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Non-technical summary

Research Question

In recent years (dynamic) factor models have become increasingly popular for

macroeconomic analysis and forecasting in a data-rich environment. A serious

limitation of the standard approximate factor model is that it assumes the common

factors to affect all variables of the system. However, the efficiency of the Principal

Component (PC) estimator for the common factors may deteriorate substantially

if there are factors that load on subsets of variables only. Those factors may also

be of independent interest. In an international context, for example, factors that

load on variables associated with specific regions (“regional factors”) could be (and

have been) analyzed besides the global factors which link all variables in the model.

Alternatively (or in addition), a block structure may represent economic, cultural

or other characteristics. This paper addresses the question how such models can

be estimated in a fast and easy way.

Contribution

This paper makes several contributions. First, we provide a comprehensive com-

parison of existing estimation approaches for multi-level factor models and propose

two very simple alternative estimation techniques based on sequential least squares

and canonical correlations (which avoids any iterations). Second, we extend the

sequential least squares estimation approach to a three-level factor model (with,

for example, global, regional and variable-specific factors) with overlapping blocks

of factors. Such factors structures are challenging as they cannot be estimated one

level after another. A final contribution are three applications in which we study

international comovements of business and financial cycles as well as asymmetries

over the business cycle in the US.

Results

Our suggested estimation techniques provide (point) estimates in a tiny fraction

of a second (in typical (macro) settings) compared to a Bayesian estimator that

requires several hours. We also shows that based on Monte Carlo simulations

that, in some circumstances, our proposed estimators tend to outperform alter-

native (two-step principal component and quasi maximum likelihood) estimation

methods.



In the first application we apply several estimation methodologies for two-

level factor models to an annual real activity dataset of more than 100 countries

between 1960 and 2010. We estimate global and regional factors which turn out

to be very similar across methods. We confirm Hirata et al.’s main finding that

regional (business cycle) factors have become more important and global factors

less important over time.

In the second application, we use a large quarterly macro-financial dataset for

24 countries between 1995 and 2011. We estimate a global factor, regional factors,

as well as variable-specific (macro and financial) factors. We find that financial

variables strongly comove internationally, to a similar extent as macroeconomic

variables. Macroeconomic and financial dynamics share common factors, but fi-

nancial factors independent from macro factors also matter for financial variables.

Finally, the temporal evolution of the estimated financial factors looks plausible.

In the third application, we use a large US dataset comprising monthly macro

and financial variables over 1959-2011. We estimate factors which are common to

all periods (“symmetric” factors) as well as phase-specific (“asymmetric”) factors

which drive the variables in recession or expansion phases only. Hence, this appli-

cation differs from the previous ones where factors common to a subset of variables

rather than points in time were considered. We find non-negligible asymmetries

over the business cycle. However, the bulk of common dynamics is stable over

time. The overall comovement between the variables is higher during recessions

than during expansions. The first recession factor is highly correlated with mon-

etary and financial variables whereas the first symmetric and the first expansion

factors are related to real activity variables.



Nicht-technische Zusammenfassung

Fragestellung

(Dynamische) Faktormodelle werden seit einigen Jahren zunehmend für makro-

ökonomische Analysen und Prognosen bei einer breiten Datengrundlage herange-

zogen. Eine wesentliche Einschränkung des üblichen approximativen Faktormodells

ist die diesem innewohnende Annahme, dass die gemeinsamen Faktoren alle Varia-

blen des Systems beeinflussen. Die Effizienz des Hauptkomponentenschätzers für

die gemeinsamen Faktoren kann jedoch drastisch abnehmen, wenn Faktoren vor-

liegen, die sich nur auf eine Teilmenge der Variablen auswirken. Daneben können

solche Faktoren auch selbst von Interesse für den Forscher sein. In einem interna-

tionalen Kontext beispielsweise können nicht nur globale Faktoren, die alle Mo-

dellvariablen beeinflussen, analysiert werden, sondern auch Faktoren, die lediglich

mit bestimmten Regionen verbunden sind (
”
regionale Faktoren“). Alternativ oder

zusätzlich lassen sich ökonomische, kulturelle oder andere Merkmale mittels einer

Blockstruktur darstellen. Im vorliegenden Beitrag wird der Frage nachgegangen,

wie sich derartige Modelle schnell und leicht schätzen lassen.

Beitrag

Das vorliegende Forschungspapier leistet in mehrfacher Hinsicht einen Beitrag.

Erstens liefert es einen umfassenden Vergleich der bestehenden Schätzansätze für

mehrstufige Faktormodelle und schlägt zudem zwei neue sehr einfache alternati-

ve Schätzverfahren auf der Basis sequentieller kleinster Quadrate und kanonischer

Korrelationen (um Iterationen zu vermeiden) vor. Zweitens wird der Schätzansatz

der sequentiellen kleinsten Quadrate auf ein dreistufiges Faktormodell (mit z. B.

globalen, regionalen und variablenspezifischen Faktoren) mit überlappenden Fak-

torblöcken erweitert. Die Schwierigkeit einer solchen Faktorstruktur liegt darin,

dass die einzelnen Stufen nicht nacheinander geschätzt werden können. Drittens

werden in drei Anwendungen der internationale Gleichlauf von Konjunktur- und

Finanzzyklen sowie die Asymmetrien im Verlauf des US-Konjunkturzyklus unter-

sucht.

Ergebnisse

Unsere vorgeschlagenen Schätzverfahren liefern (Punkt-)Schätzungen innerhalb

winziger Sekundenbruchteile (in einem typischen (Makro-)Umfeld) im Vergleich



zu einem Bayesianischen Schätzer, der dafür mehrere Stunden braucht. Basierend

auf Monte-Carlo-Simulationen wird ferner aufgezeigt, dass unsere vorgeschlagenen

Schätzer alternativen (zweistufigen Hauptkomponenten- und Quasi-Maximum-

Likelihood-)Schätzmethoden unter bestimmten Umständen vorzuziehen sind.

In der ersten Anwendung werden mehrere Schätzmethoden für zweistufige Fak-

tormodelle auf einen jährlichen realwirtschaftlichen Datensatz von mehr als 100

Ländern für den Zeitraum von 1960 bis 2010 angewandt. Geschätzt werden glo-

bale und regionale Faktoren, die sich in allen Methoden als sehr ähnlich erweisen.

Unsere Ergebnisse bestätigen die wichtigste Erkenntnis von Hirata et al., dass die

regionalen (konjunkturellen) Faktoren im Zeitverlauf an Bedeutung gewonnen und

die globalen Faktoren an Bedeutung verloren haben.

In der zweiten Anwendung verwenden wir einen umfangreichen vierteljährlichen

makrofinanziellen Datensatz für 24 Länder im Zeitraum von 1995 bis 2011. Ge-

schätzt werden ein globaler Faktor, regionale Faktoren sowie variablenspezifische

Faktoren (Makrofaktoren und finanzielle Faktoren). Aus der Analyse geht her-

vor, dass finanzielle Variablen - ähnlich wie makroökonomische Variablen - inter-

national einen engen Gleichlauf aufweisen. Makroökonomischen und finanziellen

Entwicklungen liegen gemeinsame Faktoren zugrunde. Aber auch von Makrofak-

toren unabhängige finanzielle Faktoren sind für finanzielle Variablen relevant. Die

zeitliche Entwicklung der geschätzten finanziellen Faktoren erscheint plausibel.

In der dritten Anwendung wird ein umfangreicher US-Datensatz verwendet, der

monatliche Makrovariablen und finanzielle Variablen für den Zeitraum von 1959

bis 2011 umfasst. Geschätzt werden Faktoren, die allen Phasen gemeinsam sind

(
”
symmetrische” Faktoren), wie auch phasenspezifische (

”
asymmetrische“) Fak-

toren, die die Variablen nur in Rezessions- bzw. Expansionsphasen beeinflussen.

Diese Anwendung unterscheidet sich somit von den beiden anderen Anwendun-

gen, in denen Faktoren betrachtet wurden, die einer Teilmenge von Variablen,

nicht Zeitpunkten gemeinsam sind. Im Konjunkturverlauf lassen sich zwar nicht

zu vernachlässigende Asymmetrien feststellen. Die gemeinsame Entwicklung ist

im Zeitverlauf jedoch größtenteils stabil. Insgesamt ist der Gleichlauf zwischen

den Variablen in Rezessionsphasen stärker ausgeprägt als in Expansionsphasen.

Der erste Rezessionsfaktor korreliert stark mit monetären und finanziellen Varia-

blen, während der erste symmetrische Faktor und der erste Expansionsfaktor am

engsten mit realwirtschaftlichen Variablen verbunden sind.
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1 Introduction

In recent years (dynamic) factor models have become increasingly popular for

macroeconomic analysis and forecasting in a data-rich environment.1 A serious

limitation of the standard approximate factor model is that it assumes the com-

mon factors to affect all variables of the system. As argued by Boivin and Ng

(2006) the efficiency of the Principal Component (PC) estimator may deteriorate

substantially if groups of variables are included that do not provide any informa-

tion about the factors, that is, the corresponding factor loadings of some subgroups

of variables are equal to zero. Similarly, if factors are ignored that affect a subset of

variables only, the respective idiosyncratic components may be highly correlated,

resulting in poor (PC) estimates of those factors which load on all variables.

There are natural examples for models with factors loading on subgroups of

variables only. In an international context, for example, factors may represent

regional characteristics, and it may be of independent interest to analyze these

“regional factors” in addition to “global factors” linking all variables in the model.

Alternatively (or in addition), a block structure may represent economic, cultural

or other characteristics. A natural way to deal with such block structures is to

extract “regional factors” from various subgroups of data (data associated with

specific “regions”) separately. However, if there exist at the same global factors

that affect all regions in the sample, a separate analysis of the regions will mix up

regional and global factors which hampers identification of the factors and involves

a severe loss of efficiency.

A characterizing feature of such model structures is that the loading matrix

of the common factors is subject to blocks of zero restrictions and the techni-

cal challenge is to take into account such restrictions when estimating the com-

mon factors. Estimating the state space representation of the model employing

Bayesian methods is most popular (Kose, Otrok and Whiteman (2003), Moench,

Ng and Potter (2013), Kaufmann and Schumacher (2012) and Francis, Owyang

1For forecasting applications see, e.g., Stock and Watson (2002a), Stock and Watson (2002b),
Eickmeier and Ziegler (2008). For structural macro applications see, e.g., Bernanke, Boivin and
Eliasz (2005), Eickmeier (2007), Eickmeier and Hofmann (2013), Beck, Hubrich and Marcellino
(2009), Kose, Otrok and Whiteman (2003).
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and Savascin (2012)).2 Other recent papers adapt frequency domain PCs (Hallin

and Liska (2011)), a two-step quasi maximum likelihood (ML) estimator (Ban-

bura, Giannone and Reichlin (2010), Cicconi (2012)), two-stage PC approaches

(e.g. Beck et al. (2009), Beck, Hubrich and Marcellino (2011), Aastveit, Bjoern-

land and Thorsrud (2011)) or a sequential PC approach (Wang (2010)).3

In this paper we make several contributions. First, we provide a comprehensive

comparison of existing estimation approaches for multi-level factor models and

propose two very simple estimation techniques based on sequential least squares

(LS) and canonical correlations. The sequential LS algorithm is equivalent to the

(quasi) ML estimator assuming Gaussian i.i.d. errors and treating the common

factors as unknown parameters. It is closely related to Wang (2010)’s sequential

PC approach and the quasi ML approach of Banbura et al. (2010). The estimator

based on a canonical correlation analysis (CCA) avoids any iterations and can be

computed in two steps. In particular, we employ this computationally convenient

and consistent estimator for initializing the LS algorithm in order to ensure that

the procedure starts in the neighborhood of the global minimum.

These estimation techniques provide (point) estimates in less than 0.02 sec-

onds (in typical macroeconomic settings) compared to a Bayesian estimator that

requires several hours. Moreover, our Monte Carlo simulations suggest that, in

some circumstances, the sequential LS and the CCA estimators tend to outper-

form alternative estimation methods such as the two-step PC estimator and the

quasi ML estimator based on the EM algorithm.

The two-step PC estimator involves estimating, in the first step, the global

factors as the first PCs of the full dataset. In a second step the global factors are

purged of all variables and the regional factors are extracted applying regional-

specific PC analyses to the residuals. In Section 2.4.1 we argue that for the con-

sistency of this estimator we need to assume that the number of regions tends

to infinity, whereas in empirical practice the number of groups is typically small

2The latter two papers assume that the groups of variables are unknown and are determined
endogenously in the model. By contrast, the two former papers as well as the present paper
determine a priori which variables are associated with which group.

3Other studies estimate small-dimensional multi-level factor models (e.g. Gregory and Head
(1999)). In our paper we focus, however, on large-dimensional models and, therefore, do not
related our paper to those papers further.
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(often less than 10). In such cases, the largest eigenvalues may correspond to dom-

inating regional factors so that identification of the global factors by the largest

eigenvalues breaks down.

We also extend the sequential LS estimation approach to a three-level factor

model (with, for example, global factors, regional factors and factors specific to

types of variables) with overlapping blocks of factors. Such factor structures are

challenging as they cannot be estimated one level after another (which is the

rationale for Wang (2010)’s sequential PC approach).

A final contribution are three applications in which we study international

comovements of business and financial cycles as well as asymmetries over the busi-

ness cycle. The first and third applications use the two-level factor model, while

the second application uses the three-level factor model assuming an overlapping

factor structure.

In the first application we (basically) replicate the study by Hirata, Kose and

Otrok (2013) and apply several estimation methodologies for two-level factor mod-

els to an annual real activity dataset of more than 100 countries between 1960 and

2010. We estimate global and regional factors which turn out to be similar across

methods. We confirm Hirata et al. (2013)’s main finding that regional (business

cycle) factors have become more important and global factors less important over

time.

In the second application, we use a large quarterly macro-financial dataset

for 24 countries between 1995 and 2011. We estimate a global factor, regional

factors, as well as factors specific to types of variables (i.e. macro and financial

factors). We find that financial variables strongly comove internationally, to a

similar extent as macroeconomic variables. Macroeconomic and financial dynamics

share common factors, but financial factors independent from macro factors also

matter for financial variables. Finally, the temporal evolution of the estimated

financial factors looks plausible.

In the third application, we use a large US dataset comprising monthly macro

and financial variables over 1959-2011. We estimate factors which are common to

all periods (“symmetric” factors) as well as phase-specific (“asymmetric”) factors

which drive the variables in recession or expansion phases only. Hence, this appli-

cation differs from the previous ones where factors common to a subset of variables

3



rather than points in time were considered. We find non-negligible asymmetries

over the business cycle. However, the bulk of common dynamics is stable over

time. The overall comovement between the variables is higher during recessions

than during expansions. The first recession factor is highly correlated with mon-

etary and financial variables whereas the first symmetric and the first expansion

factors are related to real activity variables.

The remainder of the paper is organized as follows. We first present the two-

level factor model in Section 2.1. In Sections 2.2 and 3 we then suggest a sequential

LS estimator for the two-level factor model and, as an extension, the three-level

factor model. In Section 2.3 we propose a CCA estimator. We show in Section 2.4.1

that the two-stage PC approach which has been used in the literature works well

only under specific conditions. In Sections 2.4.2 and 2.4.3 we compare the sequen-

tial LS approach with the sequential PC and the quasi ML approaches. In Section

4 we investigate the relative performance of alternative estimators by means of

Monte Carlo simulations. For ease of exposition we assume in the methodological

sections that we work with a large international dataset. We label factors asso-

ciated with all variables as “global factors” and factors associated with specific

groups “regional factors” and/or “variable type-specific factors”. However, the

models are, of course, more general and can be applied to other empirical setups

with variables being associated with other groups as well. In Section 5 we present

our applications, and we conclude in Section 6.

2 The two-level factor model

2.1 The model

Consider the following two-level factor model

yr,it = γ′
r,iGt + λ′

r,iFr,t + ur,it , (1)

where r = 1, ..., R indicates the region, the index i = 1, . . . , nr denotes the i’th

variable of region r and t = 1, . . . , T stands for the time period. The vector

Gt = (g1,t, . . . , gm0,t)
′ comprisesm0 global factors and themr×1 vector Fr,t collects

4



the mr regional factors in region r. The idiosyncratic component is denoted by

ur,it, where the usual assumptions of an approximate factor model (e.g. Bai (2003))

apply. In vector notation, the factor model for region r is written as

yr,·t = ΓrGt + ΛrFr,t + ur,·t, (2)

=
(
Γr Λr

)(Gt

Fr,t

)
+ ur,·t , (3)

where yr,·t = (yr,1t, . . . , yr,nrt)
′ and Γr, Λr and ur,·t are defined conformably. The

entire system representing all R regions results as


y1,·t
...

yR,·t

 =


Γ1 Λ1 0 · · · 0

Γ2 0 Λ2 · · · 0
...

. . .
...

ΓR 0 0 · · · ΛR





Gt

F1,t

F2,t

...

FR,t


+


u1,·t

u2,·t
...

uR,·t

 (4)

yt = Λ∗ F ∗
t + ut , (5)

where F ∗
t = (G′

t, F
′
1,t, . . . , F

′
R,t)

′. We normalize the factor space by imposing the

following assumptions:

(i) T−1
∑T

t=1 GtG
′
t = Im0 and T−1

∑T
t=1 Fr,tF

′
r,t = Imr for all r.

(ii) N−1Γ′
rΓr and N−1Λ′

rΛr are diagonal matrices which coincides with the re-

spective assumption of the PC estimator, see e.g. Breitung and Choi (2013).

(iii) T−1
∑T

t=1 Fr,tG
′
t = 0 for all r.

As shown by Wang (2010) these restrictions ensure that all parameters are iden-

tified. We do not need to assume that the regional factors from different regions

are uncorrelated. This assumption is often imposed for a Bayesian analysis of the

multi-level factor model (e.g. Kose, Otrok and Whiteman (2003)), and it implies

an over-identified model structure.
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2.2 The sequential least-squares estimator

Assume that the idiosyncratic components are identically and independent nor-

mally distributed (i.i.d.) across i, t and r with E(u2
r,it) = σ2.4

Treating the factors and factor loadings as unknown parameters yields the

log-likelihood function

L(F ∗,Λ∗, σ2) = const − T

2

(
R∑

r=1

nr

)
log(σ2)− 1

2σ2

T∑
t=1

(yt − Λ∗F ∗
t )

′(yt − Λ∗F ∗
t )

where F ∗ = (F ∗
1 , . . . , F

∗
T )

′. The maximization of this likelihood function is equiv-

alent to minimizing the sum of squared residuals (RSS)

S(F ∗,Λ∗) =
T∑
t=1

(yt − Λ∗F ∗
t )

′(yt − Λ∗F ∗
t )

=
R∑

r=1

nr∑
i=1

T∑
t=1

(yr,it − γ′
r,iGt − λ′

r,iFr,t)
2.

Assume that we have available suitable initial estimators of the global and regional

factors, denoted by Ĝ(0) = (Ĝ
(0)
1 , . . . , Ĝ

(0)
T )′ and F̂

(0)
r = (F̂

(0)
r,1 , . . . , F̂

(0)
r,T )

′. The

associated loading coefficients are estimated from
∑R

r=1 nr time series regressions

of the form

yr,it = γ′
r,iĜ

(0)
t + λ′

r,iF̂
(0)
r,t + ũr,it . (6)

Denote the resulting estimates as γ̂
(0)
r,i , λ̂

(0)
r,i and the respective matrices as Γ̂

(0)
r =

(γ̂
(0)
r,1 , . . . , γ̂

(0)
r,nr)

′ and Λ̂
(0)
r = (λ̂

(0)
r,1 , . . . , λ̂

(0)
r,nr)

′. The loading matrix for the full system

is constructed as

Λ̂∗
(0) =


Γ̂
(0)
1 Λ̂

(0)
1 0 · · · 0

Γ̂
(0)
2 0 Λ̂

(0)
2 · · · 0

...
. . .

...

Γ̂
(0)
R 0 0 · · · Λ̂

(0)
R

 .

4The assumption that the errors are i.i.d. is a simplifying assumption that is used to ob-
tain a simple (quasi) likelihood function. The estimator remains consistent if the errors are
heteroskedastic and autocorrelated, cf. Wang (2010).
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An updated estimator for the vector of factors is obtained from the least-squares

regression of yt on Λ̂∗
(0) yielding

F̂ ∗
t,(1) =


Ĝ

(1)
t

F̂
(1)
1,t
...

F̂
(1)
R,t

 =
(
Λ̂∗′

(0)Λ̂
∗
(0)

)−1

Λ̂∗′
(0)yt , (7)

where in each step the factors are normalized to have a unit variance by multiplying

the vector of factors with the matrix
(
T−1

∑T
t=1 F̂

∗
t,(1)F̂

∗′
t,(1)

)−1/2

.

Next, the updated factors can be used to obtain the associated loading coef-

ficients from the LS regression (6), yielding the updated estimator Λ̂∗
(1) which in

turn yields the updated factors F̂ ∗
t,(2). It is easy to see that

S(F̂ ∗
(0), Λ̂

∗
(0)) ≤ S(F̂ ∗

(1), Λ̂
∗
(0)) ≤ S(F̂ ∗

(1), Λ̂
∗
(1)) ≤ · · ·

since in each step the previous estimators are contained in the parameter space

of the subsequent LS estimators. Hence the next estimation step cannot yield

a larger RSS and, therefore the sequence of least-squares regressions eventually

converges to a minimum.

To ensure that the iterative algorithm converges quickly to the global minimum,

we initialize the algorithm with suitable starting values for the factors. In our

Monte Carlo experiments and in the empirical applications we employ the CCA

estimator, which is considered in Section 2.3.

So far we have assumed that the idiosyncratic variances are identical for all vari-

ables and regions. Although the resulting LS estimator is consistent in the case of

heteroskedastic errors (since the LS estimators are robust against heteroskedastic

errors), the asymptotic efficiency may be improved by using a generalized least-

squares (GLS) approach (cf. Breitung and Tenhofen (2011)).

It is important to notice that the proposed algorithm does not impose a par-

ticular normalization. Therefore, although the vector of common components

ξt = Λ∗F ∗
t is identified and consistently estimated, whereas the factors and load-

ing matrices are estimated consistently up to some arbitrary rotation. In order

7



to impose the normalization proposed in Section 2.1 we first regress the final esti-

mators of the regional factors F̂r,t (r = 1, . . . , R) on Ĝt. The residuals from these

regressions yield the orthogonalized regional factor. In order to adopt the same

normalization as in the PC analysis, the normalized global factors can be obtained

as the rg PCs of the estimated common components resulting from the nonzero

eigenvalues and the associated eigenvectors of the matrix

Γ̂

(
1

T

T∑
t=1

ĜtĜ
′
t

)
Γ̂′ .

The PC normalization of the regional factors can be imposed in a similar manner

by using the covariance matrix of the respective common components.

2.3 The CCA estimator

We start with estimating the m = m0 + mr global and regional factors in each

region separately by a PC analysis yielding the vector of factors F̂+
r,t which is a

consistent estimator for the factor space of the m× 1 vector of factors (G′
t, F

′
r,t)

′.

Since the PCs of two different regions share a common component (the global

factor), we apply a CCA to determine the linear combination Ĝr,t = τ ′rF̂
+
r,t that is

most correlated with the linear combination Ĝs,t = τ ′sF̂
+
s,t of some other region s.

This problem is equivalent to solving the generalized eigenvalue problem∣∣∣∣∣∣µ
T∑
t=1

F̂+
r,tF̂

+′
r,t −

T∑
t=1

F̂+
r,tF̂

+′
s,t

(
T∑
t=1

F̂+
s,tF̂

+′
s,t

)−1 T∑
t=1

F̂+
s,tF̂

+′
r,t

∣∣∣∣∣∣ = 0.

The eigenvectors associated with the m0 largest eigenvalues provide the weights

of the linear combination Ĝr,t = τ ′rF̂
+
r,t which serves as an estimator of the global

factors Gt. As in the appendix of Breitung and Pigorsch (2013) it can be shown

that as N → ∞ and T → ∞ the linear combination Ĝr,t (or Ĝs,t) converges in

probability to HGt, where H is some regular m0 ×m0 matrix. Hence, Ĝr,t yields

a consistent estimator of the space spanned by Gt.

Obviously, there are R2(R−1)/2 possible pairs (F̂+
r,t, F̂

+
s,t) that can be employed

for a CCA. We suggest to choose the linear combination with the largest canonical

8



correlation (resp. eigenvalue) as the preferred estimate of Gt. In the next step the

estimated global factors are purged of all variables and from R region-specific PC

analyses the regional factors are extracted.

2.4 Relation to existing (non Bayesian) approaches

2.4.1 Two-step PC estimators

Since the set of regional factors {F1,t, . . . , FR,t} is assumed to be uncorrelated with

the vector of global factors Gt, the regional factors may be treated as idiosyncratic

components yielding the reduced factor model

yr,it = γ′
r,iGt + er,it

where er,it = λ′
r,iFr,t + ur,it. Accordingly, the global factors may be estimated by

the first m0 PCs of the matrix T−1Y ′Y , where Y = (Y1, . . . , YR) and Yr = (yr,it)

is the T × nr data matrix of region r. In a second step, the regional factors may

be estimated again with PCs from the covariance matrix of the resulting idiosyn-

cratic components associated with a specific region. We refer to this estimator

as the “top-down PC estimator” as this estimator starts from a PC analysis of

the entire system. In empirical studies this top-down PC estimator is employed

by Beck et al. (2011), Beck et al. (2009), Aastveit et al. (2011) and Thorsrud

(2013). A problem with this estimator is that the regional factors give rise to a

strong correlation among the regional clusters of idiosyncratic components. Let

τr,ij = maxt E(|er,iter,jt|). Since the errors possess a factor structure it follows that∑nr

i=1

∑nr

j=1 τr,ij = O(n2
r) and, therefore,

R∑
r=1

nr∑
i=1

nr∑
j=1

τr,ij = O

(
R∑

r=1

n2
r

)
.

As shown by Bai (2003) consistent estimation of the factors requires that

1(∑R
i=1 nr

) R∑
r=1

nr∑
i=1

nr∑
j=1

τr,ij ≤ M < ∞
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and, thus,
∑R

r=1 n
2
r/
∑R

r=1 nr needs to be bounded. Obviously, this condition is

fulfilled if nr is fixed and R → ∞. In empirical practice, however, nr is large

relative to R so that an asymptotic framework assuming nr/R → 0 is inappropriate

in typical empirical applications.

An identical estimator would be obtained by an alternative two-stage PC

estimator. Let F̃r,t denote the vector of the first m0 + mr PCs of the region-

specific covariance matrix T−1Y ′
rYr. The global factor is estimated by a second

PC analysis of the covariance matrix of the estimated factors T−1
∑T

i=1 F
′
tF t where

F t =
(
F̃ ′
1,t, . . . , F̃

′
R,t

)′
. This estimator may be referred to as the “bottom-up PC

estimator”. A problem with the last PC step is that the number of regions is often

too small in practice, violating the conditions established by Bai (2003) and Bai

and Ng (2002) for consistent estimation of the (global) factors.

For illustration, consider the model with a single global factor Gt. The equiva-

lence to the bottom-up and top-town PC estimators results from the fact that for

the eigenvalue problem we have

max
v

v′Y ′Y v

v′v
= max

v

∑R
r=1 v

′
rY

′
rYrvr∑R

r=1 v
′
rvr

= max
a1,...,aR

R∑
r=1

ar max
vr

v′rX
′
rXrvr
v′rvr

∣∣∣ subject to R∑
r=1

ar = 1

= max
a1,...,aR

R∑
r=1

arF̂
2
r,t , (8)

where v = (v1, . . . , vR)
′ and ai = v′ivi/

∑R
r=1 v

′
rvr. Accordingly, the first PC of the

full sample results as a linear combination of the R region-specific PCs and the

maximum is obtained as the largest eigenvalue of the sample covariance matrix

of the vector (F̂ ′
1,t, . . . , F̂

′
R,t). It follows that the bottom-up and the top-down PC

estimators are equivalent.

2.4.2 The sequential PC approach

Wang (2010) proposes a sequential PC estimator for maximizing the log-likelihood

estimator which is also based on the minimization of the RSS of the two-level factor

10



model.

S(F ∗,Λ∗) =
R∑

r=1

nR∑
i=1

T∑
t=1

(yt − Λ∗F ∗
t )

′(yt − Λ∗F ∗
t )

with respect to F ∗ = (F ∗
1 , . . . , F

∗
t )

′ and Λ∗.

Assume that we have a suitable initial estimator of the global factors, denoted

by Ĝ(0) = (Ĝ
(0)
1 , . . . , Ĝ

(0)
T )′. Conditional on these initial estimates it is straightfor-

ward to obtain initial estimators of the regional factors in region r. All variables

are purged of the global factor by running regressions of the variables on the es-

timated global factor. Then regional factors are estimated as the first mr PCs of

the sample covariance matrix

Σ̂(0)
r =

1

T

T∑
t=1

Y ′
rMĜ(0)Yr , (9)

where Yr = (yr,it) is the T × nr matrix of observations from region r and MĜ0 =

IT − Ĝ(0)(Ĝ(0)′Ĝ(0))−1Ĝ(0)′. Denote the T ×mr matrix of the resulting PCs as F̂
(0)
r .

To eliminate the regional factors from the sample the following R regressions are

performed

Yr = F̂ (0)
r Br +Wr for r = 1, 2, . . . , R. (10)

Note that at this stage the assumption is imposed that the regional factors are

orthogonal to the global factor (that enters the residual of this regression). Let

Ŵ = (Ŵ1, . . . , ŴR)
′ denote the T × (

∑R
r=1 nr) matrix of residuals from the R

regressions (10). The updated estimates of the global factors Ĝ
(1)
t are obtained as

the first m0 PCs obtained from the sample covariance matrix

Ω̂(1) =
1

T
Ŵ ′Ŵ .

With the updated estimate of the global factors the matrix Σ̂
(0)
r can be computed

as in (9) but using MĜ(1) instead of MĜ(0) in order to obtain the updated estimate

F̂
(1)
r . These steps are repeated until convergence.

Wang (2010) initializes the algorithm either with global factors obtained with

the top-down PC approach considered in the Section 2.4.1 or, alternatively, with

a confirmatory factor analysis given the set of admissible rotations of the regional
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PCs.

Since both sequential LS and PC approaches minimize the sum of squared er-

rors, the fix point is identical, and the approaches should yield the same estimates.

The main advantage of the LS estimator is that it can be straightforwardly gener-

alized to more than two factor levels with overlapping factor structures (as we will

show in Section 3), whereas the sequential PC estimator is confined to hierarchical

factor models. Second, the LS estimator is computationally less demanding and

tends to be faster. Third, in models with heteroskedastic or autocorrelated errors,

the sequential LS technique can be used to compute the implied ML estimator that

is equivalent to minimizing the weighted sum of squared residuals (cf. Breitung

and Tenhofen (2011)), which is equivalent to the (pseudo) ML estimator. It is

unclear how this could be achieved with the sequential PC approach.

2.4.3 The quasi ML approach

A related estimation procedure based on quasi ML is employed in Banbura et al.

(2010). The conceptual difference to the sequential LS approach is that their ap-

proach assumes that the factors are normally distributed random variables yielding

a log-likelihood function which includes – besides our RSS – an additional expres-

sion that is due to the distribution of the vector of factors. To maximize the

likelihood function an expectation maximization algorithm is adapted that was

originally proposed for the standard factor model without block structures. This

approach gives rise to a shrinkage estimator for the vector of factors given by

F̂
(1)
t = (Λ̂∗′

0 Λ̂
∗
0 + σ̄2

0In)
−1Λ̂∗′

0 yt , (11)

where σ̄2
0 = (NT )−1S(F̂ ∗

(0), Λ̂
∗
(0)). As N → ∞ we have Λ′Λ/N + (σ2/N)Im →

limN→∞ Λ′Λ/N and, therefore, the estimators (7) and (11) are asymptotically

equivalent.

3 The three-level factor model

The factor model can be extended to include further (overlapping) levels. Assume

an international macro-financial panel, where the variables are clustered accord-
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ing to some additional criteria. For example, the variables may be grouped into

output-related variables (e.g. production indices, employment), price variables

(e.g. consumer prices, producer prices, wages) and financial variables (e.g. in-

terest rates, stock returns). Accordingly, an additional index k = 1, . . . , K is

introduced and the factor model is written as

yrk,it = γ′
rk,iGt + λ′

rk,iFr,t + θ′rk,iHk,t + urk,it, (12)

where Hk,t is a mk × 1 vector of additional factors. The system can be casted

(period-wise) as



y11,·t
...

yR1,·t

y12,·t
...

yR2,·t
...

y1K,·t
...

yRK,·t



=



Γ11 Λ11 0 · · · 0 Θ11 0 · · · 0

Γ21 0 Λ21 · · · 0 Θ21 0 · · · 0
...

. . .
...

...
...

ΓR1 0 0 · · · ΛR1 ΘR1 0 · · · 0

Γ12 Λ12 0 · · · 0 0 Θ12 · · · 0

Γ22 0 Λ22 · · · 0 0 Θ22 · · · 0
...

. . .
...

...
...

ΓR2 0 0 · · · ΛR2 0 ΘR2 · · · 0
...

. . .
...

...
...

Γ1K Λ1K 0 · · · 0 0 0 · · · Θ1K

Γ2K 0 Λ2K · · · 0 0 0 · · · Θ2K

...
. . .

...
...

...

ΓRK 0 0 · · · ΛRK 0 0 · · · ΘRK





Gt

F1,t

...

FR,t

H1,t

...

HK,t


+



u11,·t
...

uR1,·t
...

u1K,·t
...

uRK,·t



yt = Λ∗∗ F ∗∗
t + ut . (13)

To identify the parameters we assume that E(Hk,tH
′
k,t) = Imk

as well as E(Hk,tG
′
t) =

0 and E(Hk,tF
′
r,t) = 0. The LS principle can be applied to estimate the factors and

factor loadings, where the iteration adopts a sequential estimation of the factors

Gt, F1,t, . . . , FR,t, and H1,t, . . . , HK,t. In what follows we focus on the sequential LS

procedure which is convenient to implement. Consistent starting values can be ob-

tained from a CCA of the relevant subfactors (see below). Let Ĝ
(0)
t , F̂

(0)
1,t , . . . , F̂

(0)
R,t ,
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and Ĥ
(0)
1,t , . . . , Ĥ

(0)
K,t denote the initial estimators. The elements of the loading matri-

ces can be estimated by running regressions of yrk,it on the initial factor estimates

Ĝ
(0)
t , F̂

(0)
1,t , . . . , F̂

(0)
R,t , and Ĥ

(0)
1,t , . . . , Ĥ

(0)
K,t. The resulting least-squares estimators for

the loading coefficients are organized as in the matrix Λ∗∗, yielding the estimator

Λ̂∗∗. An update of the factor estimates is obtained by running a regression of yt on

Λ̂∗∗ yielding the updated vector of factors, Ĝ
(1)′
t , F̂

(1)′
1,t , . . . , F̂

(1)′
R,t , and Ĥ

(1)
1,t , . . . , Ĥ

(1)
K,t.

With this updated estimates of the factors we are able to obtain improved estimates

of the loading coefficients by running again regressions of yrk,it on the estimated

factors. This sequential LS estimation procedure continues until convergence.

The last step involves orthogonalizing the two vectors of factors
(
F̂ ′
1,t, . . . , F̂

′
R,t

)
and

(
Ĥ ′

1,t, . . . , Ĥ
′
K,t

)
. Although this orthogonalization step is not necessary for

identification of the factors, it enables us to perform a variance decomposition of

individual variables with respect to the factors. Orthogonalizing the factors can

be achieved by regressing
(
F̂ ′
1,t, . . . , F̂

′
R,t

)
on
(
Ĥ ′

1,t, . . . , Ĥ
′
K,t

)
(or vice versa) and

taking the residuals as new estimates of
(
F ′
1,t, . . . , F

′
R,t

)
(or of

(
H ′

1,t, . . . , H
′
K,t

)
).

We note that the results may depend on whether we regress
(
F̂ ′
1,t, . . . , F̂

′
R,t

)
on(

Ĥ ′
1,t, . . . , Ĥ

′
K,t

)
or
(
Ĥ ′

1,t, . . . , Ĥ
′
K,t

)
on
(
F̂ ′
1,t, . . . , F̂

′
R,t

)
.

The initialization for the three-level factor model works as follows. We first

estimate the global factor as the first m0 PCs and the global factors are eliminated

from the variables by running LS regressions of the variables on the estimated

global factors.5 In the next step the CCA is employed to extract the common

component among the mr +mk estimated factors from region r, group k and the

estimated vectors from the same region r but different group k′. This common

component is the estimated regional factor. Similarly, the estimated factor Hk,t is

obtained from a CCA of the factor of region r, group k and a different region r′

but the same group. These initial estimates are used to start the sequential LS

procedure.

The overall estimation procedure outlined for the three-level factor model with

5Alternatively, a CCA between (i) the variables in region r and group k and (ii) the variables
in group r′ and k′ with r ̸= r′ and k ̸= k′ may be employed to extract the common factors. In
our experience the two-step top-down estimator used in our simulation performs similarly and
has the advantage that the starting values are invariant with respect to a reorganization of the
levels (that is interchanging regions and groups).
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an overlapping factor structure can be generalized straightforwardly to allow for

further levels of factors (provided that the number of units in each group is suffi-

ciently large). Furthermore, the levels may be specified as a hierarchical structure

(e.g. Moench et al. (2013)), that is, the second level of factors (e.g. regions) is

divided into a third level of factors (e.g. countries) such that each third level group

is uniquely assigned to one second level group. For such hierarchical structures

the CCA can be adapted to yield a consistent initial estimator for a sequential es-

timation procedure that switches between estimating the factors and (restricted)

loadings.

4 Monte Carlo simulations

4.1 Two-level factor model

In this section we first examine the small sample properties of the LS estimation

procedure for the two-level factor model (Section 2.2). We compare them to those

of the simple CCA approach (which provides us with starting values for the se-

quential LS approach), the two-step PC estimation procedure considered in Section

2.4.16 and the quasi ML approach7. An advantage of all these approaches is that

they do not take long. By contrast, the Bayesian method requires many hours

for a single estimation. Therefore, we are not able to include Bayesian methods

in our Monte Carlo study, but we will compare the sequential LS estimation and

the other procedures to the Bayesian approach in the first empirical application in

Section 5.1.

The Monte Carlo setup is as follows. The factors are generated (indepen-

dently) by a first order autoregressive process, where the autoregressive coefficient

is 0.5. The idiosyncratic components are also generated independently and follow

an AR(1) process with an autoregressive parameter of 0.1.8 The innovations of

6We have shown in Section 2.4.1 equivalence of the top-down and the bottom-up PC ap-
proaches and therefore, only show Monte Carlo results for one of them.

7We are grateful to Domenico Giannone for providing us with his Matlab codes.
8Note that (apart from the two-step PC estimator which requires the additional assumption

that R → ∞) all estimators are consistent if the factors and idiosyncratic components are weakly
autocorrelated and heteroscedastic.
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the global factor(s) and the idiosyncratic errors are independently standard nor-

mally distributed. The innovations of the regional factors are also independently

normally distributed; the standard deviations are set to stdfacreg ∈ {0.5, 1, 2}
in order to study the effect of the importance of the regional factors (relative to

the global factor(s)). All factor loadings are generated as N(1, 1), following Boivin

and Ng (2006). We finally multiply the idiosyncratic components by a scalar which

yields idiosyncratic and common components, which are about equally important.

We note that all results improve as the idiosyncratic component gets less impor-

tant relative to the common component. However, the relative performances of

the different methodologies remain unchanged.

We consider R ∈ {2, 4} regions with nr ∈ {20, 50, 80} variables in each region,

and one global and one regional factor in each region. The time dimension is

T ∈ {50, 200}. For each of the experiments we determine the R2 (or trace R2) of

a regression of the actual on the estimated factors based on 1000 replications of

the model.

From the Monte Carlo experiments presented in Table 1 it turns out that the

performance of the two-step PC estimator crucially depends on the relative impor-

tance of the global and regional factors. Only if the variance of the global factor is

large relative to the variance of the regional factors (stdregfac = 0.5), the two-

step PC estimator yields reliable estimates for the global factors, whereas the global

factors are not well estimated if the regional factors dominate (stdregfrac = 2).

The CCA estimator for the global factor is less sensitive to the relative impor-

tance of the global and regional factors and performs reasonably well for all values

of stdfacreg. This is due to the fact that if the regional factors are more impor-

tant than the global factor, the largest eigenvalue may correspond to a regional

factor instead of the global factor and the two-step PC estimator may confound

global with regional factors. In contrast, our two-step estimator identifies the

global factors by CCA of the (standardized) factors, which does not depend on

the relative importance of the factors.

While the simple CCA approach performs already well, iterations tend to lead

to small improvements on average. The sequential LS estimator (which uses CCA-

based starting values) produces even more realiable estimates of the global factor

in sample sizes typically encountered in macroeconomic datasets. The quasi ML

16



approach, finally, also delivers reliable global factor estimates. The average corre-

lation between true and estimated global factors is never smaller than 0.79 and in

general larger than 0.9.

In small samples, the regional factors are less precisely estimated by all methods

when they are less important than the global factors. Those estimates tend to

improve substantially as the sample size increases. However, as the standard

deviation of the regional factors relative to the global factor increases and as the

sample size grows, the regional factors are less precisely estimated with the quasi

ML approach.

For nr = 50, T = 200 and R = 2, we also compare the estimated density

functions of the R2 (resp. trace R2) of the global and regional factors as well as

the computing time across methods (on average over the simulations). Figure 1

shows that not only the correspondence between the factors obtained with the

two-step PC approach tends to be smaller than the one obtained with the other

methods, but also the variance is larger. The sequential procedures yield better

factor estimates, but in few cases (for stdfacreg= 2), the quasi ML approach

delivers rather inaccurate solutions.

We have also looked at the average (trace) R2 (means and distributions) of

the sequential PC approach suggested by Wang (2010) and of the sequential LS

approach, where we employ the two-step PC approach to generate the starting

values for the factor estimates. As expected, we obtain virtually the same results

as for the sequential LS approach with CCA-based starting values and, hence, do

not show them here.

Among the two methods with no iteration, the two-step PC approach is slightly

faster than the CCA approach. It takes, on average over all iterations, between

0.006 and 0.007 seconds (depending on stdfacreg) compared to 0.008 − 0.009

seconds with the CCA. Notwithstanding, the sequential LS approach with CCA

starting values tends to be faster (between 0.016 and 0.021 seconds) than the

sequential LS approach starting with the two-step PC approach (between 0.019

and 0.027 seconds). This suggests that, although the starting values do not seem

to matter for the precision of the factor estimates, using improved (CCA-based)

starting values leads to faster convergence of the algorithm. The sequential PC

approach takes longer than both sequential LS approaches, especially as the re-
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gional factors become more important (between 0.04 and 0.12 seconds). The quasi

ML approach is slower than the other methods. It takes between 0.30 and 1.08

seconds.

4.2 Three-level factor model

We next carry out simulations for the three-level factor model using the sequential

LS approach. Third-level factors (e.g. factors specific to certain types of variables)

are generated just like the regional factors. We consider stdfacreg∈ {0.5, 1, 2} and
stdfacvar∈ {0.5, 1, 2} to study the importance of the regional factors and the fac-

tors specific to certain types of variables relative to the global factors, respectively.

We further assume that each variable is driven by m0 = 1 global factor, mr = 1

regional factor and mk = 1 variable type-specific factor. We consider R = 2 re-

gions with nr ∈ {20, 50, 80} variables in each region and N/2 variables in each of

the K = 2 groups. The time dimensions are T ∈ {50, 200}. Again, we multiply

the idiosyncratic components by a scalar so that common components are about

equally important.

Overall, our simulation results suggest that in reasonably large samples the LS

approach yields very precise estimators of the factors. In small samples, global

factors are also quite precisely estimated, whereas the precision of regional and

variable type-specific factor estimates depends on the importance of those factors.

5 Applications

In this section, we provide three applications of our methodology to study inter-

national business and financial comovements and business cycle asymmetries in

the US. The first application serves to compare the methods for estimating a two-

level factor model presented in Section 2 with the Bayesian approach. The second

application makes use of the three-level factor model with an overlapping factor

structure as outlined in Section 3. The third application uses the sequential LS

approach for estimation of the two-level factor model (Section 2.2). But rather

than considering factors which are common to specific groups of variables (as in

first two applications), we consider factors which are common to specific periods.
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5.1 International business cycle comovements

There is an interest reaching far back in describing and understanding the inter-

national synchronization of business cycles. Examples for key questions that have

been addressed in the literature are: Does increased trade and financial integra-

tion lead to more or less synchronization of business cycles (something which is

theoretically unclear)?9 Has there been a decoupling of emerging economies from

advanced economies in recent years, for instance due to regional or bilateral in-

tegration agreements or similar policies within regions and, hence, emergence of

regional cycles?10

We basically replicate the analysis conducted by Hirata et al. (2013) using the

sequential LS and CCA methodologies, in comparison to their Bayesian approach

(and to the two-step PC and the quasi ML approaches). From their dataset of

annual consumption, investment and GDP growth for 106 countries11, we estimate

global and regional factors for the entire period 1960-2010 and separately for 1960-

1984 and 1985-2010. We initially follow Hirata et al. (2013) and estimate one

global factor and one factor for each of seven regions (North America, Europe,

Oceania, Latin America and the Carribean, Asia, Sub-Saharan Africa, Middle

East and North Africa). Hirata et al. (2013) also estimate country factors. We

use a simplified model with no country factors given the small number of series

available for each country. Nevertheless, the assumptions on the idiosyncratic

components in our model are fairly flexible to account for weak correlation across

variables (also within a country).

To apply the LS approach we do not need to make assumptions on the processes

for the factors and idiosyncratic components nor do we need to choose priors for

the parameters. When adopting the Bayesian approach we specify our model as

in Hirata et al. (2013) and refer to their study for details. The regional factors

are normalized to be positively correlated with GDP growth in a large country

in each region (here: US, Germany, Australia, Brazil, Japan, South Africa and

Morocco), and the global factor is normalized to be positively correlated with US

9See, e.g., Kose, Otrok and Whiteman (2003), Kose, Otrok and Prasad (2008), Kose, Prasad
and Terrones (2003), Kose, Prasad and Terrones (2007).

10See, e.g., Hirata et al. (2013), Kose et al. (2008).
11We are grateful to Ayhan Kose for kindly sharing his dataset with us.
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GDP growth.

Figure 2 shows the global and regional factors estimated over the entire period

1960-2010 obtained using the different methodologies. Overall, the sets of factor

estimates are similar. The LS approach suggests a somewhat less severe global

recession at the end of the sample than the other approaches. All approaches

attribute some of the Great Recession to the global factor, but for all regions but

Africa and the Middle East another important part is attributed to the regional

factors. There are also some minor differences between the levels of the African

factors estimated using the Bayesian and the other methodologies over parts of

the sample period.

Table 2 reveals that the regional factors estimated based on the LS approach are

notably correlated across regions. The highest correlations of above 0.4 in absolute

terms are found for the pairs North America with Europe and with Oceania and

Africa with Latin America. Most correlations are positive, some are negative, but

rather small.12

Table 3 shows the variance decomposition of GDP growth estimated based on

the sequential LS method on average over all countries in each region for the entire

sample period and the two subsamples. We find that the regional factors have be-

come more important over time in almost all regions, and in the second subsample,

they are more important than the global factor. Moreover, the importance of the

global factor has declined over time in most regions except for the Middle East

and Africa. In the latter two regions the shares accounted for by the global factor

have broadly doubled (from low shares though).

The shares explained by the common global and regional factors tend to be

larger than those estimated by Hirata et al. (2013). A reason might be that

Hirata et al. (2013) also estimate country factors while comovements among vari-

ables within a country in our approach are only implicitly accounted for by cross-

correlated idiosyncratic components.

12We have also verified correlations between regional factors estimated with the Bayesian
approach. Those are correlated to a similar extent (which is not surprising given that factor
estimates are similar), although uncorrelated factors are assumed in the underlying model. The
explanation is that the Bayesian approach involves overidentifying assumptions (namely that
the regional factors are uncorrelated across regions), which are generally not satisfied by the
estimated factors.
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As a robustness check, we also estimated the model using the sequential LS

method by allowing for two global and two regional factors. The overall com-

monality rises by 15 percentage points compared to the model with one global

factor and one regional factor in both subsamples. A comparison between the

two subsamples confirms the main result from the model with one global factor

and one regional factor, i.e. that higher business cycle synchronization is due to a

greater variance share explained by regional factors.13 Hence, overall we confirm

Hirata et al. (2013)’s main results that the increased business cycle synchroniza-

tion we have observed in the last decades is due to “regionalization” rather than

to “globalization”.

5.2 International financial linkages

In the second application, we broadly extend the previous analysis to financial cy-

cles at the global level. We address the following main questions. (i) How strongly

do financial variables in different countries comove? (ii) Are macroeconomic and

financial dynamics at the global level driven by the same common factor(s)? Or

are there (global) financial factors independent of macroeconomic factors? (iii)

Is there something like a “financial cycle”, i.e. do different groups of financial

variables share a common factor, or are there factors specific to individual groups

of financial variables? (iv) Are financial factors associated with financial develop-

ments in advanced or rather emerging economies or both?

It is far from clear what answers we should expect. While the global financial

crisis affected financial markets and economic growth worldwide, other financial

crises (such as the Asian crisis in 1997 or the Argentinian crisis in 1999-2002) only

mainly affected the neighbouring emerging countries. Financial variables do not

only move together during financial busts, but also in boom periods. For example,

prior to the latest crisis, many countries experienced simultaneously housing and

credit booms. The strong international comovement among financial variables can

13One global factor looks almost identical to the one estimated before. The other one seems
to match oil price movements fairly well. It has its largest trough around the first oil price shock
in 1973/74 and another deep trough around the second oil price shock in 1979/80 (there are no
major troughs around the Gulf war and the war with Iraq 1991 and 2003, respectively). Factor
plots and variance shares are available upon request.
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be explained with financial globalization having led to capital flows, an equalization

of asset prices through arbitrage and confidence effects, and cross-border lending

and global banks. Moreover, monetary policy has become increasingly similar, at

least in advanced countries.14

We broadly use the dataset built by Eickmeier, Gambacorta and Hofmann

(forthcoming). It comprises overall 348 quarterly series from 11 advanced and

13 emerging market economies over 1995-2011. 207 series are financial and 141

macroeconomic series. The macroeconomic block includes, for each country (if

available for a sufficiently long time span) price series (consumer prices, producer

prices, GDP deflator) and output series (GDP, consumption, investment). The

financial block contains stock and house prices, domestic and cross-border credit,

interest rates (money market rates, long-term government bond yields), monetary

aggregates M0 and M2 as well as implied stock market volatility. All series enter

in year-on-year growth rates, except for interest rates and implied stock market

volatility which enter in levels. Also, each series is demeaned, and its variance is

normalized to one.15

We now apply our three-level factor model to the dataset. We estimate a

“global factor” Gt, which is common to all variables in our dataset. Moreover, we

estimate regional factors Ft, i.e. a factor specific to all variables in advanced coun-

tries (“advanced economies’ factor”) and one specific to all variables in emerging

economies (“emerging economies’ factor”).16 We consider only two regions because

we have less countries in our sample than in the previous application.17 Finally,

we estimate variable type-specific factors Ht. It is unclear a priori how to divide

14There has been a general change in the strategy towards inflation targeting. Central banks
now tend to react to output growth and inflation which comove internationally. And recently,
monetary policy was coordinated explicitly or implicitly to fight the crisis.

15The dataset used originally by Eickmeier et al. (forthcoming) also comprises lots of - less
standard - US financial series as well as overnight rates and lending rates for different countries,
which are not included here. Overnight and lending rates are not included in order not to
give interest rates in our dataset a too large weight. Asset prices are included here, but not
in the baseline model of Eickmeier et al. (forthcoming). For more details on the dataset and
transformations we refer to their analysis.

16Those factors are normalized to be positively correlated with US GDP (global and advanced
economies’ factors) and GDP of Hong Kong (emerging economies’ factor).

17Our application is an extension of Eickmeier et al. (forthcoming) who extract factors common
to all financial variables and identify them as a global monetary policy factor, a global credit
supply factor and a global credit demand factor, but do not consider regional factors.
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the variables. Hence, we consider several (variable-wise) splits of the data leading

to different models18:

• real activity series; price series; financial series (all other variables) (model

1)

• real activity series; price series; financial price series (comprising house and

stock prices and implied volatility); financial quantities (comprising money

and credit aggregates) (model 2)

• real activity series; price series; interest rates; stock prices; house prices;

credit; monetary aggregates; implied stock market volatility.19 (model 3)

The orthogonalization of variable type-specific and regional factors is achieved

by regressing the regional factors on the variable type-specific factors.

One advantage of a finer level of disaggregation is that factors are more easily

interpretable. Figure 3, hence, shows the financial factor estimates from model

3 (which are estimates conditional on the global and regional factors). The tem-

poral evolution looks broadly plausible. The financial boom in the mid-2000s is

characterized by below average interest rate and implied volatility factors and an

above average stock price factor early in the boom, as well as above average credit,

money and - to a less clearer extent - house price factors later in the boom. This is

consistent with various explanations for the boom and subsequent crisis, including

loose monetary policy (in the US and worldwide) (Taylor (2009), Hofmann and

Bogdanova (2012)), the “global saving glut” (Bernanke (2005)) (which may have

led to lower bond yields), strong credit growth due to deregulation on financial

markets (Eickmeier et al. (forthcoming)) and major changes in the housing sec-

tor. It is interesting that the housing boom is indeed reflected somewhat in the

global housing factor, even though the increase in house prices was not shared by

18The variables can certainly be split also in other ways. We leave systematic assessment of
the best split to future research.

19The factors were normalized to be positively correlated with US GDP (macro factor and
real activity factor), the US GDP deflator (price factor), US stock prices (stock price factor), US
house prices (house price factor), US domestic credit (credit factor), US M2 (money factor) and
Chinese GDP (emerging factor), US money market rate (interest rate factor), US implied stock
market volatility (implied stock market volatility factor).
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some major emerging and advanced countries (e.g. Thailand, Malaysia, Germany,

Japan and Korea) (André (2010), Ferrero (2012)). During the global financial cri-

sis, the implied stock market volatility factor shows the greatest peak, and stock

and house price factors display the deepest troughs. At the end of the sample pe-

riod, we observe that the interest rate factor is still far below average, suggesting

a very loose monetary policy stance. The evolution of all factors indicate sharp

reversals towards improvements in financial markets, but only conditions in global

stock markets seem to have fully recovered after the global financial crisis (at least

temporarily).

We are now ready to answer the questions raised at the beginning of this

section.

(i) Financial variables worldwide strongly comove, with variance shares ex-

plained by common factors of more than 40 percent on average over all financial

variables (Table 4). The degree of synchronization among financial variables world-

wide is similar to the degree of synchronization among macroeconomic variables.

There is, however, a lot of heterogeneity across variables. The commonality is par-

ticularly high for fast-moving financial variables such as stock prices and interest

rates and considerably lower for monetary and credit aggregates as well as house

prices. The finding for house prices is not surprising given that houses are not

tradable and that regulation and financing in housing markets differ across coun-

tries. Interestingly, the commonality is relatively low for stock price volatility. One

possible explanation is that the high observed degree of worldwide comovement of

financial stress or general uncertainty, which should be reflected in the volatility

series, is already captured by other common (global or regional) factors.

(ii) Macroeconomic and financial dynamics are driven by the same (global and

regional) factors, which explain together more than 20 percent and roughly 30

percent of the variation in macro and financial variables, respectively. This is

in line with Claessens, Kose and Terrones (2012) who illustrate strong linkages

between different phases of macro and financial cycles. We find, however, that

financial factors independent from macro factors also matter for financial variables,

explaining between 10 and 24 percent, depending on the model. Global factors

tend to be more important for financial variables than regional factors.

(iii) The overall commonality in the data (all data, but also only financial data)
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(i.e. the data fit) remains remarkably similar if financial variables are explained by

factors specific to individual types of financial variables rather than by one single

common financial factor. This is remarkable, given that we would have expected

more disaggregated factors to be more highly correlated with individual series and,

hence, the explained part to increase with a higher level of disaggregation. (The

disaggregated financial factors in model 3 explain indeed a larger share of fluc-

tuations in interest rates and asset prices compared to model 2, but the overall

commonality does not increase (because the shares explained by the regional fac-

tors are lower in model 3 compared to model 2).) That this is not the case might

suggest that it is sufficient to split the data into real activity, prices and financial

variables (model 1) or real activity, prices, financial quantities and prices (model

2) (or, put differently, it might suggest existence of a “financial cycle” or a “finan-

cial quantity cycle” and a “financial price cycle”) and that a finer split may not

be necessary. This is useful information for modellers who study the international

synchronization of financial variables.

(iv) We also find that the financial factors load highly on variables from many

advanced and emerging countries simultaneously with no clear regional pattern

(results are not shown, but available upon request). This underlines the global

nature of financial market developments.

Our main results are broadly robust once we let the sample end before the

global financial crisis and once we alter the last estimation step and orthogonalize

regional and variable type-specific factors by regressing variable type-specific on

regional factors rather than regressing regional on variable type-specific factors, as

before.

5.3 Asymmetries over the business cycle in the US

There exists ample evidence for asymmetries in economic dynamics over the busi-

ness cycle. On the empirical side, such asymmetries are typically confirmed by

studies using regime switching time series models (e.g. Peersman and Smets

(2002), Goodwin (1993), Chauvet and Hamilton (2006), Nason and Tallman (2012)).

Also, a general finding in the forecasting literature is that it is particularly hard

to predict recessions (and turning points more generally) compared to business
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cycle movements during expansions20, which also suggests that there are instabil-

ities over the business cycle. Most recently the difficulty in predicting financial

crises (which often coincide with recessions and have unique features (Reinhart

and Rogoff (2011)) has been re-emphasized. On the theoretical side, agency prob-

lems between lenders and borrowers, capacity constraints or the presence of menu

costs are listed as possible explanations for asymmetric dynamics over the business

cycle.21

In this third application, we apply the two-level factor model to a large monthly

US macroeconomic and financial dataset to investigate business cycle asymmetries.

The dataset is taken from Stock and Watson (forthcoming). It contains real ac-

tivity measures, prices, interest rates and spreads, monetary and credit aggregates

and exchange rates between January 1959 and August 2011. The original dataset

includes 138 variables, but we only use series which are available for the entire pe-

riod and, hence, work with 108 variables. The series are transformed as in Stock

and Watson (forthcoming), i.e. differences or log differences are taken if necessary

to make them stationary, and they are standardized to have a zero mean and a

unit variance.22

We aim to estimate a factor which is common to all variables at each point in

time (“symmetric factor”) as well as a factor which only exists in recessions (“re-

cession factor”) and one which only exists in expansions (“expansion factor”). We

use the NBER dating for recessions. The recession (expansion) factor is assumed

not to load on the variables in the dataset during expansions (recessions). Hence,

unlike in the previous application, there are (phase-specific) factors which are not

common across all t rather than all i. This is equivalent to estimating a factor

model with factor loadings which vary across different business cycle phases. How-

20Elliott and Timmermann (2013) on p. 297 focus on predictions around turning points,
because “downturns and recoveries pose the greatest challenge for economic forecasters”.

21Capacity constraints or the presence of menu costs (Ball and Mankiw (1994)) give rise to a
convex short-run aggregate supply function and, consequently, changes in aggregate demand will
have stronger effects on output and weaker effects on inflation in recessions than in expansions.
Another reason for asymmetries may be agency problems between lenders and borrowers that are
greater in recession (or financial crisis) than in normal times due to binding collateral constraints
and increased information asymmetries between lenders and borrowers (Kiyotaki and Moore
(1997), Bernanke, Gertler and Gilchrist (1999), Guerrieri and Iacoviello (2012)).

22See Stock and Watson (forthcoming) for details on the dataset.
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ever, the variables are also driven by a factor, movements of which have a stable

impact on the variables. The empirical analysis will attribute movements in the

variables to the symmetric and the phase-specific factors. In this way it will inform

us about the extent economic dynamics are instable and the characteristics of the

instability.

The estimation is performed in several steps. First, we apply the two-level

factor model using the sequential LS methodology to the transpose of the T ×
N data matrix (where N equals the number of variables in the entire dataset).

This yields us loadings of each variable associated with the symmetric factor,

the recession factor and the expansion factor. Second, we apply a cross-section

regression of our data on the estimated loadings associated with the symmetric

factor and the recession (expansion) factor at each point in time during recessions

(expansions) to obtain the global factor as well as the recession (expansion) factor.

This delivers phase-specific and global factors which are not necessarily orthogonal.

In order to carry out a variance decomposition, we (third) regress each phase-

specific factor (separately for recession and expansion phases) on the global factor,

and the residuals represent the new phase-specific factor estimates (which are

now orthogonal to the global factor). Fourth, we re-estimate the loadings. As the

loadings associated with the symmetric factor are constant over the sample period,

whereas the loadings associated with the phase-specific factors differ across phases,

we first regress each variable on the symmetric factor which yields us loadings

associated with the symmetric factor. We then regress the difference between

each series and the fitted value of that regression on the recession factor during

recessions and the expansion factor during expansions. This yields us loadings

associated with the phase-specific factors.

We address the following questions. (i) How large is the comovement among

variables in recessions compared to expansions? (ii) How important are the phase-

specific (recession and expansion) factors compared to the symmetric factor? (iii)

Is the recession factor associated with different variables than the expansion factor

or the symmetric factor?

(i) To measure the comovement between variables in the two phases, we com-

pute the sum of the shares of the variances explained by the symmetric and the

phase-specific factors. On average over all variables there tends to be higher com-
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monality during recessions than during expansions (Table 5) (see D’Agostino and

Giannone (2012) and Liebermann (2012) for a similar finding). During recessions,

the common factors explain 24 percent compared to 18 percent during expansions.

(ii) The phase-specific factors seem to matter. They explain 7 and 8 percent

of the variation on average over all variables in expansions and recessions, respec-

tively. This indicates that there are indeed non-negligible asymmetries over the

business cycle. However, the bulk of the variation is still explained by the symmet-

ric factor which has a time-constant impact on the variables. This holds for both

expansions when the symmetric factor explains 11 percent and recessions when it

explains 16 percent and suggests that the bulk of the common dynamics is stable

over time.

(iii) Table 6 shows the variables with the highest 10 absolute loadings associated

with the factors. The symmetric factor is mainly related to labor market variables,

and the expansion factor to industrial production as well as credit spreads. The

recession factor loads most highly on reserves and monetary aggregates as well as

interest rates and spreads. There are several possible interpretations of this latter

finding. One is that monetary and financial variables are particularly affected

and comove particularly strongly in recessions. Also, financial frictions may be

particularly relevant during recessions. Another possible interpretation is that

recessions are strongly driven by developments in financial markets.23 Four of

the eight recessions in our sample period coincide with financial crises (following

the dating for financial crises by Lopez-Salido and Nelson (2010)). As loadings

can be interpreted as both effects factor movements have on certain variables and

weights of variables in the factors, we cannot ultimately discriminate between the

explanations.

We carry out several robustness checks. First, to assess to what extent our

results are driven by the global financial crisis, we re-estimate our model for the

pre-crisis period 1959-2007. The overall comovement slightly declines; the sum of

the variance shares explained by the phase-specific and the symmetric factors are

now at 19 and 16 percent for recessions and expansions, respectively. Otherwise,

23This would be in line with Del Negro and Schorfheide (2012), Faust, Gilchrist, Wright and
Zakrajsek (2012) and Gilchrist and Zakrajsek (forthcoming). They find usefulness of financial
frictions (Del Negro and Schorfheide (2012)) and credit spreads (all three) for forecasting output
during the global financial crisis period.
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results remain very similar, and we make them available upon request.

Second, the shares explained by one symmetric factor and one phase-specific

factor for recessions and expansions are, overall, quite low. Therefore, we re-

estimate the model with two and three symmetric, two and three recession and

two and three expansion factors. For brevity, we only show results on variance

shares explained by three (symmetric, recession and expansion) factors in Table 5.

The overall commonality rises to 46 percent on average over all variables during

recessions and 37 percent during expansions. Hence, the model with more factors

confirms the main previous findings: variables comove more in recessions than in

expansions; instabilities matter, but the symmetric factors are still more important

that the phase-specific factors.

6 Concluding remarks

In this paper we have compared alternative estimation procedures for multi-level

factor models which impose blocks of zero restrictions on the associated matrix

of factor loadings. For the two-level factor model we have suggested an estimator

based on CCA and a simple sequential LS algorithm that minimizes the total sum

of squared residuals. The latter estimator is related toWang (2010)’s sequential PC

estimator and to Banbura et al. (2010)’s quasi ML approach, and it is much simpler

and faster than Bayesian approaches previously employed in the literature. The

sequential LS and CCA estimation approaches can be applied to block structures

of two or higher levels of factors (with either overlapping or hierarchical factor

structures). Monte Carlo simulations suggest that the estimators perform well (in

terms of precision of factor estimates and computing time) in typical sample sizes

encountered in the factor analysis of macroeconomic data sets.

We have applied the methodologies to study international comovements of

business and financial cycles as well as asymmetries over the business cycle in the

US. We first basically replicate the study by Hirata et al. (2013) and also find that

regional cycles have become more important and global cycles less important over

time. Our factor estimates (based on sequential LS or CCA) and their (Bayesian)

factor estimates are similar. We then move on to analyze the comovement of

financial variables at the global level. We find that the estimated financial factors
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plausibly evolve over time. The international synchronization of financial variables

is comparable to the comovement of macro variables. Both types of variables share

common factors, but independent financial factors also seem to matter. Finally,

we demonstrate that the sequential LS approach can be applied to estimate factors

that are specific not only to certain groups of variables, but also to certain periods

(such as recession and expansions). This idea is adopted in the third application.

We find that there are notable asymmetries over the US business cycle, but that

the bulk of common dynamics is stable over time. The comovement of variables is

larger in recessions than in expansions. Finally, the recession factor is most highly

correlated to monetary and financial variables, where as expansion and symmetric

factors are mostly related to real activity variables.
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Table 1: Monte Carlo simulation results: R² (or trace R²) of a regression of actual on esti-
mates factors (based on 1000 replications) 
 
(a) Two-level factor model  

 
 
 
  

2-step PC CCA Sequential LS Quasi ML
nr T R stdregfac G F G F G F G F
20 50 2 0.5 0.92 0.67 0.91 0.64 0.95 0.69 0.95 0.66
20 50 2 1 0.68 0.73 0.85 0.82 0.92 0.85 0.92 0.83
20 50 2 2 0.18 0.69 0.64 0.85 0.79 0.89 0.72 0.83
20 50 4 0.5 0.96 0.73 0.97 0.71 0.98 0.72 0.98 0.71
20 50 4 1 0.86 0.85 0.95 0.86 0.96 0.86 0.96 0.85
20 50 4 2 0.33 0.84 0.84 0.89 0.89 0.90 0.89 0.89
50 50 2 0.5 0.95 0.82 0.96 0.82 0.98 0.84 0.98 0.83
50 50 2 1 0.74 0.82 0.94 0.91 0.97 0.92 0.97 0.90
50 50 2 2 0.18 0.77 0.85 0.93 0.92 0.94 0.87 0.86
50 50 4 0.5 0.98 0.86 0.99 0.85 0.99 0.85 0.99 0.85
50 50 4 1 0.88 0.91 0.98 0.92 0.98 0.93 0.98 0.91
50 50 4 2 0.34 0.89 0.94 0.94 0.96 0.94 0.95 0.90
80 50 2 0.5 0.95 0.87 0.98 0.88 0.99 0.89 0.99 0.87
80 50 2 1 0.74 0.83 0.96 0.93 0.98 0.94 0.98 0.90
80 50 2 2 0.19 0.78 0.90 0.94 0.95 0.95 0.92 0.85
80 50 4 0.5 0.98 0.90 0.99 0.90 0.99 0.90 0.99 0.89
80 50 4 1 0.89 0.92 0.99 0.94 0.99 0.94 0.99 0.92
80 50 4 2 0.35 0.90 0.96 0.95 0.97 0.95 0.97 0.88
20 200 2 0.5 0.93 0.73 0.92 0.70 0.96 0.74 0.96 0.74
20 200 2 1 0.72 0.79 0.87 0.86 0.93 0.88 0.93 0.88
20 200 2 2 0.17 0.74 0.72 0.90 0.84 0.92 0.81 0.90
20 200 4 0.5 0.96 0.77 0.97 0.76 0.98 0.76 0.98 0.77
20 200 4 1 0.88 0.88 0.95 0.88 0.96 0.89 0.97 0.88
20 200 4 2 0.35 0.87 0.88 0.92 0.91 0.92 0.91 0.92
50 200 2 0.5 0.95 0.86 0.97 0.86 0.98 0.88 0.98 0.88
50 200 2 1 0.76 0.86 0.95 0.94 0.97 0.94 0.97 0.93
50 200 2 2 0.17 0.81 0.87 0.96 0.93 0.96 0.92 0.91
50 200 4 0.5 0.98 0.89 0.99 0.89 0.99 0.89 0.99 0.89
50 200 4 1 0.90 0.94 0.98 0.95 0.99 0.95 0.99 0.94
50 200 4 2 0.39 0.92 0.95 0.96 0.97 0.96 0.96 0.94
80 200 2 0.5 0.95 0.90 0.98 0.91 0.99 0.92 0.99 0.91
80 200 2 1 0.77 0.88 0.97 0.96 0.98 0.96 0.98 0.93
80 200 2 2 0.17 0.83 0.92 0.97 0.96 0.97 0.95 0.90
80 200 4 0.5 0.98 0.92 0.99 0.92 0.99 0.93 0.99 0.92
80 200 4 1 0.90 0.95 0.99 0.96 0.99 0.96 0.99 0.95
80 200 4 2 0.40 0.93 0.97 0.97 0.98 0.98 0.98 0.92
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Table 1: Monte Carlo simulation results (based on 1000 replications) cont. 
 
(b) Three-level factor model (LS method) 

 

Notes: For details on the simulation design, see the text. G: global factor, F: regional factor, H: variable-specific 
factor.  

nr T stdregfac stdvarfac G F H nr T stdregfac stdvarfac G F H
20 50 0.5 0.5 0.91 0.51 0.51 20 200 0.5 0.5 0.94 0.66 0.67
20 50 0.5 1 0.86 0.35 0.74 20 200 0.5 1 0.90 0.53 0.84
20 50 0.5 2 0.61 0.13 0.71 20 200 0.5 2 0.76 0.18 0.85
20 50 1 0.5 0.86 0.74 0.34 20 200 1 0.5 0.90 0.84 0.52
20 50 1 1 0.82 0.71 0.70 20 200 1 1 0.87 0.81 0.81
20 50 1 2 0.56 0.42 0.71 20 200 1 2 0.74 0.63 0.87
20 50 2 0.5 0.62 0.72 0.13 20 200 2 0.5 0.76 0.84 0.17
20 50 2 1 0.54 0.70 0.42 20 200 2 1 0.74 0.86 0.62
20 50 2 2 0.41 0.66 0.66 20 200 2 2 0.64 0.82 0.82
20 50 0.5 0.5 0.96 0.60 0.68 20 200 0.5 0.5 0.97 0.71 0.81
20 50 0.5 1 0.91 0.40 0.80 20 200 0.5 1 0.95 0.57 0.91
20 50 0.5 2 0.60 0.17 0.68 20 200 0.5 2 0.78 0.16 0.85
20 50 1 0.5 0.94 0.81 0.53 20 200 1 0.5 0.95 0.86 0.73
20 50 1 1 0.91 0.77 0.83 20 200 1 1 0.94 0.83 0.89
20 50 1 2 0.55 0.46 0.69 20 200 1 2 0.80 0.64 0.89
20 50 2 0.5 0.84 0.85 0.19 20 200 2 0.5 0.89 0.90 0.37
20 50 2 1 0.79 0.85 0.62 20 200 2 1 0.88 0.90 0.81
20 50 2 2 0.54 0.78 0.72 20 200 2 2 0.80 0.86 0.90
50 50 0.5 0.5 0.97 0.77 0.77 50 200 0.5 0.5 0.98 0.84 0.85
50 50 0.5 1 0.95 0.63 0.88 50 200 0.5 1 0.96 0.78 0.93
50 50 0.5 2 0.85 0.26 0.88 50 200 0.5 2 0.91 0.53 0.95
50 50 1 0.5 0.95 0.89 0.63 50 200 1 0.5 0.96 0.93 0.79
50 50 1 1 0.94 0.88 0.87 50 200 1 1 0.95 0.92 0.91
50 50 1 2 0.84 0.74 0.90 50 200 1 2 0.91 0.85 0.95
50 50 2 0.5 0.84 0.87 0.24 50 200 2 0.5 0.91 0.95 0.50
50 50 2 1 0.83 0.90 0.73 50 200 2 1 0.90 0.95 0.85
50 50 2 2 0.71 0.86 0.86 50 200 2 2 0.86 0.93 0.93
50 50 0.5 0.5 0.98 0.80 0.86 50 200 0.5 0.5 0.99 0.86 0.91
50 50 0.5 1 0.97 0.67 0.91 50 200 0.5 1 0.98 0.81 0.96
50 50 0.5 2 0.85 0.29 0.85 50 200 0.5 2 0.95 0.55 0.97
50 50 1 0.5 0.98 0.91 0.77 50 200 1 0.5 0.98 0.94 0.88
50 50 1 1 0.97 0.89 0.92 50 200 1 1 0.98 0.92 0.95
50 50 1 2 0.87 0.77 0.90 50 200 1 2 0.95 0.86 0.97
50 50 2 0.5 0.93 0.92 0.36 50 200 2 0.5 0.96 0.96 0.71
50 50 2 1 0.92 0.93 0.84 50 200 2 1 0.95 0.96 0.92
50 50 2 2 0.79 0.90 0.88 50 200 2 2 0.93 0.94 0.96
80 50 0.5 0.5 0.98 0.84 0.85 80 200 0.5 0.5 0.98 0.90 0.90
80 50 0.5 1 0.97 0.76 0.92 80 200 0.5 1 0.98 0.85 0.95
80 50 0.5 2 0.90 0.37 0.91 80 200 0.5 2 0.95 0.69 0.97
80 50 1 0.5 0.97 0.92 0.76 80 200 1 0.5 0.98 0.96 0.85
80 50 1 1 0.96 0.91 0.91 80 200 1 1 0.97 0.94 0.94
80 50 1 2 0.91 0.84 0.94 80 200 1 2 0.94 0.90 0.97
80 50 2 0.5 0.90 0.91 0.37 80 200 2 0.5 0.94 0.97 0.68
80 50 2 1 0.91 0.93 0.83 80 200 2 1 0.94 0.97 0.90
80 50 2 2 0.84 0.91 0.91 80 200 2 2 0.91 0.96 0.96
80 50 0.5 0.5 0.99 0.87 0.90 80 200 0.5 0.5 0.99 0.91 0.94
80 50 0.5 1 0.98 0.79 0.94 80 200 0.5 1 0.99 0.87 0.97
80 50 0.5 2 0.92 0.41 0.90 80 200 0.5 2 0.97 0.72 0.98
80 50 1 0.5 0.99 0.93 0.85 80 200 1 0.5 0.99 0.96 0.92
80 50 1 1 0.98 0.92 0.94 80 200 1 1 0.98 0.95 0.97
80 50 1 2 0.94 0.86 0.94 80 200 1 2 0.97 0.91 0.98
80 50 2 0.5 0.95 0.94 0.49 80 200 2 0.5 0.97 0.97 0.82
80 50 2 1 0.95 0.95 0.90 80 200 2 1 0.97 0.97 0.94
80 50 2 2 0.90 0.93 0.93 80 200 2 2 0.95 0.96 0.97
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Table 2: Correlation between regional factors 1961-2010 (sequential LS methodology) (ap-
plication 1) 

  
 
Table 3: Variance shares of GDP growth explained by global and regional factors in percent 
(1 global factor and 1 regional factor, sequential LS methodology) (application 1) 

 

(1) (2) (3) (4) (5) (6) (7)
North America (1) 1
Latin America (2) 0.16 1
Europe (3) 0.47 0.12 1
Africa (4) 0.02 0.44 0.22 1
Asia (5) -0.01 0.14 0.02 -0.12 1
Middle East (6) -0.13 0.15 -0.28 -0.09 -0.12 1
Oceania (7) 0.46 -0.02 0.33 0.25 0.00 -0.05 1

1960-2010 1960-1984 1985-2010
Glob Reg Glob+Reg Glob Reg Glob+Reg Glob Reg Glob+Reg

World 15 16 31 11 19 30 9 28 37
North America 28 58 86 35 47 82 19 73 92
Latin America 12 18 31 13 25 38 7 23 30
Europe 35 19 54 18 31 49 9 52 61
Africa 7 8 15 7 9 16 12 13 24
Asia 18 23 41 13 14 27 7 38 45
Middle East 9 16 25 4 17 21 9 22 31
Oceania 8 44 52 18 43 60 13 54 67
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Table 4: Variance shares explained by the common factors on average over all and over 
groups of variables in percent for 1995-2011 (sequential LS methodology) (application 2) 

   

Global Regional Variable-spec. Idio
Model 1
All variables 14 13 17 56
Advanced countries 10 12 20 58
Emerging market economies 18 14 13 54
All macro 11 10 26 53
All financial 17 15 10 58
All interest rates 33 17 9 41
All stock prices 11 11 38 40
All house prices 9 12 4 75
All credit 17 16 11 56
All money 11 19 4 66
All implied volatility 12 13 6 69
Model 2
All variables 15 12 18 56
Advanced countries 12 10 20 58
Emerging market economies 18 13 15 54
All macro 11 9 25 55
All financial 18 13 13 56
All interest rates 38 18 5 39
All stock prices 11 18 26 45
All house prices 5 11 1 83
All credit 15 14 14 57
All money 12 11 18 59
All implied volatility 13 10 12 64
Model 3
All variables 17 4 20 59
Advanced countries 15 5 22 58
Emerging market economies 19 3 18 60
All macro 19 4 15 62
All financial 16 4 24 57
All interest rates 7 2 40 50
All stock prices 32 1 34 33
All house prices 25 2 31 41
All credit 16 8 13 63
All money 17 4 15 64
All implied volatility 11 5 11 73
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Table 5: Variance share explained by the factors on average over all variables in percent 
(sequential LS methodology) (application 3) 

 

Notes: m0: number of symmetric factors, mr: number of phase-specific (i.e. recession and expansion) factors. 
 

Table 6: Variables associated with the factors exhibiting the 10 largest absolute loadings 
(sequential LS methodology) (application 3) 

 

  

Recessions Expansions
m0 = mr = 1
Symmetric factor 16 11
Phase-spec. factor 8 7
Symm.+phase-specific 24 18
m0 = mr = 3
Symmetric factor 30 23
Phase-spec. factor 15 14
Symm.+phase-specific 45 37

Symmetric factor Expansion factor Recession factor
Unemp Rate IP: Dur Cons. Goods TotRes
Urate:Age>20 Men IP: Auto BAA Bond
BAA-GS10 IP: Consumer goods Mbase
Urate_ST Capu Man. Com Paper
Emp: Private IP: Total index TM-6MTH
Emp:Nonfarm IP: Final products TB-1YR
Emp:Goods AAA_GS10 TB-3Mth
Emp: mfg GS10_tb3m S&P 500
AAA_GS10 IP: Dur gds materials AAA Bond
Urate: Age>20 Women BAA-GS10 DJIA
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Figure 1: Smoothed distributions of R² (or trace R²) of a regression of true on estimated fac-
tors (or trace R²) (for T = 200, ng = 50, R = 2) (1000 replications) 
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Figure 2: Estimates for global and regional factors of international business cycles (black: 
sequential LS, magenta dashed: CCA, red dotted: Bayesian (posterior mean), blue dashed: 
quasi ML, green dotted dashed: two-step PC) (model with 1 global factor and 1 regional fac-
tor for each country) (application 1) 
 
(a) Global factor 

 
(b) Regional factors 

 
Notes: The Bayesian approach is based on 1,000 burnins and 10,000 draws (to be increased).   
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Figure 3: Variable-specific factor estimates from model 3 (sequential LS methodology, appli-
cation 2) 

 
Notes: The factors are normalized as described in the main text. 
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