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Non-technical summary

A risk premium is the compensation demanded by investors for holding a financial asset

with risky payoffs that exceeds the risk-free rate. A recent strand of literature believes

that the fear of large negative shocks is a component that drives asset prices because

investors expect compensation for the risk that such a rare event occurs. This paper

aims at estimating equity risk premia that are due to the compensation for rare events.

Rare events, such as the collapse of Lehman in September 2008, trigger large price jumps

and are seldomly observed in the data which makes it hard to estimate the distribution

of such events. I use a newly developed method to extract price jumps from option data

and high frequency futures price data of the S&P 500 for estimating the distribution of

rare events and the equity risk premia for the US stock market. In addition, the method

allows for constructing an investor fear index. I replicate the method expanding the data

sample to include more recent years. Furthermore, I apply the method to German data

using the DAX as the proxy for the German stock market.

The compensation for rare events accounts for a considerable part of the equity risk

premia in both stock markets. The results are much higher than the results of similar

analyses. The investor fear index works very well, as it spikes at all significant events

that moved the stock markets. But the correlation of the fear index with commonly used

volatility indices such as the VIX for the US market and the VDAX for the German

market is about 90%. Moreover, in the financial crisis the fear index spikes only after

the Lehman default, whereas indicators based on credit spreads increase sharply much

earlier. Therefore, the fear index appears to be inappropriate as an early-warning tool

but describes the prevalent situation in the stock markets well.



Nicht-technische Zusammenfassung

Eine Risikoprämie ist der Aufschlag gegenüber dem risikofreien Zinssatz, der von den

Anlegern für das Halten eines finanziellen Vermögenswerts mit risikobehaftetem Ka-

pitalrückfluss verlangt wird. In Teilen der aktuellen Fachliteratur wird die Auffas-

sung vertreten, dass die Furcht vor ausgeprägt negativen Schocks eine Triebkraft der

Vermögenspreisentwicklung ist, weil die Anleger einen finanziellen Ausgleich für das

Risiko erwarten, dass ein derartig seltenes Ereignis tatsächlich eintritt. Im vorliegen-

den Diskussionspapier soll geschätzt werden, inwieweit die Aktienrisikoprämien auf diese

Kompensation für seltene Ereignisse zurückgehen. Außergewöhnliche Ereignisse, wie

etwa der Zusammenbruch von Lehman Brothers im September 2008, verursachen starke

Preissprünge. Es gibt dazu nur wenige Beobachtungen in den Daten, was eine Schätzung

der Verteilung solcher Ereignisse schwierig macht. Im vorliegenden Beitrag wird eine

neu entwickelte Methode angewandt. Diese ermittelt Preissprünge aus Optionsdaten

und Hochfrequenzdaten zu Preisen von Terminkontrakten auf den S&P 500, um die

Verteilung seltener Ereignisse und die Aktienrisikoprämien für den US-Aktienmarkt zu

schätzen. Außerdem läßt sich daraus ein Index der Anlegerangst konstruieren. Diese

Vorgehensweise wird hier repliziert und der Untersuchungszeitraum um die letzten Jahre

erweitert. Darüber hinaus wird die Methode auf deutsche Daten angewandt, wobei der

DAX stellvertretend als Indikator für den deutschen Aktienmarkt herangezogen wird.

An beiden Aktienmärkten hat der Renditeaufschlag für seltene Ereignisse einen be-

trächtlichen Anteil an den Aktienrisikoprämien. Dieser Anteil fällt wesentlich höher aus

als in den Ergebnissen ähnlicher Untersuchungen. Der Index der Anlegerangst erweist

sich als sehr aussagekräftig, da er immer dann, wenn bedeutsame Ereignisse die Ak-

tienmärkte bewegten, Spitzen aufweist. Allerdings liegt die Korrelation des Angstindex

mit den gängigen Volatilitätsmessgrößen wie dem VIX für den US-amerikanischen oder

dem VDAX für den deutschen Markt bei rund 90%. Zudem schlägt er in der Finanzkrise

erst nach der Insolvenz von Lehman nach oben aus, während auf Kreditspreads basierende

Indikatoren bereits deutlich früher einen kräftigen Anstieg verzeichnen. Folglich erscheint

der Angstindex als Frühwarninstrument untauglich, zur Beschreibung des Geschehens an

den Aktienmärkten eignet er sich indes gut.
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1 Introduction

Since the financial crisis evolved in August 2007 researchers and policymakers have con-

centrated on analyzing the sources of so-called systemic risk. Although no unique defi-

nition exists, most of the widely used definitions specify that systemic risk is the risk of

a disruption in the financial system with the potential for serious negative consequences

for the financial market and the real economy.1 The aim of this strand of research is to

identify the build-up of imbalances or vulnerabilities and estimate the probability of ma-

terialization as well as the potential impact on the financial system and the real economy.

The build-up of imbalances is monitored employing various indicators, balance sheet data

and macroeconomic variables. Stress tests or scenario analyses help to estimate the im-

pact given a materialization of a systemic risk, but to date to estimate the probability

of materialization no commonly accepted methodology has been found. Systemic events

are triggered by large shocks that are seldomly observed. Thus, it is typically hard to

estimate the distribution of these rare events. Nevertheless, it is important to understand

the distribution of rare events, because it is crucial in forecasting or in finding adequate

measures to mitigate systemic risks. It is not only the occurrence of rare events but the

very fear of them that influences investors’ behavior and market prices. The analyses of

the perception of rare events are compounded by peso-type problems. This means that

rare events may be perceived and priced by investors but may not materialize, which

makes it even harder to extract them from the data.

The work of Bollerslev and Todorov (2011b) aims to estimate jump tail distributions

as a proxy for the distribution of rare events that affect stock markets. More impor-

tantly, the authors try to shed light on the perception of rare events and the risk premia

demanded. The risk premia considered are both the equity and the variance risk premia

due to the compensation for rare events. They develop a new methodology for estimating

model-free implied measures for expected jump tail distributions. In addition, building

on their earlier work (Bollerslev and Todorov (2011a)) they apply a new extreme value

theory method to circumvent peso type problems. The extreme value theory “seeks to

assess the probability of events that are more extreme than any observed prior”.2 There-

fore, medium-sized jumps from high-frequency data can be used to infer the distribution

of tail events. The methods are applied to options and futures on the S&P 500. The

risk premia for rare events reported are volatile and high. In addition, a fear index for

investor fears is constructed, which spikes in times of crises but not prior to rare events

such as the Lehman default.

In this study I replicate the method of Bollerslev and Todorov (2011b) extending the

sample period to include the financial crisis and additionally applying it to German stock

market data. As a proxy for the German stock market I use the DAX. I shed light on

some properties of the estimation results not shown by Bollerslev and Todorov (2011b)

and compare the results with other research conducted in the area of estimating risk

1The definition is taken from ESRB-Regulation (2010) and FSB, IMF, and BIS (2009).
2Compare Rao (2013).
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premia or indicators for crises, such as the Gilchrist-Zakrajsek spread.3

Since the seminal work of Mehra and Prescott (1985) the equity premium has been

the focus of a great quantity of research papers. While some have tried to find theoretical

models to better explain the quantities observed e.g. by adding stochastic volatility (Hull

and White (1987) and Heston (1993)) or jumps (Merton (1976)) or both (Bakshi, Cao,

and Chen (1997)), a vast strand of literature has concentrated on the estimation of risk

premia.4 Even before the recent financial crisis, several studies tried to explain the high

observed risk premia by taking into account the premia for rare events. This idea was

originated by Rietz (1988) and refined by Barro (2006) and Liu, Pan, and Wang (2005)

among others.

The idea of estimating jump risk premia from S&P 500 index data or options has

also been taken up by e.g. Pan (2002), Broadie, Chernov, and Johannes (2007), Todorov

(2010) and Santa-Clara and Yan (2010). Broadie, Chernov, and Johannes (2009) analyze

S&P 500 option portfolio returns and find that jump risk premia can explain parts of

the returns. Extreme value theory, especially its application in finance, is extensively

discussed in Embrechts, Klüppelberg, and Mikosch (2010). The new extreme value theory

used and developed in Bollerslev and Todorov (2011a) is also applied by Bollerslev,

Todorov, and Li (2013) who build on this method to estimate systematic and idiosyncratic

jump tail risks in financial asset prices.

Related literature for the model-free tail measure estimates is Breeden and Litzen-

berger (1978), who derive prices of state-contingent claims from option prices in a model-

free manner, and Britten-Jones and Neuberger (2000), Bakshi, Kapadia, and Madan

(2003) as well as Carr and Wu (2009), who use model-free approaches to derive prices

for higher-moment contracts from option prices.

This paper is organized as follows. Section 2 briefly summarizes the main thrust of

the methods used to estimate the risk premia for rare events. In Section 3 the data and

preliminary estimates are described and depicted. The risk premia due to compensation

for large jumps are shown in Section 4, where I also compare the results with the results

of other analyses. Section 5 describes the construction of the fear index. Finally, Section

6 concludes.

2 Estimation of risk premia for rare events

The method for estimating the risk premia for rare events is taken from Bollerslev and

Todorov (2011b). It is based on the idea that risk premia are the difference between the

expected return under the objective probability measure and the expected return under

the risk neutral measure. Adopting the notation used in Bollerslev and Todorov (2011b)

we can write the equity risk premium and the variance risk premium as:

3This spread is developed in Gilchrist and Zakrajsek (2012).
4A summary of different methods and estimates of equity risk premia can be found in Damodaran

(2012).
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with Ft being the futures price for the aggregate market portfolio with an unspecified

maturity date and QV[t,T ] being the quadratic variation from t to T of the log price

process. The future price follows a jump diffusion process with time-varying drift, αt,

and volatility, σt, parameters and a compensated jump measure, μ̃(dt, dx) ≡ μ(dt, dx)−
νPt (dx)dt, with μ(dt, dx) being a counting measure for jumps and νPt (dx)dt the stochastic

jump density, denoted by:

dFt

Ft
= αtdt+ σtdWt +

∫
R

(ex − 1)μ̃(dt, dx). (3)

Now, the risk premia can be decomposed into a part deriving from the diffusion process

and a second part resulting from the jump process. Let c indicate the superscript for the

premium from diffusion risk and d the superscript for jump risk. Then the risk premia

are:

ERPt = ERP c
t + ERP d

t , (4)

and

V RPt = V RP c
t + V RP d

t . (5)

As we want to estimate the risk premia for extreme events, which are approximated by

”large” jumps in the data, we will only look at the discontinuous premium parts and we

will estimate these parts for jumps larger than k > 0. This leaves us with the challenge

of estimating:5

ERPt(k) =
1

T − t

(
EP

t

(∫ T

t

∫
|x|>k

(ex − 1)νPs (dx)ds

)

−EQ
t

(∫ T

t

∫
|x|>k

(ex − 1)νQs (dx)ds

))
(6)

As large jumps are seldomly observed in the data, medium-sized jumps are used to

approximate the jump tail measures and, in a second step, estimate tail distributions

using the extreme value theory. The estimation method builds on the ideas of Bollerslev

and Todorov (2011a).

The risk-neutral and objective measures are estimated separately.

5For the derivation of the ERP and the corresponding expression for VRP please refer to Bollerslev

and Todorov (2011b).
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2.1 Estimating expected jumps under the risk-neutral measure

According to Bollerslev and Todorov (2011b), options that are deep out-of-the-money

and have few days to maturity should only have a strictly positive value if the market

believes in the existence of big jumps in the price process. Otherwise these options should

be worthless. Therefore, these options are used to extract the compensation demanded

for jump risk. Of course this assumption neglects the possibility of the diffusion process

generating large price movements. But the authors claim that the diffusion part of the

price process only triggers small price movements such that it can be ignored when

analyzing short maturity options. Building on the ideas of Carr and Wu (2003) and

adopting this assumption, we can express the price of a European short maturity deep

out-of-the-money call, Ct(K), as:

er(t,T ]Ct(K) ≈
∫ T

t

EQ
t

(∫
R

I{Fs−<K}(Fs−ex −K)+νQs (dx)

)
ds, (7)

and the corresponding put:

er(t,T ]Pt(K) ≈
∫ T

t

EQ
t

(∫
R

I{Fs−>K}(K − Fs−ex)+νQs (dx)

)
ds, (8)

where I denotes the indicator function and Fs− denotes the price of the future directly

before a jump occurs. It is further assumed that for short maturity options only one

large jump can occur before expiration. So both the compensation for price movements

from the diffusion process and the compensation for two or more medium-sized or large

jumps is ignored, attributing the option price fully to the compensation for the event that

exactly one large jump might happen. Let k ≡ K
Ft−

and κ ≡ ln(k), then the model-free6

risk-neutral tail measures can be written as:

RTQ
t (k) ≡ 1

T − t

∫ T

t

∫
R

(ex − eκ)+EQ
t (νQs (dx))ds ≈ er(t,T ]Ct(K)

(T − t)Ft−
, (9)

and

LTQ
t (k) ≡ 1

T − t

∫ T

t

∫
R

(eκ − ex)+EQ
t (νQs (dx))ds ≈ er(t,T ]Pt(K)

(T − t)Ft−
. (10)

These jump tail measures can then be used to estimate parameters of the jump tail

distribution under the risk-neutral measure. The relevant equations can be found in the

appendix to Bollerslev and Todorov (2011b). The number of parameters for each tail to

be estimated is 3. Therefore, the authors use 3 different levels of moneyness such that

the equations are exactly identified.

6The measure is model-free as it constitutes scaled option prices with observable scaling measures.

But the interpretation as a jump tail measure and its use for the estimation of tail density parameters are

only valid given the model for the futures price in equation (3) and the assumptions mentioned above.
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2.2 Realized and expected jumps under the objective measure

In order to produce similar expected values to the ones estimated for the Q measure,

high-frequency data is used to estimate realized variations, as a first step. In a second

step, these realized variation measures are fed into a VAR to estimate the expected

integrated volatility. In addition, based on the scores of the log-likelihood function of the

generalized Pareto distribution and on the results from Bollerslev and Todorov (2011a),

the parameters for the jump tail distribution are estimated using the extreme value

theory.

The realized variation measures that we seek to estimate constitute total realized

variation, RVt, which equals the quadratic variation, a variation measure just for the

continuous part of the price movements, CVt, as well as measures for the jump tail

variation, JTt, which can be further separated into positive or right and negative or

left jump variations, RJTt and LJTt respectively. These measures are extracted from 5-

minute interval price data from a broad stock index.7 The separation between continuous

and jump variation is performed using a threshold. The variations for the continuous

part and the jump parts add up to the total realized variation. Therefore, it is assumed

that price movements below the threshold are solely attributable to the continuous part

of the price process, the Brownian motion, and the movements above the threshold are

solely attributable to jumps. Now, the threshold used for price movements is not a fixed

value but varies depending on the prevalent variation level. The continuous variation

from the preceding day as well as the variation at the specific time of the day are used to

adapt the threshold for each day and each time of the day. The latter accounts for the

fact that at the beginning and the end of the trading period the variation is generally

larger than in the middle of the trading day and is further defined in Appendix A.

Assuming that the jump intensity under the objective probability measure is a linear

function of the stochastic volatility i.e.:

νPt (dx) =
(
α−
0 Ix<0 + α+

0 Ix>0 + (α−
1 Ix<0 + α+

1 Ix>0)σ
2
t

)
νP (x)dx, (11)

where νP (x) is a Lévy density and α±
i > 0, i = 0, 1 are free parameters, the jump tail

measures can be written as:

RTP
t (k) =

(
α+
0 +

α+
1

T − t
EP

t

(∫ T

t

σ2
sds

))∫
R

(ex − eκ)+νP (x)ds, (12)

and

LTP
t (k) =

(
α−
0 +

α−
1

T − t
EP

t

(∫ T

t

σ2
sds

))∫
R

(eκ − ex)+νP (x)ds. (13)

The parameter estimation for the jump intensity relies again on medium-sized jumps

and the extreme value theory to infer the jump tail distribution. The estimation equa-

7In Bollerslev and Todorov (2011b) the S&P 500 futures contract is used. For the US market I use

the same data but for the German market I use DAX futures.
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tions can be found in the appendix to Bollerslev and Todorov (2011b). A further un-

known component of RTP
t (k) and LTP

t (k) is the expected integrated volatility denoted

by EP
t

(∫ T

t
σ2
sds

)
. As mentioned above it is estimated using a restricted VAR(22) model

of the following vector (CVt, RJVt, LJVt, onret
2
t−1;t), where onrett−1;t is the overnight

return on the future from day t − 1 to day t. The VAR is restricted in the sense that

only the parameters for lags 1, 5 and 22 are estimated and all other parameters are set

to zero. These lags represent the lags for one day, one week and one month, discounting

non-trading days. Using the parameters of the VAR, forecasts are generated for each

day for the relevant time horizons. The relevant time horizon is given by the days to

maturity of the options used for the Q measure.

3 Description of the data and estimates of the tail

measures

Unless explicitly stated, I follow the methods used by Bollerslev and Todorov (2011b).

The analysis for the US market uses the exact same data but the time period is expanded

by two and a half years to include more data from the recent financial crisis. The data

for the US stock market uses the S&P 500 as a proxy for the market portfolio. The

options as well as the proxy for the risk-free rate are taken from OptionMetrics and

run from January 1996 until May 2011. After cleaning the data following Carr and Wu

(2009) and filtering out the shortest-to-maturity options for each day with a minimum

maturity of 8 calendar days, I use all options available on each day and calculate the

implied volatility of the target levels of moneyness needed for the tail measures using

linear interpolation. The target levels of moneyness used are (1.075, 1.0875, 1.1) for the

right tail and (0.925, 0.9125, 0.9) for the left tail. If there is no option that is deeper

out-of-the-money, such that I cannot interpolate the implied volatility, I take the implied

volatility of the deepest out-of-the-money option. From this implied volatility the Black-

Scholes option price is calculated for moneyness k. One might of course question the

interpretation of e.g. call options with moneyness 1.075 as deep-out-of-the money options.

But it is convenient as the data availability is very good for the levels of moneyness

used. For deeper out-of-the-money options there are rarely prices available. The days

to maturity vary between 8 and 40 (50) for the US (German) options. So the maturity

horizon can exceed one month. Now, taking these option prices and interpreting the

calculated measures as ones solely attributable to one potential large price jump seems a

doubtful operation. First, the options are not very deep out-of-the-money and second, if

one believes in the existence of large jumps, than more than one large jump may surely

occur within 40 or 50 days, especially in times of crises.

In the next step a time series of tail measures is calculated using equations (9) and (10)

to calculate RTQ
t (k) and LTQ

t (k). The tail measures with moneyness k = 1.1 for the right

tail and k = 0.9 for the left tail are illustrated in Figure 12 in Appendix B. The correlation
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between RTQ
t (k) and LTQ

t (k) is 86.64%, which is very high, meaning that changes in

market perception and demand for compensation for positive as well as negative jumps go

in the same direction and happen at the same time. It is counterintuitive that the market

demands similar compensation for large positive shocks as for large negative shocks. This

rather symmetric perception of jumps could also be interpreted as an indication of the

lack of jumps, whereby it is a volatility process that is responsible for this type of option

pricing.

The quadratic variation, QV Q
t , is calculated following Bakshi, Kapadia, and Madan

(2003). It is similar to the method that is used to calculate the CBOE VIX index.

Comparing the quadratic variation with the CBOE VIX index I find a correlation of

91.99%, which is not suprising. Comparing the VIX with the Q tail measures I find that

the correlation with RTQ
t (k) and LTQ

t (k) is 70.99% and 90.21% respectively.

The statistical probability measures are calculated using trade data for S&P 500

futures. The data is from Tick Data Inc. and starts in January 1990 and ends in May

2011. I omit days where the price at 8:35 (opening price) is missing, because the analysis

depends on the overnight returns. I also delete days with less than 40 price observations.

From the trade data I extract the last price for every 5-minute interval starting at 8:35

(CST) and ending at 15:15. This leaves us with 81 intraday prices and 80 intraday returns

to calculate the realized variation measures which are depicted in Figure 1. The realized

variation measures are positively correlated and seem to have their largest outcomes in

times of crisis. RJTt and LJTt have a correlation of 65.54%; RJTt and CVt of 31.81%;

and CVt and LJTt of 24.99%.

It is worth mentioning that the method for the P measure strongly depends on the

data used. More precisely, it is crucial to use the last trade price for each time interval.

When using 1-minute averages of the prices from all trades that were conducted in the

respective minute, the method fails to generate estimates of the jump tail distribution.

This is because there are not enough large price jumps in the 1- minute average data such

that the jump variation measure comes close to zero and the parameter estimations do not

converge. The critical reader should reflect on whether large differences in prices of trades

that vanish when taking 1-minute averages can really be interpreted as jumps in the price

process and thus as reactions to rare events. One could also interpret the identified jumps

as price differences due to differences in bargaining power or trades between well-informed

and uninformed investors. They could also just be random outliers from misquoted prices

or result from other data issues. It is open to question, too, whether such a large time

interval as 5 minutes should be used to identify jumps. A few hundred thousand trades

are processed each trading day for the S&P 500 as well as the DAX futures. Therefore

one can observe more than ten thousand trades within a 5-minute interval. Taking just

the last trade price for every 5 minutes seems arbitrary and neglects the potential minor

price movements in-between these 5-minute interval, which could easily be interpreted

as movements from continuous parts of the price process.

These realized variation measures are used to estimate the parameters of the jump

7
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Figure 1: US realized variation measures from trade data for S&P 500 futures.

intensity and estimate the expected integrated volatility using a VAR. Then we can

compute the corresponding P measure tails. These will be presented in Section 4.

For the German stock market I have chosen the DAX as the market index. In order

to have comparable results I use the exact same methods as for the US data. The options

are taken from Datastream and span a time period from March 2006 to December 2012.

The Q measure results are shown in Figure 2. The correlation of the measures with the

VDAX for the German data are very high. VDAX and QV Q
t have a correlation of 94.94%;

for VDAX and RTQ
t (k) it is 82.95%, and for VADX and LTQ

t (k) it is 91.35%, where again

k = 1.1 and k = 0.9 respectively. For the proxy of the risk-free rate I have downloaded

the Svensson parameters from the website of the Deutsche Bundesbank and calculated

the risk-free rate for the relevant time horizons - the respective days to maturity.8 The

parameters are daily values estimated from listed German sovereign bonds.

The trade data for the DAX future is from Eurex. Although I have a longer time

period available, trading seems to be quite infrequent in the initial years. Therefore, I

start the estimation period in January 2000 and end it in December 2012. I also delete

days where the price for the first 5 trading minutes is missing and if I have less than

40 price observations for that day. The difficulty with this data is that the trading

time on Eurex changed several times during the sample period. This complicates the

identification of jumps from the data, because the threshold for returns to be classified

as jumps depends on the day and on the time-of-day factor. This is described in more

8Compare Svensson (1994).
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Figure 2: Measures for the German stock market: tail measures and

quadratic variation implied from DAX options with moneyness k = 1.1 for

the right tail and k = 0.9 for the left tail.

detail in Appendix A.

The German tail measures seem to reveal very similar patterns to the US data, just

with a slightly higher realization. The German data includes the time period of the

European sovereign debt crisis and the Greek default. What is interesting to see is that

the perceived tail measures extracted from the options are much less pronounced during

the sovereign debt crisis compared to the period after the default of Lehman.

4 Estimated equity and variance risk premia

Using target moneyness levels (1.075, 1.0875, 1.1) for the right tail and (0.925, 0.9125, 0.9)

for the left tail to get daily tail measure estimates I obtain the parameter estimates for

the Q measure jump tail distribution shown in Table 1.

For the P measure the parameter estimates obtained using the realized variation mea-

sures are listed in Table 2. The estimates are obtained by solving a system of equations

that can be found in the appendix to Bollerslev and Todorov (2011b). π denotes the

fraction of the total variation that is due to the variation in the overnight period. Note

that there is only one unique value of π which does not correspond to the right tail or

the left tail measure alone.
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Table 1: Parameter estimates of Q measure tails.

ξ σ αν̄ψ(tr)

USA RTQ 0.2943 0.0263 0.7391

LTQ 0.4315 0.0476 1.3120

Germany RTQ 0.1179 0.0342 1.0750

LTQ 0.2409 0.0667 1.4765

Table 2: Parameter estimates of P measure tails.

ξ σ α0ν̄ψ(tr) α1ν̄ψ(tr) π

USA RTP 0.2442 0.0022 0.000005 0.2014 0.3032

LTP 0.3180 0.0019 0.000004 0.1901 0.3032

Germany RTP 0.3079 0.0018 0.000006 0.1253 0.1812

LTP 0.2072 0.0023 0.0000003 0.1277 0.1812

Having estimated the P measure parameters and the forecasts of the expected inte-

grated volatility using a VAR, we can calculate the P tail measures. These are depicted

in Figures 13 and 3. It is very interesting to see that the P tail measures are of a much

lower order of magnitude than the corresponding Q measures. As the desired risk premia

are calculated scaling the difference of P and Q measure expectations, the results for the

risk premia which will be shown below are almost solely driven by the Q measures.

Both tail measures are positive and reveal their peak after the default of Lehman.

The measures for the right tail seem to be very similar for the US and for Germany.

Values of LTP are much smaller for Germany than for the US.

10
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Figure 3: Tail measures for the German stock market under the objective

measure extracted from DAX futures trade data.

The parameter estimates for the jump tail distribution can now be used to calculate

the relevant integrals of the expectations in the risk premia for rare events. Therefore,

we can finally calculate the values for the equity risk premium as in equation (6) and the

variance risk premium. The risk premia are scaled such that they can be interpreted as

the risk premia demanded for a time horizon of one year. In the original paper the au-

thors claim “Also, for the ease of interpretation, both premia are reported at a monthly

frequency based on 22-day moving averages of the corresponding daily estimates” (com-

pare Bollerslev and Todorov (2011b) p. 2184). By doing this the authors conceal very

important features of their risk premia. First, the risk premia are very volatile, and

second, the risk premia can reach negative values for the equity premium and positive

values for the variance premium. The unsmoothed risk premia for the US stock market

are illustrated in Figure 14 in Appendix B and for the German stock market in Figure 4.

The unsmoothed equity risk premia can reach values as small as -102.22% for the US

and -105.72% for Germany. It is of course hard to interpret that the market demands a

negative risk premium for rare events and the magnitude is extremely high. The extreme

magnitude suggest an instability in the estimation methods used.

In addition, I show the smoothed daily values for the risk premia. Smoothing the

time series almost conceals the above-mentioned features of the risk premia - only the

equity risk premia for the US market still have counterintuitive values as they become

negative several times at the beginning of the sample. The smoothed risk premia for the

11
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Figure 4: Equity and variance risk premia for the German stock market

(unsmoothed values).

US stock market are illustrated in Figure 15 and for the German stock market in Figure

16, both in Appendix B.

The mean and median of the risk premia for rare events are shown in Table 3. Com-

parison of mean and median reveals a skewed distribution of the risk premia. In view of

the fact that the risk premia for the US market are based on a different sample period

from the risk premia for the German market, it is not very useful to compare the values

with each other. But comparing the equity risk premia for the US with the estimates

of Mehra and Prescott (2003), with a value of 4.1% to 8.4% depending on the data set

and time period or comparing them with Cochrane (2005), who finds 8% for the total

equity risk premium for the US postwar period, the median value of 5.78% seems rather

high.9 Taking the 8%, this means that almost three-quarters of the average equity risk

premium is the compensation for rare events. These results are higher than the results

from Broadie, Chernov, and Johannes (2007) who find that the contribution of jumps to

the total risk premium is 3% of the total 8%. For the German market I calculated the

realized market excess returns by taking the annual DAX returns and substracting the

German risk-free rate calculated using the Svensson method. The mean realized excess

return of the DAX is 0.0189, which is much lower than the 6.6% stated by Mehra and

Prescott (2003) for the period 1978-1997, and the median is 0.1217. Taking the median

9Damodaran (2012) reports various historical risk premia varying from -1.92% to 7.2% depending on

the time horizon of the data sample and the risk-free rate chosen.
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as a proxy for the total equity risk premium, more than 50% of the total risk premium

can be attributed to compensation for rare events, which is similar to the values found

by Santa-Clara and Yan (2010). The annual realized risk premium and the model equity

risk premium due to rare events series are depicted in Figure 5. Of course the compar-

ison is flawed. The rare events risk premia are based on perceived risks for rare events

and the empirical risk premia are realized measures. Therefore the comparison is prone

to peso-type problems. But what is interesting to see is that the series are negatively

correlated with a correlation of -29.19%. That means when the market demands a high

level of compensation for rare events the actual excess return is low (or negative).10

Table 3: Risk premia for rare events: annualized ERP(k) and VRP(k) for

the US and German stock markets.

mean median

USA ERP(k) 0.0773 0.0578

VRP(k) -0.0443 -0.0262

Germany ERP(k) 0.0843 0.0626

VRP(k) -0.0520 -0.0240

In addition, the variance risk premia due to rare events seem large in magnitude.

When calculating the mean total variance risk premium, V RP , with a very simple method

using
∑T

t=1(RVt−QV Q
t ), I obtain a value of -0.0212 for the US.11 Comparing this result

with the mean variance risk premium due to rare events, V RP (k), the latter is larger

in absolute terms than the total variance risk premium (which should include the rare

events premium). The results seem implausible and also stand in contrast to the findings

of Broadie, Chernov, and Johannes (2007) who find that the variance risk premia for

jumps account for only 24.4% of the total variance risk premia. Hence, it seems that in

this analysis either the estimator for the mean total variance risk premium is too low or

the variance risk premia due to rare events are too high.12

In order to check, whether the mean total variance risk premium is too low, I compare

it with the results from Bollerslev, Tauchen, and Zhou (2009) and Drechsler (2013). Both

analyses use almost the same method to estimate total variance risk premia, defined in

a very similar way to those in this paper. Both take the squared value of the VIX as

the risk-neutral expectation of return variance. For the objective measure Bollerslev,

10According to Mehra and Prescott (2003) the realized US equity premium is countercyclical in the

sense that in times of high stock market valuation the equity premium is low. In contrast, the annual

DAX returns shown in Figure 5 seem to be very cyclical. Comparing the annual realized excess returns

with the market capitalization of listed companies as a percentage of GDP downloaded from the World

Bank website, the correlation coefficient is 57.9%. But, the equity risk premium demanded for rare

events is countercyclical.
11Bollerslev and Todorov (2011b) find a value of -0.02 in their sample period.
12Alternatively it could be that the variance risk premia for small jumps and for diffusion are positive

and considerable in magnitude.
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Figure 5: Comparison of realized market excess returns and equity risk pre-

mia for rare events.

Tauchen, and Zhou (2009) use the squared 5-minute log returns for S&P 500 index and

Drechsler (2013) uses a forecast of the realized variance based on the squared 5-minute

log returns of S&P 500 futures. They find a mean monthly variance risk premium of 18.30

and 10.55 (in percentages squared) respectively. In annualized terms this means 0.02196

and 0.01266 respectively, which indicates that the mean total variance risk premium

estimate seems not too low compared to estimates of other studies.13 One may conclude

that the values calculated by Bollerslev and Todorov (2011b) for the variance risk premia

due to rare events seem very large.

4.1 Decomposition of risk premia for Germany

Now I will take a closer look at the risk premia by decomposing them into parts due

to negative and positive jumps. I will only show the graphs for the German market as

they reveal similar patterns to the US market graphs and these can be seen in Bollerslev

and Todorov (2011b). The decomposition of the equity risk premia is shown in Figure 6

and the decomposition of the variance risk premia is shown in Figure 7. The equity risk

premia for large positive jumps are negative and for large negative jumps positive. But

13Bollerslev, Tauchen, and Zhou (2009) use a sample period from January 1990 to December 2007

and Drechsler (2013) extends this sample to December 2009. Note that Bollerslev, Tauchen, and Zhou

(2009) and Drechsler (2013) define the risk premium as the risk-neutral expectation minus statistical

expectation, therefore we have positive variance risk premia here.
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the magnitude for the negative jumps is larger than for positive jumps. The variance

risk premia are both negative with more pronounced values for the negative jumps.
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Figure 6: Decomposed equity risk premia for the DAX due to large positive

and negative jumps.

Looking at the contribution of the P Measures and the Q measures to the equity risk

premia I find that the P expectation of equation (6) indeed yields very small positive

values with a median of 0.000002. The Q expectation has a median of −0.0626. Therefore

the risk premia results are hardly influenced by the results from the high-frequency data.
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Figure 7: Decomposed variance risk premia for the DAX due to large positive

and negative jumps.

5 Index of investor fears

From the decomposition of the variance risk premia, Bollerslev and Todorov (2011b)

construct an investor fear index, which is a measure that can be interpreted as showing

the risk premia for the variation in jump intensities and is defined as:14

FIt(k) ≡ |V RP−
t (k)− V RP+

t (k)|. (14)

For this index the smoothed values of the risk premia are used. As mentioned above

the time period spanned by the data for the US market starts in January 1996 and ends

in May 2011. The fear index shows sharp increases for the following events, which I

list in chronological order: Asian crisis stock market crash in October 1997, Russian

default and collapse of Long-Term Capital Management in August and September 1998,

terror attacks of September 2001, the market turmoils of March 2002, Lehman collapse

in September 2008 and the Greek request for a bail-out package from the EU and IMF in

April 2010. The German fear index peaks sharply after the Lehman default, the Greek

request for a bail-out package and after the Greek default in June 2011.

I compare the fear index for the US with the VIX. The correlation is very high with a

value of 89.46%. The fear index is at a low value - even below its mean value - before the

14In Bollerslev and Todorov (2011b) the fear index is defined without the absolute value. But in crisis

times their fear index peaks downwards. Because in crisis times investor fears rise, I find it more intuitive

to take the absolute value such that the index rises in crisis times.
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Lehman collapse, rises modestly on the Friday before the collapse and reveals a sharp

increase starting from the day after the collapse. The options used for the Q measure

tails expire on the Saturday following the collapse. These are the shortest-to-maturity

options starting from 11 August 2008. So this is the date when the fear index could

theoretically already show signs of stress, as the time to maturity of the options already

spans the time of the collapse. The VIX uses options with approximately a one-month

maturity. Interestingly the VIX is above its mean value already from 4 August 2008 and

rises apruptly on the day of the Lehman default.

For the German market I obtain similar results when I compare the fear index with

the VDAX. The correlation is 90.58% and reduces to 83.45% when using the unsmoothed

fear index. Even more important is the fact that the smoothed fear index lags the VDAX,

which is not surprising. In Figure 8 I depict the comparison using standardized values for

the indices. The vertical blue line indicates the day of the Lehman default. One can see

that the fear index as defined by Bollerslev and Todorov (2011b) reacts more slowly to

rare events than the VDAX. Using unsmoothed risk premia values to calculate the fear

index helps to eliminate this unwanted property. Looking at the unsmoothed fear index

in comparison to the VDAX since the financial crisis in Figure 9, where I choose August

2008 as the start date, reveals that the fear index neither leads nor lags the VDAX.15 In

a similar way to what I find for the US variables, although both indicators use forward-

looking measures they react only after rare events happen. Therefore, neither indicator

can be used as an early-warning indicator.

15A VAR(2) using the first-differenced variables does not give a clear picture either as VDAX seems

to be dependent on past values of the fear index and vice versa.
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Figure 8: Comparison of the fear index for Germany with the VDAX. The

vertical blue line indicates the day of the Lehman default. Both indicators

are standardized to make them comparable.
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Figure 9: Comparison of the unsmoothed fear index for Germany with the

VDAX showing only the values since August 2008. The vertical blue line

indicates the day of the Lehman default. Both indicators are standardized to

make them comparable.
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A recent strand of literature analyzes the predictive power of bond market prices.

Philippon (2009) argues that the equity market is more susceptible to mispricing and

bubbles. He finds that bond market prices can predict future corporate investments

better than equity market prices. Therefore, I also compare the fear index for the US to

the Gilchrist-Zakrajsek spread developed by Gilchrist and Zakrajsek (2012). The spread

is a newly developed credit spread index based on month-end secondary bond market

prices of US non-financial firms. For ease of comparison I choose a time period when both

the US fear index and the spread are available starting in January 1996 and ending in

September 2010. I take the mean value of the fear index for each month16 and standardize

both variables. I show both graphs in Figure 10. The Gilchrist-Zakrajsek spread shows

a small peak in August 1998, it rises starting from the beginning of 2000 probably due

to the bursting of the dot-com bubble, shows only a very small peak in September 2001,

peaks with the March 2002 market turmoils and rises sharply in the financial crisis. Thus,

the Asian crisis as well as the September 2001 attacks seem to have had little impact on

corporate lending rates, whereas the bursting of dot-com bubble starting in 2000 seems

to have influenced bond prices considerably. Most importantly, the Gilchrist-Zakrajsek

spread increases in the financial crisis starting from July 2007. The start of the financial

crisis is dated 9 August 2007 when the overnight index swap spread over LIBOR rose

dramatically.17 Early signs were already prevalent in February 2007 with several events,

such as Bear Stearns’ capital injections into its own hedge funds in June and July 2007 as

documented by Brunnermeier (2008). Therefore, the Gilchrist-Zakrajsek spread seems

to have picked up the early signs of the crisis. In contrast, the fear index increases just

slightly at the beginning of the financial crisis in August 2007 and even seems to indicate

market recovery just before the Lehman collapse, when the values of the standardized

monthly fear index become negative meaning that before Lehman the fear index is below

its average value.

Alternative measures for tail risks or investor fears can be constructed from higher

moments of the return distribution, namely skewness and kurtosis. Therefore, I take

measures of realized and implied skewness and kurtosis and compare it with the fear index

for the US. I use the implied skewness and kurtosis measures of Chang, Christoffersen,

and Jacobs (2013) and the CBOE SKEW as an additional measures for implied skewness.

I also calculate monthly realized skewness and kurtosis using daily returns of the S&P

500 futures. In linear regressions of the fear index on the higher moment measures and

the VIX it shows that realized skewness and kurtosis seem to have little or no influence

on the fear index. In contrast, the corresponding implied measures and SKEW18 show

significant positive parameter values and increased adjusted R2 although not surprisingly

the VIX exhibits the largest impact on the fear index. Orthogonalizing the fear index

with respect to the VIX via a linear regression and regressing the respective residuals on

the implied measures confirms that implied higher moments carry additional information

16Taking the month-end values only does not change the results.
17Compare Taylor (2009).
18Implied skewness and SKEW are used interchangeably in regressions.
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Figure 10: Comparison of the fear index for the US with the Gilchrist-

Zakrajsek spread. The vertical blue line indicates the day of the Lehman

default. Both indicators are standardized to make them comparable.

about the fear index.

Finally, I compare the fear index of the US with the fear index of Germany. Ideally

this comparison should account for the fact that the fear indices are estimated based

on prices of financial instruments with different trading times.19 Due to the nature of

the index one cannot easily adjust for the different trading times, because there are no

intraday values - just one value per day is at hand. Therefore, one should expect the US

fear index to be leading as the daily values of the index should include information that

was not available when German markets closed.

My analyses seem to confirm this prior. Running a VAR on the first-differenced values

of the indices using 3 lags I find that the past values of itself and of the US fear index

seem to have explanatory power for the German fear index. For the US fear index only

past values of itself seem to explain the current value. The parameters for the past values

of the German index are not significant on the 5%-level. Therefore, one could conclude

that the US index is leading.20

19The S&P 500 futures and options are both traded until 15:15 CST, so all events happening prior to

this time should be incorporated into the prices at closing time. For Germany the calculation of the fear

index starts in May 2006. Since then the DAX futures were traded until 22:00 CET, which is just 15

minutes before the closing time of the market for the S&P 500 instruments. However, the closing time

of the market for the DAX options is 19:00 CET.
20A graph with the comparison of the indices is shown in Figure 17 and the results of the VAR are
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6 Conclusion

I have replicated the paper by Bollerslev and Todorov (2011b) for the US stock market,

expanding the sample to include more data on the recent financial crisis. I also use

German data to compare the results. The paper aims to estimate equity and variance

risk premia due to rare events. The method has several flaws in the identification of

jumps. It is assumed that large price movements are solely attributable to jumps in

the price process, more precisely to one large jump, ignoring that diffusive processes or

several jumps may cause large price movements. Therefore, the basis for estimating the

jump tail distributions seems unreliable. When estimating the jump tail distributions

for the risk-neutral measure, prices of out-of-the-money options are used to proxy the

price demanded for the potential occurrence of one large jump. As the days to maturity

vary between one week and up to more than one month and the levels of moneyness are

at only 1.1 for calls and 0.9 for puts, this approximation seems inadequate. A price rise

or drop of 10% in equity markets within in some cases more than one month seems not

unusual and not the outcome of a rare event. For the objective measure, the last trade

price of each 5-minute interval is used to identify jumps. With more than ten thousand

trades possible during such an interval, one can easily observe “jumps”, even if there are

only small price movements.

The equity risk premium demanded due to large jumps is highly volatile and reaches

large negative values after the Lehman default. This is hard to interpret and justify and

stands in contrast to the findings of Santa-Clara and Yan (2010), who find an equity

premium for jumps between 0 and 45.4%. The median equity risk premia for the US

and Germany are 5.78% and 6.26% respectively, which is relatively high given that the

reported values by Mehra and Prescott (2003) for the realized equity premia range from

4.1% to 8.4% in the US and were stated as 6.6% in Germany. The variance risk premia

due to rare events are also very high compared to the values found in the literature.

The fear index constructed from variance risk premia shows spikes at times of crises,

but shows a very low level of investor fears just before the Lehman collapse where other

indicators such as the Gilchrist-Zakrajsek spread already show signs of stress. Therefore,

it seems impractical as an early-warning indicator, but it works well as an indicator of

prevalent stress. Furthermore, it has a very high correlation with corresponding volatility

indices (the VIX for the US and the VDAX for Germany), which can easily be downloaded

from several websites. Given the enormous effort needed to estimate the fear index and

the very high correlation between the two indicators, it is more convenient to use the

VDAX as a proxy for investor fears.

shown in Table 4 in Appendix C.
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A Time-of-day factor

The time-of-day factor is designed to account for the fact that volatility is higher at the

beginning and the end of the trading day compared to the volatility around noon. It can

be interpreted as the average volatility at a certain trading time over the sample period.

For S&P 500 future the time-of-day factor is depicted below.
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Figure 11: The time-of-day factor is estimated using 5-minute price data for

S&P 500 futures.

For DAX futures it is not possible to set up a unique graph as the trading times of the

futures on the Eurex changed 3 times during the estimation period: until 1 June 2000

the trading time on the FDAX was from 09:00 to 17:30; afterwards until 25 November

2005 the trading time was extended to 09:00 - 20:00; then until 31 May 2006 it was set

at 09:00 - 22:00; and finally since then the trading times have been 08:00 - 22:00. For

the variation measures estimated daily the changes in trading hours on Eurex do not

pose a problem. But for the estimation of the threshold used to identify jumps from the

high-frequency data the sample has to be split into 4 periods with different time-of-day

factors.
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B Selected figures of tail measures and risk premia
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Figure 12: Measures for the US stock market: tail measures and quadratic

variation implied from S&P 500 options with moneyness k = 1.1 for the right

tail and k = 0.9 for the left tail.
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Figure 13: Tail measures for the US stock market under the objective measure

extracted from S&P 500 futures trade data.
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Figure 14: Equity and variance risk premia for the US stock market (un-

smoothed values).
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Figure 15: Equity and variance risk premia for the US stock market

(smoothed using 22-day moving averages).
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Figure 16: Equity and variance risk premia for the German stock market

(smoothed using 22-day moving averages).
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C Comparison of Fear Indices
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Figure 17: Comparison of the fear index for the US with the fear index for

Germany. The vertical blue line indicates the day of the Lehman default.
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Table 4: VARs of the German and US Fear Indices.

Δ German Fear Index

ΔFIDE(t−1) -0.715∗∗∗ (-24.65)

ΔFIDE(t−2) -0.460∗∗∗ (-13.89)

ΔFIDE(t−3) -0.151∗∗∗ (-5.33)

ΔFIUS(t−1) 0.422∗∗∗ (7.77)

ΔFIUS(t−2) 0.171∗∗ (3.07)

ΔFIUS(t−3) 0.134∗ (2.42)

Δ US Fear Index

ΔFIDE(t−1) 0.0223 (1.42)

ΔFIDE(t−2) -0.0330 (-1.84)

ΔFIDE(t−3) -0.0201 (-1.31)

ΔFIUS(t−1) -0.254∗∗∗ (-8.64)

ΔFIUS(t−2) -0.218∗∗∗ (-7.25)

ΔFIUS(t−3) -0.0633∗ (-2.12)

N 1160

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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