance. In my context,
however, DLS is applied because of its relation to learning. Hence, before comparing the
forecasting performance of the benchmark model and the exponential weighting scheme,
it is important to remember the original motivation of applying a learning scheme: Agents
are assumed to learn about the evolution of the considered state variables, they down-
weight old information in favor of new information in order to form their expectations
about the future values of the state variables. However, whether the exponential weight-
ing scheme is indeed better in that respect than the standard approach is difficult to
prove. Particularly, a better ability to capture the agents’ expectations only coincides
with a better out-of-sample forecasting performance if the agents’ expectations were in-
deed perfect forecasts. If agents, on the other hand, expected the state variables to evolve
very differently from what actually occured, the overall forecasting ability of a model
does not say anything about the agents’ expectations. Still, particularly term structure
data allows expectations about the future to be detected in the cross section of yields.
Yields of bonds with long maturities are equal to the sum of the average of the investors’
expectations about future short rates and term premia.'> Hence, a good in-sample fit
of the cross section of yields reveals that a model is able to capture the expectations of
investors about future short-term interest rates and /or term premia, while the forecasting
ability rather reveals whether the investors’ model implied expectations turned out to
be right. The lower panel of Table 1 provides a convenient overview of this, namely the

15See for example Wright (2011) for a decomposition of long term yields into these two elements.
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Table 2: Root mean squared errors of alternative forecasting approaches

’ Random Walk \ \ \ ‘

Maturity h=1 | h=6 | h=12
y(3m) 0.23 | 0.89 | 1.56
y(6m) 0.22 | 0.90 | 1.57
y(9m) 0.23 | 0.91 | 1.56
y(12m) 0.25 | 0.91 | 1.53
y(24m) 0.28 | 0.90 | 1.41
y(36m) 0.29 | 0.87 | 1.28
y(48m) 0.30 | 0.82 | 1.18
y(60m) 0.29 | 0.78 | 1.09
y(84m) 0.29 | 0.71 | 0.96
y(120m) 0.28 | 0.64 | 0.84

| Diebold Li (AR) | \ \ \

Maturity h=1 | h=6 | h=12
y(3m) 0.24 | 0.86 | 1.45
y(6m) 0.21 | 0.83 | 141
y(9m) 0.22 | 0.82 | 1.38
y(12m) 0.24 | 0.82 | 1.35
y(24m) 0.27 | 0.82 | 1.23
y(36m) 0.29 | 0.78 | 1.10
y(48m) 0.30 | 0.74 | 1.00
y(60m) 0.30 | 0.71 | 0.92
y(84m) 0.29 | 0.66 | 0.83
y(120m) 0.29 | 0.63 | 0.78

] Diebold Li (VAR) \ \ \ ‘

Maturity h=1 | h=6 | h=12
y(3m) 0.28 | 091 | 1.51
y(6m) 0.25 | 0.88 | 1.46
y(9m) 0.26 | 0.87 | 1.43
y(12m) 0.27 | 0.86 | 1.40
y(24m) 0.28 | 0.84 | 1.26
y(36m) 0.28 | 0.79 | 1.12
y(48m) 0.29 | 0.74 | 1.01
y(60m) 0.29 | 0.70 | 0.93
y(84m) 0.28 | 0.65 | 0.83

y(120m) 0.29 | 0.63 | 0.78

RMSEs of forecasts from a random walk evaluation and from Diebold-Li’s VAR and AR models. The

considered sample coincides with the forecasting sample of the benchmark model.
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difference between the RMSEs of benchmark and exponential weighting scheme as they
are presented in the panels above. A tradeoff is revealed between fitting expectations
and good forecasting performance, as the benchmark model provides smaller RMSEs for
longer-horizon forecasts, and the exponential weighting scheme performs better in the
cross section. In other words, agents appear to form their expectations by learning, but
in the long run they actually should not do so. This pattern becomes more pronounced
for values of the discount rate v that induce stronger discounting.!®

Decomposing model implied yields into term premia and expected short rates could
provide details on which of these two components is better estimated by the learning
scheme. However, the yield curve decomposition is avoided for at least two reasons. First,
identifying significant differences in term premia and short rate expectations between the
two approaches may be hampered by the assumption of an exogenous short rate process
(see Section 3 for details). Second, the pricing accuracy of the model setup is also limited
since no latent factors are used. Yield decompositions would thus be imprecise in principle.
Therefore, I limit the analysis to a comparison of implied expectations of overall yields
from both approaches. The question of whether the better fitting ability of long term
rates is caused by a better fit of term premia or short rate expectations may better be
analyzed in a latent factor model.

The forecasting performance was compared to the results of other models, namely to
a simple random walk and the Diebold and Li (2006) AR and VAR setups.!” The results
indicate that these models forecast much better over short horizons. Nevertheless, for a
horizon of 12 months, the RMSEs of these models’ forecasts also approach levels of 1.50
over this sample (see Table 2).

7 Robustness Checks

The ATS estimation, especially the forecasting performance, reveals the cost of induc-
ing stationarity. The results require a check for robustness. ATS models appear to be
particularly prone to nonstationarity. Since the idiosyncratic components of the princi-
pal component analysis can be nonstationary (see Section 5.2), the variance-covariance
matrix €2, constitutes a second possible way for nonstationarity of the data to enter the
ATS analysis. Hence, I use simple linear regressions instead to see whether they deliver
similar results. The real time transformation approach described in Section 5.2 may also
cause particular outcomes. By applying the same transformation scheme at all points in
time, I therefore also check whether the real time transformation scheme drives the main
characteristics of my results.

To do so, I use either OLS or DLS to regress yields of all maturities on the same state
variables which are used for the ATS estimation. The approach is hence the same as the
real time estimation described in Section 2, but with L = 4 lags of the state variables as
in the ATS estimation:

Y =a+ (L) Z, + wy. (10)

RMSESs of these regressions are reported in Table 3. When comparing those results with

16Tn addition to v = 0.985, the ATS model was estimated for y-values of 0.973, 0.988 and 0.995.
"The estimation of the Diebold-Li model was facilitated by the codes of Carlo Favero of Bocconi
university that are available on his website.
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Table 3: Root mean squared errors of least squares analyses

’ Benchmark: ‘ ‘ ‘ ‘ ‘
Maturity h=0 | h=1 | h=6 | h=12
y(6m) 0.14 | 0.21 | 0.61 0.85
y(9m) 0.24 | 0.26 | 0.62 0.85
y(12m) 0.32 | 0.32 | 0.62 0.84
y(24m) 0.58 | 0.51 | 0.66 0.83
y(36m) 0.79 | 0.67 | 0.74 | 0.87
y(48m) 0.95 | 0.80 | 0.84 | 0.95
y(60m) 1.08 | 0.90 | 0.93 1.03
y(84m) 1.29 | 1.07 | 1.09 1.19
y(120m) 149 | 1.23 | 1.25 1.36

Exponential Weighting: ‘ ‘ ‘ ‘ ‘
Maturity h=0 | h=1 | h=6 | h=12
y(6m) 0.10 | 0.18 | 0.63 1.01
y(9m) 0.17 | 0.23 | 0.64 1.01
y(12m) 0.24 | 0.28 | 0.64 | 0.99
y(24m) 0.43 | 0.46 | 0.66 0.93
y(36m) 0.57 | 0.61 | 0.72 0.93
y(48m) 0.68 | 0.72 | 0.80 | 0.97
y(60m) 0.77 | 0.81 | 0.88 1.02
y(84m) 0.91 | 0.96 | 1.01 1.13
y(120m) 1.05 | 1.10 | 1.15 1.27

(RMSEPY —RMSEPV: | | | | |
Maturity h=0 | h=1 | h=6 | h=12
y(6m) 0.04 | 0.03 | -0.02 | -0.16
y(9m) 0.06 | 0.03 | -0.02 | -0.16
y(12m) 0.08 | 0.03 | -0.02 | -0.15
y(24m) 0.16 | 0.04 | 0.00 | -0.10
y(36m) 0.22 | 0.06 | 0.02 | -0.06
y(48m) 0.27 | 0.08 | 0.04 | -0.02
y(60m) 0.31 | 0.09 | 0.05 0.01
y(84m) 0.38 | 0.11 | 0.08 0.06
y(120m) 0.44 | 0.13 | 0.10 0.09

RMSEs for in-sample estimates and out-of-sample forecasts from OLS (upper panel) and DLS (middle
panel), separately for all maturities and for forecasting horizons of h={1,6,12} months. The h=0 values
are the values of the real time estimation and thus provide information on the in-sample fit. The lower
panel depicts the difference between the upper and the middle panel. The forecasting sample is from
01:1983 to 04:2011, with the real time estimation (and forecasting) starting in 01:1994.
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the ATS results, one should keep in mind that differences may be caused either by the
yield estimation approach or by the applied transformation scheme. Yields are fitted very
well using least squares in-sample, and also the 12-months ahead forecasts are mostly
better than those from the ATS model. Nevertheless, least squares methods cannot keep
up with the ATS forecasting performance over intermediate horizons. More interestingly,
the evaluation of least squares results delivers a similar pattern as it is found in the ATS
estimation: Like the ATS benchmark model, the OLS regression performs better for long
horizon forecasts. On the other hand, the DLS regression allows a better fit of the cross
section on shorter forecasting horizons. As in the ATS estimation, the better performance
of DLS on long maturities overcompensates its weak long horizon forecasting ability for
maturities at the long end of the yield curve. From five years to maturity onwards, DLS
provides better forecasts than OLS over all horizons. Hence, the findings from a least
squares analysis are very much in line with the results of the ATS estimation.

8 Conclusion

In this paper, [ have compared two pseudo real time approaches in their ability to forecast
the term structure of interest rates based on macroeconomic information. To achieve this,
I have combined the ideas of Laubach et al. (2007) on applying a learning scheme to an
ATS model and of Moench (2008) on how to estimate an ATS model with macroeconomic
factors from a FAVAR.

The pseudo real time approach with repeated coefficient estimations that I have ap-
plied is supported by both the high volatilities of the macroeconomic factors and the time
variation of the correlations of these factors to the bond yields. The learning approach
in which past information is downweighted in favor of a higher meaning of more recent
information turns out to be more successful for forecasting long maturity yields over short
horizons. Long horizon forecasts, particularly for shorter maturity yields, are on the other
hand, more precisely obtained through the benchmark model without discounting. Since
long term yields are compounded from expectations about short term yields and risk pre-
mia, the successful fitting of the cross section of yields with the exponential weighting
scheme can be interpreted as a better ability to capture the agents’ expectations for fu-
ture yields. It would be interesting to see whether this pattern also emerges in other ATS
setups including, for instance, latent factors that guarantee a higher estimation precision
overall. As a byproduct of the analysis, I found that the choice of the discount rate that
delivers the best forecasting performance depends heavily on the forecasting horizon and
the time to maturity under consideration.
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A Appendix

A.1 Macroeconomic Factors

The macroeconomic factors are plotted in Figure 8 for the benchmark approach and in
Figure 9 for the exponential weighting scheme. 5% confidence bands are obtained through
a Monte Carlo procedure with the stationary block bootstrap of Politis and Romano
(1994). See also Moench (2008) for details on the application.

FAVAR-OLS: PC 1 FAVAR-OLS: PC 2

1995 2000 2005 2010 1995 2000 2005 2010

FAVAR-OLS: PC 3 FAVAR-OLS: PC 4

1995 2000 2005 2010 1995 2000 2005 2010

Figure 8: Macroeconomic factors with 5% confidence bands for the benchmark approach.

A.2 Macroeconomic Data

The macroeconomic data set was kindly provided by Domenico Giannone. All time se-
ries that are actually used in the analysis are listed below. The third column exhibits
the transformation key for the preferred transformation scheme, the legend below gives
the corresponding transformation. The preferred transformation scheme complies in gen-
eral with transformation schemes reported in the literature, for example Giannone et al.
(2005), but is adjusted to the sample and model specification. By including the series
related to prices in terms of annual growth rates, I follow Ang and Piazzesi (2003) and
Moench (2008). The last column shows groups of time series which are imposed to be
transformed in the same way in the real time transformation approach.
Transformations:

- 0: No transformation

- 1: Logarithms

- 2: First differences

- 3: Monthly growth rates
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FAVAR-DLS: PC 1 FAVAR-DLS: PC 2

1995 2000 2005 2010 1995 2000 2005 2010

FAVAR-DLS: PC 3 FAVAR-DLS: PC 4

1995 2000 2005 2010 2000 2005 2010

Figure 9: Macroeconomic factors with 5% confidence bands for the exponential weighting
scheme.

- 4: Annual growth rates

Notes:

*. In millions of chained 1996-USD.
**. In millions of USD.

\ Series ‘ Trf. ‘ T.-Gr. ‘

IP: Final products and non-industrial supplies

IP: Final products

IP: Durable consumer goods

IP: Nondurable consumer goods

IP: Business equipment

IP: Materials

IP: Materials, nonenergy, durables

10 | IP: Materials, nonenergy, nondurables
11 | IP: Mfg (NAICS)

12 | IP: Mfg, durables (NAICS)

13 | IP: Mfg, nondurables (NAICS)

14 | IP: Mining (NAICS)

15 | IP: Utilities (NAICS)

16 | IP: Energy, total (NAICS)

17 | IP: Non-energy, total (NAICS)

18 | IP: Motor vehicles and parts (MVP) (NAICS)

#
1
2
3
4 | IP: Consumer goods
5
6
7
8
9

[UN QYWY PETNY (WS WIS U U U jany jSne jyanre jyanre jyGure jyune) §y e jyune) jySne) )y Sy
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# ‘ Series ‘ Trf. ‘ T.-Gr.
19 | IP: Non-energy excl. CCS (NAICS) 2 1
20 | IP: Non-energy excl. CCS and MVP (NAICS) 2 1
21 | Capacity utilization: Total (NAICS) 1 2
22 | Capacity utilization: Mfg, durables (NAICS) 1 2
23 | Capacity ut.: Computers, comm. equip., semiconductors 1 2
24 | Purchasing Managers Index (PMI) 1 3
25 | ISM Mfg index: Production 1 3
26 | Real disposable personal income 2 2
27 | Mean duration of unemployment 2 4
28 | Persons unemployed fewer than 5 weeks 2 4
29 | Persons unemployed 5 to 14 weeks 2 4
30 | Persons unemployed 15 to 26 weeks 2 4
31 | Persons unemployed 15+ weeks 2 4
32 | Avg. weekly initial claims 2 16
33 | Employment on nonag payrolls: Mining 2 5
34 | Emp. on nonag payrolls: Construction 2 5)
35 | Emp. on nonag payrolls: Manufacturing, nondurables 2 5
36 | Emp. on nonag payrolls: Service-producing 2 5
37 | Emp. on nonag payrolls: Transportation and warehousing 2 5
38 | Emp. on nonag payrolls: Utilities 2 )
39 | Emp. on nonag payrolls: Retail trade 2 )
40 | Emp. on nonag payrolls: Wholesale trade 2 5
41 | Emp. on nonag payrolls: Professional and business services 2 5
42 | Emp. on nonag payrolls: Education and health services 2 5
43 | Emp. on nonag payrolls: Leisure and hospitality 2 5
44 | Emp. on nonag payrolls: Other services 2 )
45 | Emp. on nonag payrolls: Government 2 )
46 | Avg. wkly. hrs. of prod. of nonsupervisory workers: Tot. priv. 2 5
47 | Average weekly hours of PNW: Mfg. 2 5
48 | Avg. weekly overtime hrs. of PNW: Mfg. 2 5
49 | ISM Mfg index: employment 1 3
50 | Sales*: Mig & trade: Total 2 6
51 | Sales*: Mfg & trade: Mfg, total 2 6
52 | Sales*: Mfg & trade: Mfg, durables 2 6
53 | Sales*: Mfg & trade: Mfg, nondurables 2 6
54 | Sales*: Mfg & trade: Merchant wholesale 2 6
55 | Sales*: Mfg & trade: Merchant wholesale, durables 2 6
56 | Sales*™: Mfg & trade: Merchant wholesale, nondurables 2 6
57 | Sales™: Mfg & trade: Retail trade (mil of chained 96%) 2 6
58 | PCE: Total (bil of chained 96%) 2 6
59 | PCE: Durables (bil of chained 96$) 2 6
60 | PCE: Nondurables (bil of chained 96%) 2 6
61 | PCE: Services (bil of chained 96%) 2 6
62 | PCE: Durables - MVP - new autos (bil of chained 96%) 2 6
63 | Privately-owned housing, started: Total (thous) 2 7
64 | New privately-owned housing authorized: Total (thous) 2 7
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+# ‘ Series ‘ Trf. ‘ T.-Gr.

65 | New 1-family houses sold: Total (thous) 2 7
66 | New 1-family houses - months supply @ current rate 2 7
67 | New 1-family houses for sale at end of period (thous) 2 7
68 | Mobile homes - Mfg shipments (thous) (SA) 2 7
69 | Construction put in place: Total (mil of current $) 2 7
70 | Construction put in place: Private (mil of current §) 2 7
71 | Inventories®: Mfg & trade, total 2 8
72 | Inventories*: Mfg & trade, Mfg 2 8
73 | Inventories*: Mfg & trade, Mfg, durables 2 8
74 | Inventories*: Mfg & trade, Mfg, nondurables 2 8
75 | Inventories™: Mfg & trade, merchant wholesales 2 8
76 | Inventories™: Mfg & trade, retail trade 2 8
77 | ISM Mfg index: Inventories 1 3
78 | ISM Mfg index: New orders 1 3
79 | ISM Mfg index: Suppliers deliveries 1 3
80 | New orders**: All manufacturing industries 2 16
81 | New orders®*: All manufacturing industries w/unfilled orders 2 16
82 | New orders™*: Durable goods industries 2 16
83 | New orders**: Nondurable goods industries 2 16
84 | New orders**: Nondefense capital goods 2 16
85 | Unfilled orders**: All manufacturing industries 2 16
86 | Nominal effective exchange rate 2 9
87 | Spot Euro/US (2) 2 9
88 | Spot SZ/US (2) 2 9
89 | Spot Japan/US 2 9
90 | Spot UK/US 2 9
91 | Spot CA/US 2 9
92 | Commercial paper month-end outstanding: Total (mil of $) 2 10
93 | M1 (mil of $) 2 | 10
94 | M2 (mil of $) 2 | 10
95 | Monetary base (mil of §) 2 10
96 | Depository institutions reserves: Total (mil of $) 2 10
97 | Depository institutions: Nonborrowed (mil of §) 2 10
98 | Loans and securities @ all commercial banks**: Total 2 10
99 | Loans and sec. @ all comm. banks**: Securities, total 2 10
100 | Loans and sec. @ all comm. banks**: Securities, U.S. govt. 2 10
101 | Loans and sec. @ all comm. banks**: Real estate I. 2 10
102 | Loans and sec. @ all comm. banks**: Comm. and indus. 1. 2 10
103 | Loans and sec. @ all comm. banks**: Consumer 1. 2 10
104 | New car loans at auto finance comp. (NSA): loan to value ratio | 2 10
105 | New car loans at auto finance comp. (NSA): Amount finance 2 10
106 | PPIL: Finished goods (1982=100 for all PPI data) 4 11
107 | PPI: Finished consumer goods 4 11
108 | PPI: Intermediate materials 4 11
109 | PPI: Crude materials 4 11
110 | PPI: Finished goods excl. food 4 11
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111 | PPI: Crude nonfood materials less energy 4 11
112 | PPI: Crude materials less energy 4 11
113 | CPI: All items (urban) 4 11
114 | CPI: Food and beverages 4 11
115 | CPI: Housing 4 11
116 | CPI: Apparel 4 11
117 | CPI: Transportation 4 11
118 | CPI: Commodities 4 11
119 | CPI: All items less food 4 11
120 | CPI: All items less shelter 4 11
121 | CPI: All items less medical care 4 11
122 | PCE: Chain weight price index: Total 3 12
123 | PCE prices: Total excl. food and energy 3 12
124 | PCE prices: Durables 3 12
125 | PCE prices: Nondurables 3 12
126 | PCE prices: Services 3 12
127 | Avg. hourly earnings: Total nonagricultural ($) 3 13
128 | Avg. hourly earnings: Construction ($) 3 13
129 | Avg. hourly earnings: Mfg ($) 3 13
130 | Avg. hourly earnings: Transportation ($) 3 13
131 | Avg. hourly earnings: Retail trade ($) 3 13
132 | Avg. hourly earnings: Wholesale trade ($) 3 13
133 | Avg. hourly earnings: Finance, insurance, real estate ($) 3 13
134 | Avg. hourly earnings: Professional, business services (%) 3 13
135 | Avg. hourly earnings: Education and health services ($) 3 13
136 | Avg. hourly earnings: Other services 3 13
137 | Total merchandise exports, total census basis (mil of $) 2 15
138 | Total merchandise imports, total census basis (mil of ) 2 15
139 | Total merchandise imports (CIF value) (mil of $) (NSA) 2 15
140 | Michigan survey: Index of consumer sentiment 1 -
141 | Outlook: General activity 0 14
142 | Outlook: New orders 0 14
143 | Outlook: Shipments 0 14
144 | Outlook: Inventories 0 14
145 | Outlook: Unfilled orders 0 14
146 | Outlook: Prices paid 0 14
147 | Outlook: Prices received 0 14
148 | Outlook: Employment 0 14
149 | Outlook: Work hours 0 14
150 | Federal govt. deficit or surplus (bil of $) (NSA) 2 -
151 | Chicago Fed Midwest Mfg survey: General activity 2 -
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