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Non-technical summary

Research Question

To measure the degree of systemic risk in a financial system it is necessary to capture beside

the risk of the individual financial institutions (FIs) also the risk which is created through

the linkages that exist between the different FIs in the economy. These linkages can cause

financial distress in one or a small group of FIs to spill over to other institutions and to

propagate within the financial sector to larger systemic distress, as seen, for instance, during

the 2007/2008 sub-prime crisis. This paper aims to develop indicators that capture systemic

financial distress in an adequate and timely manner.

Contribution

We suggest a novel framework to estimate systemic financial distress indicators from call

option prices. In our framework we combine estimates for the individual institutions’ asset

distributions (RNDs) and probabilities of default (PoD) with estimates for the dependence

structure between the different institutions in the system to obtain multivariate asset distri-

butions (MADs) for a group of FIs. The RNDs and the dependence structure are estimated

in a very flexible way such that we can capture the empirically usually observed deviations of

asset distributions from normality as well as non-linear and dynamic dependence structures

between the FIs. The MADs exhibit information about the conditional PoDs of the different

FIs such that we can calculate distress measures based on the assumed default of one or

more institutions in the system.

Results

The application of the framework to a sample of major US FIs during the period of the

2007/2008 financial crisis shows that the suggested framework identifies in a timely manner:

i) the most distressed FIs in the system; ii) the systemically most important FIs; iii) implicit

bailout guarantees given to some FIs; and iv) a ”too connected to fail” problem in the US

financial sector throughout the year 2008.



Nicht-technische Zusammenfassung

Fragestellung

Indikatoren für das systemische Risiko im Finanzsektor müssen sowohl das Einzelrisiko der

Banken als auch das Risiko, das durch die Vernetzung der Institute im System entsteht,

erfassen. Die Vernetzung der Institute kann dazu führen, dass Probleme in einem oder einer

kleinen Gruppe von Finanzinstituten auf andere Institute übergreifen und sich so zu system-

weiten Krisen ausweiten - wie z.B. während der Finanzkrise 2007/2008 beobachtbar. Dieses

Forschungspapier versucht Indikatoren zu entwickeln, welche in geeigneter und frühzeitiger

Weise das systemische Risiko im Finanzsektor anzeigen.

Beitrag

Wir präsentieren einen neuen Ansatz, der auf Basis von Optionspreisen Kennzahlen für das

systemische Risiko im Finanzsektor schätzt. Unser Ansatz kombiniert die Vermögensvertei-

lungen (RNDs) und Ausfallwahrscheinlichkeiten von Einzelbanken mit Schätzungen für die

Abhängigkeitsstruktur zwischen den Banken im System um hierdurch gemeinsame (multi-

variate) Vermögensverteilungen für ein System von Banken zu erhalten. Die Schätzung der

RNDs und der Abhängigkeitsstruktur erfolgt auf sehr flexible Art, so dass sowohl die empi-

risch beobachtbaren Abweichungen von Vermögensverteilungen von der Normalverteilung als

auch nicht-lineare und dynamische Abhängigkeitsstrukturen modelliert werden können. Die

multivariaten Verteilungen enthalten Informationen über die bedingten Ausfallwahrschein-

lichkeiten der verschiedenen Institute, so dass Risikomaße berechnet werden können, die den

Effekt eines Ausfalls eines oder mehrerer Institute auf das Restsystem evaluieren.

Ergebnisse

Die empirische Anwendung auf US-Finanzinstitute während der Zeit der US-Subprime-Krise

zeigt, dass die vorgeschlagenen Risikomaße zeitnah: i) die am stärksten betroffenen Finanzin-

stitute; ii) die systemisch relevantesten Finanzinstitute; iii) die impliziten Staatsgarantien von

einigen Finanzinstituten; und iv) ein
”
too connected too fail“ - Problem im US-Finanzsektor

identifizieren.
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1 Introduction

Systemic financial risk deals with the risk to the financial sector as a whole as opposed to the

risk of just individual financial entities. In order to measure this type of risk, it is necessary

to assess not only the risk of individual financial institutions (FIs), but also the risk that

arises due to the interconnectedness among the FIs in the economy. Interconnectedness in

the financial sector occurs due to direct links, as e.g. through the interbank market, and/or

indirect links arising e.g. from similar exposures in the FIs’ portfolios. These linkages can

cause financial distress in one or a small group of FIs to spill over to other firms (contagion)

and to propagate within the financial sector to large systemic crises, such as was seen during

the 2007/2008 sub-prime crisis. Assessments of the sub-prime crisis at the G20 summits in

Washington 2008 and subsequent summits resulted in an action plan to implement a so-called

macro-prudential policy framework, of which the objective is to mitigate systemic risks and

reduce the likelihood of future financial crises (Jenkins and Thiessen (2012); BIS (2011)).

Unlike traditional, micro-prudential regulation, which focuses on the soundness of single FIs,

macro-prudential policy focuses on the risk of the financial system as a whole. This is due

to the recognition that the interconnectedness of FIs and markets increases financial risk

to an extent that is not captured by focusing solely on individual institutions (Group of

Thirty (2010), Bernanke (2010)). As part of the macro-prudential agenda, in recent years

institutions such as the European Systemic Risk Board (ESRB) or the Financial Stability

Oversight Council (FSOC) in the US were founded to assess systemic risk and to identify

systemically important FIs (SIFIs). Further, new regulatory frameworks such as Basel III

(global) and the Dodd-Frank Act (USA) implemented macro-prudential policy instruments

such as counter-cyclical capital requirements and additional regulatory requirements for SIFIs

(Murphy (2013), BoE (2009)). A prerequisite for successful macro-prudential policy is the

timely measurement of systemic risk as well as the identification of the most vulnerable and

the systemically most important FIs.

In this paper, we suggest a novel framework to derive informative measures for systemic

financial risk. Our approach combines the (univariate) option iPoD framework, proposed in

Capuano (2008) and Vilsmeier (2011), and the most entropic copula procedure, proposed
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in Chu (2011), such that we can estimate multivariate asset distributions (MADs) for a

sample of financial institutions. The approach, which we refer to as the multivariate option

iPoD procedure, derives the MADs in such a way that they exhibit information about the

conditional Probabilities of Default (PoDs) of the FIs in the sample. Hence, we are able to

implement distress scenarios that are based on the default of one or multiple institutions

in the system and evaluate the impact on the residual FIs in the system. The distress

levels measured by the proposed risk indicators incorporate the firm’s individual risk level

as well as risk induced by distress in other firms of the system and spilt over due to the

interconnectedness among the FIs.

The cornerstone of our methodology is the option iPoD approach, in which option implied

risk neutral densities (RNDs) are estimated in such a way that they reveal information about

the PoD of the issuer of the underlying. Default in this framework corresponds to the event

that the stock price of the firm falls to zero during the time to maturity of the options. Our

framework to derive firms’ PoDs is purely statistical and requires neither balance sheet nor

recovery rate information, in contrast to competing methods such as Merton-type models1

and Reduced Form (RF) models2. The RNDs are estimated using a semi-parametric esti-

mation procedure based on the entropy concept (Shannon (1948)) and moment constraints

that are given by risk neutral pricing theory. As illustrated in Vilsmeier (2011) the estimated

distributions are, in general, very smooth and highly flexible with regard to their functional

forms such that the empirically observed deviations of RNDs from normality can be easily

modeled. Further, the framework provides highly plausible PoD estimates, which, as shown

in Matros and Vilsmeier (2012), clearly outperform CDS spreads in identifying the most vul-

nerable FIs in the course of 2007/2008. Following the suggestions in Matros and Vilsmeier

(2012) we derive daily time series of maturity-corrected RNDs, where each RND is estimated

1Merton-type models define a firm’s default according to the structural approach of Merton (1974), which
states that a firm defaults if its value of assets is lower than its value of debt. To calculate the PoD one
calibrates asset distributions on basis of historical equity prices and defines a default point according to
the firm’s book value of debt. Examples of structural approaches to measure systemic risk are: Tudela and
Young (2005), Chan-Lau and Gravelle (2005), Lehar (2005), Crosbie and Kocagil (2003), J.P.Morgan (1997).

2Reduced form models use debt-based market instruments and their market prices to calibrate the firms’
default processes (usually modelled as Poisson processes). To calculate the implied PoDs, assumptions about
unknown recovery rates in the case of the firm’s default have to be made. Examples for reduced form models
applied to measuring systemic risk are: Huang, Zhou, and Zhu (2012), Segoviano and Goodhart (2009), and
Avesani, Pascual, and Li (2006).)
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using only daily available option prices for different strikes and a given maturity.

To extend the option iPoD procedure to a multivariate framework, we apply the statistical

concept of copulas. Copulas are a very flexible way to estimate multivariate probability

distributions, as they allow us to model the dependence structure of a multivariate distribu-

tion (the copula) independently of its univariate marginals. Based on Sklar’s theorem (Sklar

(1959)), we can combine a given copula with arbitrary marginals and obtain different multi-

variate distributions. The most entropic copula (MEC) approach of Chu (2011) allows us to

model the dependence structure between the different FIs on basis of Spearman rank corre-

lations that we estimate on the basis of the time series of marginal RNDs. We estimate the

rank correlations dynamically with exponentially decreasing influence of past observations

and obtain time-varying measures of dependence that can capture linear as well as non-linear

dependence and may change throughout the economic cycle. By applying Sklar’s theorem,

we combine the RNDs from the (univariate) option iPoD approach and the MEC to obtain

time series of MADs whose marginals and dependence structure may change every day. As

the framework is easily implemented in higher dimensions (i.e. d > 2), our methodology pro-

vides a high-dimensional, dynamic, non-Gaussian Copula framework that is mathematically

tractable and straightforward to implement. This clearly puts our methodology in contrast

to standard approaches of Merton-type and RF models that usually model the dependence

structures between different firms in a static and linear way, based on historical equity return

Pearson correlations.

We apply our framework to data of 13 of the largest US FIs during the period of January 2007

to September 2008 and calculate time series of five different distress indicators. The indica-

tors are derived on the basis of conditional PoDs (CPoDs) and conditional lower quantiles

(CQs) of the MAD. Compared to CPoDs, the CQ measures can be interpreted as broader

definitions of distress that cover not only default but also events such as downgrades or large

losses in market value. To our knowledge, these CQ risk measures are a new addition to

the literature. The estimated distress indicators are able ot identify in a timely manner i)

the most distressed FIs during 2007/2008, ii) the systemically most important FIs, iii) the

implicit bailout guarantees given to some FIs and iv) the high degree of interconnectedness
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in the sector throughout the year 2008.

The contributions of our paper are as follows. We introduce a novel framework to mea-

sure systemic financial risk by estimating a financial sector’s multivariate asset distribution

(MAD). This framework has several attractive properties: i) the MADs incorporate informa-

tion about the firm’s PoDs and conditional PoDs ii) we do not need balance sheet or recovery

rate information to derive the MADs, iii) the estimated MADs are high-dimensional, cap-

ture dynamic and non-linear dependence structures, and are very flexible with regard to

their functional forms. Based on the MADs that we estimated for 13 major US FIs during

the period of January 2007 to September 2008, we calculate five different distress indicators

based on conditional PoDs and conditional lower quantiles. The analysis of the distress indi-

cators shows the high informational content of the framework, which provides very plausible

results given the historical events during the US sub-prime crisis.

The remainder of the paper is structured as follows. First, section 2 introduces the method-

ology of the multivariate option iPoD procedure. Section 3 presents the data used in our

empirical application to the US financial sector. In section 4, we give a brief description of

how to empirically implement the framework, and section 5 provides the estimation results.

Section 6 concludes and gives some suggestions for future research.

2 Methodology

The multivariate option iPoD methodology uses copula theory to estimate MADs for a sam-

ple of FIs. Using this theory, one can model the univariate asset distributions (RNDs) of the

FIs independently of their dependence structure (copula) and combine them to MADs using

Sklar’s theorem (Sklar (1959)). We apply the univariate option iPoD approach as suggested

in Vilsmeier (2011)) to estimate the univariate asset distributions, and the most entropic

copula (MEC) approach of Chu (2011) to model the dependence structure. Both frame-

works apply a semi-parametric estimation procedure which maximizes the entropy function

(Shannon (1948)) under moment constraints. In the case of the option iPoD procedure, the

moment constraints are obtained from the theory of risk neutral-pricing and the observed
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option prices for different strikes. In the case of the MEC, the moment constraints are given

by the dynamic Spearman rank correlations estimated on basis of the marginal RND time

series. In the following we describe the individual building blocks of our framework in detail.

Copulas

A copula C can be isolated from any multivariate random vector (X1, . . . ,Xn) with multi-

variate distribution function H(x1, . . . ,xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn) and marginal distribu-

tions Fi(xi) = P(Xi ≤ xi), i = 1, . . . ,n, by transforming the univariate random variables Xi to

standard-uniform random variables using the probability integral transform, i.e. by applying

the marginal cdfs Fi onto each random variable Xi leading to Ui = Fi(Xi)∼U(0,1). The dis-

tribution function of the resulting random vector (U1, . . . ,Un) is given by the copula function,

i.e.:

C(u1, . . . ,un) = P(U1 ≤ u1, . . . ,Un ≤ un) = H(Xi ≤ F−1
xi

(ui), . . . ,Xn ≤ F−1
xn

(un)). (1)

This means that a copula is a multivariate distribution function C : [0,1]d → [0,1] with

standard uniform (univariate) marginals.3

According to Sklar’s theorem (Sklar (1959)), there exists a copula for all H and Fi, . . . ,Fn

such that for all (x1, . . . ,xn) ∈ R̄n:

H(x1, ...,xn) = C(F1(x1), ...,Fn(xn)), (3)

where C is unique if all Fi are continuous. Using Sklar’s theorem, we can create, for a

given copula, different H, which all exhibit the same dependence structure but differ by

their marginals Fi. Conveniently, the different marginals may come from different families

3Formally a copula function satisfies the following three properties:

C(1, ...,1,ui,1, ...,1) = ui for every i≤ n and all ui in [0,1]. (2.1)

C(u1, ...,un) = 0 if ui = 0 for any i≤ n. (2.2)

C is n-increasing, i.e. for each n-box R := ∏
n
i=1[xi,yi]⊆ [0,1]n, xi ≤ yi, the C-volume VC(R) is non-decreasing:

VC(R) := ∑sgn(z)C(z)≥ 0,where the sum is over all vertices z of R and sgn(z) =

{
1 zk = ak for even ks

−1 zk = ak for odd ks

(2.3)
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of probability distributions. As copulas allow us to model the dependence structure and

the marginals independently of one another and subsequently combine them arbitrarily,

they provide a much more flexible framework to model multivariate densities than fitting

parametrized multivariate distributions to the data.4

Another important property of copulas is that they are a ”non-parametric” measure of de-

pendence since they are invariant under strictly increasing and continuous transformations

of their marginals. In contrast to traditional linear correlation coefficients, rank correlation

measures share this property, since applying the probability integral transform to a random

variable corresponds to a rank transformation of that random variable. This implies a direct

representation of rank measures of dependence as a function of the copula. The Spearman

rank coefficient that will be used in the context of the MEC estimation has the following

copula representation (see e.g. Nelsen (2006), chapter 5):

ρ(Xi,X j) = 12
∫

[0,1]2

(C(ui,u j)−uiu j)duidu j−3 (4)

Most Entropic Copula (MEC) Approach

In order to estimate the MAD, we need to find a copula that adequately captures the depen-

dence structure among the different RNDs. Standard approaches assume specific parametric

copulas, such as the Gaussian- or t-copula, and estimate the parameters such that they

fit the data at hand. Since different parametric assumptions impose different dependence

structures onto the data, the results in empirical applications can be quite sensitive to the

specific choice of the copula, as shown in Frey, McNeil, and Nyfeler (2001). The MEC ap-

proach of Chu (2011) circumvents the copula choice problem to a large degree by estimating

a semi-parametric copula that, from an information theoretic point of view, imposes as little

information as possible on the shape of the copula beyond what is actually known from the

data. This is achieved by applying the entropy principle to identify the optimal copula. The

entropy principle, formulated by Jaynes (1957), states that, given the information from the

data (expressed as moment constraints), the distribution which best describes the current

4For an in-depth description of the copula concept see e.g. Nelsen (2006).
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state of knowledge is the one that maximizes the entropy function.

The entropy function for a multivariate density function f (x1, . . . ,xn) is defined as:

H [ f (x1, . . . ,xn)] =−
∞∫
−∞

f (x1, . . . ,xn) log f (x1, . . . ,xn)dx1 . . .xn. (5)

As shown by Shannon (1948), the entropy function can be be interpreted as a metric measure

for the average uncertainty in a random variable, where the uncertainty refers to the pre-

dictability of an (average) outcome of the random variable. Jaynes (1957) suggested using

the entropy function for density estimation purposes when there is information about the

density in the form of expected values available (moment constraints).

In the MEC approach, a copula density function c(u1, . . . ,un) is estimated by maximizing

the entropy function subject to moment constraints that are given by i) constraints that

guarantee that the n marginals of the density are uniform and ii) rank correlation functions

expressed in terms of c(u1, . . . ,un) that have to satisfy their empirical counterparts estimated

from the data.

The MEC framework is very flexible with regard to modeling different types of dependence.

As suggested in Chu (2011), different kinds of rank measures can be jointly used in the

estimation. On the one hand, these can be traditional rank measures such as Spearman’s

ρ or Kendall’s τ , which are non-parametric measures and capture linear and non-linear

dependence structures. On the other hand, one can use measures such as Blest measures of

correlation (Blest (2000)) or conditional Spearman coefficients (Schmid and Schmidt (2007)),

which allow us to model asymmetric types of dependence or specific types of tail-dependence.5

On the downside, as for the estimation of an n-dimensional copula all possible pairwise rank

correlations among the different RNDs have to be included, each type of rank measure (e.g.

Spearman’s ρ) implies n(n + 1)/2 additional constraints and hence additional parameters

to estimate. We will restrict ourselves to a set-up which contains only ordinary Spearman

rank correlations but estimated in a dynamic way such that possible asymmetric dependence

structures should be captured and displayed to a large extent in the time-varying correlations.

5Another possible and interesting approach is to include multivariate versions of Spearman’s ρ, or of
other rank measures. Examples of multivariate rank measures are e.g. given in Schmid and Schmidt (2007).
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The MEC Estimation Setup

The above described estimation problem is formalized in an n-dimensional set-up as follows:

Maximizing H [c(u1, . . . ,un)] =−
∫

[0,1]n

c(u1, . . . ,un)log c(u1, . . . ,un)du1...dun (6)

subject to:
∫

[0,1]n

c(u1, . . . ,un)du1 . . .dun = 1, (7)

∫
[0,ui]

∫
[0,1]n−1

u j
i c(u1, . . . ,ui, . . . ,un)du1 . . .dui . . .dun =

1
1 + j

, (8)

∀ i = 1,2, . . . ,n and j = 1,2, . . . ,m,

∫
[0,1]n

ukulc(u1, . . . ,un)du1 . . .dun =
ρ̂ k,l + 3

12
, (9)

∀ k = 2,3, . . . ,n, l = 1,2, . . . ,n−1, l < k.

Equation (6) is the entropy function with the multivariate copula density c(u1, ...,un) as its

argument. Equation (7) represents the additivity constraint which guarantees that the copula

density integrates up to one. The set of equations (8) guarantees that the n marginals of the

copula are standard-uniform by imposing that the first m moments (with m as finite integer)

of the copula density satisfy the theoretical first m moments of a standard-uniform, where

the j-th moment is given by µ j = 1/(1 + j). This is, of course, only an approximation but

as shown in Chu (2011), a relatively small set of constraints is already enough to guarantee

approximate standard-uniform marginals.

The system of equations (9) represents the dependence constraints given by the estimated

Spearman’s ρ in terms of the copula density and the pairwise Spearman rank correlations

among all n FIs estimated from the respective RNDs. Given the RND time series for the

different FIs, we obtain the empirical correlations by drawing for each firm randomly from

its RNDs at all points in time such that we get a time series for the respective firm’s as-

set value. On the basis of each pair of time series of different firms, we can estimate the

rank correlation. This process is carried out repeatedly such that we obtain a distribution
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of Spearman’s ρ for each pair of firms, and we take the median from this distribution as

our estimate ρ̂ k,l. To model a time-varying dependence structure between the FIs, we esti-

mate the correlation coefficients dynamically with exponentially decreasing influence of past

observations. Following the suggestions in RiskMetricsTM (1996) our empirical correlation

estimates are obtained according to:

ρ
k,l
t =

∑
t−1
s=1 α t−s−1(Rk,s− R̄k)(Rl,s− R̄l)√

∑
t−1
s=1 α t−s−1(Rk,s− R̄k)2(Rl,s− R̄l)2

, (10)

where α t−s−1 denotes the weighting coefficient, with α ∈ ]0,1[ and t as a moving endpoint that

is equal to the period for which we calculate the respective correlation coefficient (”stretching

window” approach).6 Rk,s and Rl,s are the rank transformed asset values in time period s for

two different firms, and R̄k = 1
t−1 ∑

t−1
s=1 Rk,s and R̄l = 1

t−1 ∑
t−1
s=1 Rl,s are the respective means of

the rank transformed data. Equation (10) provides us with daily updated rank correlations

and we obtain a framework in which the dependence structure among the FIs may change

every day (dynamic copula approach).

The estimation of the copula function represented by the maximization set-up (6)-(9) can

be carried out using ordinary Lagrange multiplier methods. Deriving the Lagrangian with

respect to c(u1, . . . ,un) yields for a given time period t the following form for the optimal

density:

c∗t (u1 . . .un) = exp

−
n

∑
i=1

m

∑
j=1

λi, ju
j
i −

n

∑
k=2

n−1

∑
l=1
l<k

λn+k−1,lukul

 (11)

where the set of λ s (the Lagrange multipliers) is obtained from the minimum of the following

function (for a derivation see e.g. Chu (2011) or Alhassid, Agmon, and Levine (1978)):

Q(λ ) =
∫

[0,1]n

exp

−
n

∑
i=1

m

∑
j=1

λi, j(u j
i −

1
1 + j

)−
n

∑
k=2

n−1

∑
l=1
l<k

λn+k−1,l(ukul−
ρ̂

k,l
t + 3

12
)

du1 . . .dun.

(12)

6Of course, there are theoretically more appealing, but also more complex, methodologies for deriving
rank correlations in a dynamic way. Especially the use of realized correlations theory (e.g. Barndorff-Nielsen
and Shephard (2004)) might be a promising way to make the correlations less dependent on historical data.
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The option iPoD framework

The cornerstone of our MAD estimation approach is the (univariate) option iPoD framework,

which allows us to estimate the required time series of univariate asset distributions (RNDs)

for all FIs considered in our sample. While the theoretical foundations of the option iPoD

methodology were introduced by Capuano (2008) and Vilsmeier (2011), Matros and Vilsmeier

(2012) show how the framework can be empirically implemented in such a way that time

series of maturity-corrected RNDs/PoDs can be derived. We closely follow the suggestions

made in Matros and Vilsmeier (2012).

The option iPoD procedure allows us to estimate risk-neutral densities in such a way that

they exhibit information about the default probability of the issuing company of the option’s

underlying. The default of a firm is triggered when the stock price S of a firm falls to zero

during time to maturity of the option. Importantly, the PoDs and RNDs are derived in

a purely statistical manner without the use of balance-sheet information or recovery rate

assumptions. All that is needed for the estimation is up-to-date information given by the set

of daily observable equity (call) option prices to different strike prices Ki (and by a risk-free

interest rate).

The idea of the option iPoD framework is to modify traditional RND estimation approaches

such that it is possible to estimate a ”mass point” in the RND which indicates the probability

that the underlying of a stock option will have a value of zero at time of maturity T . The

mass point is given as the integral over the density in a specific sub-domain of the RND.

This sub-domain is obtained by shifting the domain of possible realizations for ST upwards

by some constant D and defining a new variable VT = ST + D. Then the RND f (VT ) is

estimated for this new variable. Using the domain of the new variable, the pay-off for a

call option in T with strike Ki is defined by: CKi
T = max(VT −D−Ki;0). Hence, there will

be no pay-off for the option in the interval of values VT ∈ [0,D]. The applied estimation

procedure ensures that there is an interaction between the (entire) density of the RND for

VT ∈ [D,Vmax], with Vmax as the upper domain bound for VT , and the level of the PoD (i.e. the

size of the density assigned to VT ∈ [0,D]) such that the combination of the RND shape and
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the PoD level that best fits the observed prices can be identified (see Vilsmeier (2011)). The

choice of D is crucial. It determines the length of the sub-domain [0,D] and, jointly with it,

the PoD. Using numerical experiments, Vilsmeier (2011) found that for arbitrary reasonable

RND forms and PoD levels, the procedure can approximate the respective probability mass

point for ST = 0 quite well if the constant D is chosen within the interval [1;20]. Since an

exact rule for the determination of the optimal D has not yet been detected, the PoDs are

obtained by averaging over RND estimates with different Ds ranging from 1 to 20. The

optimal RND is then identified as the one that provides the PoD closest to the average PoD

(”averaging approach”). Matros and Vilsmeier (2012) found that the ”averaging approach”

provides highly plausible and informative estimates in various empirical applications.

Despite the purely statistical nature of the option iPoD approach, the variables can be given

a theoretical meaning by applying a Merton (1974)-type interpretation. In this case, VT

denotes the value of assets, ST represents the value of equity and D denotes the value of

debt. Using this interpretation, a firm defaults if the value of its assets does not cover the

value of debt.

In order to obtain the risk-neutral density f (VT ) for a given D, we use moment constraints

given by the continuous risk-neutral option pricing formula (Cox and Ross (1976)) and the

observed option prices for different strikes Ki at time t = 0:7

CKi
0 = e−rT

Vmax∫
VT =D+Ki

(VT −D−Ki) f (VT )dVT , i = 1, . . . ,B. (13)

Equation (13) depends on the unknown RND f (VT ) for observable option prices CKi
0 at

different strikes. The formula states that today’s observed option prices must be equal

to the discounted expectation over all possible pay-offs under the risk-neutral probability

7While the described pricing formula holds for European-style call options, in our empirical application
we will use American-style call options. European-style and American-style options theoretically trade at
the same price in the absence of dividend payments (see e.g. Hull (2009)). As we do not correct the option
prices for dividend payments we face some slight inaccuracies in our applications. In future research this
inaccuracies can be avoided by correcting the observed option prices for dividend payments via binomial tree
approaches.
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density, where B denotes the number of observable option prices for different strikes K8 and

r represents the annualized risk free rate. The current stock price S0 is included as an option

with strike K1 = 0. One face an under-determined estimation problem, as there is an infinite

number of densities compatible with a finite number of moment conditions. In order to

obtain a unique solution for f (VT ), the principle of maximum entropy is used. In contrast

to the MEC estimation set-up from above, the option iPoD approach uses the related cross-

entropy (CE) function to derive the optimal density, and not the entropy function. The

CE function, introduced by Kullback and Leibler (1951)), minimizes the so-called entropic

distance (see e.g. Cover and Thomas (2006), chapter 2), CE(x) =
∫Vmax

0 f (x) log f (x))
f 0(x)

, between

the density of interest f (x) to be determined and some prior function f 0(x). The CE function

allows for a more general density estimation set-up than the entropy function by providing

the possibility to consider a priori information in the estimation process. Importantly, in

the case of a finite support and uniform prior, the minimization of the CE function and the

maximization of the entropy function lead to the same optimal density for any given set of

moment constraints. 9

Given the moment constraints in (13) and an additivity constraint
∫Vmax

0 f (VT )dVT = 1, which

ensures that the density integrates up to one, the RND estimation problem of finding f (VT )

can be formalized by the following Lagrangian function:

L =

Vmax∫
VT =0

f (VT )

[
log

f (VT )

f 0(VT )
dVT

]
+ λ0

1−
Vmax∫

VT =0

f (VT )dVT



+
B

∑
i=1

λi

CKi
0 − e−rT

Vmax∫
VT =D+Ki

(VT −D−Ki) f (VT )dVT

 , (14)

where f 0(VT ) denotes a uniform prior function on the interval [0,Vmax].

8Note that the strike prices in equation (13) are denoted in ascending order, i.e. i=1 denotes the smallest
and i=B the largest strike price.

9More precisely, the prior function has to be of maximal entropy on the defined domain for x. On a
closed interval this will be the uniform distribution, on an unbounded positive real valued domain (for a
given mean) the exponential distribution, and on a unbounded real valued interval (given a mean and a
variance) the normal distribution.
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Optimizing (14) with respect to f (VT ) yields (see e.g. Cover and Thomas (2006), chapter

12):

f ∗(VT ) =
1

µ(λ )
f 0(VT )exp

[
B

∑
i=1

λie−rT 1VT>D+Ki(VT −D−Ki)

]
, (15)

with

µ(λ ) = exp(1−λ0) = exp(−λ
′
0) =

Vmax∫
VT =0

f 0(VT )exp

[
B

∑
i=1

λie−rT 1VT>D+Ki(VT −D−Ki)

]
dVT . (16)

Under the assumption of a finite domain for VT ∈ [0,Vmax], the optimal set of Lagrange mul-

tipliers λi, i = 1,2 . . .B, is obtained as the minimum of the following function (see Vilsmeier

(2011) for a derivation):

F = log
(

1
Vmax

)
+ log

{
exp

(
−

B

∑
i=1

wiλiC
Ki
0

)
D

−
B−1

∑
i=1

exp
(

∑
i
j=1 w jλ j(e−rT (Ki−K j)−CK j

0 )−∑
B
k=i+1 wkλkC

Kk
0

)
e−rT (∑

i
j=1 w jλ j)

−
exp
(

∑
i
j=1 w jλ j(e−rT (Ki+1−K j)−CK j

0 )−∑
B
k=i+1 wkλkC

Kk
0

)
e−rT (∑

i
j=1 w jλ j)



−

exp
(

∑
B
j=1 w jλ j(e−rT (KB−K j)−CK j

0

)
− exp

(
∑

B
j=1 w jλ j(e−rT (Vmax−D−K j)−CK j

0

)
e−rT (∑

B
j=1 w jλ j)

 ,

(17)

where wi denotes liquidity weights that are pre-multiplied to the Lagrange multipliers λi.

The weights ensure that more liquid option contracts (measured in our approach in terms

of open interest) have to be approximated more closely by the estimated RND. As stressed

in Matros and Vilsmeier (2012), the assignment of the liquidity weights is very important in

order to obtain timely consistent and smooth PoD estimates.

The option iPoD framework has several appealing properties that are of interest when assess-
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ing systemic financial risk. First, since the methodology provides PoD estimates, it allows us

to implement default scenarios in the financial sector and to assess (in combination with the

MEC approach) the impact on the resilience of the financial system. Second, the PoDs are

derived without the use of balance-sheet data or recovery rate assumptions. As pointed out

e.g. in Vilsmeier (2011), the assumptions made in Merton-type models and RF approaches

are especially severe when applied to FIs. This is due to the fact that these types of firms

exhibit complex, opaque and very volatile asset and liability structures. This makes the

exact definition of default points, as required by Merton-type models, or the estimation of

recovery rates, as necessary for RF frameworks, very difficult. Third, compared to recently

suggested frameworks such as Segoviano and Goodhart (2009), which exclusively use PoD

estimates to model a financial sector’s MAD, our approach enables us to derive not only

CPoD estimates but also broader measures of distress based on the CQs of the MADs. This

is because the PoDs are estimated jointly with the corresponding RNDs. As we will see in

section 5, the CQ measures make it possible to identify government bailout guarantees given

to some FIs.

3 Data

To calculate the MAD for a set of firms on a specific day, we need a risk-free interest rate

and, for each firm, the prices of the call options written on this firm’s stock to different strike

prices (including the stock price itself). As the risk-free interest rate, we use the 3-month

treasury bill secondary market rate obtained from the FRED database. The option data are

daily option closing prices for contracts with maturities ranging from five to seven months

obtained from the New York Stock Exchange (NYSE) via the data provider Stricknet. As

an example shows Table 8 (Appendix) the stock option dataset of JPMorgan Chase (JPM)

on January 1, 2007.

Our option data set comprises call prices for 13 different FIs over a period from January 1,

2003 to September 10, 2008. While we use the entire sample to calculate the RNDs and the

dynamic Spearman correlations, we calculate the MADs from January 1, 2007 to September
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10, 2008. The considered institutions in our sample are: Goldman Sachs (GS), Wells Fargo

(WFC), Citigroup (C), Bank of America (BAC), JPMorgan Chase (JPM), the American

International Group (AIG), Morgan Stanley (MS), Lehman Brothers (LEH), Bear Stearns

(BSC), Wachovia Bank (WB), Merrill Lynch (MER), Countrywide Financial (CFC) and

Washington Mutual (WM). All of these institutions were among the largest US FIs during

the period of 2007/2008.

The time span for which we calculate the MADs covers the beginning of the sub-prime crisis

period, with growing losses in the financial sector and initial (smaller) collapses in 2007, until

shortly before the crisis brokeout in earnest around September 15, 2008, nearly bringing the

US financial system to its knees. Our sample contains several FIs involved in incisive events

of the sub-prime crisis. These are: the rescue/takeover of BSC at March 15, 2008 by JPM

(orchestrated and financially backed by the US Federal Reserve Bank (FED)); the takeover

of CFC on July 1, 2007 by BAC; the collapse of LEH on September 15, 2008; the takeover

of MER by BAC on September 14, 2008; the rescue of AIG by the FED at September 16,

2008; the collapse of WM on September 26, 2008; the announcement of the takeover of WB

by WFC on October 3, 2008 (the purchase was finalized on December 31, 2008); and the

rescue of Citigroup by the FED on November 23, 2008 (see e.g. Wheelock (2010)). Given

this historical timeline, we make the following classifications for the FIs in our sample:

1. ”Surviving” FIs: JPM, GS, WFC, BAC, MS

2. Acquired FIs: BSC, CFC, WB, MER

3. ”Rescued” FIs: BSC, AIG, C, WB

4. ”Bankrupt” FIs: LEH, WM

The historical classification gives us a rough guideline on how to assess the informational

content of our risk measures. In general, we will assume that the ”surviving” FIs were less

distressed during the crisis than the other institutions. By contrast, one can expect the

”bankrupt” banks to be highly distressed and they should therefore be indicated as very

risky. For the ‘acquired/rescued’ FIs there might be effects of implicit government or bailout
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guarantees in our estimated MADs as such guarantees, if anticipated by the market, would

influence the risk perception of the investors for these institutions.

4 Empirical Implementation

As described in section 2, the first step in implementing the multivariate option iPoD frame-

work is to estimate univariate RNDs for all FIs in our sample. This is done using the

univariate option iPoD approach as described in Matros and Vilsmeier (2012). Following

their suggestions, we first calculate the RNDs on the basis of an option maturity cycle of

5, 6, and 7 months, and use open interest10 for the contracts as liquidity weights in the

optimization of equation (17). The described maturity cycle means that we use a newly

initiated 7-month contract for a specific firm for two months, until a new 7-months contract

is initiated. For the RND domain, we define a finite interval [0,Vmax] for VT , where Vmax is set

equal to five times the current stock value. To remove the maturity dependence inherent to

the estimates, we apply the regression-based maturity dependence correction scheme to the

estimates described in Matros and Vilsmeier (2012). However, instead of using it solely for

the PoDs, we also apply it to the first ten moments of the RND estimates. In the correction

scheme, the maturity effect on the RNDs is calculated by carrying out a (pooled) non-linear

quantile regression of the RND estimates onto the respective time to maturity of the option

contracts used to estimate the RNDs. We obtain correction factors and apply these to the

moments and PoDs. To obtain a maturity-corrected RND, we use the cross-entropy proce-

dure with a uniform prior and estimate a density that satisfies the moment constraints given

by the maturity-corrected moments and PoDs.11 Carrying out this procedure for every day,

we eventually obtain a daily time series of maturity-corrected RNDs for each of the 13 con-

sidered FIs for the period from January 1, 2003 to September 10, 2008. After the maturity

correction, the RNDs imply a theoretical time to maturity and, hence, evaluation/forecast

10The use of open interest (contracts traded in the past and not exercised or evened up yet) results in less
volatile RND/PoD estimates than the use of trading volume. The weights are calculated by dividing open
interest for a specific strike by the sum of open interest over all available strikes for a firm’s stock option.

11The Lagrangian of the estimation set-up for a specific firm and time period t is equal to equation
(14) where the third term is replaced by: ∑

10
i=1 λi(Mi−

∫ Vmax
0 (VT −VT )i f (VT )dVT ), with Mi as the i-th central

moment, and λ11(PoD−
∫ D

0 f (VT ))dVT .
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horizon of 7 months.12

In the second step, we use the time series of the RNDs to estimate all possible dynamic

Spearman rank correlations among the 13 RND time series (78 in total). To do so, we

sample for each FI for a given period t randomly from its RND and obtain time series of

their asset values VT . Then we calculate the Spearman correlation coefficients dynamically

and with exponentially decreasing influence of past observations between the time series. As

the persistence parameter in the exponential weighting scheme (see equation (9)), we use

α = 0.99, as we assume that the dependence among the FIs is subject to some inertia.13 We

repeat this procedure 5000 times in order to obtain a distribution of Spearman coefficients for

each pair of FIs. Finally, we use the median from these distributions as our empirical estimate

of the Spearman correlations between the different FIs/RNDs. In Figure 4 (Appendix) four

examples of the dynamically estimated Spearman correlations are shown. It can be clearly

seen that, except for the correlation between JPM and LEH, all time series sharply increase

during the year 2007, after moving in quite moderate cycles in previous years.

The third step consists of estimating the copula density function c(u1, . . . ,uun) on the basis

of the calculated Spearman correlation coefficients. To guarantee that the n marginals of c

are uniform, we impose eight moment constraints according to m j = 1
1+ j onto the marginal

of each of the variables u1, . . . ,un. In addition to the constraints on the marginals, n(n+1)/2

Spearman moment conditions are imposed on the estimation of the copula. As the Spearman

correlations change every day, we estimate the copula density for each day anew.

In order to estimate the copula density, the n-dimensional integral in the objective function

(12) has to be solved numerically. The optimization with regard to the Lagrange multipliers

requires a very precise computation of the integrals, which cannot be achieved using ordi-

nary Monte Carlo methods. Therefore, we use a deterministic quadrature rule suggested in

Berntsen and Espelid (1991). The method employs a globally adaptive subdivision scheme

12In fact, the informational content in the used option prices implies an average time to maturity of 6
months as this is the average time to maturity of the option contracts used.

13Note, that the weight of a one year (= 250 days) old observation is ≈ 8% with α = 0.99, ≈ 0.5% with
α = 0.98 and close to zero for smaller α.
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and uses a cubature rule for the subregion estimation.14 As pointed out in Hahn (2005),

the method is very reliable in moderate dimensions but quite slow if applied to more than

nine dimensions. For this reason, MADs for the entire sample of FIs were only calculated

for March 10, 2008 and September 10, 2008, at which we carry out static risk analyses. For

the dynamic evaluation, we restrict our analysis to the eight banks in the ”rescued/acquired”

and ”bankrupt” group plus JPMorgan as a representative of the ”surviving” group.

In the fourth and final step we obtain the MADs by combining information about the de-

pendence structure and the marginal RNDs using Sklar’s theorem. Each copula density is

integrated to the copula cdf function Ĉ, such that Sklar’s theorem can be applied. Then we

integrate the FI’s RNDs to the cumulative RND F̂(VT ) and use all of them as arguments in

Ĉ. We then obtain the MAD Ĥ as:

Ĥ(x1, . . . ,xn) = Ĉ(F̂1, . . . , F̂n). (18)

Ĥ exhibits marginals and a dependence structure that change dynamically every day.

Figures (5)-(7) (Appendix) illustrate graphically the procedure of the multivariate option

iPoD framework by showing exemplarily the RNDs, the time series of Spearman correlations

and the resulting MAD for the firm’s BSC and LEH on March 10, 2008.

5 Results

In this section, we present the results from the empirical application of our framework to

the sample of 13 US major FIs. The informational content of our framework is captured

by five different risk measures (”systemic distress indicators”) obtained from the time series

of MADs. We analyse the risk measures statically on March 10, 2008 (five days before the

collapse of BSC) and on September 10, 2008 (five days before the failure/default of LEH)

and dynamically from January 1, 2007 to September 10, 2008.

14The method is available in the statistical software R using the ”cuhre” algorithm from the package
R2Cuba.
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5.1 Systemic Distress Indicators

Based on our estimation framework described in section 2, we suggest five macro-prudential

stability measures in order to evaluate the financial system’s resilience. The first indicator

consists in bivariate conditional PoDs (CPoDs) which measure the PoD of a particular FI

A given that another FI B in the system defaults. The CPoDs of all respective institutions

under consideration are summarized in a default distress dependence matrix (D-DDM). The

CPoDs are formalized as follows:

CPoD(A|B) = P(VA ≤ DA|VB ≤ DB) =
P(VA ≤ DA∩VB ≤ DB)

P(VB ≤ DB)
. (19)

On the same rationale, we calculate the bivariate conditional quantile risk (CQR), which gives

us the probability of an FI’s (A) asset value falling below the unconditional 25% quantile

(Q25%;A) given that another FI B defaults.15 Compared to the event of actual default by FI A

as measured by CPoDs, this broader distress measure indicates more sensitively an increase

in banks’ conditional distress and also captures events such as downgrades or large losses

in market value. Again, the CQRs for a given sample of FIs are summarized in a quantile

distress dependence matrix (Q-DDM) and are defined by:

CQR(A|B) =
P(VA ≤ Q25%;A|VB ≤ DB)−0.25

0.75
. (20)

We subtract 0.25 to adjust the conditional measure for the 25% unconditional probability of

the asset value falling below its 25% quantile, which would result in the case of independence.

We further normalize the CQR indicator such that its values are for positive dependence

structures ∈ [0,1].

Third, we estimate the probability that at least one other firm in the sample will default

given a specific firm A defaults (PAO). This risk indicator measures the impact of a specific

FI’s default on the resilience of the other institutions in the system. It can be regarded as a

15Note that in our estimation approach we can specify any continuous quantile.
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measure of the systemic relevance of a particular FI.16

PAO = P(at least one other FI defaults|VA ≤ DA). (21)

We refer to the average over the PAOs of all FIs in the sample, as the Financial Intercon-

nectedness Index (FII), which can be regarded as a proxy for the degree of system-wide

interlinkage.

Fourth, we evaluate the vulnerability of a FI A to systemic default events (D-VSE), i.e. the

sensitivity of a certain FI (measured in terms of CPoD) given that at least one FI in the

system defaults. This measure is given by the following equation:17

D−V SE = P(VA ≤ DA|at least one other FI defaults). (22)

Our fifth risk measure considers the vulnerability of a specific firm A to systemic default

events in terms of conditional quantile risk (Q-VSE). The quantile-based definition of the

VSE provides a broader definition of distress than its CPoD-based counterpart. Its normal-

ized version is given by:

Q−V SE =
P(VA ≤ Q25%;A|at least one other FI defaults)−0.25

0.75
. (23)

As a proxy for the system-wide level of distress, we define the Financial Vulnerability Index

(FVI), more precisely the D-FVI and Q-FVI, which are calculated as the averages of the

D-VSEs and Q-VSEs over all FIs in the sample, respectively.

While the D-DDM and the PAO are risk measures that were suggested in Segoviano and

16Example of PAO calculation in the case of three FIs A,B, C:

PAO(A) = P(VB ≤ DB∪VC ≤ DC|VA ≤ DA).

17Example of D-VSE calculation in the case of three FIs A, B, C:

D-V SE(A) = P(VA ≤ DA|VB ≤ DB∪VC ≤ DC).
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Goodhart (2009), the remaining distress measures are, to the best of our knowledge, a novel

addition to the literature.

5.2 Static Analysis

Table 1 shows the bivariate CPoDs for all FIs in our sample five days before the bankruptcy

of Lehman Brothers (September 15, 2008), summarized by the default distress dependence

matrix (D-DDM). Given the default of an FI in the column, the D-DDM provides the

probability that an FI in the row will default between now and the time to maturity of the

underlying options (theoretically seven months). Looking at the table from a row perspective,

we learn how sensitive a specific institution is to defaults of the other FIs. From the column

perspective, we learn about the impact of a specific FI’s default on the remaining institutions.

Hence, the row averages presented in the last column of the D-DDM can be regarded as a

proxy for the (average) vulnerability of a particular FI to distress in one of the other FIs, and

the column averages, presented in the last row of the D-DDM, as a proxy for the (average)

systemic impact/importance of a specific FI’s default on the other institutions.

Starting with the row averages, we see that the group of bankrupt FIs (see section 3), LEH

and WM, exhibits by far the highest sensitivities to distress in other institutions (65.10%

and 81.27%), while the institutions which weathered the financial crisis comparably well

(surviving FIs: GS, WFC, BAC, JPM, MS) have by far the lowest sensitivities, with values

ranging from 0.66% for GS to 4.28% for MS. The group of acquired/rescued institutions

exhibits vulnerabilities that are much lower than for the bankrupt FIs, but much higher

than for the surviving FIs (from 8.13% for C to 28.97% for WB). From the column averages,

one can see that the systemic impact of the bankrupt FIs is the lowest among all institutions

in the sample, while the acquired/rescued FIs are identified as the institutions with the

highest systemic importance, with C as the most important. Taking into account only

the ”distressed” FIs (bankrupt/acquired/rescued) we find an inverse relationship between

systemic importance and the level of vulnerability of the institutions (see highlights in the

table). This might be explained by implicit government guarantees given to the systemically

important FIs and anticipated by the investors in the option market. Finally, in line with
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the results above, one finds in the D-DDM that the ”distressed” FIs were the most sensitive

to LEH’s default.

GS WFC C BAC JPM AIG MS LEH WB MER WM Row Ø

GS 100 0.63 0.70 0.74 0.60 0.66 0.71 0.64 0.68 0.70 0.53 0.66

WFC 2.59 100 2.83 2.73 2.18 2.62 2.75 2.30 2.75 2.80 2.06 2.56

C 7.73 5.47 100 8.60 5.35 10.03 9.98 6.43 10.79 10.86 6.08 8.13

BAC 2.70 2.00 3.26 100 1.92 3.11 3.01 2.37 3.09 3.24 1.89 2.66

JPM 1.16 1.23 1.56 1.47 100 1.51 1.58 1.36 1.52 1.58 1.15 1.41

AIG 33.66 17.11 33.65 27.60 17.55 100 28.57 22.30 30.61 31.71 18.35 26.11

MS 4.29 3.07 5.77 4.59 3.14 4.91 100 3.51 5.08 5.31 3.10 4.28

LEH 54.37 51.24 72.62 70.84 53.89 74.50 68.93 100 73.71 78.24 52.62 65.10

WB 22.82 20.58 41.01 31.37 20.28 35.03 33.73 25.22 100 37.94 21.67 28.97

MER 23.59 11.51 23.01 18.17 11.54 20.03 19.50 14.89 21.02 100 11.66 17.49

WM 56.43 67.66 96.04 83.79 66.82 90.09 89.00 77.48 92.99 92.43 100 81.27

Col. Ø 20.93 18.05 28.05 24.99 18.33 24.25 25.78 15.65 24.22 26.48 11.91 21.69

Table 1: Default distress dependence matrix (D-DDM) on September 10, 2008. CPoDs of
banks in rows given default of banks in columns (in %).

In the appendix, we find in Table 9 the quantile distress dependence matrix (Q-DDM),

which depicts the bivariate CQRs for the banks in our sample on September 10, 2008; in

Tables 10 and 11 we find the D-DDM and Q-DDM five days prior to BSC’s acquisition by

JPM on March 15, 2008. The interpretation of the values of the Q-DDMs are as follows:

Given the default of the bank in the column, the Q-DDM provides the probability of the

row bank’s asset value falling below its unconditional 25% quantile between now and the

time to maturity of the underlying option. We will not discuss the results of Tables 9-11 in

detail as the upcoming results for the PAO and VSE measures provide qualitatively the same

insights that can be obtained from these tables. Compared to the column and row averages

of the DDMs, the PAOs and VSEs are more precise measures of the systemic importance and
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financial vulnerability of a FI as they take into account all possible systemic events including

cascade effects.18.

We start by looking at the PAO estimates five days prior to the BSC (Table 2) and the LEH

”event” (Table 3).

GS WFC C BAC JPM AIG MS LEH BSC WB MER CFC WM

PAO: 43.12 50.31 78.47 59.78 50.90 65.45 75.43 56.82 75.29 75.09 74.64 54.12 66.02

Table 2: Probability that at least one other firm in the sample defaults given a specific firm
defaults (PAO) at March 10, 2008 in percent (average 63.50).

GS WFC C BAC JPM AIG MS LEH WB MER WM

PAO: 81.12 77.19 98.60 92.16 77.73 96.78 94.55 81.53 97.82 98.12 65.69

Table 3: Probability that at least one other firm in the sample defaults given a specific firm
defaults (PAO) at September 10, 2008 in percent (average 87.39).

Most strikingly, the PAO levels of all FIs except for WM rose sharply from March 10, 2008

to September 10, 2008 (average ≈ 24 percentage points). This indicates the growing tension

and interconnectedness in the US financial sector closer to LEH’s bankruptcy. Whereas BSC

had an above-average systemic importance five days prior to its acquisition, LEH’s systemic

importance five days before its collapse is below average. However, the fact that the PAO of

LEH on September 10, 2008 is higher than for any FI on March 10, 2008, is a first indica-

tion of the extreme interconnectedness prevailing in the sector prior to the failure of LEH.

In line with the results of the D-DDM (Table 1), the PAOs identify the rescued/acquired

FIs on September 10, 2008 as systemically most important institutions while the bankrupt

FIs exhibit PAOs below average. Interestingly, the group of acquired/rescued institutions,

including BSC, already show above average PAO values on March 10, 2008.

Tables 4 to 7 depict the D-VSEs and Q-VSEs for March 10, 2008 and September 10, 2008

respectively.

18The PAO corresponds to the sums of the respective columns of the DDM corrected for ”overlapping”
events (e.g. two FIs default at the same time). The VSE corresponds to the sum over the respective rows of
the DDM corrected for ”overlapping” events in the conditioning set.
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GS WFC C BAC JPM AIG MS LEH BSC WB MER CFC WM

D-VSE: 0.40 2.61 10.04 1.24 2.82 2.95 3.50 5.77 7.27 5.06 4.86 53.55 37.05

Table 4: Vulnerability of a firm to systemic default events (D-VSE) at March 10, 2008 in
percent (average 10.55).

GS WFC C BAC JPM AIG MS LEH WB MER WM

D-VSE: 0.51 1.97 5.27 1.74 1.09 17.15 2.63 52.47 19.81 10.81 78.99

Table 5: Vulnerability of a firm to systemic default events (D-VSE) at September 10, 2008
in percentages (17.50).

We first take a look at the D-VSE tables. Equivalently to the results in Table 1, on September

10, 2008 the bankrupt FIs have by far the highest values, the ”safe” institutions have by far

the lowest, and the rescued/acquired FIs have values of medium size. Comparing D-VSEs

and PAOs for the ”distressed” FIs, we find again an inverse relationship between systemic

importance and (assessed) financial soundness/vulnerability. The D-VSEs increase in average

from March 10, 2008 to September 10, 2008, which shows the decreasing financial soundness

in the financial sector in the course of 2008. Already in March most of the ”distressed”

institutions, including BSC and especially CFC, exhibit larger values than the ”safe” FIs.

However, except for CFC, WM and C, the classification is less clear than in September. The

relatively small D-VSE value for BSC five days prior to its acquisition might be explained

by the relatively high systemic importance implied by its PAO.

GS WFC C BAC JPM AIG MS LEH BSC WB MER CFC WM

Q-VSE: 3.08 7.24 26.54 11.72 7.72 17.59 24.67 18.58 23.77 27.69 27.71 30.47 27.12

Table 6: Vulnerability of a specific firm to systemic default events in terms of conditional
quantile risk (Q-VSE) at March 10, 2008 in percent (average 19.53).

The picture becomes clearer if we look at the Q-VSEs in Tables 6 and 7. From a theoretical

point of view we expect that the Q-VSEs do not discriminate between systemically important

and less important FIs, as the likelihood of large losses in market value and downgrades
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GS WFC C BAC JPM AIG MS LEH WB MER WM

Q-VSE: 12.54 16.12 38.16 20.53 17.20 34.06 21.96 30.01 37.64 36.01 35.80

Table 7: Vulnerability of a specific firm to systemic default events in terms of conditional
quantile risk (Q-VSE) at September 10, 2008 in percentages (average 27.28).

should not be affected by implicit government bailout guarantees. The obtained results

confirm these expectations, as the Q-VSE for the ”distressed” FIs are very similar to one

another and hence converge compared to the D-VSEs, where the values between the bankrupt

and acquired/rescued FIs differed largely.19 Consequently, FIs with comparably low D-VSEs

but high Q-VSEs are a clear indication of implicit bailout guarantees for these institutions.

Following this reasoning, we find on September 10, 2008 bailout guarantees for C, AIG, WB

and MER as they exhibit Q-VSEs similar to those of the ”bankrupt” FIs, WM and LEH, but

much lower D-VSEs. On March 10, 2008 we find bailout guarantees for C, MS, WB, MER

and BSC20 since their D-VSEs are much lower than those of the high-risk firms CFC and

WM (according to D-VSE) but their Q-VSEs are similar.

Besides helping to identify bailout guarantees, the Q-VSEs further provide sharper and more

timely discrimination between ”safe” and ”distressed” FIs than the D-VSEs. On September

10, 2008 all ”distressed” FIs exhibit above-average Q-VSE values, while all ‘safe’ FIs have

below average values. On March 10, 2008 all ”distressed” institutions, including BSC, show

above- or close-to-average values, while most ”safe”FIs (except MS) show clear below-average

Q-VSEs.

In summary, the main findings of the static systemic risk analysis are:

• The D-VSEs clearly discriminate between the three groups: ”bankrupt”, ”acquired/rescued”

and ”surviving” FIs .

• The ”acquired/rescued” FIs exhibit lower D-VSEs than the ”bankrupt” FIs but higher

D-VSEs than the ”surviving” FIs.

19This convergence can also be found for the row averages of the Q-DDM in Table 9 (Appendix).
20From Table 11 (Appendix) one may infer that all of the ”distressed” FIs were highly sensitive to the

default of BSC, which indicates that these FIs had similar exposures as BSC and/or were strongly linked to
this firm.
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• The ”acquired/rescued” FIs are found to be more systemically important (as measured

by the PAOs) than the ”bankrupt” FIs.

• A comparison of D-VSEs and Q-VSEs gives clear indications for implicit bailout guar-

antees conceded to the ”acquired/rescued” FIs, since the indicated risk levels for the

”bankrupt” and for the ”rescued/acquired” firms converge in the case of Q-VSEs.

• The Q-VSEs are able to identify the ”distressed” FIs more clearly at an early stage.

5.3 Dynamic Systemic Risk Analysis

For the dynamic analysis of our risk indicators we estimate time series for the PAOs, D-

VSEs and Q-VSEs from January 1, 2007 to September 10, 2008. Due to the problems with

high-dimensional integration (see section 4) we restrict our sample to the ”distressed” FIs

plus JPMm representing the ”surviving” FIs.

Figure 1.(a) shows, as examples the time series of PAOs (in percent) for C, LEH and WM.

All PAOs start to increase sharply on July 30, 2007 and rise relatively continuously until

September 10, 2008. There are two periods of comparative recovery, the first from January

11, 2008, when BAC announced the acquisition of CFC, to the end of February and the

second from March 15, 2008, when JPM announced the acquisition of BSC, until the end of

April. Interestingly, WM has relatively high systemic importance until January 2008. This

is due to its high connectedness with CFC (see also Table 10 (Appendix)), but after the

announced acquisition of CFC by BAC on January 11, 2008, WM‘s impact decreases and in

June 2008 with the looming completion of the takeover of CFC on July 1, 2008 even becomes

the least important bank in the sample. In contrast, C is regarded as the most important

FI throughout the whole of 2008, with LEH and WM not even coming close.

However, as already suspected in the static analysis, the historically extreme PAO levels,

observable since at least November 2007, even for the less important FIs (WM and LEH)

give clear indications that the collapse of any bank in our sample will have an immense

impact on the stability of the financial sector. This impression is strongly backed by Figure

1.(b), which shows the evolution of the Financial Interconnectedness Index (FII) over time.
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The FII is calculated as the average over the PAOs of all FIs in the sample (see Figure

8 (Appendix) for the PAO time series of all considered FIs) and can be seen as a proxy

for the degree of interconnectedness prevailing in the financial sector. We see that the

degree of interconnectedness in the sector reaches historically unprecedented levels starting

in November 2007, and especially since June 2008. This strongly suggests a ”too connected

too fail”problem prevailing in the sector also around the time of LEH’s collapse in September

2008, which implies that the FED’s decision to let LEH go bankrupt might have been correct

from a cross-dimensional but not from a time-dimensional perspective.

Time

P
A

O
 in

 %

01/01/2007 01/05/2007 01/09/2007 01/01/2008 01/05/2008 01/09/2008

 0
24

49
73

98 Sep 10

Mar 14

Jul 30

Jun 01

Nov 01

C
WM
LEH

Figure 1.(a): Probability that at least one other firm in the sample defaults given a specific firm defaults
(PAO) of C, LEH and WM from January 2007 to September 10, 2008 (in %).
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Figure 1.(b): Financial Interconnectedness Index (FII) from January 2007 to September 10, 2008 (in %).

Figure 2.(a) shows the time series of D-VSEs for C, BSC, LEH and JPM from January

2007 to September 10, 2008. The D-VSEs start to increase at the end of July 2007, and in

November 2007 we see the beginning divergence between the time series of the ”distressed”

FIs, C, BSC and LEH, and the time series of JPM (as representative of the ”safe” FIs). This

divergence reaches extreme levels in the weeks prior to BSC’s collapse in mid-March 2008

and remains high in the post-BSC period as well. In May 2008 the time series of LEH and C

also begin to diverge strongly, a clear indication that a default is much more likely for LEH

than for C, which might be explained by a possible bailout guarantee given to C.

In Figure 2.(b) we see the timely evolution of the average value of the D-VSEs for all FIs in

our sample (see Figure 9 (Appendix) for the VSE time series of all considered FIs), which

we refer to as the Default Financial Vulnerability Index (D-FVI). The increasing financial

distress in the sector shows up as early as July 30, 2008 and rises similarly to the PAOs

above continuously until September10, 2008.

Figure 3.(a) depicts the Q-VSE time series of C, WM, JPM, WB and BSC. Here we see a

more clear divergence between the ”safe” bank JPM and the ”distressed” FIs than for the
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D-VSEs. The divergence begins in October 2007 and gets more and more extreme over

the remainder of the period. As already suspected in the static analysis, we see that the

values of the ”distressed” FIs move very closely to each other over time. Hence, already in

the last months of 2007 the group of FIs which faced the most severe problems during the

sub-prime crisis can be identified clearly on basis of the Q-VSE measure. This is also true

for BSC, whose values rise sharply from November 2007 until its collapse in March 2008.

When comparing the time series of Q-VSEs and D-VSEs for the individual banks, we find

strong indications that the investors at the option markets anticipated the implicit bailout

guarantees for C and BSC since their D-VSE levels did not rise to such extreme levels as

seen for LEH, CFC and WM21 (see Figure 9 (Appendix) for the D-VSE time series of the

latter two FIs), but their distress levels as measured by the Q-VSEs were very similar (see

Figure 10 in the Appendix for Q-VSE time series of CFC and WM). Using the time series

in the Appendix (Figure 9 and Figure 10), we further find bailout guarantees for AIG, WB

and MER.

Finally, Figure 3.(b) shows the Quantile Financial Vulnerability Index (Q-FVI), calculated

as the average of the Q-VSE of all considered FIs. At an early stage, the Q-FVI shows more

distinctly the high degree of distress in the financial sector than the D-FVI, because it rises

in a more continuous manner and in a concave rather than in a convex way.

21While CFC finally was acquired by BAC on July 1, 2008 and did not go bankrupt like LEH and WM,
its high D-VSE levels indicate that CFC did not have an implicit bailout guarantee.
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Figure 2.(a): Vulnerability of a firm to systemic default events (D-VSE) of C, JPM, LEH and BSC from January
2007 to September 10, 2008 (in %).
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Figure 2.(b): Default Financial Vulnerability Index (D-FVI) of C, AIG, LEH and JPM from January 2007 to
September 10, 2008 (in %).
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(Q-VSE) of C, AIG, LEH and JPM from January 2007 to September 10, 2008 (in %).
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The main insights from the dynamic risk analysis can be summarized as follows:

• The PAO levels indicate a ”too connected too fail” dilemma since November 2007, since

even the least systemically important FIs exhibited historically extreme values.

• All indicators (PAOs, D-VSEs, Q-VSEs) begin to sharply increase in July 2007.

• The discrimination/identification between ”distressed” and ”safe” FIs happens as early

as November 2007 (for CFC even in July 2007) and is highly stable over time.

• At an early stage of distress the Q-VSEs identify more clearly the ”distressed” FIs than

the D-VSEs.

• The Q-VSEs of all ”distressed”FIs exhibit in a stable manner similar distress levels and

hence, by comparing the displayed riskiness of D-VSE and Q-VSE for the individual

FIs, we obtain timely indications of implicit bailout guarantees.

• The derived indices FII, D-FVI and Q-FVI are able to display the increasing degree

of distress and interconnectedness in the financial sector over the period of July 2007

to September 2008. Here, the Q-FVI indicates more distinctly at an early stage the

extreme degree of distress as it increases more continuously than the other indices and

in a concave rather than in a convex way.

6 Conlusion

In this paper we have proposed a novel framework for assessing systemic risk in financial

sectors. Our framework uses daily option prices to estimate time series of multivariate (risk-

neutral) asset distributions (MADs) for a sample of financial institutions (FIs). The MADs

are obtained by combining the (univariate) option iPoD approach of Capuano (2008) and

Vilsmeier (2011) with the most entropic copula methodology of Chu (2011). While the option

iPoD procedure provides us with time series of the individual FIs’ asset distributions (RNDs)

and their probabilities of default (PoDs), the MEC methodology allows us to estimate a cop-

ula for the multivariate asset distribution on the basis of Spearman rank correlations that we
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calculate from the RND time series. Using Sklar’s theorem, we combine the RND time series

and the copula to obtain the MADs. For the estimation of the RNDs neither balance sheet

data nor recovery rate assumptions are required, as the option iPoD framework derives the

individual bank’s asset distributions in a purely statistical way using only daily sets of equity

option prices. The Spearman rank correlations are estimated dynamically with exponentially

decreasing influence of past observations such that the dependence structure of the MAD

described by the copula may change every day. The dynamic rank correlations measure

linear as well as non-linear dependence structures and capture the increasing correlations

during times of economic downturns that are usually detected.

Both the RNDs and the copula are estimated using a semi-parametric estimation procedure

based on the entropy function. The framework provides smooth density estimates that are

very flexible with regard to their functional forms and MADs whose marginals (RNDs) and

dependence structure are updated on a daily basis.

Time series of MADs were estimated for 13 major US FIs during the period of the US sub-

prime crisis from January 2007 to September 2008. On the basis of these MADs, we derived

five different systemic risk indicators which are based on conditional PoDs and conditional

lower quantiles. The indicators were analyzed statically on March 10, 2008 and September

10, 2008 as well as dynamically over the whole sample period and provide strong evidence for

the high informational content resulting from our estimation approach. The static analysis

showed that the derived indicators are able: i) to clearly discriminate between the institutes

that had the most severe problems during the financial crisis (”distressed”FIs) and those who

weathered the turmoil comparably well (”safe” FIs), ii) to distinctly classify the ”distressed”

FIs into the group of institutes that were acquired or rescued during the crisis and those

banks that went bankrupt, iii) to show that the acquired/rescued FIs were assessed as more

systemically important than the bankrupt FIs and iv) to provide strong evidence that implicit

bailout guarantees were granted to the systemically most important institutions. From the

dynamic analysis we obtain the following insights: i) all indicators begin to increase sharply

in July 2007, ii) the discrimination between ”distressed” and ”safe” institutions happens as

early as November 2007 (in case of Countrywide Financial (CFC) even in July 2007) and is
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highly stable over time, iii) the implicit bailout guarantees given to some FIs can be identified

at an very early stage (differing among institutes) and iv) the degree of dependence among

the FIs indicates a severe ”too connected too fail” dilemma in the US financial sector since

(at least) November 2007.

Future research should intend to minimize the dependence of the estimated correlation co-

efficients on outdated historical data. A major improvement might be obtained by using

intra-day data and realized correlations theory as, for instance, in Huang, Zhou, and Zhu

(2009). In addition, more efficient ways to solve the high-dimensional integrals in the MEC

estimation should be found. A valuable step in this direction might be to use the connection

between the MEC and the FRAME model (a type of Markov Random Field model) of Zhu,

Wu, and Mumford (1998) as suggested in Huang and Freedman (2010).
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Appendix

Option Price Strike Price Open Interest Liquidity Weight

48.30 0.00 1 1.00

16.05 32.50 353 0.01

13.60 35.00 27 0.00

11.20 37.50 375 0.01

8.90 40.00 265 0.01

6.80 42.50 248 0.01

4.80 45.00 2076 0.05

3.10 47.50 16430 0.38

1.80 50.00 7525 0.17

0.90 52.50 3781 0.04

0.40 55.00 10758 0.09

0.10 60.00 40 0.25

Table 8: Dataset of JPM stock options on January 1, 2007 (Estimated PoD: 2.7×10−6).
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Figure 4: Examples of dynamic Spearman correlations.
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Figure 5: Marginal density functions of Lehman Brothers and Bear Stearns on March 10,
2008.
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Figure 6: Dynamic Spearman rank correlations (α = 0.99) between Lehman Brothers and
Bear Stearns from January 1, 2003 to September 10, 2008.

Figure 7: Bivariate cumulative density function of Lehman Brothers and Bear Stearns on
March 10, 2008.
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GS WFC C BAC JPM AIG MS LEH WB MER WM Row Ø

GS 100 8.83 12.00 13.49 7.96 10.28 12.18 8.36 11.01 11.84 5.02 10.10

WFC 9.01 100 14.36 13.27 7.17 12.14 13.49 8.82 13.60 14.03 6.10 11.20

C 12.58 14.58 100 30.78 13.85 38.49 37.07 21.33 41.59 41.49 20.24 27.20

BAC 12.97 13.36 30.37 100 12.17 29.01 27.17 20.05 28.85 30.42 12.94 21.73

JPM 8.31 6.98 13.39 11.85 100 12.63 13.88 10.05 12.91 13.84 5.61 10.95

AIG 13.21 13.41 41.66 31.93 14.23 100 33.53 24.20 37.67 39.06 17.04 26.59

MS 12.32 13.64 36.76 27.31 14.29 30.65 100 18.98 32.16 33.58 15.56 23.52

LEH 11.97 13.53 33.13 31.44 15.86 34.72 29.59 100 33.88 38.67 14.07 25.69

WB 12.72 15.23 45.56 32.23 14.73 38.26 35.70 23.96 100 41.93 18.58 27.89

MER 14.08 14.51 42.60 31.65 14.59 37.01 34.77 25.40 39.19 100 16.95 27.07

WM 9.15 11.93 45.80 27.54 11.22 34.50 33.83 19.21 38.43 37.92 100 26.95

Col. Ø 11.63 12.60 31.56 25.15 12.61 27.77 27.12 18.04 28.93 30.28 13.21 21.72

Table 9: Quantile distress dependence matrix (Q-DDM) on September 10, 2008. CQRs of banks in rows given default of banks
in columns (in %).
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GS WFC C BAC JPM AIG MS LEH BSC WB MER CFC WM Row Ø

GS 100 0.46 0.45 0.45 0.46 0.47 0.49 0.46 0.46 0.44 0.48 0.39 0.39 0.45

WFC 2.56 100 3.15 2.97 2.45 2.67 3.17 2.34 3.03 2.94 3.07 2.63 2.69 2.81

C 5.94 7.47 100 9.96 7.19 11.13 13.16 7.76 12.87 12.77 13.02 11.99 12.22 10.46

BAC 1.07 1.26 1.78 100 1.04 1.48 1.65 1.16 1.63 1.61 1.63 1.45 1.50 1.44

JPM 2.79 2.63 3.26 2.65 100 2.95 3.42 2.90 3.14 3.04 3.34 2.94 2.89 3.00

AIG 2.41 2.44 4.28 3.20 2.50 100 4.02 2.82 3.88 3.85 3.89 3.50 3.64 3.37

MS 2.47 2.86 5.01 3.51 2.87 3.98 100 3.09 4.61 4.68 4.67 4.26 4.18 3.85

LEH 5.12 4.65 6.51 5.44 5.36 6.16 6.81 100 6.83 6.40 6.54 6.43 6.16 6.03

BSC 4.62 5.45 9.78 6.93 5.26 7.66 9.21 6.18 100 9.04 8.91 8.62 8.49 7.51

WB 3.16 3.73 6.85 4.85 3.59 5.37 6.60 4.09 6.38 100 6.28 5.88 6.02 5.23

MER 3.40 3.85 6.88 4.82 3.89 5.34 6.48 4.12 6.20 6.19 100 5.83 5.86 5.24

CFC 28.15 33.81 63.43 43.87 35.10 49.08 59.66 41.51 60.33 58.45 58.79 100 60.07 49.35

WM 19.38 23.85 45.08 31.33 23.82 35.26 40.69 27.44 41.38 41.59 41.10 41.59 100 34.38

Col. Ø 6.76 7.70 13.04 10.00 7.79 10.96 12.95 8.66 12.56 12.58 12.64 7.96 9.51 10.24

Table 10: Default distress dependence matrix (D-DDM) on March 10, 2008. CPoDs of banks in rows given default of banks in
columns (in %).
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GS WFC C BAC JPM AIG MS LEH BSC WB MER CFC WM Row Ø

GS 100 7.56 6.90 7.17 7.90 8.51 9.72 7.69 7.60 6.60 9.39 3.03 2.96 7.09

WFC 7.84 100 15.00 12.85 6.44 9.23 15.21 5.00 13.53 12.44 14.07 8.84 9.55 10.83

C 7.16 15.25 100 27.63 13.81 33.11 42.13 16.80 41.04 40.52 41.59 39.16 39.35 29.80

BAC 7.19 12.51 26.48 100 6.36 18.77 23.04 9.67 22.59 22.20 22.56 18.29 19.48 17.43

JPM 7.93 6.16 13.31 6.33 100 9.77 15.08 9.23 11.96 10.84 14.20 9.81 9.21 10.32

AIG 9.16 9.59 32.79 19.60 10.41 100 29.64 14.77 27.99 27.64 28.00 24.27 25.68 21.64

MS 9.80 14.93 40.79 23.21 15.11 28.88 100 17.97 36.31 37.02 36.81 34.11 32.20 27.27

LEH 7.53 4.52 16.16 9.55 9.08 14.03 17.96 100 18.05 15.52 16.35 16.05 14.21 13.25

BSC 7.75 13.48 40.43 23.16 12.19 27.73 36.96 18.40 100 36.05 35.29 35.39 33.76 26.72

WB 6.99 12.60 39.95 22.92 11.28 27.50 37.73 16.05 36.11 100 35.23 33.56 34.11 26.17

MER 9.51 13.88 40.53 22.89 14.32 27.56 37.08 16.51 34.91 34.77 100 33.45 33.00 26.53

CFC 4.00 11.52 50.92 24.88 13.23 31.81 45.89 21.75 46.79 44.28 44.73 100 46.43 32.19

WM 3.43 11.09 45.65 23.60 11.05 30.04 38.72 17.17 39.85 40.15 39.39 41.20 100 28.44

Col. Ø 7.36 11.09 30.75 18.65 10.93 22.24 29.09 14.25 28.05 27.33 28.15 24.76 25.00 21.36

Table 11: Quantile distress dependence matrix (Q-DDM) on March 10, 2008. CQRs of banks in rows given default of banks in
columns (in %).
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Figure 8: Probability that at least one other firm in the sample defaults given a specific firm defaults (PAO) of all FIs considered
in the dynamic analysis from January 1, 2007 to September 10, 2008.
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Figure 9: Vulnerability of a firm to systemic default events (D-VSE) of all FIs covered in the dynamic analysis from January
1, 2007 to September 10, 2008.
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Figure 10: Vulnerability of a specific firm to systemic default events in terms of conditional quantile risk (Q-VSE) of all FIs
covered in the dynamic analysis from January 1, 2007 to September 10, 2008.
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