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Non-technical summary

Research Question

Credit default swaps (CDSs) provide protection against the default of single-name borrow-

ers. Their prices are therefore highly dependent on the future default probability of the

respective single name. However, if CDSs on different single names are pooled together in

a portfolio, prices of securities on that portfolio, e.g. collateralized debt obligation (CDO)

tranches, reveal that not only single defaults are priced in the CDS pool, but correlated

defaults are as well. Therefore, we analyze the question of whether correlated default risk

factors matter for the pricing of CDSs and how their relevance has changed over time.

Contribution

We derive a cash flow based top-down model that translates CDO prices into CDS quotes

and calibrate it to an extensive CDX data set. The data set comprises the most liquid

daily CDS and CDO tranche quotes from September 2005 until September 2012 and can

be divided into a pre-crisis, a crisis and a post-crisis period. More precisely, the prices

of CDSs can be understood as prices of CDOs weighted with corresponding sensitivity

parameters. The sizes of these sensitivities allow for meaningful insights into the pricing

of CDSs.

Results

In the pre-crisis period, correlated default factors played a minor role in the pricing of

CDSs. More than 80% of the observed default risk was caused by the single default factor.

During the crisis, correlated default factors accounted for about 80% of the default risk,

and even after the crisis, their fraction was still above 50%. Furthermore, our analysis of

the sensitivity parameters provides us with the following relationship for the pricing of

CDSs: high CDS premia are primarily driven by the single default factor. For low CDS

quotes, the correlated default factors are a relevant issue.



Nicht-technische Zusammenfassung

Forschungsfrage

Kreditausfallversicherungen (Credit Default Swaps - CDSs) bieten eine Absicherung ge-

gen den Ausfall von Einzeladressen. Die Preise solcher CDSs hängen somit stark von

der künftigen Ausfallwahrscheinlichkeit der jeweiligen Einzeladresse ab. Werden CDSs

auf verschiedene Einzeladressen allerdings in einem Portfolio zusammengefasst, so zeigen

die Preise von Wertpapieren, die auf diesem Portfolio basieren (wie z. B. die Preise von

Collateralised Debt Obligations (CDO)-Tranchen), dass nicht nur der Ausfall von Einzel-

adressen im CDS-Pool gepreist ist, sondern auch korrelierte Ausfälle. Aus diesem Grund

wird im vorliegenden Forschungspapier untersucht, ob korrelierte Ausfallrisiken bei der

Preisbildung von CDSs eine Rolle spielen und wie sich ihre Bedeutung im Zeitverlauf

verändert hat.

Beitrag

Mit Hilfe eines cashflowbasierten Top-Down-Modells werden die Preise für CDO-Tranchen

in CDS-Kurse umgerechnet. Die Kalibrierung des Modells erfolgt anhand eines umfangrei-

chen CDX-Datensatzes, der die Tageskurse für die liquidesten CDSs und CDO-Tranchen

von September 2005 bis September 2012 umfasst und sich der Zeit nach in Abschnitte vor,

während und nach der Krise unterteilen lässt. Konkret können die Preise der CDSs als

CDO-Preise verstanden werden, die mit entsprechenden Sensitivitätsparametern gewich-

tet wurden. Die Größenordnung dieser Sensitivitäten ermöglicht einen aussagekräftigen

Einblick in die Preisbildung von CDSs.

Ergebnisse

Vor der Krise spielten Faktoren für korrelierte Ausfälle bei der Bepreisung von CDSs nur

eine untergeordnete Rolle: ein Anteil von über 80 % des beobachteten Ausfallrisikos war

auf den Faktor für den Ausfall von Einzeladressen zurückzuführen. Während der Krise

hingegen waren Faktoren für korrelierte Ausfälle für etwa 80 % des Ausfallrisikos verant-

wortlich. Auch nach der Krise lag ihr Anteil noch über 50 %. Des Weiteren hat unsere

Analyse der Sensitivitätsparameter in Bezug auf die Bepreisung von CDSs ergeben, dass

hohe CDS-Prämien in erster Linie durch den Faktor für den Ausfall von Einzeladressen

bedingt sind. Bei niedrigen CDS-Preisen kommen hingegen die Faktoren für korrelierte

Ausfälle zum Tragen.
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1 Introduction

Credit default swaps (CDSs) provide protection against the default of single name borrow-

ers. Their prices are therefore highly dependent on the future default probability of the

respective single name and they should only react to changes in their associated credit-

worthiness. However, if CDSs on different single names are pooled together in a portfolio,

prices of securities on that portfolio, e.g. collateralized debt obligation (CDO) tranches,

reveal that not only single defaults are priced in the CDS pool but correlated defaults

are as well (see e.g. Longstaff and Rajan, 2008). As a consequence, we have a paradoxical

situation for the pricing of CDSs on single entities. On the one hand, a default event and

therefore a payoff from the CDS only depends on the solvency of the particular firm. On

the other hand, the market price for the CDS is also impacted by other characteristics

outside the firm such as correlation effects. This property suggests that not only the

individual default risks of a single name are relevant for pricing CDS but also systemic

factors that can lead to the default of many single names simultaneously due to default

correlation.

The aim of this paper is to analyze risk factors for correlated defaults that drive CDS

quotes. In particular, we strive for answers to the following research questions: (1) Has

the financial crisis changed the relevance of correlated default factors? (2) Which CDSs

are primarily impacted by correlated default factors? (3) Which CDSs require a further

idiosyncratic factor beyond the common default factors of the portfolio to be reasonably

explained?

To analyze these research questions, we use CDX data for CDSs and CDO tranches

retrieved from Markit for the time period from September 2005 until September 2012.

In the first step, we follow the approach proposed by Longstaff and Rajan (2008) to

calibrating default risk factors that explain CDO prices. We also find that three factors

— single defaults, industry defaults and systemic defaults — represent market prices

reasonably well. In the second step, we derive a cash flow based top-down approach

that translates CDO prices into CDS quotes. The notion behind this model is that

an observed change of a CDS translates with different sensitivities to the various CDO

tranches in which this entity is included. Furthermore, our top-down approach allows for

idiosyncratic risk factors that can perfectly explain empirically observed CDS premia.

These estimations provide us with the following conclusions: before the crisis, corre-

lated default factors, i.e. industry and systemic defaults, played a minor role in the pricing

of CDSs. More than 80% of the observed default risk was caused by the single default

factor. During and subsequent to the crisis, correlated default factors strongly enhanced
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their importance. During the crisis, correlated default factors accounted for about 80%

of the default risk, and even after the crisis, their fraction is still above 50%.

Furthermore, we can observe that the CDO tranche sensitivities to the various CDSs

contained therein exhibit a reasonable default order. In other words, the low CDS premia

are primarily relevant for the senior tranche in a CDO, while the high CDS quotes drive

the equity tranche of a CDO. As a consequence of the further observation that the equity

tranche can be primarily characterized by the single default factor, whereas the correlated

default factors explain the more senior tranches, we can confirm the following important

relationship for the pricing of CDSs: high CDS premia are primarily driven by the single

default factor. For low CDS quotes, the correlated default factors are a relevant issue.

The methods applied in this paper are related to other important studies. Giesecke,

Goldberg, and Ding (2011) introduce a top-down approach based on a default matrix

implied by CDO and CDS prices. We modify their approach by adapting the default

matrix to observable cash flows. That way, we achieve a low parameterization and a high

analytical and empirical tractability. To put our approach to work, we have to use a

model for the CDO portfolio for which a wide variety of literature exists. First of all,

models that belong to the category of top models can be employed within our framework.

Top models are used to directly model the portfolio loss distribution without considering

the single names of the underlying portfolio. Examples can be found in Longstaff and

Rajan (2008), Schönbucher (2006), Arnsdorf and Halperin (2009), Brigo, Pallavicini, and

Torresetti (2006), Ding, Giesecke, and Tomecek (2009) and many others. Since we do

not impose certain restrictions on the CDO model but only assume the ability to model

CDO cash flows, we could also use bottom-up models that capture the portfolio loss

distribution from the underlying single-name portfolio. Li (2000), Hull and White (2004)

and Lopatin (2011) belong to this category. Ascheberg, Bick, and Kraft (2013) investigate

how these models perform empirically in hedging situations. Junge and Trolle (2013)

construct a liquidity risk measure for CDS markets in comparison to index CDSs. Our

paper contributes to their discussion through the introduction of idiosyncratic risk factors

that explain the spread of index-to-theoretical bases.

The remainder of the paper is organized as follows: in Section 2, we introduce our cash

flow based top-down approach. Section 3 presents a step-wise calibration procedure for

the top-down model that we apply in Section 4 to the CDX North America Investment

Grade index in order to analyze the question whether correlated defaults are priced in

CDS markets. Section 5 concludes.
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2 The Model

At first glance, single-name CDSs are only subject to individual default risk. However, if

they are pooled in a portfolio such as for CDOs, the prices of tranches reveal that they

contain not only individual, but also correlated default risks. In order to understand which

portfolio risk factors are priced in single-name CDSs we propose a top-down approach

that splits the cash flows of CDO tranches (top level) to the single name CDSs of the

underlying portfolio (down level). The cash flow allocation is based on sensitivities that

specify to what extent the cash flow of a specific CDS can be attributed to a given

CDO tranche. This approach is based on the characteristic that a portfolio of CDSs

provides equivalent cash flows to its corresponding CDO. Moreover, to capture potential

deviations, we extend our top-down approach by including an idiosyncratic risk factor for

each single-name CDS. This factor accounts for individual default risk that is not priced

in the CDO market and should therefore facilitate the interpretation of any deviations

between CDO-induced model premia and observed CDS premia.

In the following, we present how CDSs and CDO tranches are priced in our cash flow

based top-down approach in general and how the idiosyncratic risk factor is embedded in

our model for every single-name CDS. Furthermore, we outline the top model of Longstaff

and Rajan (2008) that we use to price CDOs and a pointwise-homogeneous Poisson process

for the idiosyncratic risk factors of single name CDS.

2.1 CDO Valuation

Let Lτ denote the accumulated loss of a CDO portfolio for any time τ with t ≤ τ ≤ T ,

where t denotes the valuation date and T the maturity of the CDO with notional 1.

Then, for the possible portfolio loss outcomes during the lifetime of the CDO 0 ≤ Lτ < 1

holds. Furthermore, let ap and dp denote the attachment and the detachment point of

the tranche p. The accumulated loss process Lpτ of tranche p is then expressed by

Lpτ =
1

dp − ap
(max[0, Lτ − ap]−max[0, Lτ − dp]) . (1)

The equation shows that the notional 1− Lpτ of the tranche p is not affected by portfolio

losses that occur below its attachment point, Lτ < ap. For higher losses Lτ ≥ ap, the

notional 1− Lpτ of p linearly decreases for increasing Lτ until Lτ hits the detachment

point of p leading to Lpτ = 1.

The payment obligations of a CDO tranche become effective at payment dates tn for

which t < tn ≤ T holds. We denote the time period between tn−1 and tn as ∆tn where
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usually ∆tn takes values that are close to the quarter of a year depending on the day

count convention of the CDO.

The protection leg of a CDO tranche compensates for losses in the underlying portfolio

interval [ap, dp) that occur between two payment dates tn−1 and tn. Thus, the value of

the protection leg at t under the risk-neutral measure Q is equal to

PF p,prot
t =

N∑
n=1

bt,tn · E
Q
t

(
Lptn − L

p
tn−1

)
(2)

where bt,tn denotes the discount factor at t with time horizion tn. In exchange for the loss

compensation, a CDO investor has to pay a premium cpt at every date tn on the intact

capital of the portfolio interval. The value of the premium leg referring to a premium

amount of 1 is then expressed by

PF p,prem
t =

N∑
n=1

bt,tn ·∆tn · E
Q
t

(
1− Lptn−1

)
. (3)

There are two conventions governing how CDO tranche premia are quoted in the

markets. The approach that was mainly used before the financial crisis of 2008 is known

as the running spread convention. At the trading date t, the two counterparties of a

CDO tranche trade agree that the protection buyer will pay a premium cpt∆tn on the

remaining intact capital of the tranche to the protection seller at each payment date tn.

The premium cpt may change for every other CDO tranche trade and consequently, it is

subject to market risk. Thus, as the market risky premium cpt is paid on a recurring basis

its quoting convention is known as the running spread convention. Its value is derived

from the assumption that under the risk-neutral measure Q the value of the protection

leg has to equal the value of the premium leg leading to:

cpt =
PF p,prot

t

PF p,prem
t

. (4)

The other approach to quoting CDO tranches is known as the upfront payment con-

vention. It was already used for junior tranches before the financial crisis but it has

since become the market standard. Its major benefit lies in the simplification of trade

processing and the higher flexibility and efficiency in trade settlements. Unlike for cpt , the

running spread cp,fix is set for a standard amount and is not subject to market risk. In

order to account for the value of the CDO portfolio, the protection buyer pays an upfront
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payment cp,up
t to the protection seller at t that is subject to market risk. When the value

of the protection leg is equal to that of the premium leg, cp,up
t is equal to zero. Otherwise,

cp,up
t = PF p,prot

t − cp,fixPF p,prem
t (5)

holds. Equation (5) implies that cp,up
t can take negative values which might seem unreal-

istic at first glance. But there are certain cases in which the value of the fixed premium

leg might be too high with respect to the quality of an underlying portfolio interval and

therefore the protection seller compensates the buyer for overpayments that occur during

the course of the CDO tranche.

Typically, the intervals [ap, dp) are parameterized in such a way that their union yields

the interval [0, 1). Furthermore, they are disjoint sets, making them adjacent intervals.

In the following, we will assume that p = 1 marks the most junior tranche of a CDO

which is commonly known as the equity tranche. As long as no default happens in the

CDO portfolio, the capital of the equity tranche remains unaffected. But as soon as

losses occur, the capital of the equity tranche will be reduced first until it is completely

exhausted. Further portfolio losses will then affect the next most junior tranche after the

equity tranche, p = 2, also known as the junior mezzanine tranche. Increasing portfolio

losses will consume the capital of p = 2 until it is completely exhausted, too. In this way,

at least in theory, the capital of the CDO is consumed tranche after tranche until the

capital of the entire portfolio is consumed.

2.2 CDS Valuation

In our top-down approach, the value of a CDS k is represented by its sensitivities qkp

towards the CDO tranches p = 1, . . . , P . In other words, the sensitivities qkp split the

cash flows of all CDO tranches to all the single-name CDSs of the underlying portfolio.

Therefore, in a perfect world, the cash flow of a CDO tranche p is completely allocated

to the underlying CDS portfolio leading to equation (6). Additionally, as we only split a

cash flow into positive amounts, inequation (7) has to hold:

K∑
k=1

qpk = 1,∀p, (6)

qpk ≥ 0,∀p,∀k. (7)

(6) and (7) represent restrictions that CDS model premia have to adhere to and that are

especially important during calibration.
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The cash flows of a CDO tranche are allocated to a single-name CDS as follows: as

can be seen from equation (1) the cash flows of a CDO tranche refer to its notional with

amount 1. However, the notional of the CDO portfolio adds up to 1 as well. Consequently,

CDO tranche cash flows need to be rescaled to the original portfolio notional which can

be achieved by multiplying equation (2) by (dp− ap). In the next step, the rescaled CDO

tranche cash flows are split to the single-name CDSs of the portfolio by multiplying them

by the tranche sensitivities qpk. For the protection leg of a CDS k, the value of allocated

tranche cash flows is expressed by:

PF k,prot
t =

N∑
n=1

bt,tn

P∑
p=1

qpk · (dp − ap) · E
Q
t

(
Lptn − L

p
tn−1

)
(8)

If both markets, the CDO as well as the CDS market, valued risks equivalently, equa-

tion (8) would be sufficient for valuing the protection leg cash flow of any CDS. However,

this may not always be the case, and in order to account for CDS premia that are not in

line with CDO cash flows, we extend the CDS valuation by including idiosyncratic risk

factors. For this purpose, we introduce a stochastic default time ηk for each CDS k where

the distribution of ηk is driven by a k-specific idiosyncratic risk factor. Then the value of

the protection leg induced by the idiosyncratic risk factor is

Ik,prot
t = (1− ϕ) ·

N∑
n=1

bt,tn · P [tn−1 < ηk ≤ tn] , (9)

where ϕ denotes the recovery rate. As in the protection leg, the portfolio-related part of

the premium leg of k is computed as

PF k,prem
t =

N∑
n=1

bt,tn ·∆tn ·
P∑
p=1

qpk · (dp − ap) · E
Q
t

(
1− Lptn−1

)
(10)

and the part of the idiosyncratic risk factor as

Ik,prem
t =

N∑
n=1

bt,tn ·∆tn · P [tn < ηk] . (11)

Finally, the model premium of a CDS k in our top-down approach is expressed by

fkt =
PF k,prot

t + Ik,prot
t

PF k,prem
t + Ik,prem

t

. (12)
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If qpk = 0 for all p of a given k, then equation (12) reduces to the valuation formula that is

commonly used in the literature, e.g. as in Longstaff, Mithal, and Neis (2005). It would

also mean that a CDS is not correlated with a given CDO portfolio at all.

Default Order Equations (8) to (12) show that in our approach mainly four types of

input are necessary for pricing CDS premia: the discount factors bt,tn , the expected tranche

loss EQ
t

(
Lptn
)
, the sensitivities qpk that determine the impact of the expected tranche loss

on the CDS premium, and finally the survival probabilities P [tn < ηk] deduced from the

idiosyncratic risk factor. While the expected tranche loss is computed from CDO data,

the sensitivities qpk and the idiosyncratic risk factor are retrieved from information priced

in the CDS market. The levels of their values have a strong economic impact as they

reveal which kind of portfolio risk is priced in a given CDS. For example, let us consider

the sensitivity q1
k that is associated with the equity tranche of a CDO. If q1

1 is noticeably

higher than all other q1
k then the bulk of the expected losses of the equity tranche are

priced in CDS k = 1. Another example deals with the important question of whether

systemic risk is priced in only a few single names or in all names of a portfolio. Given

the nature of systemic risk, one might expect that the effects of a catastrophic event, e.g.

a severe economic crisis, would lead to a substantial number of defaults in the portfolio.

Therefore, if CDSs and CDO markets are priced consistently it is plausible to suggest

that most of the single names are exposed to systemic risk, implying equally high qpk for

all k with respect to the senior tranche p = 4. In other words, the risk of junior tranches

should be mapped to only a few single names that have a high probability of default.

By contrast, the risk inherent in senior tranches should be priced in single names with

small CDS premia because they will most likely only be affected by a catastrophic event.

Consequently, the values qpk shed light on the implicit default order that can be deduced

from CDS and CDO premia. If the default order prevails, then a high (low) CDS quote

is supposed to have a high sensitivity to the equity tranche p = 1 (senior tranche p = 4).

A major question for our empirical study in Section 4 will be, whether the default order

can be verified empirically.

2.3 Portfolio Model

There are several possibilities for modeling the loss distribution of a portfolio. One com-

mon way is to model the default of every single name first and then to aggregate the

resulting single-name loss distributions to a portfolio loss distribution. This approach is

known as the bottom-up approach and is used e.g. in the base correlation model (O’Kane
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and Livesey, 2004). Although we are free to employ such a model in our valuation ap-

proach, it seems to be more purposeful to model the portfolio loss distribution directly

without considering the risks inherent in single names. In this way, one does not need to

account for the dependence structure between all single names which results in a much

lower parameterization and simpler calibration of the model. The model of Longstaff and

Rajan (2008) combines these desirable properties and is the portfolio model that we use

throughout this paper.

First, we assume that the loss dynamic of a portfolio is driven by three independent

Cox processes i = 1, 2, 3. The intensity dynamic of each process is given in the form of a

Cox, Ingersoll, and Ross (1985) process without drift as in

dλiτ = σi
√
λiτdY

i
τ , (13)

where dY i
τ marks the independent increment of a Wiener process related to process i and

σi its volatility. λiτ denotes the jump intensity. Let Pt[j = N i
T ] denote the probability

that conditional on time t process i has jumped j times at time T . It can then be shown

that the following equation holds for the jump probabilities of each process:

Pt[j = N i
T ] = exp(−Ai(T − t) · λit) ·

j∑
k=0

Bi
j,k(T − t) · (λit)k, (14)

Ai(T − t) =
4σ2

i√
2σ3

i ·
[
1 + exp(−

√
2σi · (T − t))

] − √2

σi
(15)

where Bi
0,0(T − t) = 1, Bi

j,0(T − t) = 0 for j > 0, Bi
j,k(0) = 0 for j > 0, k > 0. The

remaining functions Bi
j,k(T−t), 1 ≤ k ≤ j−1 are computed numerically from the following

system of ODEs:

dBi
j,j(τ) = j · (Bi

j−1,j−1(τ)− σ2
i · Ai(τ) ·Bi

j,j(τ))dτ, (16)

dBi
j,k(τ) =

(
jBi

j−1,k−1(τ)− kσ2
iA

i(τ)Bi
j,k(τ) +

(k + 1)kσ2
i

2
Bi
j,k+1(τ)

)
dτ. (17)

As a result of the distributions for the number of jumps N i
τ and the jump size γi, we

obtain the following possible outcomes for the portfolio losses:

Lτ = 1− exp

(
−

3∑
i=1

γiN
i
τ

)
. (18)
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Obviously, 0 ≤ Lτ < 1 holds for N i
τ ∈ N0. If N i

τ = 0, ∀i then the exponential function is

equal to one and the portfolio loss takes the value Lτ = 0. For increasing N i
τ the portfolio

loss will increase as well until it takes values close to one.

2.4 Single-Name Model

In general, there are two model classes that are suitable for computing the default proba-

bilities of the idiosyncratic risk factors in equations (11) and (9): structural and reduced

form models. While structural models are particularly useful for an economic explanation

of the sources leading to the default of a company, reduced form models allow for a higher

flexibility and do not need any assumptions with regard to the liability structure. For

these two reasons, we employ a pointwise-homogeneous reduced form model in the con-

text of Lando (1998) in order to compute default probabilities from the idiosyncratic risk

factor. Let θkτ mark the default intensity of the idiosyncratic risk factor of single name k

at time τ . The associated solution for the survival probabilities Pt[T < ηk] can be derived

as

Pt[T < ηk] = exp(−(θkt + ωkt ) · (T − t)) (19)

where ωkτ marks a technical intensity that does not exhibit a specific economic meaning.

The need for ωkτ arises because of the structure of equation (12) and the calibration pattern

introduced in Section 3. The first step in the pattern calibrates the ratio PF k,prot
t /PF k,prem

t

to observed CDS premia. Afterwards, for calibrating the idiosyncratic risk factor, it first

needs to be adapted to the protection and the default leg induced by the tranche cash

flows and the calibrated qpk as in (12). That means that

PF k,prot
t + Ik,prot

t

PF k,prem
t + Ik,prem

t

=
PF k,prot

t

PF k,prem
t

(20)

for calibrated ωkτ and θkτ = 0. To match observed CDS premia, we allow θkτ to take

values that are greater than −ωkτ . This way, the calibrated θkτ reflect the true level of

idiosyncratic risk.
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3 Model Calibration

For an accurate calibration, we propose a stepwise calibration pattern that successively

calibrates the models involved from the top level of the CDO portfolio to the down level

of each single-name CDS.

3.1 Portfolio Level

Let c∗pt denote the observable market quote of the CDO tranche p at time t. For a given

data set, we formulate the calibration problem as follows:

min
λt,σ,γ

∑
t

∑
p

∣∣∣∣cpt − c∗ptc∗pt

∣∣∣∣
s.t. λit ≥ 0,∀i,∀t,

σi ≥ 0,∀i,

γi ≥ 0,∀i.

(21)

Calibration errors that are composed of absolute values of relative differences offer several

advantages in CDO calibration. First, the information of all tranches is incorporated into

the calibration problem to the same extent. This effect avoids an overemphasis of junior

tranches with relatively high premia and ensures that the information contained in senior

tranches is taken into account in a balanced way. The approach is therefore superior for

calibrating correlated default factors that drive prices of senior tranches. Moreover, in

comparison with a quadratic calibration error, the absolute error forces the optimization

algorithm to further minimize errors that are below one, whereas quadratic errors tend

to overemphasize very large deviations and to neglect very small ones. The problem is

solved with a gradient-based method.

3.2 Single-Name Level

In our approach, there are two types of risks that are priced in CDS premia: CDO-

induced risk and idiosyncratic risk. While the latter is only related to the single-name k

and therefore does not require any information about the other single names of a portfolio,

the former is split from the portfolio to all single names. This is why restrictions (6) and

10



(7) have to be adhered to during the calibration of qpk. We formulate the general calibration

problem as

min
q,θ

∑
t

K∑
k=1

(fkt − f ∗kt )2

s.t.
K∑
k=1

qpk = 1,∀p,

qpk ≥ 0,∀p,∀k,

ωkt ≥ 0,∀k,

θkt ≥ −ωkt ,∀k,

(22)

where f ∗kt denotes the values of observed CDS market premia. We do not choose an abso-

lute error as in (21) because we want to make use of a quadratic optimization algorithm

that facilitates very fast and accurate calibration1.

Since θkt is not restricted to positive values the idiosyncratic risk factor can lead to

higher or lower CDS model premia compared to the case in which only portfolio risks

are priced. Let us assume that the model premium which is only induced by portfolio

risk is lower than the observed market premium. Then θkt > 0 has to hold as additional

default mass needs to be induced by the idiosyncratic risk factor. For the other case

that the portfolio model premium is too high, θkt < 0 leads to a reduction of the priced

default mass in the model premium. This is why one can directly infer from the value of

the intensities θkt whether a single name is subject to high or low idiosyncratic risk. The

restriction θkt ≥ −ωkt needs to be imposed because otherwise negative intensities θkt + ωkt

would be possible in (19), and the related default probabilities Pt[T < ηk] would not meet

the usual requirements for a probability measure.

Although the idiosyncratic risk factors provide easy and useful explanations they com-

plicate the calibration of CDS premia. One possibility for addressing this problem would

be to calibrate all the parameters related to CDSs at once: qpk, ω
k
t , θ

k
t . However, it is non-

trivial to solve such a high-dimensional problem. For this reason, we propose a step-wise

calibration approach that we outline in the following.

We split the problem (22) into two problems that are easier to solve. First, we calibrate

the sensitivities qpk only and afterwards the idiosyncratic risk factor where we take the

calibrated qpk from the first step as fixed values. This approach is motivated by the

assumption that all single names — and only them — are part of the CDO portfolio and

that all losses that are priced in the CDO should map, overall , to the single names. Any

1As problem (21) would still be highly non-linear with a quadratic error, the absolute error there is
the better choice for an accurate calibration.
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further deviations that cannot be explained by the portfolio dynamics are then captured

by the idiosyncratic risk factor.

In accordance with the approach of Giesecke et al. (2011), let q ∈ R(k·p)×1 denote the

stapled vectors qk each of which contains the sensitivities qpk of a given k. With e denoting

a vector of ones for which e ∈ Rp×1 holds, we solve the following quadratic problem for q:

min
q

1

2
qT ·Q · q

s.t. A · q = e

q ≥ 0.

(23)

Q is a diagonal matrix with matrices Qk on its diagonal and zeros otherwise with

Qk =
∑
τ

diag(zkτ ) · e · e′ · diag(zkτ ), (24)

where the elements of the vector zkt ∈ Rp×1 are defined as

zk,pt =
N∑
n=1

bt,tn · (dp − ap) ·

(
∆tn · E

Q
t

(
1− Lptn

)
−
EQ
τ

(
Lptn − L

p
tn−1

)
f ∗kt

)
. (25)

Equation (25) is obtained by subtracting (10) from (8) and rearranging. The error is

squared in equation (24) for a given k and stapled in Q for all single names. With the

help of a quadratic optimizer, the calibration of q turns out to be very fast, accurate and

unambiguous.

In the second step, we solve problem (22) for every k independently from the rest of

the portfolio but with fixed qpk from the previous calibration. This way, the intensities θkt

are obtained easily by applying a gradient-based method.

4 Empirical Analysis

After describing the formal foundations of our analysis, we can turn to our overall question

of which default factors are priced in CDS markets empirically. We outline the specifics

of the CDX data set, provide corresponding results of the calibration routine presented

in Section (3) and finally show the test results which reveal the role of correlated defaults

in CDS markets in the years 2005 - 2012 which include the subprime credit crisis.
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4.1 Data Set

Our data set comprises daily CDO, index CDS and single-name CDS quotes of the CDX

North America Investment Grade Index from September 2005 until September 2012 with

a maturity of five years which to our knowledge, is the most extensive CDX data set

used so far in the literature. The data set was completely retrieved from Markit, which

is the provider of the CDX index. The CDX comprises the cross-industry single names

that exhibit the highest liquidity in the credit derivatives market. Therefore, our analysis

focuses on the overall credit risk perception among representative single names during

that period.

There are some important characteristics of the CDX data set that we outline in

the following. Before the beginning of the financial crisis in 2007, the CDX index was

reconstituted every six months in March and September, a process which is commonly

known as index roll. Immediately before an index roll occurs, Markit conducts a poll in

which licensed CDS dealers agree on the most liquid 125 single names that will constitute

the next CDX index. The first index of that kind was the CDX 1 that began trading

in September 2003 and was labeled as an on-the-run index, which means that it was

constituted of the most liquid single names at that time. Afterwards, the CDX 2 began

trading in March 2004 as an on-the-run index and so forth. From this point, trades in

the CDX 1 were still possible as long as the maturity of the underlying products was

not reached. However, the CDX 1 was entitled to continue as an off-the-run index as it

did not represent the most liquid single names at that time. However, no CDO data are

available for the first four CDX indices and for this reason, we exclude them from our

analysis.

We include the four subsequent indices CDX 5 through 8 that exhibit workable time

series on daily CDO as well as CDS quotes and the same CDO tranche borders: 0− 0.03,

0.03 − 0.07, 0.07 − 0.10, 0.10 − 0.15 and 0.15 − 0.30. For these indices, we also include

index CDS2 data to supplement the missing tranche that would cover the last CDO

interval ending with detachment point 1. The only tranche of these indices that was

quoted according to the upfront payment convention (5) was the equity tranche with

c1,fix = 500 bp, a1 = 0 and d1 = 0.03. The quotes of all other tranches correspond to the

running spread convention (4).

For the following three years, the CDX data exhibit a peculiar feature: although index

rolls were conducted every half-year, CDX 9 is considered to be the most liquid reference

index during the crisis. Because of this and the fact that CDX 9 has the most workable

2The index CDS can be considered as a tranche on the whole portfolio interval 0− 1.
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time series in these three years, we exclude the indices CDX 10 through 13. Furthermore,

we do not supplement CDX 9 data with index CDS because the time series of the 0.3− 1

tranche is available.

After CDX 9, three major changes occured for liquidity reasons. First, index rolls

were only conducted every full year. Thus, even index numbers are not available any

more because the odd numbers started to trade in the September of each year and traded

for the entire following year. Second, the tranche borders of the CDO were restructured

to four tranches 0 − 0.03, 0.03 − 0.07, 0.07 − 0.15 and 0.15 − 1. Third, the quotation

convention was changed to the upfront convention for all tranches which — in that order

— exhibit the fixed running premia 500 bp, 100 bp, 100 bp and 50 bp. The last two

indices that we include in our data sample are CDX 15 and CDX 17, of which the former

was on-the-run from September 2010 until September 2011 and the latter the subsequent

year.

In the whole observation period, four credit events occured that led to payouts of

CDO tranches and CDSs. The first two are related to Fannie Mae and Freddie Mac,

which were placed into conservatorship on September 7, 2008. Washington Mutual filed

for Chapter 11 bankruptcy on September 27, 2008, followed by CIT Group about one

year later on November 1, 2009. Until the respective credit event, we include the CDS

time series of all four entities. The absolute CDO tranche premia were reduced after each

credit event, but unlike the CDSs they continued trading on the markets as the capital of

the underlying portfolio intervals was not exhausted. After each credit event, the version

of the corresponding index was increased by one. So before September 7, 2008, the CDX

9 data referred to its first version. Afterwards, the second version of CDX 9 began trading

and so forth.

In the CDS space, major changes occured on April 8, 2009 and they are known as

the CDS Big Bang. The thrust of these changes was to improve the efficiency of central

clearing and trade processing in CDS markets. Of all the changes in the context of

the CDS Big Bang, the only one that may be important to us is the change of the

quotation convention. Before that date, CDS premia were quoted according to the running

spread convention. Afterwards, CDS dealers quoted them in terms of the upfront payment

convention. Another characteristic of the CDX data set is that all CDS quotes after the

CDS Big Bang were still quoted in terms of the running spread convention. The conversion

from upfront payments to running spreads is facilitated by a model converter that Markit

offers on its website. It is common market practice to use models because otherwise —

as can be seen from equations (4) and (5)3 — conversion would not be possible.

3The facts also hold for CDS model premia.
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The characteristics of the data set show that a uniform presentation of all indices is

not possible because of changing tranche borders and quotation conventions. Therefore,

we have two possible ways to describe the data set: first, we could present the descriptive

statistics for each single CDX index with its fixed characteristics in terms of quotation

convention and tranche borders. This would truly reflect all observed data and provide full

transparency but would involve costs regarding the associated scope and readability. For

this reason, we choose the second option which entails the use of model premia computed

from the calibrated top model. The advantage of this approach lies in the fact that it

facilitates the presentation of uniform time series for CDO tranche premia which can be

compared among indices. Clearly, this implies the drawback of imposing model risk on

the descriptive statistics. Because of the good model fit, which we will present later, we

consider this handicap to be negligible.

All CDX indices that we include in our study exhibit different tranche borders and

quotation conventions. As we seek to unify tranches across all indices we need to fix

the tranche borders and conventions. This leads us to the problem that we need to

reduce and convert observed data to premia that can be computed from any index. For

example, from the premia of the 0.07−0.10 and the 0.10−0.15 tranche we can compute a

model-implied premium for a non-existent 0.07−0.15 tranche, but not vice versa because

of missing information. Consequently, we have to fix our uniform tranche borders to

the borders of the CDX15 and CDX17 indices: 0.00 − 0.03, 0.03 − 0.07, 0.07 − 0.15 and

0.15−1.00. The model gives us the flexibility to use the quotation convention for tranches

that best fits our purposes. As outlined above, CDS premia are quoted in accordance with

the running spread convention throughout our data set. Furthermore, according to the

running spread convention, quotations can never take negative values, which attributes

a higher expressiveness to statistics. For these two reasons, we use the running spread

convention to represent tranche data that are, provided that no workable observed time

series exists, computed from the top model.

4.2 Descriptive Statistics

In the course of this paper, we investigate how the market perception of default factors

has changed over time. In order to draw meaningful conclusions from our data set, we

divide it into three parts that are in line with Kahle and Stulz (2010): the pre-crisis period

ranging from September 2005 until September 2007, which comprises the CDX 5 through

8 indices. The crisis period lasting from September 2007 until September 2010, which

consists solely of CDX 9 data. And finally, the post-crisis period from September 2010
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until September 2012, which contains the CDX 15 and 17 indices. Thus, we are capable

of comparing the role of default factors in the CDS market before, during and after the

financial crisis.

Figure 1 plots CDO premia that were retrieved from the data set and that were

supplemented by model premia where necessary. The upper graph shows that until spring

2007, the CDO market was in a comparably smooth state with equity tranche premia just

short of 2000 basis points. The premia of the 0.03−0.07, 0.07−0.15 and 0.15−1.00 tranches

were negligibly small during that period. The outbreak of the crisis in summer 2007 is

reflected in increased premia for all tranches. The roll to the CDX 9 index saw a sharp

drop in the equity tranche premia followed by very high market uncertainty in the overall

credit derivatives market. The credit events of Fannie Mae, Freddie Mac and Washington

Mutual in September 2008 caused the CDX 9 tranches to peak at the beginning of 2009.

Afterwards, the situation relaxed until summer 2010 when premia widened again, although

no credit event occured in the index. This rise may have been driven by the Greek

sovereign debt crisis which started at that time and may have channelled through to

North American credit derivatives markets. Another explanation might be the drop in

CDX 9 liqudity in anticipation of the roll to the CDX 15 index which started trading at

considerably lower premia. The low premium levels of CDX 15 persisted throughout CDX

17 and were — at least for the equity tranche — at levels similar to those immediately

before the crisis. However, for the more senior tranches the premium levels after the

crisis are considerably higher than before the crisis. As can be seen from the lower graph

of Figure 1, the more senior tranches in particular gained in relative premium levels

during the crisis. This observation indicates that correlated defaults may have played

an increasingly important role during the crisis because they mainly affect the premium

levels of tranches with high seniority.

Table 1 presents the descriptive statistics for the four tranche premia throughout the

complete data set4. The correlation between the time series decreases with the seniority

of the tranche. For example, the equity tranche is highly correlated with the junior

mezzanine tranche but exhibits almost no correlation with the senior tranche with borders

0.15 − 1.00. This property suggests that different risk factors are driving the premia of

different tranches and therefore justify the use of the three-factor model. Furthermore,

premium levels decrease with the seniority of a tranche because the capital of junior

tranches is consumed first when defaults occur. Since all time series exhibit a very high

serial correlation, the descriptive statistics for their first differences are also reported in

Table 1. The values show that the main findings of the original time series hold for

4Descriptive statistics for the pre-crisis, crisis and post-crisis periods are reported in the appendix.

16



the differentiated time series as well and that the former are not due to the high serial

correlation.

Figure 1: Graphs for the Time Series of the CDX North America Investment
Grade CDO Tranche Model Premia
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Note: The upper graph shows the time series of unified CDO tranche premia

computed from the portfolio model for the period from September 2005 until

September 2012. The dashed vertical division lines indicate the roll of one CDX

index to the next. The straight lines indicate the rolls for the CDX 9 index

and simultaneously mark the borders of pre-crisis, crisis and post-crisis periods

in our data sample. The lower panel shows the same premia but divided by

the first values of their respective time series. Values of the upper panel are

reported in basis points. Values of the lower panel are normalized to the first

observation of the respective time series.
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Table 1: Summary Statistics for the Levels and First Differences of the
CDX North America Investment Grade CDO Tranche Premia

Correlations
3–7 7–15 15–100 Mean SD Min. Med. Max. Skew. Kurt. Serial corr. N

0–3 Tranche 0.862 0.736 -0.006 2668.40 1361.06 1059.23 1960.04 6271.22 0.80 2.27 0.999 1706
3–7 Tranche 0.960 0.330 686.59 638.48 57.69 515.66 3302.73 1.51 5.05 0.999 1706
7–15 Tranche 0.497 199.15 198.74 7.65 162.75 1126.05 1.81 6.70 0.998 1706
15–100 Tranche 17.39 15.67 0.34 13.17 67.81 0.63 2.38 0.998 1706
∆ 0–3 Tranche 0.439 0.466 -0.035 -0.12 138.42 -2322.54 1.18 2102.15 -1.31 116.80 0.063 1705
∆ 3–7 Tranche 0.874 0.219 0.14 48.01 -453.48 -0.01 387.07 -0.07 21.51 0.074 1705
∆ 7–15 Tranche 0.567 0.07 15.80 -115.09 -0.02 144.42 0.62 20.11 0.136 1705
∆ 15–100 Tranche 0.01 1.53 -8.50 0.00 33.16 6.41 139.23 -0.020 1705

Note: This table reports summary statistics for unified CDO tranche premia computed from the top model. The model was calibrated
to the original, observed data and the statistics are computed from the whole time series ranging from September 2005 until September
2012. Values are reported in basis points.
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Each CDX index comprises the 125 most liquid single names during its on-the-run

time period. Figure 2 plots the 5% and 95% quantiles, the mean and the median of the

cross-section of CDS premia. Until the outbreak of the crisis, the overall CDS premium

level was comparably low, with the 95% quantile moving below 150 basis points and the

mean below 60 basis points. The outbreak of the financial crisis in summer 2007 led

to a considerable increase in overall CDS premium levels which peaked at the beginning

of 2009. The level of the 95% quantile reached more than 1500 basis points, indicating

that during that time, the market priced high default probabilities for the single names

with the lowest credit quality among the index constituents. The median CDS premium

reached a maximum of more than 200 basis points. This level does not reflect a very high

default probability but signals that in the overall market perception, protection sellers

took high premia for single names with a good credit quality, which may suggest that

correlated defaults were priced in CDS markets.

Table 2 shows the corresponding summary statistics5. In line with Table 1, the ob-

served CDS time series exhibit high serial correlations which are considerably reduced

by taking first differences. In addition, the time series of all considered cross-sectional

statistics are highly correlated. The finding suggests that CDSs follow overall market

movements, which again indicates that correlated defaults are likely to be priced in the

CDS market.

Interest rate data are the last missing piece that we need for the calibration of the top-

down approach. We compute discount factors from the Svensson parameters published on

the website of the Federal Reserve. The parameters reflect the interest rate term structure

of US Treasuries that are considered to be the most liquid interest rate products in the

US market. Therefore, they are ideally suited to our purposes. An explanation of the

related methodology can be found in Gürkaynak, Sack, and Wright (2006).

5Descriptive statistics for the pre-crisis, crisis and post-crisis periods are reported in the appendix.
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Figure 2: CDS Time Series of the CDX North America Investment Grade
Index Constituents
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Note: The graph shows daily cross-sectional statistics for the CDX index con-

stituents. The dashed vertical division lines indicate the roll of one CDX index

to the next. The straight lines indicate the rolls for the CDX 9 index and si-

multaneously mark the borders of pre-crisis, crisis and post-crisis periods in

our data sample. Values are reported in basis points.
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Table 2: Summary Statistics for the Levels and First Differences of the
Cross-Section of CDX Index Constituents

Correlations
SD Min. 5 Med. 95 Max. Mean SD Min. Med. Max. Skew. Kurt. Serial corr. N

Mean 0.934 0.648 0.788 0.859 0.955 0.908 131.69 91.09 30.46 109.35 477.61 1.27 4.35 0.999 1706
SD 0.446 0.584 0.653 0.941 0.986 200.64 210.67 23.21 86.56 982.81 1.30 3.63 0.997 1706
Min. 0.822 0.801 0.548 0.414 18.23 9.31 0.00 19.10 45.35 0.20 2.26 0.994 1706
5 0.961 0.633 0.586 30.68 13.99 6.81 33.04 77.58 0.10 2.58 0.999 1706
Med. 0.710 0.642 73.82 37.74 16.85 78.66 214.73 0.47 3.12 0.999 1706
95 0.895 385.00 313.25 76.06 273.67 1515.47 1.33 3.88 0.999 1706
Max. 1633.29 1833.96 125.42 585.74 8861.85 1.34 3.90 0.993 1706
∆ Mean 0.791 0.100 0.557 0.691 0.715 0.648 0.03 5.87 -64.15 -0.02 49.93 -0.93 28.08 0.232 1705
∆ SD -0.001 0.174 0.268 0.412 0.934 0.01 23.65 -404.46 0.03 289.86 -2.94 91.24 0.012 1705
∆ Min. 0.292 0.177 0.058 -0.014 0.00 2.27 -38.52 0.00 38.48 -0.26 169.08 -0.138 1705
∆ 5 0.706 0.420 0.097 0.01 1.02 -6.06 -0.01 9.13 0.75 14.39 0.229 1705
∆ Med. 0.555 0.173 0.02 2.82 -20.92 -0.03 25.91 0.48 16.17 0.242 1705
∆ 95 0.302 0.06 22.58 -227.62 -0.01 176.99 -0.35 21.56 0.213 1705
∆ Max. -0.01 296.20 -5800.93 0.09 3615.09 -3.72 122.65 -0.070 1705

Note: This table reports summary statistics for the cross-sectional statistics time series of CDX index constituents. Values are reported in basis
points.
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4.3 Calibration Results

In the following we present the results of the calibration procedure introduced in Section

3. First, as a preparation for the CDS study, we discuss the calibrated parameters of the

top model and the associated goodness of fit. Afterwards, we turn towards the question

of which default factors are priced in CDS markets and investigate the calibrated CDS

parameters.

4.3.1 Portfolio Level

Jump Size and Volatility Parameters We applied the proposed calibration proce-

dure to each CDX index. Table 3 presents the resulting parameter values. The jump size

parameters γi, i = 1, 2, 3 are comparably stable across the different CDX indices. The

value of the first parameter γ1 ranges from 0.0042 to 0.0083. Given the fact that each

constituent is weighted with 1/125 = 0.008 in a CDX index, the jump size allows the

interpretation of the first factor to model the default of a single name while the recov-

ery rates vary from 47.5% to 0%6. For this reason, we refer to the first factor as the

single default factor of the portfolio. The jump size parameter of the second factor lies

between 0.0592 and 0.0792 which are clearly above the jump sizes reported for the single

default factor. Thus, a jump of the second factor induces a default that corresponds with

the simultaneous default of 9.11 single names given a recovery rate of 0%, or 18 firms

with a recovery rate of 49.38%. Since a CDX index is composed of single names from 12

different industries, the average number of single names per industry is equal to 10.42.

Consequently, the second factor can be interpreted as an industry default factor. This

interpretation implies that correlated defaults are priced in CDOs because more than 10

firms default at the same time in case the second factor jumps. In contrast, if there was

no default correlation priced at all, more than one single name could not default at the

same time in the model. The jump sizes of the third factor range from 0.3459 to 0.4044.

A default event of the third factor may thus wipe out more than 40% of the portfolio

capital. This means that more than 50 single names with recovery rate 0% would default

at the same time if the third factor jumps. This seems to be a very unlikely event because

it is tantamount to an extremely severe economic crisis with consequences beyond the

scope of the last financial crisis in 2008. We interpret this factor as modeling a systemic

default event and therefore call it the systemic default factor. The standard errors of

the jump size parameters show that the calibration worked particularly well in all cases.

Furthemore, they are in line with Longstaff and Rajan (2008), who report similar values.

6Or even less than 0%. In that rare case, two single names default if the first factor jumps.
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The stability observed for jump size parameters across CDX indices does not apply

to the volatility parameters σi, i = 1, 2, 3. In the pre-crisis and crisis periods, the σi are

relatively stable with the exception of σ1, which drops for the CDX 8 index. However,

the picture changes for the post-crisis period, where the σi can take values that are more

than three times larger than before. The finding suggests that despite decreased premium

levels, and hence lower default risk, the market environment exhibited a high degree of

uncertainty. In this context, it seems plausible that the market perception of default

volatility has changed because of the financial crisis.

Priced Defaults by Portfolio Risk Factors Since we are interested in the question

of how the importance of the factors has changed relative to each other on the one side,

and how this translates to the portofolio loss distribution on the other side, we have

plotted the priced defaults resulting from the top model in Figure 3. Before the crisis,

more than 80% of priced defaults can be attributed to the single default factor. The

industry and the systemic factor played a negligible role during that period. Furthermore,

only around 2% of the portfolio capital were expected to default under the risk-neutral

measure. Afterwards, the financial crisis changed the situation dramatically. At the

beginning of 2009, the market expected almost 10% of the portfolio capital to default.

Roughly 80% of these defaults were priced by the industry and the systemic risk factor,

with the former clearly the more dominant of the two. The market situation eased in 2010

and the expected default mass declined to 4%, half of which can be attributed to the single

default factor. The index roll from CDX 9 to 15 saw a sharp increase in the time series of

systemic defaults. This increase might be explained by the new index composition or the

new tranche borders, which may have stimulated a greater awareness of systemic risk in

the senior tranche. After the crisis, the systemic risk factor accounts for more than 40%

of priced defaults while the proportion between the first and the second factor remains

relatively stable. Summing up, the single default factor played the major role during

the pre-crisis period whilst the correlated default factors dominated afterwards. Thus,

the market perception of correlated defaults and particularly systemic risk has changed

during and after the financial crisis.
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Table 3: Top Model Parameter Estimates for the CDX North America
Investment Grade Indices

Volatility parameters Jump size parameters
First Second Third First Second Third

CDX5 0.1872 0.2115 0.1573 0.0045 0.0592 0.3459
(0.0006) (0.0001) (0.0007) (0.0000) (0.0000) (0.0006)

CDX6 0.2901 0.1928 0.1573 0.0048 0.0619 0.3459
(0.0032) (0.0004) (0.0007) (0.0000) (0.0001) (0.0002)

CDX7 0.3522 0.1960 0.1573 0.0048 0.0611 0.3459
(0.0008) (0.0002) (0.0009) (0.0000) (0.0000) (0.0004)

CDX8 0.0006 0.2003 0.1573 0.0043 0.0602 0.3459
(0.5597) (0.0001) (0.0005) (0.0000) (0.0000) (0.0003)

CDX9 0.1343 0.2003 0.1573 0.0042 0.0602 0.3459
(0.0371) (0.0085) (0.0115) (0.0001) (0.0005) (0.0150)

CDX15 0.7130 0.0000 0.4044 0.0079 0.0729 0.4044
(0.0022) (0.8375) (0.0013) (0.0000) (0.0001) (0.0002)

CDX17 0.4740 0.4550 0.3834 0.0083 0.0656 0.3834
(0.0101) (0.0054) (0.0037) (0.0001) (0.0003) (0.0013)

Note: This table reports parameter estimates for the top model. The volatility parameters
are σi, i = 1, 2, 3 and the jump size parameters are γi, i = 1, 2, 3. Standard errors are in
parantheses and are computed according to Gallant (1975).

Figure 3: Time Series of Priced Defaults in CDX CDO Tranches
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Note: The graph shows the priced defaults in CDX CDO tranches computed

from the top model. All defaults refer to the factors i = 1, 2, 3, and correlated

defaults refer to the factors i = 2, 3 combined. Systemic defaults refer to

factor i = 3 only. The maximum possible default loss is equal to the portfolio

notional with amount 1.
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Goodness of Fit To assess the overall model fit, we examine the fit of model premia

with regard to observed premia of the data set. A typical measure that is applied in

this context is the so-called root mean square error (RMSE). The value of the RMSE

reports the absolute deviation between observed and model premia. In our study the

RMSE would measure the difference between observed and model premia in basis points.

Although this would provide a high degree of comparability across tranches, one major

drawback lies in the explanatory power, since a deviation of e.g. 10 basis points for the

equity tranche is relatively lower than a deviation of 10 basis points for the senior tranche.

In order to satisfy this circumstance for CDO tranches, we introduce the root mean square

relative error (RMSRE) that is defined as follows:

RMSREp
t,T =

√√√√ T∑
τ=t

(
cpτ − c∗pτ
c∗pτ

)2

(26)

The advantage of the RMSRE lies in its comparability across tranches: if the model premia

of an equity tranche and a senior tranche are both calibrated with a deviation of 10%

then they can be considered to fit the data equally well. Another favorable property for

our study is the robustness of the RMSRE towards a change in quotation conventions. As

mentioned earlier, the quotation convention for some on-the-run tranches in the data set

suddenly changes from running to upfront, which would directly lead to a sharp increase

or drop in RMSEs. Since this does not hold for RMSREs they are clearly better suited

for our purposes. Furthermore, the RMSRE is closely related to the error in problem (21)

and thus coincides with the top model calibration. However, there is a slight drawback

associated with the RMSRE: if the observed premium c∗pt is close to zero it takes huge

values and distorts a further analysis. Therefore we have to erase outliers.

Figure 4 plots the mean RMSRE across tranches. During the pre- and post-crisis

periods, the mean RMSRE ranges from roughly 1% to 10% with high fluctuations. For a

senior tranche with a premium of 50 basis points this translates to a maximum deviation

of 5 basis points which can be considered a good model fit. However, during the crisis the

RMSRE takes higher values and has partially higher fluctuations than in the other periods.

This might be considered a weakness of the model but given the fact that, during the crisis,

observed premia are usually subject to greater distortion owing to market uncertainty,

the model fit in the crisis is still good.
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Figure 4: Time Series of Mean RMSRE across CDO Tranches
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Note: The graph shows the time series of the mean RMSRE across CDO
tranches adjusted for outliers. The RMSRE refers to observed CDO tranche
premia.

4.3.2 Single-Name Level

As an outcome of top model calibration, we know that the CDO market prices correlated

defaults, especially during and after the crisis. But are these risks also perceived in CDS

markets? With the help of our top-down model, we are able to answer this question

empirically by analyzing the calibrated values of the qpk and θkt .

Test Setup for Portfolio Sensitivities In the first step, we hypothesize how cor-

related defaults are reflected in CDS prices within our model. For this reason, let us

assume the following two cases: first, a single name with a very high CDS premium in the

cross-section of the portfolio. Second, a single name with a low CDS premium. For the

first single name, a high value of the associated CDS suggests a high default probability

and favors an early default time. For the single name with the low CDS premium, the

opposite relation holds: since a default is unlikely it is expected that other single names

will default beforehand, if at all. Therefore, the low CDSs should be priced in the senior

tranche p = 4 whose capital is only affected by defaults that occur last of in a portfolio.

One could also argue that single names with a very low CDS premium may only default

in catastrophic scenarios such as natural disasters or very severe economic crises. In this

case, they should also exhibit a high sensitivity towards the senior tranche. Accordingly,

single names with high CDS premia should be priced in the equity tranche since they are

expected to default as one of the first portfolio constituents.
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To test whether these considerations hold empirically, we formulate the regression

equation

qp = ap + bp · f ∗ + εp, (27)

qp =


qp1

qp2
...

qpK

 , f ∗ =


E(f ∗1t )

E(f ∗2t )
...

E(f ∗Kt )

 ,

where K denotes the total number of single names in the portfolio and εp a zero mean

error term. The notion behind this regression is to determine the relationship between

the size of CDS f ∗ and the sensitivities qp toward a tranche p. If bp is positive, we can

conclude that high CDSs are priced in p. If it is negative, this holds for low CDSs.

We compute the qp and f ∗ for each single CDX index and regress them according to

equation (27) per period. That means that the first regression refers to the parameters qpk
and f ∗ of CDX 5 to 8 combined, the second regression to CDX 9 and the third regression

to CDX 15 und 17 combined. The packages assure that there is an equal amount of data

involved in each regression and thus they have comparable explanatory power.

From our notion that only single names with high CDS premia are priced in the equity

tranche, we retrieve the following hypothesis:

Hypothesis 1 The tranche sensitivity q1
k is higher for high CDS premia than for low

CDS premia.

Empirically, we can consider hypothesis 1 to hold if the regression parameter b1 is positive

and significant.

Accordingly, since single names with high CDS premia are supposed to default first,

they should have no influence on the pricing of the senior tranche, and the respective

tranche sensitivity should equal zero. Therefore we retrieve:

Hypothesis 2 The tranche sensitivity q4
k is higher for low CDS premia than for high

CDS premia.

The validity of hypothesis 2 can be verified by a negative parameter b4.

Test Setup for Idiosyncratic Risk Factors To capture potential pricing deviations

between observed and CDO-induced CDS premia, we introduced idiosyncratic risk factors.
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Since we are interested in finding out which CDSs they particularly apply to, we conduct

the following regression with respect to the calibrated idiosyncratic intensities θkt :

θ = a+ b · f ∗ + ε (28)

θ =


E(θ∗1t )

E(θ∗2t )
...

E(θ∗Kt )

 . (29)

where ε indicates a zero mean error term. If idiosyncratic risk factors are especially

present in high CDS premia, b should be positive. In the opposite case that they are

present in low CDS premia, b should be negative. If the CDS level is in no way related

to the amount of idiosyncratic risk, b should be close to zero.

Test Results for Pre-Crisis Period The regression results for the three periods are

presented in Table 4. It can be seen that the only tranche sensitivities for which the

regression coefficient bp is significant during the pre-crisis periods, are the equity and the

junior mezzanine tranche with p = 1 and p = 2. The coefficient for the junior mezzanine

tranche is higher than for the equity tranche, which is fairly surprising because from

hypotheses 1 and 2 the coefficient should decrease with the seniority of the CDO tranche.

The scatter plots of Figure 5 reveal that this is due to outliers with a comparably low

CDS premium that lead to a high b2. The plots also show that the sensitivities q2 are

higher than q1 for the highest CDS premia of the portfolio. The finding suggests that

hypothesis 1 holds and that the highest CDS premia are priced in the most junior tranches.

Regarding the senior mezzanine p = 3 and the senior tranche p = 4, there is no evidence

that the single names follow a particular default order since the coefficients bp are not

significant. This is not surprising because correlated defaults were less important in the

pricing of CDOs during the pre-crisis period and hence they were not perceived by the

single-name CDS market.

Test Results for Crisis Period Later, though the CDO market apparently attached

greater importance to correlated defaults owing to the outbreak of the financial crisis.

Table 4 shows that both hypotheses 1 and 2 hold in the CDS market because the values

of the coefficients b1 and b4 are both significant and they exhibit the expected sign. This

translates to the single default factor being priced in single names with high CDS premia

and systemic risks being priced in low CDSs. Thus, the CDS market follows the suggested
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default order, especially if both single and correlated default risks play an important and

visible role in the CDO market. Only the coefficients b2 and b3 are not in line with the

results for the equity and the senior tranche. b2 > b1 holds because of an outlier and b3

is not significant. A possible explanation lies in the high volatility of the industry factor

which accounts for most of the risk inherent in the junior and senior mezzanine tranches.

Since the time series of those tranches and the CDSs that should — from a theoretical

viewpoint — be in line with them are very volatile, the calibrated tranche sensitivities

do not take the suggested values. Therefore, we cannot conclude that the default order

holds for the mezzanine tranches.

Test Results for Post-Crisis Period Almost the same picture applies to the post-

crisis period with the difference that all bp are strongly significant. Hypotheses 1 and 2

hold but again b2 and b3 take the highest values. Our findings show that correlated defaults

were not priced in CDS markets during the pre-crisis period; only single defaults were.

The higher relevance of industry and systemic risk for CDO portfolios during the crisis

was anticipated by participants in the CDS market who considered possible correlated

defaults in their CDS trades.

Test Results for Idiosyncratic Risk Factors The relevance of the idiosyncratic price

effect for single-name CDSs is revealed in Table 4 and Figure 5. Idiosyncratic risk factors

prevailed during all three time periods of our analysis but were especially dominant during

the crisis period. Furthermore, idiosyncratic risk increases with the level of CDS premia.

Single names which are under high financial distress are very volatile on top of the single

default factor that prices them. Similarly, not all dynamics observed on the CDS market

automatically influence the time series of the equity tranche. A possible explanation could

include illiquidity or diversification effects that act as a buffer between high CDSs and

the equity tranche premium. However, these effects have a much weaker influence on

low CDSs and the senior tranche premium. Thus, low CDS premia mainly follow overall

market movements which can be characterized in terms of the systemic risk factor.

Goodness of Fit The presence of idiosyncratic risk factors implies that CDS premia

cannot be fully explained by the top model and the tranche sensitivities. A perfect match

is only possible with the idiosyncratic extension of CDS model premia that we introduced

in equations (9) and (11). Nevertheless, it is still interesting to assess the model fit

with tranche sensitivities, if only because it reveals how well they can explain observed

CDS premia. We measure the deviations between observed and model premia with the
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RMSRE. Figure 6 plots the RMSRE time series for the cross-section of CDS premia. It

shows that more than one half of CDS premia are mispriced by less than 20%, which is

tolerable for various applications. However, the top 5% of deviations take very large values

that are even above 100%. In these cases, the idiosyncratic risk factors are required. The

graph also shows that the mispricings are comparably higher in the crisis period than

outside of it because the top-down model has its difficulties capturing the overall high

market volatility at that time. But the high deviations could also be attributed to high

levels of idiosyncratic risk caused by increased illiquidity in the markets. Despite some

outliers, the overall model fit can be regarded as good enough to conclude that the tranche

sensitivities have high explanatory power to back the findings of our analysis.

Table 4: Regression Results for Single-Name CDSs during the Pre-Crisis,
Crisis and Post-Crisis Periods

Tranche sensitivities
q1 q2 q3 q4 θt

P
re

-C
ri

si
s ap, a 0.0027 0.0015 0.0090 0.0087 -0.0005

p-Value(ap, a) 0.0001 0.3727 0.0000 0.0000 0.0000
bp, b 1.2261 1.5074 -0.2282 -0.1524 0.2369
p-Value(bp, b) 0.0000 0.0000 0.2883 0.0636 0.0000
R2 0.2107 0.0652 0.0023 0.0069 0.4552

C
ri

si
s

ap, a 0.0030 0.0004 0.0071 0.0089 -0.0070
p-Value(ap, a) 0.0320 0.8553 0.0017 0.0000 0.0000
bp, b 0.2323 0.3469 0.0577 -0.0502 0.7823
p-Value(bp, b) 0.0000 0.0000 0.3176 0.0007 0.0000
R2 0.2589 0.2522 0.0084 0.0933 0.7922

P
os

t-
C

ri
si

s ap, a 0.0047 -0.0054 -0.0017 0.0105 -0.0008
p-Value(ap, a) 0.0006 0.0165 0.4260 0.0000 0.0000
bp, b 0.3107 1.2431 0.9000 -0.2351 0.1415
p-Value(bp, b) 0.0036 0.0000 0.0000 0.0009 0.0000
R2 0.0336 0.1683 0.1050 0.0433 0.2862

Note: This table reports results for the regressions of the single-name parameters qpk and
θkt against the respective absolute CDS mean levels. Regression data comprise pre-crisis,
crisis and post-crisis period CDX data.

5 Conclusion

In this paper, we studied the impact of correlated default factors on CDS premia. There-

fore, we first recapitulated the top model of Longstaff and Rajan (2008) to model CDO

30



Figure 5: Regression Results for Single-Name CDSs during the Pre-Crisis, Crisis and Post-Crisis Period
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Note: The graphs show scatter plots for the regressions of the single-name parameters qpk and θkt against the
respective absolute CDS mean levels. Regression data comprise pre-crisis, crisis and post-crisis period CDX
data.
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Figure 6: Time Series of Mean RMSRE across CDS Premia
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Note: The graph shows the time series of the mean RMSRE without idiosyn-
cratc risk across CDS premia. The RMSRE refers to observed CDS premia.

tranche premia. Afterwards, we derived a cash flow based top-down approach that links

theoretical CDS model premia to any kind of CDO model. A special feature of our frame-

work lies in the ability to allow for idiosyncratic risk factors that are not priced in the

CDO portfolio. With the help of these risk factors, empirically observed CDS premia can

be perfectly matched by our model.

The top-down model was calibrated to an extensive CDX data set that covers daily

tranche and CDS quotes from September 2005 until September 2012. We found that

before the outbreak of the financial crisis in 2007, the influence of correlated default

factors on CDS premia was only minor. However, the financial crisis led to a dramatic

increase in those factors which accounted for most of the expected defaults in CDO and

CDS markets at that time. After the crisis, the market situation eased, leading to an

overall lower default risk level but still with high importance attached to the correlated

default factors. Accordingly, we found correlated default factors to be priced in CDS

markets when they were particularly high, that is, during and after the financial crisis.

Our analysis revealed that the prices of single names with a low pricing level are mainly

driven by correlated default factors. Furthermore, we found idiosyncratic risk to be priced

in CDS markets in the whole data set but especially during the financial crisis. Single

names with high CDS premia were in particular subject to high levels of idiosyncratic

risk.
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Appendix A Tables

Table 5: CDO Pre-Crisis

Correlations
3–7 7–15 15–100 Mean SD Min. Med. Max. Skew. Kurt. Serial corr. N

0–3 Tranche 0.818 0.842 0.853 1593.06 376.29 1059.23 1503.54 2827.16 1.28 4.49 0.996 480
3–7 Tranche 0.986 0.939 110.58 50.81 57.69 97.89 365.22 2.59 9.92 0.994 480
7–15 Tranche 0.971 19.55 14.32 7.65 15.47 93.59 2.87 11.28 0.990 480
15–100 Tranche 1.25 1.04 0.34 0.97 6.63 3.02 12.04 0.985 480
∆ 0–3 Tranche 0.719 0.737 0.596 0.99 52.78 -295.43 -1.64 307.52 0.28 11.61 0.177 479
∆ 3–7 Tranche 0.912 0.739 0.07 9.81 -61.94 -0.35 87.17 0.76 25.27 0.162 479
∆ 7–15 Tranche 0.881 0.03 2.78 -16.08 -0.02 26.68 1.36 32.15 0.144 479
∆ 15–100 Tranche 0.00 0.23 -1.46 0.00 1.51 0.37 25.40 0.103 479
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Table 6: CDO Crisis

Correlations
3–7 7–15 15–100 Mean SD Min. Med. Max. Skew. Kurt. Serial corr. N

0–3 Tranche 0.819 0.690 0.328 3985.24 1030.54 1515.93 4120.93 6271.22 -0.15 2.31 0.998 742
3–7 Tranche 0.957 0.654 1158.30 690.56 116.71 1070.02 3302.73 0.78 3.02 0.998 742
7–15 Tranche 0.814 317.72 231.23 25.80 234.69 1126.05 1.27 3.91 0.998 742
15–100 Tranche 14.92 9.34 2.03 13.12 47.47 0.85 3.35 0.996 742
∆ 0–3 Tranche 0.396 0.537 0.164 3.89 182.21 -1944.84 6.69 2102.15 1.45 53.60 0.070 741
∆ 3–7 Tranche 0.905 0.333 1.11 70.07 -453.48 3.08 387.07 -0.01 10.56 0.078 741
∆ 7–15 Tranche 0.605 0.15 22.71 -115.09 0.18 144.42 0.38 10.47 0.150 741
∆ 15–100 Tranche 0.00 1.52 -8.50 0.05 12.40 0.83 16.93 0.000 741
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Table 7: CDO Post-Crisis

Correlations
3–7 7–15 15–100 Mean SD Min. Med. Max. Skew. Kurt. Serial corr. N

0–3 Tranche 0.868 0.817 0.580 1716.06 218.26 1330.79 1726.76 2186.54 0.15 1.99 0.997 484
3–7 Tranche 0.893 0.814 534.68 101.00 352.34 512.60 795.25 0.50 2.30 0.997 484
7–15 Tranche 0.795 195.50 59.40 119.23 182.72 367.29 0.79 2.71 0.998 484
15–100 Tranche 37.20 8.40 23.49 34.77 67.81 1.34 4.32 0.998 484
∆ 0–3 Tranche 0.918 0.840 0.792 -1.37 45.75 -161.71 -0.92 201.65 -0.01 5.31 0.022 483
∆ 3–7 Tranche 0.852 0.692 -0.67 18.74 -73.08 -0.99 80.91 0.07 5.01 0.006 483
∆ 7–15 Tranche 0.891 -0.13 8.78 -35.82 -0.25 86.28 1.86 23.83 0.007 483
∆ 15–100 Tranche -0.03 1.55 -6.68 -0.06 10.21 0.42 9.43 -0.025 483
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Table 8: CDSs Pre-Crisis

Correlations
SD Min. 5 Med. 95 Max. Mean SD Min. Med. Max. Skew. Kurt. Serial corr. N

Mean 0.920 0.797 0.897 0.853 0.871 0.844 43.48 11.66 30.46 39.68 92.55 2.07 7.08 0.996 480
SD 0.685 0.713 0.621 0.907 0.950 47.64 24.06 23.21 40.70 166.19 2.35 8.92 0.994 480
Min. 0.844 0.772 0.612 0.662 7.14 1.85 4.04 6.97 14.88 1.17 4.88 0.995 480
5 0.941 0.637 0.687 12.90 4.20 6.81 13.39 25.16 0.81 3.57 0.996 480
Med. 0.538 0.618 28.04 6.40 16.85 27.00 47.27 0.55 2.60 0.997 480
95 0.751 123.06 52.24 76.06 108.81 417.74 3.19 13.22 0.994 480
Max. 365.00 215.47 125.42 297.83 1392.62 1.78 6.75 0.992 480
∆ Mean 0.789 0.219 0.581 0.722 0.829 0.523 0.04 1.35 -8.53 -0.04 8.88 0.22 17.17 0.441 479
∆ SD 0.039 0.278 0.336 0.728 0.882 0.13 3.09 -23.66 0.03 24.45 0.10 30.52 0.345 479
∆ Min. 0.383 0.261 0.141 0.023 0.00 0.39 -3.80 0.00 2.71 -1.58 34.06 -0.121 479
∆ 5 0.588 0.352 0.173 0.01 0.38 -2.10 -0.01 3.55 1.96 25.58 0.202 479
∆ Med. 0.487 0.110 0.00 0.82 -4.55 -0.04 6.36 1.16 16.74 0.113 479
∆ 95 0.475 0.32 8.55 -61.04 -0.06 71.63 0.93 28.12 0.331 479
∆ Max. 0.90 35.43 -380.18 0.17 350.26 -1.14 56.35 0.170 479
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Table 9: CDSs Crisis

Correlations
SD Min. 5 Med. 95 Max. Mean SD Min. Med. Max. Skew. Kurt. Serial corr. N

Mean 0.915 0.520 0.727 0.900 0.920 0.866 204.25 90.12 47.83 183.57 477.61 0.75 3.08 0.999 742
SD 0.304 0.516 0.714 0.869 0.968 385.41 202.21 57.67 386.07 982.81 0.36 2.46 0.996 742
Min. 0.569 0.603 0.447 0.249 22.54 7.73 0.00 21.21 45.35 0.29 3.90 0.990 742
5 0.921 0.489 0.563 38.32 11.69 16.62 37.69 77.58 0.53 3.20 0.999 742
Med. 0.710 0.720 92.79 35.47 27.92 83.30 214.73 0.82 3.46 0.999 742
95 0.767 653.58 300.38 177.54 544.66 1515.47 0.65 2.28 0.999 742
Max. 3225.57 1790.45 350.55 3423.20 8861.85 0.38 2.86 0.992 742
∆ Mean 0.784 0.134 0.583 0.705 0.696 0.637 0.17 8.33 -52.99 0.22 49.93 -0.18 11.19 0.239 741
∆ SD 0.041 0.189 0.273 0.381 0.931 0.39 34.28 -404.46 0.40 289.86 -1.57 42.23 0.005 741
∆ Min. 0.300 0.173 0.079 0.020 0.01 3.32 -38.52 0.00 38.48 -0.32 85.75 -0.145 741
∆ 5 0.719 0.432 0.105 0.02 1.39 -6.06 -0.01 9.13 0.61 9.20 0.262 741
∆ Med. 0.562 0.176 0.08 3.93 -20.92 0.00 25.91 0.33 9.65 0.264 741
∆ 95 0.273 0.30 32.41 -227.62 0.58 176.99 -0.13 10.74 0.209 741
∆ Max. 4.07 435.97 -5800.93 4.64 3615.09 -2.35 57.94 -0.078 741
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Table 10: CDSs Post-Crisis

Correlations
SD Min. 5 Med. 95 Max. Mean SD Min. Med. Max. Skew. Kurt. Serial corr. N

Mean 0.955 0.164 0.669 0.941 0.964 0.930 107.94 17.58 84.21 103.13 162.35 0.58 2.24 0.998 484
SD -0.064 0.458 0.814 0.982 0.954 69.11 17.71 41.79 69.99 111.24 0.05 1.77 0.998 484
Min. 0.631 0.356 -0.026 0.083 22.61 6.38 9.59 23.93 35.59 -0.37 2.07 0.997 484
5 0.837 0.497 0.534 36.59 4.97 24.96 36.56 52.86 0.31 3.17 0.998 484
Med. 0.850 0.833 90.13 12.50 72.41 85.33 129.59 0.83 2.62 0.998 484
95 0.930 233.01 55.69 153.45 226.82 385.68 0.35 2.13 0.998 484
Max. 450.04 111.10 275.21 457.66 691.41 0.17 1.97 0.998 484
∆ Mean 0.924 0.367 0.744 0.858 0.865 0.688 -0.04 2.14 -9.39 -0.08 12.27 0.45 7.27 0.294 483
∆ SD 0.206 0.648 0.762 0.856 0.851 -0.02 1.89 -9.02 -0.09 10.83 0.39 7.92 0.293 483
∆ Min. 0.298 0.335 0.247 0.039 -0.04 0.93 -2.89 -0.06 8.59 1.82 18.73 -0.067 483
∆ 5 0.675 0.608 0.514 -0.01 0.76 -2.83 0.00 3.21 0.21 6.07 0.069 483
∆ Med. 0.701 0.571 -0.03 1.93 -6.46 -0.07 9.04 0.48 5.76 0.120 483
∆ 95 0.628 -0.09 7.38 -31.46 -0.24 36.82 0.47 6.77 0.284 483
∆ Max. -0.43 13.91 -114.33 -0.78 85.28 -0.36 16.12 0.162 483
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