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Non-technical summary

Panel data comprises of cross-sectional units, e.g. countries or households, observed at

different points in time. The combination of cross-sectional and time series data allows

for more accurate conclusions and reduces statistical problems. In addition, dynamic

adjustment processes can be analyzed for a broad base of cross-sectional units. A model

is called dynamic if past observations of the variable of interest can influence the cur-

rent value. Macroeconomic growth regressions and microeconomic wage regressions are

examples where dynamic panel data models are used.

This paper analyzes the identification of effects of time-invariant regressors in dynamic

panel data models as the methods currently used can be very imprecise. Time-invariant

regressors play an important role in many empirical applications but estimation of the

effects is non-trivial because there are various statistical problems that may arise. We

propose a two-stage estimation procedure. A major advantage of the two-stage approach

is that misspecified assumptions on the time-invariant regressors do not influence the

estimation results for the time-varying variables. In extensive simulation studies we

show that the currently most widely used estimation method, the generalized method

of moments, can be quite biased whereas our method provides more precise and robust

results. Furthermore, we develop an error correction term for the standard errors of the

second stage. Neglecting the correction term can generate misleading implications.

To illustrate these methods we estimate a dynamic model with data from the Panel

Study of Income Dynamics, a US household survey. As explanatory variables, among oth-

ers, the past realization of income, work experience and level of education are used. The

latter is a time-invariant variable. The results demonstrate the importance of choosing an

adequate estimation method and of using the standard error correction term developed

in this paper.



Nicht-technische Zusammenfassung

Paneldatensätze enthalten Daten für verschiedene Beobachtungseinheiten, z.B. Länder

oder Haushalte, und für mehrere aufeinanderfolgende Zeitpunkte. Durch die Kom-

bination von Querschnitts- und Zeitreihendaten lassen sich präzisere Aussagen über

ökonomische Zusammenhänge machen und statistische Probleme verringern. Anhand

von Paneldatensätzen kann man vor allem Modelle dynamischer Anpassungsprozesse

besonders gut empirisch überprüfen. Ein Modell wird als dynamisches Modell bezeich-

net, wenn vergangene Werte der analysierten Variable Einfluss auf den gegenwärtigen

Wert haben können. Anwendungsbeispiele umfassen die makroökonomische Analyse dy-

namischer Wachstumsprozesse sowie die mikroökonomische Untersuchung von Einkom-

mensentwicklungen.

In dieser Arbeit befassen wir uns mit der Identifizierung der Effekte von im Zeitablauf

konstanten Einflussfaktoren in dynamischen Panelmodellen, da die momentan gängigen

Schätzmethoden diese nur sehr ungenau schätzen können. Durch die Zeitinvarianz nehmen

diese Variablen eine Sonderstellung ein, da es bei der Schätzung zu vielfältigen Arten von

statistischen Problemen kommen kann. Wir entwickeln ein zweistufiges Schätzverfahren,

mit dem sich sicherstellen lässt, dass fehlerhafte Annahmen bezüglich dieser zeitinvari-

anten Modellkomponenten nicht zu Verzerrungen bei der Bestimmung der Effekte von

zeitvariierenden Einflussfaktoren führen. Anhand umfangreicher Simulationen zeigen wir

dabei auf, dass das derzeit am weitesten verbreitete Schätzverfahren, die verallgemeinerte

Momentenmethode, große Verzerrungen zur Folge haben kann. Die von uns vorgeschla-

gene Methode liefert hingegen genauere und robustere Ergebnisse. Außerdem bestimmen

wir für das zweistufige Verfahren einen Korrekturterm für die Standardfehler der zweiten

Stufe, dessen Nichtberücksichtigung zu falschen statistischen Schlussfolgerungen führen

kann.

Als Anwendungsbeispiel schätzen wir ein dynamisches Modell zur Erklärung von

Gehaltsunterschieden auf der Grundlage US-amerikanischer Haushaltsumfragedaten. Als

erklärende Variablen werden neben dem Gehalt in der Vorperiode insbesondere die bis-

herige Berufserfahrung sowie der Bildungsgrad der Arbeitnehmer berücksichtigt. Der

Bildungsgrad ist dabei innerhalb unserer Stichprobe eine zeitinvariante Variable. Die

Ergebnisse unterstreichen die Bedeutung einer geeigneten Methodenauswahl sowie der

korrekten Berechnung der Standardfehler im zweistufigen Schätzansatz.
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1 Introduction

This paper considers estimation methods and inference for linear dynamic panel data

models with a short time dimension. In particular, we focus on the identification of coef-

ficients of time-invariant variables in the presence of unobserved unit-specific effects. In

many empirical applications time-invariant variables play an important role in structural

equations. In labor economics researchers are interested in the effects of gender, na-

tionality, ethnic and religious background, or other time-invariant characteristics on the

evolution of wages but would still like to control for unobserved time-invariant individual-

specific effects such as worker’s ability. As a recent example, Andini (2010b) estimates a

dynamic version of the Mincer equation controlling for a rich set of time-invariant char-

acteristics. In macroeconomic cross-country studies institutional features or group-level

effects play a role in explaining economic development. For example, Hoeffler (2002)

studies the growth performance of Sub-Saharan Africa countries by introducing a re-

gional dummy variable in her dynamic panel data model. Cinyabuguma and Putterman

(2011) focus on within Sub-Saharan differences by adding socio-economic and geographic

factors to the analysis.

If there is unobserved unit-specific heterogeneity, it is often hard to disentangle the

effects of the observed and the unobserved time-invariant heterogeneity. Standard fixed

and random effects estimators cannot be used because of multicollinearity problems and,

when the time dimension is short, the familiar Nickell (1981) bias in dynamic panel

data models first discovered by Hurwicz (1950) for time series models. Therefore, it is

common practice in empirical work to apply the generalized method of moments (GMM)

framework proposed by Arellano and Bond (1991), Arellano and Bover (1995), and Blun-

dell and Bond (1998), amongst others. However, as Binder et al. (2005) and Bun and

Windmeijer (2010) emphasize, GMM estimators might suffer from a weak instruments

problem when the autoregressive parameter approaches unity or when the variance of

the unobserved unit-specific effects is large. Moreover, the number of instruments can

rapidly become large relative to the sample size. The consequences of instrument pro-

liferation, summarized by Roodman (2009), range from biased coefficient and standard

error estimates to weakened specification tests.

In order to overcome the weak instruments problem in the context of estimating the

effects of time-varying regressors, Hsiao et al. (2002) propose a transformed likelihood

approach that is based on the model in first differences. A shortcoming of this approach

is the inability to estimate the coefficients of time-invariant regressors. In this paper,

we propose a two-stage estimation procedure to identify the latter. In the first stage,

we estimate the coefficients of the time-varying regressors. Subsequently, we regress the

first-stage residuals on the time-invariant regressors.1 We achieve identification by us-

1For a static model, Plümper and Troeger (2007) propose a similar three-stage approach that they

label fixed effects vector decomposition (FEVD). Their first stage is a classical fixed effects regression.

In a recent symposium on the FEVD method, Breusch et al. (2011) and Greene (2011) show that the

first two stages can be characterized by an instrumental variable estimation with a particular choice of
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ing instrumental variables in the spirit of Hausman and Taylor (1981), and adjust the

second-stage standard errors to account for the first-stage estimation error. Our method-

ology applies to any first-stage estimator that consistently estimates the coefficients of

the time-varying variables without relying on coefficient estimates for the time-invariant

regressors. As potential first-stage candidates we discuss the quasi-maximum likelihood

(QML) estimator of Hsiao et al. (2002) as well as GMM estimators. A major advantage

of the two-stage approach is the invariance of the first-stage estimates to misspecifica-

tions regarding the model assumptions on the correlation between the time-invariant

regressors and the unobserved unit-specific effects.2

We perform Monte Carlo experiments to evaluate the finite sample performance in

terms of bias, root mean square error (RMSE), and size statistics of our two-stage pro-

cedure relative to various GMM estimators that estimate all coefficients simultaneously.

The results suggest that the two-stage approach is to be preferred when the researcher

is interested both in the coefficients of time-varying and time-invariant variables. How-

ever, the quality of the second-stage estimates depends crucially on the precision of the

first-stage estimates. Among our first-stage candidates the two-stage QML estimator

performs very well when the time-varying regressors (besides the lagged dependent vari-

able) are strictly exogenous. GMM estimators can be an alternative if effective measures

are taken to avoid instrument proliferation. Our Monte Carlo analysis unveils sizable

finite sample biases when the GMM instruments are based on the full set of available

moment conditions. An easy way of reducing the instrument count is a restriction of the

lag depth in the formation of the instrument matrices. However, our simulation results

suggest that this does not solve the problem because the efficiency loss of disregarding

relevant information outweighs the benefits of a more parsimonious instrument set. In

contrast, collapsing the instrument matrices by forming linear combinations of the ini-

tial instruments improves the finite sample results considerably. Finally, in contrast to

conventionally computed standard errors our adjusted second-stage standard errors can

account remarkably well for the first-stage estimation error.

To illustrate these methods we estimate a dynamic Mincer equation with data from

the Panel Study of Income Dynamics (PSID). We use Hausman and Taylor (1981)-type

instruments to deal with the endogeneity of the schooling variable that is assumed to be

correlated with unobserved individual-specific ability. In our sample of salaried workers,

education is a time-invariant variable. To identify the return to schooling we use the

level of the time-varying variables as instruments, in particular the industry dummy

variables. Compared with the non-instrumented case, the return to schooling is sizably

reduced. Moreover, the correct adjustment of the second-stage standard errors proves to

be important for valid inference.

instruments, and that the third stage is essentially meaningless. Because the FEVD is widely associated

with the original three-stage approach of Plümper and Troeger (2007), we do not adopt this name here.
2Hoeffler (2002) and Cinyabuguma and Putterman (2011) argue similarly. They apply GMM estima-

tion in the first stage, and ordinary least squares estimation in the second stage. However, they do not

correct the second-stage standard errors.
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The paper is organized as follows: Section 2 explains the model and the identification

strategy. Section 3 lays out the two-stage estimation procedure to identify the coefficients

of time-invariant regressors. Section 4 describes one- and two-stage GMM estimation,

while Section 5 briefly describes two-stage QML estimation. Section 6 provides simulation

evidence on the performance of the two-stage estimators in comparison to several one-

stage GMM estimators under different scenarios. In Section 7 we discuss the empirical

application of the methods discussed in this paper, and Section 8 concludes.

2 Model

Consider the dynamic panel data model with units i = 1, 2, . . . , N , and a fixed number

of time periods t = 1, 2, . . . , T :3

yit = λyi,t−1 + x′itβ + f ′iγ + eit, (1)

eit = αi + uit, (2)

where xit is a Kx × 1 vector of time-varying variables. The initial observations of the

dependent variable, yi0, and the regressors, xi0, are assumed to be observed. fi is a Kf×1

vector of observed time-invariant variables that includes an overall regression constant,4

and αi is an unobserved unit-specific effect of the i-th cross section. In a strict sense, αi
is called a fixed effect if it is allowed to be correlated with all of the regressor variables

xit and fi,
5 and it is a random effect if it is independently distributed. In this paper we

look at a hybrid (or intermediate case) of the dynamic fixed and random effects models

where some of the regressors are correlated with αi but not all of them.6 Throughout

the paper we maintain the following assumptions:7

Assumption 1: The disturbances uit are independently and identically distributed for

all i and t with E[uit] = 0, E[uisuit] = 0 ∀s 6= t, and E[u2
it] = σ2

u.

Assumption 2: The unit-specific effects αi are independently distributed from the dis-

turbances uit with E[αi] = 0 and E[α2
i ] = σ2

α, and E[αiuit] = 0.

Identification of the (structural) parameters λ, β and γ now crucially hinges on the

assumptions about the dependencies between the regressors and the unit-specific effects.

3The model can be generalized to the inclusion of higher order lags of the dependent variable as well

as distributed lags of the time-varying exogenous regressors.
4Without loss of generality, set the first entry of fi equal to 1 for all i.
5Note that αi is correlated with the lagged dependent variable by construction.
6Compare Arellano and Bover (1995) and Greene (2011) in the context of a static panel data model.
7The assumptions on homoscedasticity of uit and αi can be relaxed but we stick to it for ease of

exposition.

3



Assumption 3: The explanatory variables can be decomposed as xit = (x′1it,x
′
2it)
′ and

fi = (f ′1i, f
′
2i)
′ such that E[αi|x1it, f1i] = 0, E[αi|x2it] 6= 0 and E[αi|f2i] 6= 0.

The resulting model is the dynamic counterpart of the Hausman and Taylor (1981)

model. For further reference, the lengths of the subvectors are Kx1, Kx2, Kf1, and Kf2,

respectively.8 Accordingly, the parameter vectors are partitioned as β = (β′1,β
′
2)′ and

γ = (γ′1,γ
′
2)′. If Kx2 = Kf2 = 0 the model collapses to the dynamic random effects

model. Contrarily, Kx1 = 0 and Kf1 = 1 (the constant term) leads to the dynamic fixed

effects model.

For the static model (λ = 0) with strictly exogenous regressors xit, Hausman and

Taylor (1981) propose an instrumental variable estimator that uses deviations from their

within-group means, ẍit = xit− x̄i, as instruments for the regressors xit, and the within-

group means x̄1i as instruments for f2i. The full set of instruments is zit = (ẍ′it, x̄
′
1i, f

′
1i)
′.

To improve on the efficiency of the estimator, Amemiya and MaCurdy (1986) propose to

use all time periods of x1it separately as instruments instead of the within-group means

such that zit = (ẍ′it,x
′
1i1, . . . ,x

′
1iT , f

′
1i)
′. Breusch et al. (1989) additionally suggest to use

each individual deviation from the within-group means as a separate instrument. Thus,

zit = (ẍ′i1, . . . , ẍ
′
iT ,x

′
1i1, . . . ,x

′
1iT , f

′
1i)
′. Furthermore, excluded exogenous instruments

might be available. This approach requires Kf2 ≤ (Kz −Kx −Kf1) for the parameters

γ2 to be at least just identified, where Kz is the total number of instruments. With

appropriate instruments for the lagged dependent variable, this approach directly extends

to the dynamic model. We then need Kf2 ≤ (Kz−1−Kx−Kf1) to achieve identification

of γ2.

In some applications, time-invariant regressors do not emerge directly from a theo-

retical model but from an attempt to obtain a dynamic random effects model without

assuming Kx2 = 0 from the outset. Mundlak (1978) proposes to model the latent effects

as an affine function of the within-group means of the time-varying regressors:

αi = b+ x̄′iπ + ηi, (3)

with E[ηi|xit] = 0. Similarly, Chamberlain (1982) proposes to project the unobserved

effects on all elements of the time-varying regressors xit instead of the within-group

means:

αi = b+
T∑
s=0

x′isπs + ηi. (4)

Consequently, we obtain a representation of model (1) with fi = (1, x̄′i) in case of projec-

tion (3), and fi = (1,x′i0,x
′
i1, . . . ,x

′
iT ) for projection (4). Moreover, for the transformed

model Kx2 = Kf2 = 0. This approach, however, usually does not work if time-invariant

regressors are already present in the structural model equation. To illustrate this case,

assume that projection (3) is applied when the model includes regressors f1i. As a con-

sequence, E[ηi|f1i] 6= 0 although E[αi|f1i] = 0 unless another restrictive condition holds.

8Consequently, Kx1 +Kx2 = Kx and Kf1 +Kf2 = Kf .
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To see this, take the conditional expectation of (3) with respect to f1i:

E[αi|f1i] = b+ E[x̄i|f1i]′π + E[ηi|f1i]
= (E[x̄i|f1i]− E[x̄i])

′
π + E[ηi|f1i]. (5)

Consequently, E[ηi|f1i] can only be zero for any π if E[x̄i|f1i] = E[x̄i].
9

Another example of time-invariant variables that emerge from econometric consid-

erations are cluster-specific effects. Without loss of generality, let us define clusters

Cj = {i|Nj−1 < i ≤ Nj}, j = 1, 2, . . . , J , with N0 = 0, 1 ≤ N1 < N2 < . . . < NJ , and

NJ = N for appropriately ordered units i. The affiliation of the units to the clusters

is non-random and known. Moreover, J � N and J/N → 0 as N → ∞ to avoid the

incidental parameters problem.10 Then, we decompose the unit-specific effects αi into

cluster-specific effects cj and a random component ηi:
11

αi = cj + ηi, i ∈ Cj , (6)

such that E[ηi|cj ] = 0. When the size of the cluster effects is of interest to get a sense of

the cross-cluster heterogeneity that is unexplained by the remaining regressors, we add

J − 1 cluster dummy variables to the set of time-invariant regressors.12

In the remaining sections, we distinguish between weakly and strictly exogenous re-

gressors xit with respect to the disturbance term uit.
13

Assumption 4.1: The time-varying regressors xit are strictly exogenous with respect

to the disturbances uit: E[uit|xi0,xi1, . . . ,xiT ] = 0.

Assumption 4.2: The time-varying regressors xit are weakly exogenous with respect to

the disturbances uit: E[uit|xi0,xi1, . . . ,xit] = 0 and E[uit|xis] 6= 0 ∀s > t.

In addition, we assume:

Assumption 5: E[uit|fi] = 0 .

9A trivial example for this condition being satisfied is when the only time-invariant variable is the

regression constant, that is fi = 1. Note that its coefficient is γ + b.
10When J/N → κ with κ 6= 0, the number of parameters to be estimated increases at the same rate

as the sample size. This leads to the familiar incidental parameters problem discussed by Neyman and

Scott (1948).
11This is also a stylized way of introducing spatial dependence into the model.
12Recall that there is already an intercept term in f1i. Hoeffler (2002) investigates the slow growth

performance of economies in Sub-Sahara Africa by including a regional dummy variable in an augmented

Solow model. Implicitly, she applies projection (6) with two clusters, namely Sub-Saharan Africa on the

one side and the remaining countries in her sample on the other side.
13We do not explicitly treat the case of a combination of strictly and weakly exogenous regressors as

the necessary adjustments are straightforward.

5



To facilitate the subsequent derivations we introduce the following notation. Let

yi = (yi1, yi2, . . . , yiT )′, yi,−1 = (yi0, yi1, . . . , yi,T−1)′, ui = (ui1, ui2, . . . , uiT )′, Xi =

(xi1,xi2, . . . ,xiT )′, Wi = (yi,−1,Xi), Fi = f ′i ⊗ ιT , where ⊗ denotes the Kronecker

product and ιT is a T × 1 vector of ones, and θ = (λ,β′)′. Then, model (1) can be

written in stacked form as:

yi = Wiθ + Fiγ + αiιT + ui. (7)

The corresponding model in first differences is:

∆yi = ∆Wiθ + ∆ui, (8)

where ∆yi = Dyi, ∆Wi = DWi, and ∆ui = Dui for the (T − 1) × T transformation

matrix D = [(0, IT−1) − (IT−1,0)], where IT−1 is the identity matrix of dimension

(T − 1). Obviously, this transformation removes all time-invariant components. To

further ease the notational burden, let y∗i = (yi0,y
′
i)
′, X∗i = (xi0,X

′
i)
′, and accordingly

∆y∗i = (∆yi1,∆y′i)
′, and ∆X∗i = (∆xi1,∆X′i)

′. Unit-specific time means are denoted

with a bar, for example x̄∗i = (T + 1)−1(X∗i )
′ιT+1. When we stack the data for all units

below each other, for example y = (y′1,y
′
2, . . . ,y

′
N )′, we leave out the subscripts.

Finally, under assumptions 1 and 2, the asymptotic variance-covariance matrix of

the residuals ei = αiιT + ui is Ωl = σ2
αιT ι

′
T + σ2

uIT . Consequently, the asymptotic

variance-covariance matrix of the first-differenced disturbances ∆ui is:

Ωd = σ2
uDD′ = σ2

u


2 −1 0 · · · 0

−1 2 −1

0 −1 2
...

. . . −1

0 −1 2

 .

3 Two-Stage Estimation

The contribution of this paper is to focus on the estimation of the coefficients γ of the

time-invariant variables. In the next section, we show how GMM estimators can be

adjusted to the assumed correlation structure. However, since all regression coefficients

are recovered simultaneously, a misspecification of the moment conditions might lead to a

biased estimation of all coefficients including λ and β. We therefore lay down a two-stage

estimation procedure. In a first stage, we subsume the time-invariant variables fi under

the unit-specific effects, α∗i = αi + f ′iγ, and consistently estimate the coefficients λ and

β independent of the assumptions on the correlation structure between fi and αi. In the

second stage, we recover γ.

The first-stage model is

yit = α∗ + λyi,t−1 + x′itβ + e∗it, (9)

e∗it = α∗i − α∗ + uit, (10)

6



where α∗ = E[f ′i ]γ. To obtain the first-stage estimates λ̂ and β̂ we can apply a trans-

formation that eliminates the time-invariant unit-specific effects α∗i . In particular, the

GMM estimator of Arellano and Bond (1991) and the QML estimator of Hsiao et al.

(2002) are based on the first-differenced model (8) while Arellano and Bover (1995) pro-

pose a GMM estimator based on forward orthogonal deviations. Alternatively, system

GMM estimators that also make use of the level relationship can be applied taking into

account that the error term of the first-stage model is e∗it instead of eit. This distinction

is important if Kx1 > 0 but some or all of the variables in x1it are correlated with fi.

These variables are uncorrelated with αi but not α∗i .

In the second stage, we estimate the coefficients γ of the time-invariant variables

based on the cross-sectional relationship in the level equation:

r̂iT = f ′iγ + viT , i = 1, 2, . . . , N, (11)

where

r̂iT = yiT − λ̂yi,T−1 − x′iT β̂, (12)

viT = αi + uiT − (λ̂− λ)yi,T−1 − x′iT (β̂ − β). (13)

In particular, note the two additional terms in (13) that are due to the first-stage estima-

tion error. Under assumption 3, the regressors f2i are endogenous in the regression model

(11). Hausman and Taylor (1981) suggest to use the within-group means x̄∗1i as instru-

ments for these endogenous time-invariant regressors. Consequently, the Kx1 + Kf1 in-

struments for the second-stage regression would be z̃i = ((x̄∗1i)
′, f ′1i)

′
. Following Amemiya

and MaCurdy (1986) and Breusch et al. (1989), a more efficient instrumental variable

estimator makes use of all individual time periods such that Kx1(T + 1) + Kf1 instru-

ments are available, namely z̃i = (x′1i0, . . . ,x
′
1iT , f

′
1i)
′. Note that under assumption 4.2

both sets of instruments are only valid when we base the second-stage model (11) on the

cross-section in period T . For any other generic time period t the available instrument

set shrinks to z̃i = (x′1i0, . . . ,x
′
1it, f

′
1i)
′ and the within-group averages are no longer valid

instruments.14 Identification of γ2 requires that the number of instruments is greater or

equal than Kf . The 2SLS estimator is given by:

ˆ̂γ =

( N∑
i=1

fiz̃
′
i

)(
N∑
i=1

z̃iz̃
′
i

)−1( N∑
i=1

z̃if
′
i

)−1(
N∑
i=1

fiz̃
′
i

)(
N∑
i=1

z̃iz̃
′
i

)−1 N∑
i=1

z̃ir̂iT . (14)

It is easily seen that E[αi + uiT |z̃i] = 0 together with consistency of the first-stage

14Another choice might be to regress the within-group means ˆ̄ri on fi. However, under assumption

4.2 this attempt shrinks the available instrument set to z̃i = (x′1i0,x
′
1i1, f

′
1i)
′.
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estimator θ̂ imply consistency of the second-stage estimator:

plim ˆ̂γ = γ + (A1A
−1
2 A′1)−1A1A

−1
2 plim

1

N

N∑
i=1

z̃iviT

= γ + (A1A
−1
2 A′1)−1A1A

−1
2

[
plim

1

N

N∑
i=1

z̃i(αi + uit)−A3 plim(θ̂ − θ)

]
= γ, (15)

where

A1 = plim
1

N

N∑
i=1

fiz̃
′
i, A2 = plim

1

N

N∑
i=1

z̃iz̃
′
i, A3 = plim

1

N

N∑
i=1

z̃iw
′
iT ,

with wiT = (yi,T−1,x
′
iT )′.

Importantly, the error term viT of the second-stage regression is cross-sectionally cor-

related and exhibits heteroscedasticity due to the presence of the estimation error in the

first-stage coefficients. Therefore, the conventional standard errors obtained from OLS

or 2SLS estimation are inconsistent and lead to invalid inferences. However, this does

not affect the consistency of the second-stage estimator ˆ̂γ. The asymptotic distribution

of the second-stage estimator (14) is determined by the components of viT :

√
N(ˆ̂γ − γ) =

( 1

N

N∑
i=1

fiz̃
′
i

)(
1

N

N∑
i=1

z̃iz̃
′
i

)−1(
1

N

N∑
i=1

z̃if
′
i

)−1

×

(
1

N

N∑
i=1

fiz̃
′
i

)(
1

N

N∑
i=1

z̃iz̃
′
i

)−1

1√
N

N∑
i=1

z̃iviT , (16)

where

1√
N

N∑
i=1

z̃iviT =
1√
N

N∑
i=1

z̃i(αi + uiT )−

(
1

N

N∑
i=1

z̃iw
′
iT

)
√
N(θ̂ − θ). (17)

By applying the central limit theorem, we can now establish the joint asymptotic distri-

bution of the first-stage and the second-stage estimators:

√
N

(
θ̂ − θ
ˆ̂γ − γ

)
a∼ N

((
0

0

)
,

(
Σθ Σθγ
Σ′θγ Σγ

))
, (18)

with

Σθγ = (ΣθA
′
3 + C)B′2, (19)

Σγ = B2(Ṽ + A3ΣθA
′
3 −C′A′3 −A3C)B′2, (20)

8



where B1 = A1A
−1
2 A′1, B2 = B−1

1 A1A
−1
2 , and Ṽ = plimN−1

∑N
i=1 z̃iv

2
iT z̃′i. Moreover,

Σθ = Avar[
√
N(θ̂ − θ)] is the asymptotic variance-covariance matrix of the first-stage

estimator, and C = Acov[
√
N(θ̂−θ), N−1/2

∑N
i=1(αi +uiT )z̃′i]. Under homoscedasticity

of αi and uit equation (20) simplifies to

Σγ = (σ2
α + σ2

u)B−1
1 + B2(A3ΣθA

′
3 −C′A′3 −A3C)B′2. (21)

We can estimate the asymptotic variance-covariance matrix of the second-stage es-

timator by calculating the respective sample analogs of the matrices A1, A2, and A3.

An estimate for σ2
u is typically available from the first-stage regression but not for σ2

α.

However, a consistent estimate for σ2
e = σ2

α + σ2
u can be obtained as follows:

ˆ̂σ2
e =

1

NT − (1 +Kx +Kf )

N∑
i=1

T∑
t=1

ˆ̂v2
it, (22)

with ˆ̂vit given by
ˆ̂vit = yit − λ̂yi,t−1 − x′itβ̂ − f ′i ˆ̂γ. (23)

Note that ˆ̂vit = ˆ̂viT−
∑T
s=t+1 ∆̂uis, t = 1, 2, . . . , T−1, where ∆̂uit are the estimated first-

stage residuals of the first-differenced model. An estimate of Σθ is readily available from

the first-stage estimation. Estimation of the asymptotic covariance matrix C requires

knowledge of the closed-form solution of the first-stage estimator θ̂. We will derive an

expression of C for the GMM and QML first-stage estimators that we discuss in the next

sections.15

4 GMM Estimation

In this section, we discuss generalized method of moments estimation for linear dynamic

panel data models that is based on moment conditions for the model in first differences,

E[(Zdi )
′∆ui] = 0, and the model in levels, E[(Zli)

′ei] = 0. In the following subsection, we

discuss the moment conditions that are implied by the model assumptions and the result-

ing design of the instrument matrices Zdi and Zli. Subsection 4.2 derives the system GMM

estimator that combines all moment conditions, and Subsection 4.3 discusses transfor-

mations of the instrument matrices to reduce the number of overidentifying restrictions.

Finally, Subsection 4.4 derives the two-stage GMM estimator as a robust alternative to

one-stage GMM estimators that obtain all coefficient estimates simultaneously.

15In practice, ignoring the variance components involving C should still yield a good approximation of

the asymptotic variance-covariance matrix. In Monte Carlo simulations we find that this approximation

works very well.
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4.1 Moment Conditions

Following Arellano and Bond (1991) and Blundell et al. (2001), assumptions 1 and 2

imply the following T (T − 1)/2 moment conditions for the model in first differences:

E[yi,t−s∆uit] = 0, t = 2, 3, . . . , T, 2 ≤ s ≤ t. (24)

Under the strict exogeneity assumption 4.1 we have another Kx(T + 1)(T − 1) moment

conditions:

E[xis∆uit] = 0, t = 2, 3, . . . , T, 0 ≤ s ≤ T. (25)

In the case of weakly exogenous regressors, assumption 4.2, there are only the following

Kx(T + 2)(T − 1)/2 moment conditions available:

E[xi,t−s∆uit] = 0, t = 2, 3, . . . , T, 1 ≤ s ≤ t. (26)

At this stage, we do not need to make a distinction between regressors that are correlated

and those that are uncorrelated with αi. Following Arellano and Bover (1995), the

presence of time-invariant regressors provides another Kf (T − 1) moment conditions:

E[fi∆uit] = 0, t = 2, 3, . . . , T. (27)

Under assumption 1, the disturbances uit are homoscedastic through time. Following

Ahn and Schmidt (1995), this implies another (T − 2) moment conditions:

E[yi,t−2∆ui,t−1 − yi,t−1∆uit] = 0, t = 3, . . . , T. (28)

We can combine these moment conditions for the first-differenced equation:

E[(Zdi )
′∆ui] = 0, (29)

where Zdi = (Zdy,i,Z
d
x,i, IT−1 ⊗ f ′i ,Z

d
u,i) with

Zdy,i =


(zdy,i2)′ 0 · · · 0

0 (zdy,i3)′
...

...
. . . 0

0 · · · 0 (zdy,iT )′

 , Zdx,i =


(zdx,i2)′ 0 · · · 0

0 (zdx,i3)′
...

...
. . . 0

0 · · · 0 (zdx,iT )′

 ,

Zdu,i =



yi1 0 · · · 0

−yi2 yi2
...

0 −yi,3
. . . 0

...
. . . yi,T−2

0 · · · 0 −yi,T−1


and zdy,it = (yi0, yi1, . . . , yi,t−2)′. The instruments zdx,it differ according to the assumption

about the regressor variables. We have zdx,it = (x′i0,x
′
i1, . . . ,x

′
iT )′ under strict exogeneity
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and zdx,it = (x′i0,x
′
i1, . . . ,x

′
i,t−1)′ under weak exogeneity of the regressors. Based on the

moment conditions (29) we can set up a first estimator that is often called “difference

GMM” estimator. However, this estimator will generally be inefficient as it does not

exploit all available information, and it cannot identify γ. To add further moment

conditions for the model in levels we will partly rely on the following assumption:

Assumption 6.1: E[∆yi1αi] = 0, and E[∆x2itαi] = 0, t = 1, 2, . . . , T .16

Under the additional assumption 6.1, Blundell and Bond (1998) establish the following

(T − 1) linear moment conditions for the model in levels:

E[∆yi,t−1eit] = 0, t = 2, 3, . . . , T. (30)

For the regressors x1it, Arellano and Bond (1991) introduce the following Kx1(T + 1)

level moment conditions:

E[x1i0ei1] = 0, and E[x1iteit] = 0, t = 1, 2, . . . , T. (31)

Moreover, Arellano and Bover (1995) and Blundell et al. (2001) introduce another Kx2T

moment conditions for the regressors x2it under assumption 6.1:

E[∆x2iteit] = 0, t = 1, 2, . . . , T. (32)

Note that assumption 6.1 implies E[(x2it − x̄∗2i)αi] = 0, t = 0, 1, . . . , T . Exploiting this

relationship, we have Kx2 additional moment conditions:17

E [(x2iT − x̄∗2i)eiT ] = 0. (33)

All remaining moment conditions for the model in levels are redundant for these variables.

Arellano and Bover (1995) further suggest Kf1 moment conditions for the time-invariant

regressors f1i that are uncorrelated with the unit-specific effects αi:

E

[
f1i

T∑
t=1

eit

]
= 0. (34)

The additional level moment conditions E[f1ieit] = 0, t = 1, 2, . . . , T , are again redun-

dant. Finally, we combine the level moment conditions:

E[(Zli)
′ei] = 0, (35)

16To guarantee that ∆yit and ∆x2it are uncorrelated with αi a restriction on the initial conditions

has to be satisfied. Deviations of yi0 and x2i0 from their long-run means must be uncorrelated with

αi. A sufficient but not necessary condition for assumption 6.1 to hold is joint mean stationarity of

the processes yit and xit. Moreover, E[∆yitαi] = 0, t = 2, 3, . . . , T , is implied by assumption 6.1. See

Blundell and Bond (1998), Blundell et al. (2001), and Roodman (2009) for a discussion.
17We choose eiT to make these moment conditions valid both under assumptions 4.1 and 4.2.
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where Zli = (Zly,i,Z
l
x,i,F1i), with

Zly,i =



0 0 · · · 0

∆yi1 0 · · · 0

0 ∆yi2
...

...
. . . 0

0 · · · 0 ∆yi,T−1


,

and

Zlx,i =


x′1i0 x′1i1 0 · · · 0 ∆x′2i1 0 · · · 0 0

0 0 x′1i2
... 0 ∆x′2i2

...
...

...
...

. . . 0
...

. . . 0 0

0 0 · · · 0 x′1iT 0 · · · 0 ∆x′2iT x2iT − x̄∗2i

 .

Ahn and Schmidt (1995) derive further non-linear moment conditions under assump-

tions 1 and 2, namely E[uit∆ui,t−1] = 0, t = 3, 4, . . . , T , and E[ūi∆ui2] = 0. The latter

again results from homoscedasticity of uit. In this paper, we restrict our attention to the

linear moment conditions above.18

4.2 System GMM Estimator

The moment conditions for the two equations can be combined by considering a system

of equations:

y+
i = W+

i θ + F+
i γ + e+

i , (36)

where y+
i = Tyi, W+

i = TWi, and F+
i = TFi, with the (2T − 1) × T transformation

matrix T = (D′, IT )′. The residuals are e+
i = Tei = (∆u′i, e

′
i)
′. The instruments for the

full equation system are combined in the following block-diagonal matrix:

Z+
i =

(
Zdi 0

0 Zli

)
.

Based on the sample moments N−1
∑N
i=1(Z+

i )′e+
i = N−1(Z+)′e+ we can derive the

GMM estimator (θ̂
′
, γ̂′) as a minimum distance estimator:(

θ̂

γ̂

)
= arg min

θ,γ

[
(Z+)′e+

]′
VN (Z+)′e+,

where VN is a weighting matrix that might depend on the data, with plim VN = V for

a positive definite matrix V. It is readily seen that this minimization problem can be

18The (T − 2) non-linear moment conditions that are not a consequence of the homoscedasticity

assumption are implied by the conditions (30) to (32). See Blundell and Bond (1998) in the absence of

exogenous regressors.
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rewritten in terms of the level residuals only with the transformed instrument matrix

Zi = T′Z+
i = (D′Zdi ,Z

l
i): (

θ̂

γ̂

)
= arg min

θ,γ
(Z′e)′VNZ′e.

Consequently, (
θ̂

γ̂

)
= (Ẇ′ZVNZ′Ẇ)−1Ẇ′ZVNZ′y, (37)

where Ẇ = (W,F). Notably, the first block of the transformed instrument matrix,

D′Zdi , is a set of instruments that are orthogonal to any time-invariant variable.

We can consistently estimate the asymptotic variance-covariance matrix Σ of the

GMM estimator as follows:

Σ̂ = (Ẇ′ZVNZ′Ẇ)−1Ẇ′ZVN Ξ̂VNZ′Ẇ(Ẇ′ZVNZ′Ẇ)−1, (38)

where Ξ̂ is a consistent estimate of Ξ = plimN−1
∑N
i=1 Z′ieie

′
iZi. Under assumptions

1 and 2, Ξ = plimN−1
∑N
i=1 Z′iΩ

lZi. The GMM estimator (37) is efficient for a given

instrument matrix Z if V = cΞ−1 for any constant scalar c > 0. Then, a consistent

estimate of the asymptotic variance-covariance matrix (38) is given by:

Σ̂ = (Ẇ′ZΞ̂−1Z′Ẇ)−1. (39)

With prior knowledge of the ratio τ = σ2
α/σ

2
u, an optimal weighting matrix is:

VN =

[
1

N

N∑
i=1

Z′i(τιT ι
′
T + IT )Zi

]−1

, (40)

such that V = σ2
uΞ−1. In general, however, there exists no asymptotically efficient one-

step GMM estimator19 since τ is unknown.20 In this case, it is common practice to

use

VN =

[
1

N

N∑
i=1

(Z+
i )′HjZ

+
i

]−1

, j ∈ {1, 2, 3}, (41)

with either

H1 = I2T−1, H2 =

(
DD′ 0

0 IT

)
, or H3 =

(
DD′ D

D′ IT

)
.

19In this paper, we call an estimator a one-step estimator if it is not based on prior estimates. In

contrast, a two-step estimator is a feasible efficient estimator that makes use of consistent initial esti-

mates. The denotation of a one-stage estimator is used for estimators that obtain all coefficient estimates

simultaneously (potentially in two steps) while a two-stage estimator first obtains the coefficients of the

time-varying regressors and second the coefficients of the time-invariant regressors given the first-stage

estimates.
20Compare Blundell and Bond (1998), Windmeijer (2000), and Blundell et al. (2001).
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H1 is used, among others, by Arellano and Bover (1995) and Blundell and Bond (1998),

while Blundell et al. (2001) take the first-order serial correlation in the first-differenced

residuals into account by choosing H2. When σ2
α is small, Windmeijer (2000) suggests

to reduce the potential efficiency loss by using H3. In fact, when τ = 0, the weighting

matrix (41) based on H3 equals the optimal weighting matrix (40) under assumptions 1

and 2 since H3 = TT′.

We can obtain a two-step GMM estimator with optimal weighting matrix by choosing

VN = Ξ̂−1 given consistent initial estimates θ̂ and γ̂. A consistent unrestricted estimate of

Ξ is obtained as Ξ̂ = N−1
∑N
i=1 Z′iêiê

′
iZi, with êi = yi−Wiθ̂−Fiγ̂. Under assumptions

1 and 2, we can obtain a restricted estimate as Ξ̂ = N−1
∑N
i=1 Z′iΩ̂

lZi with either Ω̂l =

N−1
∑N
i=1 êiê

′
i or Ω̂l = σ̂2

αιT ι
′
T+σ̂2

uIT . The variance estimates σ̂2
u and σ̂2

α can be obtained

as follows:

σ̂2
u =

1

2[N(T − 1)− (1 +Kx)]

N∑
i=1

T∑
t=2

∆̂u
2

it, (42)

σ̂2
e =

1

NT − (1 +Kx +Kf )

N∑
i=1

T∑
t=1

ê2
it, (43)

σ̂2
α = σ̂2

e − σ̂2
u, (44)

where ∆̂uit = ∆yit − ∆Witθ̂. The importance of choosing an appropriate first-step

weighting matrix should not be underestimated in applied work. Although the two-step

GMM estimator is asymptotically unaffected, its finite sample performance still depends

on the choice of VN in the first step. Windmeijer (2005) shows that asymptotic standard

error estimates of the two-step GMM estimator can be severely downward based in finite

samples. He derives a finite sample variance correction.

When the estimator only involves moment conditions for the model in first dif-

ferences, such that Zi = D′Zdi , the optimal weighting matrix boils down to VN =

(N−1
∑N
i=1 Z′iZi)

−1, as suggested by Arellano and Bond (1991). In this case, the one-

step estimator is as efficient as the two-step estimator under assumption 1 because the

optimal weighting matrix does not depend on τ any more.

4.3 Reduction of the Number of Instruments

If all the assumptions are met, using the full instrument matrix based on the moment

conditions set out in Subsection 4.1 is asymptotically efficient. In finite samples, however,

severe distortions can result from having too many instruments relative to the sample

size. Roodman (2009) stresses four main symptoms of instrument proliferation. First,

the coefficient estimates can be biased towards the non-instrumented estimates because

a large set of instruments potentially overfits the model. Second, the optimal weighting

matrix of two-step GMM estimators might be poorly estimated because its dimension

increases with the number of the instruments. Third, as a result of the imprecisely esti-

mated weighting matrix the estimated standard errors of two-step GMM estimators tend
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to be downward biased. This issue is addressed by Windmeijer (2005) who provides a

finite sample correction for the variance of two-step GMM estimators. Fourth, specifica-

tion tests for two-step GMM estimators that are also based on an estimate of the optimal

weighting matrix, as the Hansen (1982) J-test for the validity of the overidentifying re-

strictions, become weak. This might lead to a false indication that the overidentifying

restrictions are valid when in fact they are not.21

When the full instrument matrix Zi is used these problems can become severe al-

ready for time dimensions that are usually still considered as being small. It is easily

seen that the number of moment conditions for the first-differenced equation grows with

rate T 2 when the time dimension increases, and those of the level equation with rate

T . In applied work, researchers often restrict the number of lags that are used to con-

struct the instrument matrix for the first-differenced equation. With a fixed lag depth

the number of instruments becomes linear in T . Alternatively, reducing the instrument

count from quadratic to linear in T can also be achieved by systematically using linear

combinations instead of all moment conditions separately.22 Both procedures are effec-

tively deterministic transformations of the instrument matrix. As discussed by Mehrhoff

(2009), a transformation of the instrument matrix Zi such that Z∗i = ZiR for any de-

terministic matrix R also leads to a valid set of moment conditions, E[(Z∗i )
′ei] = 0.

The corresponding GMM estimator is obtained by replacing Zi with Z∗i in the previous

subsection. Appendix A provides practically relevant examples of the transformation

matrix R.

4.4 Two-Stage GMM Estimation

If some of the variables f2i that are correlated with the unit-specific effects are mistakenly

classified as variables f1i that are supposed to be uncorrelated with the latent effects,

all coefficient estimates will generally be biased including those of the time-varying re-

gressors. However, there is an important exception. If γ is only just identified (or even

underidentified), that is rk(Zl) ≤ Kf , the identification of the coefficients λ and β does

neither depend on Zli nor on the covariance of the time-varying with the time-invariant

regressors. This is a consequence of DFi = 0. Therefore, a bias in γ̂ does not translate

into a bias in θ̂ in this case. An example for this case is Kf2 = 0 and Zli = F1i.

A brute force alternative would be to specify a GMM estimator that treats all vari-

ables as potentially correlated with αi. While this procedure still allows to identify λ

and β, the coefficients γ are identified only technically by virtue of the overidentifying

restrictions. Although unbiased, the GMM estimates γ̂ are not informative. The trans-

formed instruments for the first-differenced equation are orthogonal to all time-invariant

variables by construction. The remaining demeaned and first-differenced instruments

also do not help identifying γ because it is unlikely that these instruments are correlated

21See Roodman (2009) and the references therein for an extensive discussion.
22See again Roodman (2009).
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with the time-invariant regressors when assumption 6.1 holds.23

A robust alternative is based on a two-stage estimation strategy. In the first stage,

the time-invariant variables (besides the regression constant) are subsumed under the

unit-specific effects, and the corresponding moment conditions (34) are left disregarded.

We thus require that assumption 6.1 still holds for α∗i = αi + f ′iγ. If the regressors x1it

are correlated with fi, the moment conditions (31) become invalid as well. We then have

to treat x1it equivalently to x2it and use the corresponding moment conditions (32) and

(33) instead. The resulting first-stage GMM estimator is given by equation (37) after

adjusting the instrument matrix appropriately and replacing Ẇ with (W, ιNT ).24 The

first-stage variance-covariance matrix Σ is adjusted accordingly. The estimates θ̂ are

subsequently used to recover γ as described in Section 3.

The second-stage estimator ˆ̂γ is given in equation (14), and its asymptotic variance-

covariance matrix Σγ in equation (20). Under assumptions 1 and 2, the asymptotic

covariance matrix C is given by:25

C = J̃[S1VS′1]−1[S1V(σ2
uS2 + σ2

αS3)], (45)

with V = plim VN as defined in Subsection 4.2, J̃ = (I1+Kx ,01+Kx×1), and

S1 = plim
1

N

N∑
i=1

Ẇ′
iZi, S2 = plim

1

N

N∑
i=1

Z′isT z̃′i, S3 = plim
1

N

N∑
i=1

Z′iιT z̃′i,

where sT = (0, . . . , 0, 1)′ is of dimension T × 1 with 1 at position T and zeros elsewhere.

This two-stage procedure is not restricted to a GMM estimator in the first stage.

We can apply any first-stage estimator that consistently estimates the coefficients of the

time-varying regressors without relying on estimates of the coefficients of time-invariant

regressors. Thus, estimators that are solely based on the first-differenced model are

natural first-stage candidates. An example for such an estimator is the QML estimator

of Hsiao et al. (2002) that we discuss in the next section.

5 Two-Stage Quasi-Maximum Likelihood Estimation

If Kx2 = Kf2 = 0 we can immediately estimate model (1) with the random effects

maximum likelihood estimator of Bhargava and Sargan (1983) and Hsiao et al. (2002).

When this strong assumption does not hold, Hsiao et al. (2002) propose to estimate

the coefficients of the time-varying regressors including the lagged dependent variable

based on the first-differenced model (8). However, this procedure not only eliminates

the incidental parameters αi but also the time-invariant variables fi. The latter can be

recovered in a second stage.

23Compare Arellano (2003), Chapter 8.5.4.
24The first-stage intercept is only needed for consistent estimation of the parameters of interest if

E[f ′i ]γ 6= 0. We obtain a final estimate of the regression constant in the second stage.
25If all columns of Zi are orthogonal to time-invariant variables the term σ2

αS3 drops out.
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Under the strict exogeneity assumption 4.1 the joint density of ∆y∗i conditional on

∆X∗i is given by:

f(∆y∗i |∆X∗i ) =f(∆yiT |∆yi,T−1,∆yi,T−2, . . . ,∆yi1,∆X∗i )

f(∆yi,T−1|∆yi,T−2,∆yi,T−3, . . . ,∆yi1,∆X∗i ) . . .

f(∆yi2|∆yi1,∆X∗i )f(∆yi1|∆X∗i ). (46)

All but the last term can be easily derived from the first-differenced model (8). This is

not the case for f(∆yi1|∆X∗i ) because ∆yi0 is not observed. Hsiao et al. (2002) apply

linear projection techniques to derive the following initial observation condition:

∆yi1 = b+
T∑
s=1

∆x′isπs + ξi1, (47)

based on the following assumption:

Assumption 6.2: xit is generated either by a trend stationary or first-difference sta-

tionary process such that ∆xit is covariance stationary:

∆xit = g +
∞∑
s=0

Bsεi,t−s, B0 = IKx
,

∞∑
s=0

BsB
′
s <∞, (48)

where E[εit] = 0, E[εitε
′
it] = Σε and E[εitε

′
is] = 0 for t 6= s.

If this stationarity assumption is violated, b and π = (π′1,π
′
2, . . . ,π

′
T )′ might depend

on i such that the incidental parameters problem is still present. The properties of the

error term ξi1 are E[ξ2
i1] = σ2

ξ , E[ξi1|∆xi] = 0, E[ξi1∆ui2] = −σ2
u, and E[ξi1∆uit] = 0 for

t = 3, 4, . . . , T . Under the additional assumption that uit and εit are normally distributed

we can now set up the transformed likelihood function:

lnLT = −NT
2

ln(2π)− N

2
ln |Ω∗| − 1

2

N∑
i=1

∆u∗
′

i (Ω∗)−1∆u∗i , (49)

where ∆u∗i = (ξi1,∆u′i)
′. Moreover,26

Ω∗ = σ2
uΩ̃ = σ2

u

(
ω −s′1
−s1 DD′

)
= σ2

u


ω −1 0 · · · 0

−1 2 −1

0 −1 2
...

. . . −1

0 −1 2

 ,

26Hayakawa and Pesaran (2012) extend the transformed likelihood estimator to accommodate for

heteroscedastic errors.
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where s1 = (1, 0, . . . , 0)′ is a selection vector of compatible length, here (T − 1)× 1, with

1 at position 1 and zeros elsewhere, and ω = σ2
ξ/σ

2
u such that ln |Ω∗| = T lnσ2

u + ln[1 +

T (ω − 1)], as demonstrated by Hsiao et al. (2002). With ∆u∗i = ∆y∗i −∆W∗
iϕ, where

ϕ = (b,π′, λ,β′)′, and ∆W∗
i = (∆X̃i,∆W̃i) with

∆X̃i =

(
1 ∆x̃′i
0 0

)
, ∆W̃i =

(
0′

∆Wi

)
,

and ∆x̃i = (∆x′i1,∆x′i2, . . . ,∆x′iT )′, we can rewrite the log-likelihood function as

lnLT =− NT

2
ln(2π)− NT

2
lnσ2

u −
N

2
ln[1 + T (ω − 1)]

− 1

2σ2
u

N∑
i=1

(∆y∗i −∆W∗
iϕ)′Ω̃−1(∆y∗i −∆W∗

iϕ). (50)

The weak exogeneity assumption 4.2 requires the derivation of a joint density of ∆y∗i
and the weakly exogenous regressors. According to Hsiao et al. (2002), the only difference

in the likelihood function compared to the strict exogeneity case is the initial condition

which they model as a function of the initial observations of the regressor variables only

instead of using all available observations:27

∆yi1 = b+ ∆x′i1π + ξi1, (51)

such that ∆x̃i = ∆xi1.

Hsiao et al. (2002) derive the following first-order conditions:

ϕ̂ =

(
N∑
i=1

(∆W∗
i )
′ ˆ̃Ω−1∆W∗

i

)−1 N∑
i=1

(∆W∗
i )
′ ˆ̃Ω−1∆y∗i (52)

σ̂2
u =

1

NT

N∑
i=1

(∆y∗i −∆W∗
i ϕ̂)′ ˆ̃Ω−1(∆y∗i −∆W∗

i ϕ̂) (53)

ω̂ =
T − 1

T
+

1

NT 2σ̂2
u

N∑
i=1

(∆y∗i −∆W∗
i ϕ̂)′ϑϑ′(∆y∗i −∆W∗

i ϕ̂), (54)

where ϑ = (T, T − 1, T − 2, . . . , 1)′. By inserting the first-order conditions for ϕ̂ and σ̂2
u

back into the log-likelihood function, we get a concentrated log-likelihood function that

depends only on ω. We can then apply an iterative procedure to derive the maximizing

value ω̂ and subsequently recover the other parameter values. For a given value of ω the

27See Hsiao et al. (2002) for details on the derivation.
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quasi-maximum likelihood estimator for λ and β is given by:

θ̂ =

[
N∑
i=1

∆W̃′
iΩ̃
−1∆W̃i −

(
N∑
i=1

∆W̃′
iΩ̃
−1∆X̃i

)

×

(
N∑
i=1

∆X̃′iΩ̃
−1∆X̃i

)−1( N∑
i=1

∆X̃′iΩ̃
−1∆W̃i

)]−1

×

[
N∑
i=1

∆W̃′
iΩ̃
−1∆y∗i −

(
N∑
i=1

∆W̃′
iΩ̃
−1∆X̃i

)

×

(
N∑
i=1

∆X̃′iΩ̃
−1∆X̃i

)−1( N∑
i=1

∆X̃′iΩ̃
−1∆y∗i

)]
, (55)

as derived by Hsiao et al. (2002).28 The variance-covariance matrix of θ̂ is the lower-

right (1 + Kx) × (1 + Kx) block of the inverse negative Hessian matrix from the above

maximization problem.

Analogously to the two-stage estimation discussed in the GMM Subsection 4.4 we

can recover the coefficients γ of the time-invariant regressors in a second stage. The

second-stage estimator ˆ̂γ is again given by equation (14), and the joint distribution of

the first-stage and second-stage estimators by equations (18) to (20), where now Σθ is

the asymptotic variance-covariance matrix of the QML estimator θ̂ and

C = σ2
u[S4 − S5S

−1
6 S′5]−1[S7 − S5S

−1
6 S8], (56)

with

S4 = plim
1

N

N∑
i=1

∆W̃′
iΩ̃
−1∆W̃i, S5 = plim

1

N

N∑
i=1

∆W̃′
iΩ̃
−1∆X̃i,

S6 = plim
1

N

N∑
i=1

∆X̃′iΩ̃
−1∆X̃i, S7 = plim

1

N

N∑
i=1

∆W̃′
iΩ̃
−1sT z̃′i,

S8 = plim
1

N

N∑
i=1

∆X̃′iΩ̃
−1sT z̃′i,

and sT defined in Section 4.4.

28Hsiao et al. (2002) provide a proof for consistency of the QML estimator for models without

exogenous regressors. For a derivation of the consistency of the estimator including strictly exogenous

variables see Appendix B.
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6 Monte Carlo Simulation

6.1 Simulation Design

In our Monte Carlo experiments we focus on the case Kx1 = Kf2 = 0. That is, the

time-varying regressor xit is correlated with the unobserved fixed effects and the time-

invariant regressor fi is uncorrelated with them. For the ease of comparability of the

different estimation methods we choose Kx = Kf = 1, even though we note that some

problems of GMM estimators that result from too many overidentifying restrictions might

aggravate with a larger number of time-varying regressors. We generate yit and xit
according to the following processes:

yit = λyi,t−1 + βxit + γfi + αi + uit, uit
iid∼ N (0, σ2

u), (57)

and

xit = φxi,t−1 + νρfi + ν
√

1− ρ2ηi + εit, εit
iid∼ N (0, σ2

ε ), (58)

such that xit is strictly exogenous with respect to uit.

We generate the observed unit-specific effects fi as an independent binary variable

from a Bernoulli distribution with success probability p. The unobserved unit-specific

effects αi and ηi are generated from a joint normal distribution:(
αi
ηi

)
∼ N

((
µα
µη

)
,

(
σ2
α σαη

σαη p(1− p)

))
, (59)

such that the variances of ηi and fi coincide. The particular design of the process for

xit guarantees that the correlation between xit and fi can be altered while keeping the

variance of xit unchanged, because

V ar(xit) =
1

(1− φ)2

[
ν2p(1− p) +

1− φ
1 + φ

σ2
ε

]
(60)

is independent of ρ. ν ≥ 0 is introduced as a scale parameter. The correlation coefficient

for xit and fi can be written as:

Corr(xit, fi) = ρ

√
ν2p(1− p)

ν2p(1− p) + 1−φ
1+φσ

2
ε

. (61)

Since ρ ∈ [−1, 1], it can be interpreted as a correlation coefficient net of the variation

coming from εit.

We set the long-run coefficient β/(1− λ) = 1 and initialize the processes at t = −50

with their long-run means given the realizations of the unit-specific effects:

yi,−50 = xi,−50 +
1

1− λ
(γfi + αi) , (62)

xi,−50 =
ν

1− φ

(
ρfi +

√
1− ρ2ηi

)
, (63)
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Table 1: Simulation Designs

Design λ β ρ σ2
α

1 0.8 0.2 0.8 4

2 0.8 0.2 0.8 1

3 0.4 0.6 0.8 4

4 0.8 0.2 0 4

and discard the first 50 observations for the estimation. The covariance between the two

unobserved fixed effects αi and ηi is set to σαη = 1
2σα

√
p(1− p) which creates a positive

correlation between xit and αi. We also fix γ = 1, φ = 0.8, σ2
u = 1, ν = 1, p = 1

2 and

µα = µη = 0. To ensure an adequate degree of fit, we fix the population value of the

coefficient of determination for the first-differenced model, R2
∆y, in a similar fashion as

Hsiao et al. (2002). For the data generating process stated above it is given by:29

R2
∆y =

β2σ2
ε

β2σ2
ε + (1 + φ)(1− λφ)σ2

u

. (64)

We fix R2
∆y = 0.2 and determine σ2

ε from the above equation:

σ2
ε =

R2
∆y

1−R2
∆y

(1 + φ)(1− λφ)

β2
σ2
u. (65)

Finally, we simulate the data with different combinations for the remaining parameters

according to Table 1 with T ∈ {5, 10} and N ∈ {50, 200, 500}. Our baseline calibration,

design 1, features a relatively persistent process of yit, a large variance of the unobserved

unit-specific effects, and a high correlation between the strictly exogenous regressor xit
and the time-invariant variable fi. In comparison to the baseline calibration, design 2

has a lower variance of αi, in design 3 yit is less persistent, and in design 4 the regressors

xit and fi are uncorrelated. In total, we do 2500 repetitions for each simulation design.

The initial values for the QML optimization are obtained from a consistent system

GMM estimation. Hsiao et al. (2002) report that the (first-stage) maximum likelihood

estimator sometimes breaks down in their simulation. We face the same problem of

getting an initial estimate of ω smaller than (T − 1)/T in some cases, especially when N

is small. However, in contrast to Hsiao et al. (2002) we do not skip those replications

but instead change the initial estimate of ω to (T −1)/T +δ, where we choose δ = 0.01.30

We compare the two-stage QML estimator, “2s-QML”, to various GMM estimators

that use different sets of instruments and recover the coefficient of the time-invariant

regressor either in one or in two stages. To trace back the simulation results to specific

29The derivation of R2
∆y can be found in Appendix C.

30The particular choice of δ does not matter as long as it is small enough.
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properties of the estimators, we report the results for the following five GMM speci-

fications.31 First, we set up a two-step system GMM estimator that exploits the full

set of moment conditions and recovers all parameters jointly in one stage, “1s-sGMM-2

(full)”.32 Besides the moment conditions (27) and (34) that result from the presence of

the time-invariant regressor, this estimator equals the one proposed by Blundell et al.

(2001). To reduce the instrument count the most commonly applied method is restrict-

ing the lag depth of the instrumental variables. Therefore we set up an estimator using

only a maximum number of two lags per variable, “1s-sGMM-2 (2 lags)”. The remaining

GMM estimators all use a collapsed set of instruments to deal with the problems result-

ing from too many instruments as discussed in Section 4.3.33 For the collapsed one-stage

system GMM estimator we report the results both for the one-step, “1s-sGMM-1 (col-

lapsed)”, and for the two-step version, “1s-sGMM-2 (collapsed)”. Although the one-step

system GMM estimator is generally inefficient due to the absence of an optimal weighting

matrix, the results below reveal some interesting differences between both versions for

the coefficient of the time-invariant regressor. Finally, we consider a GMM estimator

that recovers the coefficients in two stages and is based in the first stage on a two-step

system GMM estimator, “2s-sGMM-2 (collapsed)”. For all GMM estimators we base

the first-step weighting matrix (41) on the matrix H2. To compute the standard errors

of the GMM estimators, we use the robust variance-covariance formula (38) with an

unrestricted estimate of Ξ. For two-step estimators, we apply the Windmeijer (2005)

correction.

6.2 Simulation Results

Table 2 summarizes the simulation results for our baseline design. First of all, the two-

stage QML estimator shows a very small bias relative to the true parameter value for

all three coefficients. For γ, the coefficient of our main interest, the two-stage QML

estimator has a strong lead as its relative bias is only 0.5% compared to 3.2 % of the

second-best estimator. The root mean square error also favors the QML approach. For

the coefficients of the time-varying regressors, these results confirm the findings of Hsiao

et al. (2002). For γ only the one-stage one-step system GMM estimator with collapsed

instrument matrices has a slightly lower RMSE but the magnitudes are comparable. The

actual rejection frequencies of the Wald tests that the estimated coefficients equal their

true values also support the two-stage QML estimator. They are reasonably close to the

nominal size of 5 or 10 percent, respectively, even though the estimated standard errors

for the autoregressive parameter λ tend to be too small. On average they amount to

85% of the empirical standard deviation. For the second-stage parameter γ, the ratio

31We also did simulations for other transformations of the instrument matrices but they do not reveal

additional insights in the behavior of the GMM estimators.
32We disregard the moment conditions (28) that are due to homoscedasticity and the additional level

moment condition (33) since they are rarely used in applied work. For the regression constant we exploit

only the moment conditions (34) but not the conditions (27).
33Appendix A describes the particular design of the transformation matrices.
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Table 2: Summary Results for the Baseline Calibration

Coefficient Estimator Bias RMSE Size (5%) Size (10%) SE/SD

Design 1, T = 10, N = 50

λ 2s-QML -0.0002 0.0253 0.0600 0.1096 0.8460

1s-sGMM-2 (full) 0.0637 0.0581 0.3704 0.4972 1.1600

1s-sGMM-2 (2 lags) 0.0962 0.0822 0.7616 0.8312 0.9212

1s-sGMM-1 (collapsed) 0.0062 0.0343 0.0936 0.1424 0.9119

1s-sGMM-2 (collapsed) 0.0035 0.0352 0.0836 0.1396 0.9314

2s-sGMM-2 (collapsed) 0.0040 0.0358 0.0892 0.1468 0.9234

β 2s-QML -0.0007 0.0103 0.0480 0.1000 0.9853

1s-sGMM-2 (full) -0.0123 0.0147 0.0212 0.0528 1.2014

1s-sGMM-2 (2 lags) 0.0066 0.0170 0.0568 0.1068 1.0042

1s-sGMM-1 (collapsed) -0.0024 0.0180 0.0624 0.1228 1.0115

1s-sGMM-2 (collapsed) 0.0007 0.0159 0.0624 0.1140 1.0143

2s-sGMM-2 (collapsed) 0.0012 0.0160 0.0588 0.1100 1.0196

γ 2s-QML 0.0050 0.6631 0.0524 0.1052 0.9908

1s-sGMM-2 (full) -0.4768 1.0565 0.1048 0.1680 1.2914

1s-sGMM-2 (2 lags) -0.7009 0.8383 0.4136 0.5068 0.9807

1s-sGMM-1 (collapsed) -0.0385 0.6478 0.0724 0.1264 0.9724

1s-sGMM-2 (collapsed) -0.1087 0.6770 0.0812 0.1376 0.9759

2s-sGMM-2 (collapsed) -0.0321 0.7024 0.0612 0.1164 0.9980

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage

estimators, respectively. “QML” is the quasi-maximum likelihood estimator of Hsiao et al. (2002),

and “sGMM” refers to system GMM estimators. The subsequent digit declares one-step and two-

step GMM estimators. We follow Blundell et al. (2001) to form the first-step weighting matrix

(41). In parenthesis, we refer to the set of instruments. The bias statistic measures the average bias

relative to the true parameter value, e.g. (λ̂− λ)/λ. RMSE is the root mean square error. The size

statistics refer to the actual rejection rates of Wald tests that the parameter estimates equal their

true values, given a nominal size of 5% and 10%, respectively. SE/SD is the average standard error

relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors

are based on formula (38) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction

for two-step estimators. Two-stage standard errors account for the first-stage estimation error.

of the average standard error to the observed standard deviation is almost unity which

supports our adjustment for the first-stage estimation error.

When we look at the different GMM specifications it is evident that the one-stage

system GMM estimator with the full set of instruments strongly suffers from instrument

proliferation.34 With 6.4% for λ and -47.7% for γ its bias is far off from any acceptable

range. For β the bias is smaller, only -1.2%, but largest among the estimators under

consideration. To the contrary, it shows the lowest RMSE among the GMM estimators

for the latter coefficient. As a consequence of the large biases on the one hand and too

34Discarding the instruments that result from the moment conditions (27) for the time-invariant re-

gressors does not change the results much.
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conservative standard errors, after applying the Windmeijer (2005) correction, on the

other hand, this estimator also shows considerable size distortions. For λ and γ the

Wald tests overreject the null hypothesis while there is underrejection for β.

As we discuss in Section 4.3 and Appendix A, the first choice to reduce the number

of instruments might be a restriction of the lag depth in forming the instrument matrix

for the model in first differences. Choosing a maximum lag depth of two lags reduces the

instrument count from 174 to 65 in our example. However, our results reveal that this

approach does even more harm as the bias for λ and γ increases sizably. The efficiency

loss from disregarding a large amount of information seems to outweigh the benefits of a

more parsimonious instrument set. This is even more pronounced when we have a look

at the Wald tests. For λ the null hypothesis is rejected in 76% of the cases for a nominal

size of 5%. For γ the rejection rate is 41%. Surprisingly, the lag depth restriction seems

to work well for the coefficient β both in terms of bias and size statistics.

The second possibility to obtain a set of instruments that grows linearly in T instead

of quadratically is to collapse the instrument matrices into smaller blocks. With this

approach we retain the whole available information in a condensed form and at the same

time reduce the instrument count further to 33. The simulation results clearly provide

evidence in favor of this approach. The bias of all three parameters is reduced strongly.

The RMSE also improves considerably. In particular for λ and β, the Wald tests are still

oversized as a consequence of too small standard errors although the rejection rates are

much closer to the nominal size than in the previous cases.

The comparison of one-step and two-step GMM estimators yields a noteworthy in-

sight. As expected the feasible efficient two-step system GMM estimator tends to produce

more precise estimates of λ and β than the one-step analog. The bias is almost cut in

half for λ and decreases to less than one third for β. Interestingly, this picture turns

upside down for the coefficient γ of the time-invariant regressor. The bias is almost three

times larger for the two-step estimator and also the RMSE increases slightly.35 This

seems to be a consequence of lower weights that the estimated second-step weighting

matrix puts on the time-invariant instruments that convey the relevant information for

the identification of γ.

As an alternative to one-stage GMM estimation that obtains all coefficients simul-

taneously we consider a two-stage GMM estimator that recovers the coefficients of the

time-invariant regressors in a second stage. Since the quality of the second-stage re-

sults depends crucially on the precision of the first-stage estimates and as a consequence

of the above finding, we use a GMM estimator with a collapsed instrument set in the

first stage. Moreover, the two-stage approach allows us to exploit the efficiency gains of

two-step GMM estimation for the time-varying regressors and still to put full weight on

35For clarity, we only report the comparison between the one-step and the two-step system GMM

estimator for the collapsed instrument set. The picture is similar for other instrument choices. For the

GMM estimator with the full instrument set the RMSE of γ deteriorates even stronger for the two-

step estimator (1.06) compared to the one-step estimator (0.69). However, the bias is slightly lower (in

absolute value) for the two-step estimator (-48% versus -50%).
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Table 3: Second-Stage Standard Errors for the Baseline Calibration

Coefficient Estimator Two-Stage Conventional Robust

Design 1, T = 10, N = 50

γ 2s-QML 0.9908 0.9649 0.9433

2s-sGMM-2 (collapsed) 0.9980 0.8975 0.8776

Note: See notes to Table 2 for a description of the estimators. We report the average

standard error of γ̂ relative to its standard deviation for the 2500 replications.

Two-stage standard errors account for the first-stage estimation error, conventional

standard errors assume homoscedastic error terms, and robust standard errors allow

for heteroscedasticity through time.

the time-invariant instruments in the second stage. As a result, our two-stage estimator

shows the lowest bias (in absolute value) among the group of GMM estimators. The cost

of the two-stage approach is a moderately larger RMSE for γ that seems to be accept-

able in the light of the improved size statistics. The improved size statistics seem to be a

direct consequence of the more precise estimation of the standard errors. Table 3 shows

that our correction of the second-stage standard errors to account for the first-stage esti-

mation error performs well in comparison to uncorrected standard error estimates. The

average ratio of the adjusted standard errors to the empirical standard deviation is close

to unity for both two-stage estimators while the conventional standard errors and the

heteroscedasticity-robust standard errors are too small. Moreover, the correction leads

to standard error estimates that are more precise than the standard error estimates of

the one-stage estimators.

The results for the other parameter designs broadly confirm the findings for the

baseline calibration. However, a closer look at Tables 5 to 7 in Appendix D reveals some

interesting further insights. Under design 2, when the variances of the unit-specific effects

and the disturbances both equal unity, the GMM estimators can reduce the gap to the

QML estimator although the latter retains its leading position. In particular, the system

GMM estimator with the full instrument set benefits considerably from the reduction of

the variance of the unit-specific effects. Yet, the weaknesses of one-stage two-step GMM

estimators for the coefficients of time-invariant regressors are especially evident in this

design. “1s-sGMM-2 (full)” produces a RMSE for γ that is 17 times as high as its one-

step analog.36 Also, the Wald tests now strongly underreject the null hypothesis that λ̂

or γ̂ equal their true value, respectively, while there is overrejection under the baseline

calibration.

When the persistence parameter λ is reduced to 0.4, as in design 3, the average bias

and the RMSE of the two-stage QML approach increase for all three parameters. We can

observe the same effect for the GMM estimates of λ. For β and γ, the GMM estimators

tend to produce less biased but more dispersed estimates. Noteworthy, although the two-

36Under design 2, the RMSE of “1s-sGMM-1 (full)” is 0.3565 for γ.
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stage estimation procedures again have the smallest bias for γ, the two-stage two-step

system GMM estimator now shows a smaller bias (in absolute terms) than the two-stage

QML estimator. Also, the QML estimator now appears to suffer from an underestimation

of the standard errors. The average ratio to the empirical standard deviation is only 0.46

for λ which is mainly a consequence of some outlying coefficient estimates close to unity.

There are 39 estimates out of the 2500 replications that can be classified as outliers

because λ̂ lies in the interval (0.99, 1.08) while none of the estimates lies between 0.56

and 0.99. This bias in the first-stage standard errors also carries over partly to the

second-stage standard errors.

Design 4 sets the correlation between the time-invariant regressor and the exogenous

time-varying regressor to zero. We first note that the first-stage estimates of the QML

approach are not affected at all by this change since it is solely based on the model in first

differences that does not involve the time-invariant regressor. Importantly, the estimates

for γ improve when fi is uncorrelated with xit. We can observe the strongest gains in

terms of bias reduction for the two-stage GMM estimator. For the latter the average bias

is almost cut in half. Nevertheless, the QML procedure still shows the smallest bias.

Tables 8 to 10 in Appendix D show again simulation results for the baseline design

1 but now for different sample sizes. The ranking of the estimators remains mostly

unchanged when the number of cross-sectional units increases. For N = 500 the one-

stage two-step system GMM estimator with the full set of instruments still produces a

bias of -5% for the coefficient of the time-invariant regressor and suffers from notable size

distortions for the parameters λ and γ. When the number of time periods is reduced to

T = 5 the bias tends to increase, in particular for γ. For the system GMM estimator

with non-collapsed instruments the bias goes up to -68%. The two-stage QML estimator

still produces by far the best results with an average bias of -2.7%. The GMM estimation

procedure all reveal considerable biases of at least 15% in combination with large size

distortions.

7 Empirical Application: Dynamic Wage Regression

Factors that influence the rates of labor income have long been studied in theoretical

models and empirical applications. The seminal work of Mincer (1974) laid the ground

for a vast strand of literature in modern labor economics analyzing the impact of human

capital on wages often referred to as the return to schooling. Mincer (1974) derives an

earnings function that depends on the number of years of education and experience, as

well as the squared number of years of experience. Andini (2007) introduces a dynamic

version of the Mincer equation that adds previous period’s labor income as an additional

explanatory variable. Andini (2010a) argues in favor of the dynamic approach “that

observed earnings do not instantaneously adjust to net potential earnings”. With our

empirical application we take up this idea and estimate a dynamic version of the Mincer

equation controlling for additional factors. We include several time-invariant factors to
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analyze their potential impact on wages with the dynamic panel data methods discussed

in this paper.

We use data for 882 individuals from the PSID. The time span of our sample ranges

from 1985 to 1992. We only include household heads and wifes that report salary income

for each of the eight consecutive years to obtain a balanced panel. Our dependent vari-

able is the natural logarithm of salary per hour. Besides the lagged dependent variable,

and labor market experience and its square, we include as a set of 10 industry dummy

variables as additional time-varying controls. All remaining regressors are considered

time-invariant even though some of them actually show some variation over time. How-

ever, this variation is often very small compared to the cross-sectional variation which

might lead to a weak instruments problem for GMM estimators, or poor identification

with any estimator solely based on the first-differenced equation. These variables are our

schooling variable, age and squared age, public sector employment, labor union member-

ship, and geographic region. For each of these pseudo time-invariant regressors we take

their realization in 1992 and assign it to all time periods. Finally, we add gender and

race as truly time-invariant regressors.

We proxy education by the number of years of schooling. Because all individuals

in our sample are employed in all years, most of them already reached their final level

of education before the initial year of the sample. This justifies our approach of using

only the cross-sectional variation to identify the return to schooling. We also consider

the age and squared age of the individuals as time-invariant regressors to circumvent

collinearity problems with labor market experience. In first differences, both age and

experience would shrink to a constant without cross-sectional variation, and we would

not be able to identify their coefficients separately with any estimator that is solely based

on the first-differenced equation as it is the case for the QML estimator. With the latter,

identification of the coefficient of experience is based on its deterministic rise over time,

while the age effect is identified solely through the cross-sectional variation in our second

stage.

According to Spence (1973) workers choose their level of education to signal their

ability to potential employers. Therefore, years of schooling are positively correlated with

the unobservable ability of a worker. Not controlling for this endogeneity would lead to an

upward bias in the estimation of the return to schooling when higher ability is associated

with higher wages.37 In the absence of excluded instruments, we follow the Hausman

and Taylor (1981) identification strategy. Besides the lagged dependent variable and

education we classify all regressors as uncorrelated with unobserved individual-specific

ability. In particular, we want to use the level of the industry dummy for “professional

and related services” in 1992 as an instrument for education. We notice that the sample

correlation in our data set between this dummy variable and education is 0.31. The

correlation conditional on the other time-invariant regressors, the partial R2, is still

0.1134, and the F -statistic for significance of the industry dummy in the regression of

37See Boissiere et al. (1985).
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the instruments on the endogenous variable is 111.445.38 In this industry, education

does not only serve as a signal of the workers to their potential employers but the firms

themselves are interested in a high education of their workers to signal their expertise to

potential clients. However, we argue that allocation of workers across industries is not

a matter of ability but a matter of worker’s preferences. Krueger and Summers (1988)

and Blackburn and Neumark (1992) find that ability cannot explain the inter-industry

wage differentials which supports our approach to treat the industry dummy variables

as exogenous. We do not add the other industry dummys and labor market experience

to the set of instruments because their correlation with education is weak.

We estimate this dynamic Mincer equation with a one-stage and a two-stage system

GMM estimator, and the two-stage QML estimator. Both GMM estimators are two-step

estimators with a collapsed set of instruments, and where the first-step weighting matrix

(41) is formed with H2. Standard errors are computed with the Windmeijer (2005)

correction and our two-stage variance formula (21). We present the results first under

the assumption that education is exogenous, and second assuming that it is correlated

with unobserved ability. For the two-stage GMM estimator we treat all time-varying

regressors as endogenous in the first stage because the time-invariant regressors are now

part of the individual-specific effect.39

Table 4 presents the estimation results. We recognize that the salary does not im-

mediately adjust to changes in net potential earnings since previous period salary is a

significant predictor of current salary. For labor market experience we find the hump-

shaped profile that is consistent with the Mincerian theory. Among the other regressors

we want to focus primarily on the return to schooling. When we ignore the potential

endogeneity of education we obtain significantly positiv coefficients for the schooling vari-

able. Due to our dynamic setting, this coefficient should be interpreted as the effect of one

additional year of schooling on the annual change of salary holding all other factors fixed.

This effect ranges between 5.3 and 6.8 percentage points. The differences are related to

the diverse speeds of adjustment. The implied long-run effects of education on the level

of salary are very similar and range from 10.3 to 10.5 percent.40 When comparing the

results with the second specification that accounts for the endogeneity of education, re-

call that the first-stage results for the time-varying regressors remain unaffected. The

estimated return to schooling is reduced as expected. For the one-stage system GMM

estimator the short-run effect goes down to 4.7 percentage points and is still significant

at the 5 percent level. For the two-stage estimators the point estimates are only 0.4 to 1.4

percentage points. Moreover, they are not significant any more. The implied long-run

effect from the two-stage estimators is about 0.6 to 2.7 percent, although insignificant

38Stock, Wright, and Yogo (2002) suggest that the F -statistic should exceed 10 for reliable inference.
39As this application shall have illustrative character, we ignore sample selection issues and refrain

from an extensive discussion of the exogeneity assumption that we impose on the other regressors besides

education.
40Let λ be the coefficient of the lagged dependent variable and β the coefficient of any other regressor.

The corresponding long-run coefficient is given as β divided by the speed of adjustment 1− λ.
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Table 4: Estimation Results: Dynamic Mincer Regression

Education exogenous Education endogenous

ln (Salary) 1s-sGMM 2s-sGMM 2s-QML 1s-sGMM 2s-sGMM 2s-QML

ln (Salary)t−1 0.4094 0.4850 0.3481 0.4120 0.4850 0.3481

(0.0493)*** (0.0545)*** (0.0162)*** (0.0494)*** (0.0545)*** (0.0162)***

Experience 0.0477 0.0556 0.0650 0.0477 0.0556 0.0650

(0.0059)*** (0.0072)*** (0.0039)*** (0.0059)*** (0.0072)*** (0.0039)***

Experience2 -0.0005 -0.0009 -0.0006 -0.0005 -0.0009 -0.0006

(0.0001)*** (0.0001)*** (0.0001)*** (0.0001)*** (0.0001)*** (0.0001)***

Industry base category: Agriculture, Mining base category: Agriculture, Mining

Construction 0.0116 -0.0421 -0.0405 0.0063 -0.0421 -0.0405

(0.0553) (0.0553) (0.0434) (0.0558) (0.0553) (0.0434)

Manufacturing 0.0008 -0.0704 -0.0541 0.0018 -0.0704 -0.0541

(0.0450) (0.0364)* (0.0290)* (0.0442) (0.0364)* (0.0290)*

Public Utilites -0.0142 -0.0666 -0.0814 -0.0170 -0.0666 -0.0814

(0.0459) (0.0471) (0.0363)** (0.0452) (0.0471) (0.0363)**

Trade -0.0532 -0.0853 -0.0549 -0.0550 -0.0853 -0.0549

(0.0468) (0.0397)** (0.0337) (0.0464) (0.0397)** (0.0337)

Financial Services -0.0259 -0.0689 -0.0828 -0.0244 -0.0689 -0.0828

(0.0480) (0.0486) (0.0374)** (0.0474) (0.0486) (0.0374)**

Business Services 0.0045 -0.0456 -0.0545 0.0086 -0.0456 -0.0545

(0.0440) (0.0376) (0.0318)* (0.0436) (0.0376) (0.0318)*

Personal Services -0.1014 -0.1760 -0.0829 -0.1044 -0.1760 -0.0829

(0.1001) (0.0636)*** (0.0774) (0.0994) (0.0636)*** (0.0774)

Entertainment -0.1100 -0.1868 -0.1683 -0.1164 -0.1868 -0.1683

(0.1113) (0.2135) (0.0846)** (0.1104) (0.2135) (0.0846)**

Professional Services -0.0798 -0.1046 -0.0741 -0.0691 -0.1046 -0.0741

(0.0499) (0.0469)** (0.0317)** (0.0511) (0.0469)** (0.0317)**

Public Administration 0.0270 -0.0562 -0.0170 0.0188 -0.0562 -0.0170

(0.0502) (0.0496) (0.0352) (0.0509) (0.0496) (0.0352)

Education 0.0623 0.0529 0.0675 0.0472 0.0141 0.0037

(0.0071)*** (0.0074)*** (0.0060)*** (0.0214)** (0.0221) (0.0209)

Male 0.0714 0.1062 0.0821 0.0849 0.1320 0.1245

(0.0213)*** (0.0256)*** (0.0241)*** (0.0298)*** (0.0341)*** (0.0298)***

White 0.0093 0.0179 0.0314 0.0172 0.0357 0.0607

(0.0226) (0.0261) (0.0302) (0.0235) (0.0288) (0.0333)*

Age -0.0244 -0.0387 -0.0429 -0.0221 -0.0285 -0.0261

(0.0107)** (0.0128)*** (0.0127)*** (0.0112)** (0.0135)** (0.0142)*

Age2 0.0001 0.0004 0.0002 0.0001 0.0003 -0.0000

(0.0001) (0.0001)*** (0.0001) (0.0001) (0.0001)* (0.0002)

Government Work -0.1346 -0.0940 -0.1396 -0.1228 -0.0635 -0.0895

(0.0326)*** (0.0347)*** (0.0292)*** (0.0353)*** (0.0340)* (0.0333)***

Labor Union 0.0179 0.0231 0.0229 0.0210 0.0367 0.0452

(0.0259) (0.0311) (0.0358) (0.0262) (0.0322) (0.0383)

Region base category: South base category: South

Northeast 0.0272 -0.0055 -0.0112 0.0261 -0.0061 -0.0122

(0.0301) (0.0307) (0.0355) (0.0302) (0.0316) (0.0377)

North Central -0.0560 -0.1034 -0.1234 -0.0524 -0.0977 -0.1141

(0.0301)* (0.0316)*** (0.0355)*** (0.0306)* (0.0324)*** (0.0379)***

West -0.0479 -0.0752 -0.0903 -0.0548 -0.0920 -0.1180

(0.0283)* (0.0300)** (0.0330)*** (0.0295)* (0.0335)*** (0.0362)***

Constant 3.5694 3.3715 4.3026 3.7097 3.6990 4.8413

(0.3866)*** (0.4247)*** (0.2996)*** (0.4301)*** (0.5111)*** (0.3642)***

Observations 6,174 6,174 6,174 6,174 6,174 6,174

Individuals 882 882 882 882 882 882

Instruments (GMM) 178 167 177 167

* p < 0.1; ** p < 0.05; *** p < 0.01

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage estimators, respec-

tively. “QML” is the quasi-maximum likelihood estimator of Hsiao et al. (2002), and “sGMM” refers to two-step

system GMM estimators. We follow Blundell et al. (2001) to form the first-step weighting matrix (41), and use

a collapsed set of instruments. Standard errors are in parenthesis. GMM standard errors are based on formula

(38) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction for two-step estimators. Two-stage

standard errors account for the first-stage estimation error.

as well. The different estimates of the one- and two-stage system GMM estimator can

be partly explained by the set of instruments used to identify the return to schooling.

While the two-stage estimator is exactly identified as it uses a single industry dummy

variable as instrument for education, the one-stage estimator makes use of a whole set of

overidentifying restrictions. Many of those additional instruments are weakly correlated
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with education. As a consequence, the one-stage estimate of the return to schooling

tends to be biased towards the non-instrumented estimate.

Furthermore, we want to highlight the importance of the second-stage variance cor-

rection. Ignoring this correction could result in misleading inference. As an example, take

the coefficient for government work from the two-stage GMM estimator with endogenous

education. The reported standard error with the appropriate two-stage correction is 0.034

which implies significance on the 10 percent level only, while without the adjustment it

is 0.026 which would incorrectly signal significance on the 5 percent level.

8 Conclusion

Estimation of linear dynamic panel data models with unobserved unit-specific heterogene-

ity is challenging when the time dimension is short. The identification of the coefficients

of time-invariant regressors poses additional complications. Yet, these parameters can

be of special interest.

The identification of the coefficients of time-invariant regressors requires additional

assumptions on the orthogonality of the regressors and the unobserved unit-specific ef-

fects. These orthogonality assumptions imply additional moment conditions that we

can use to form a GMM estimator that estimates all parameters simultaneously. As an

alternative we propose a two-stage estimation strategy. In the first stage, we subsume

the time-invariant regressors under the unit-specific effects and estimate the coefficients

of the time-varying regressors. In the second stage, we apply an instrumental variable

regression of the first-stage residuals for the last period on the time-invariant regressors.

Both time-varying and time-invariant variables that are assumed to be uncorrelated with

the unit-specific effects qualify as instruments in the second stage.

We can base the first-stage regression on any estimator that consistently estimates the

coefficients of the time-varying regressors without relying on estimates of the coefficients

of time-invariant regressors. In this paper, we discuss GMM-type estimators and the

transformed maximum likelihood estimator of Hsiao et al. (2002) as potential first-

stage candidates. The latter is entirely based on the model in first differences and thus

necessarily requires the two-stage approach to identify the coefficients of time-invariant

regressors. In general, the two-stage approach is not restricted to models with a short

time dimension. When the time span is large, a potential first-stage estimator might be

the classical fixed effects estimator. The same is true for static models.

For GMM-type estimators the two-stage approach has three main advantages com-

pared to the estimation of all parameters at once. First, the estimation of the coeffi-

cients of the time-varying regressors is robust to a model misspecification with regard

to the time-invariant regressors. Second, too many overidentifying restrictions can bias

the coefficients of endogenous time-invariant regressors towards their non-instrumented

estimates. These overidentifying restrictions naturally arise from the presence of time-

varying regressors in one-stage system GMM estimation, while in the second stage of
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our two-stage procedure the number of instruments can be easily reduced by selecting

only the appropriate ones. Third, the estimated weighting matrix of the feasible efficient

two-step system GMM estimator puts less weight on the time-invariant instruments than

the inefficient one-step analog. Our Monte Carlo experiments confirm that this results

in less precisely estimated coefficients of the time-invariant regressors because their iden-

tification hinges on the information that the time-invariant instruments convey. The

two-stage approach circumvents this issue.

Our Monte Carlo analysis furthermore points out that GMM estimators that are based

on the full set of available moment conditions suffer from instrument proliferation already

at a modest time span. Reducing the number of instruments by collapsing the instrument

matrices into smaller blocks improves the finite sample performance considerably. In

contrast, reducing the instrument count by limiting the number of lags used to form the

instrument matrices leads to a deterioration of the results. While the former approach

still uses the whole information in a condensed form, the latter discards a large amount

of the available information completely. This insight is also important for our two-

stage approach because large first-stage estimation errors translate into poor second-

stage estimates. In particular for the coefficients of time-invariant regressors only GMM

estimators with collapsed instrument matrices produce reliable results. When we compare

the various GMM specifications with the transformed likelihood approach, our simulation

results provide strong evidence in favor of the latter in the presence of strictly exogenous

time-varying regressors.

Importantly, the two-stage approach requires an adjustment of the second-stage stan-

dard errors due to the additional variation that is coming from the first-stage estimation

error. We provide the asymptotic variance formula for the second-stage estimator. Our

Monte Carlo results demonstrate that the adjustment works well and is quantitatively

important. The relevance of the standard error correction is also demonstrated in our

empirical application.
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A Transformations of GMM Instruments

This appendix provides examples of the transformation matrix R that are relevant in

practical applications. For simplicity, we disregard the moment conditions (28) that

are based on the homoscedasticity of uit. In the following, we restrict our attention to

block-diagonal versions of R:

R =

(
Rd 0

0 Rl

)
,

such that Z∗i = [D′ZdiR
d,ZliR

l]. Similarly, we consider a block-diagonal partition of the

transformation matrix for the first-differenced equation:

Rd =

Rd
y 0 0

0 Rd
x ⊗ IKx

0

0 0 Rd
f ⊗ IKf

 .

Often, the instrument count is reduced by restricting the number of lags used to

construct the instrument matrix. This procedure is equivalent to the construction of a

transformation matrix Rd that selects the appropriate columns of the full matrix Zdi . As

an example, the following matrices restrict the lag depth to κ ≥ 1 for both yi,t−1 and

strictly exogenous xit while also discarding future values of the latter:

Rd
y =



1 0 0 · · · 0

0 J2,κ 0 · · · 0

0 0 J3,κ

...
...

...
. . . 0

0 0 · · · 0 JT−1,κ


, Rd

x =



J∗1,κ 0 0 . . . 0

0 J∗2,κ 0 · · · 0

0 0
. . .

...
...

... J∗T−2,κ 0

0 0 · · · 0 JT+1,κ


,

where Js,κ = Is if s ≤ κ, and Js,κ = (0, Iκ)′ with dimension s × κ if s > κ, and

J∗s,κ = (J′s+2,κ,0)′ with dimension (T + 1) × min{s + 2, κ}. We set Rd
f = IT−1 in this

case.

Alternatively, the dimension of the instrument matrix can be reduced by collapsing it

into smaller blocks. The following transformation matrices linearly combine the columns

of Zdi , again for the case of strictly exogenous regressors xit:

Rd
y =


J̃0,1,T−2

J̃0,2,T−3

...

J̃0,T−2,1

ĨT−1

 , Rd
x =


J̃0,T+1,T−2

J̃1,T+1,T−3

...

J̃T−3,T+1,1

J̃T−2,T+1,0

 ,

where J̃s1,s2,s3 = (0s2×s1 , Ĩs2 ,0s2×s3) with dimension s2 × (s1 + s2 + s3), and Ĩs2 is the

s2-dimensional mirror identity matrix with ones on the antidiagonal and zeros elsewhere.
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Zdy,iR
d
y now corresponds to the collapsed matrix described by Roodman (2009). As a

consequence, the T (T−1)/2 moment conditions (24) are replaced by the (T−1) conditions

E
[∑T

t=s yi,t−s∆uit

]
= 0, s = 2, 3, . . . , T . Similarly, the information contained in the

Kx(T + 1)(T − 1) moment conditions (25) is condensed into Kx(2T − 1) conditions. The

instrument block containing fi can be collapsed by setting Rd
f = ιT−1. The implied Kf

moment conditions are E[fi(uiT − ui1)] = 0 instead of the Kf (T − 1) conditions (27).

The transformation matrices can be further adjusted to combine the collapsing approach

with the lag depth restriction.

The instruments for the level equation, for clarity ignoring the moment conditions

(33), can be collapsed into a set of standard instruments by applying the following trans-

formation:

Rl =


ιT−1 0 0 0

0 0 0 0

0 ιT ⊗ IKx1 0 0

0 0 ιT ⊗ IKx2
0

0 0 0 IKf1

 ,

such that ZliR
l = [(0,∆y′i,−1)′,X1i,∆X∗2i,F1i].

B Consistency of the First-Stage QML Estimator

The following consistency proof for the estimated first-stage parameter vector ϕ̂ follows

closely the lines in Hsiao et al. (2002) for their minimum distance estimator in the

absence of additional regressors. In the generalized case with exogenous regressors, we

have:

ϕ̂ = ϕ+

(
N∑
i=1

∆W̃′
i
ˆ̃Ω−1∆W̃i

)−1 N∑
i=1

∆W̃′
i
ˆ̃Ω−1∆u∗i . (66)

We will now show that the last term has a zero mean. Therefore, we make use of the

matrix decomposition Ω̃−1 = A′Ã−1A, proposed by Hsiao et al. (2002), where

A =



a0 0 0 · · · 0

a0 a1 0 · · · 0

a0 a1 a2

...
...

...
...

. . . 0

a0 a1 a2 · · · aT−1


, Ã =



a0a1 0 0 · · · 0

0 a1a2 0 · · · 0

0 0 a2a3

...
...

...
. . . 0

0 0 · · · 0 aT−1aT


,
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and as+1 − 2as + as−1 = 0, s = 1, 2, . . . , T , with a0 = 1 and a1 = ω. We can now show

that the last term in the expression above equals:

N∑
i=1

∆W̃′
i
ˆ̃Ω−1∆u∗i =

N∑
i=1


a2

0

∑T
j=1(aj−1aj)

−1ξi1 + a0

∑T
j=2(aj−1aj)

−1
∑j−1
k=1 ak∆ui,k+1

a0

∑T
j=1(aj−1aj)

−1∆x̃iξi1 + a0

∑T
j=2(aj−1aj)

−1
∑j−1
k=1 ak∆x̃i∆ui,k+1∑T

j=2(aj−1aj)
−1
∑j−1
k=1 ak∆yik

(
a0ξi1 +

∑j−1
l=1 al∆ui,l+1

)
∑T
j=2(aj−1aj)

−1
∑j−1
k=1 ak∆xi,k+1

(
a0ξi1 +

∑j−1
l=1 al∆ui,l+1

)
 . (67)

Note that in the case of strictly exogenous regressors ξi1 = qi1 +
∑∞
j=0 λ

j∆ui,1−j
under the assumption that the data generating process of yit started in the infinite past,

where qi1 is independently distributed of ∆xi with mean zero and constant variance.

Under strict exogeneity of xit, the first, second and last entry of the above vector are

obviously zero in expectations. It remains to show that the expected value of the third

entry is zero as well. Therefore, we make use of the following relationships:

∆yit =λt−1∆yi1 +
t−2∑
j=0

λj∆x′i,t−jβ +
t−2∑
j=0

λj∆ui,t−j , t = 2, 3, . . . , T, (68)

∆yi1 =
∞∑
j=0

λj∆x′i,1−jβ +
∞∑
j=0

λj∆ui,1−j . (69)

With E[∆yi1ξi1] = σ2
ξ = ωσ2

u = a1σ
2
u we get:

E[∆yitξi1] =λt−1E[∆yi1ξi1] + λt−2E[∆ui2∆ui1]

=λt−1a1σ
2
u − λt−2σ2

u

=λt−2(a1λ− 1)σ2
u, t = 2, 3, . . . , T, (70)

E[∆yit∆ui,t+s] =


0, s = 2, 3, . . . , T − t
−σ2

u, s = 1

(2− λ)σ2
u, s = 0

, (71)

E[∆yit∆ui,t−s] =E

 ∞∑
j=0

λj∆ui,t−j∆ui,t−s


=− λs−1σ2

u + 2λsσ2
u − λs+1σ2

u

=− λs−1(1− λ)2σ2
u, s = 1, 2, . . . , (72)
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and consequently:

E

[
j−1∑
k=1

ak∆yik

(
a0ξi1 +

j−1∑
l=1

al∆ui,l+1

)]

=

[
a2

1 +

j−1∑
k=2

akλ
k−2(a1λ− a0) + (2− λ)

j−1∑
k=2

ak−1ak

− (1− λ)2

j−1∑
k=3

ak

k∑
l=3

al−2λ
k−l −

j−1∑
k=1

a2
k

]
σ2
u

=− σ2
u

j−1∑
k=2

ak

k∑
l=2

λk−l(al − 2al−1 + al−2) = 0. (73)

C Derivation of the Coefficient of Determination

The two processes in first-differences are:

∆yit = λ∆yi,t−1 + β∆xit + ∆uit

= β

∞∑
j=0

λj∆xi,t−j +

∞∑
j=0

λj∆ui,t−j , (74)

∆xit = φ∆xi,t−1 + ∆εit

=

∞∑
j=0

φj∆εi,t−j . (75)

The unconditional variance of ∆yit can then be written as:

V ar(∆yit) = Cov(∆yit, λ∆yi,t−1 + β∆xit + ∆uit)

= λCov(∆yit,∆yi,t−1) + βCov(∆yit,∆xit) + Cov(∆yit,∆uit). (76)

We need to determine the individual components and start with the last term:

Cov(∆yit,∆uit) = Cov

β ∞∑
j=0

λj∆xi,t−j +
∞∑
j=0

λj∆ui,t−j ,∆uit


= Cov(∆uit + λ∆ui,t−1,∆uit) = (2− λ)σ2

u, (77)

since the disturbances are i.i.d. and uncorrelated with xit due to the strict exogeneity as-

sumption. For the remaining terms we need to calculate the variance and autocovariances

of ∆xit first:

V ar(∆xit) = Cov(∆xit, φ∆xi,t−1 + ∆εit)

= φCov(∆xit,∆xi,t−1) + Cov(∆xit,∆εit), (78)
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where

Cov(∆xit,∆εit) = Cov

 ∞∑
j=0

φj∆εi,t−j ,∆εit


= Cov(∆εit + φ∆εi,t−1,∆εit) = (2− φ)σ2

ε , (79)

and

Cov(∆xit,∆xi,t−1) = Cov(φ∆xi,t−1 + ∆εit,∆xi,t−1)

= φV ar(∆xi,t−1) + Cov(∆xi,t−1,∆εit). (80)

Also,

Cov(∆xi,t−1,∆εit) = Cov

 ∞∑
j=0

φj∆εi,t−1−j ,∆εit


= Cov(∆εi,t−1,∆εit) = −σ2

ε . (81)

Together, the above results for the variance and first-order autocovariance of ∆xit yield:

V ar(∆xit) = φ
(
φV ar(∆xi,t−1)− σ2

ε

)
+ (2− φ)σ2

ε

=
2(1− φ)

1− φ2
σ2
ε =

2

1 + φ
σ2
ε , (82)

since V ar(∆xit) = V ar(∆xi,t−1) due to stationarity, and 1 − φ2 = (1 − φ)(1 + φ).

Consequently,

Cov(∆xit,∆xi,t−1) =

(
2φ

1 + φ
− 1

)
σ2
ε =

2φ− (1 + φ)

1 + φ
σ2
ε = −1− φ

1 + φ
σ2
ε . (83)

For use below, the higher order autocovariances of ∆xit follow straightforwardly from

the first-order autocovariance since Cov(∆xi,t−j ,∆εit) = 0 ∀j ≥ 2:

Cov(∆xit,∆xi,t−j) = Cov(φ∆xi,t−1 + ∆εit,∆xi,t−j)

= φCov(∆xi,t−1,∆xi,t−j) + Cov(∆xi,t−j ,∆εit)

= φCov(φ∆xi,t−2 + ∆εi,t−1,∆xi,t−1−j)

= φ2Cov(∆xi,t−2,∆xi,t−j)

= . . .

= φj−1(∆xi,t−(j−1),∆xi,t−j)

= −φj−1 1− φ
1 + φ

σ2
ε ∀j ≥ 2, (84)
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since Cov(∆xi,t−(j−1),∆xi,t−j) = Cov(∆xit,∆xi,t−1) again due to stationarity. Now,

we can derive an expression for the second term in (76):

Cov(∆yit,∆xit) = Cov

β ∞∑
j=0

λj∆xi,t−j +
∞∑
j=0

λj∆ui,t−j ,∆xit


= β

V ar(∆xit) +
∞∑
j=1

λjCov(∆xit,∆xi,t−j)


= β

 2

1 + φ
− 1− φ

1 + φ

∞∑
j=1

λjφj−1

σ2
ε

= β

(
2

1 + φ
− 1− φ

1 + φ

λ

1− λφ

)
σ2
ε

= β
2(1− λφ)− λ(1− φ)

(1 + φ)(1− λφ)
σ2
ε = β

2− λ(1 + φ)

(1 + φ)(1− λφ)
σ2
ε . (85)

It remains to determine the first-order autocovariance of ∆yit:

Cov(∆yit,∆yi,t−1) = Cov(λ∆yi,t−1 + β∆xit + ∆uit,∆yi,t−1)

= λV ar(∆yit) + βCov(∆yi,t−1,∆xit) + Cov(∆yi,t−1,∆uit), (86)

where V ar(∆yi,t−1) = V ar(∆yit) again due to stationarity, and

Cov(∆yi,t−1,∆uit) = Cov

 ∞∑
j=0

λj∆ui,t−1−j ,∆uit


= Cov(∆ui,t−1,∆uit) = −σ2

u. (87)

Moreover,

Cov(∆yi,t−1,∆xit) = Cov

β ∞∑
j=0

λj∆xi,t−1−j +
∞∑
j=0

λj∆ui,t−1−j ,∆xit


= β

∞∑
j=0

λjCov(∆xit,∆xi,t−1−j)

= β
∞∑
j=1

λj−1Cov(∆xit,∆xi,t−j)

= −β 1− φ
1 + φ

∞∑
j=1

(λφ)j−1σ2
ε = −β 1− φ

(1 + φ)(1− λφ)
σ2
ε . (88)
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Finally, we can insert all results into (76) and obtain:

V ar(∆yit) =λ

(
λV ar(∆yit)− β2 1− φ

(1 + φ)(1− λφ)
σ2
ε − σ2

u

)
+ β2 2− λ(1 + φ)

(1 + φ)(1− λφ)
σ2
ε + (2− λ)σ2

u

=
1

1− λ2

(
β2 2− λ(1 + φ)− (1− φ)

(1 + φ)(1− λφ)
σ2
ε + 2(1− λ)σ2

u

)
=

1

1− λ2

(
β2 2(1− λ)

(1 + φ)(1− λφ)
σ2
ε + 2(1− λ)σ2

u

)
=

2

1 + λ

(
β2

(1 + φ)(1− λφ)
σ2
ε + σ2

u

)
. (89)

The conditional variance of ∆yit given the realizations of current and past ∆xit is

simply:

V ar(∆yit|∆xit,∆xi,t−1, . . .) =
2

1 + λ
σ2
u. (90)

Taking everything together we get the coefficient of determination for the first-differenced

model:

R2
∆y = 1− V ar(∆yit|∆xit,∆xi,t−1, . . .)

V ar(∆yit)

= 1− σ2
u

β2

(1+φ)(1−λφ)σ
2
ε + σ2

u

=
β2σ2

ε

β2σ2
ε + (1 + φ)(1− λφ)σ2

u

. (91)
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D Tables with Simulation Results

Table 5: Summary Results for Alternative Calibrations

Coefficient Estimator Bias RMSE Size (5%) Size (10%) SE/SD

Design 2, T = 10, N = 50

λ 2s-QML -0.0005 0.0236 0.0596 0.1092 0.9043

1s-sGMM-2 (full) 0.0090 0.0265 0.0284 0.0620 1.2357

1s-sGMM-2 (2 lags) 0.0321 0.0374 0.2048 0.2904 0.9729

1s-sGMM-1 (collapsed) -0.0033 0.0286 0.0676 0.1176 0.9457

1s-sGMM-2 (collapsed) -0.0036 0.0299 0.0680 0.1224 0.9520

2s-sGMM-2 (collapsed) -0.0027 0.0304 0.0720 0.1236 0.9485

β 2s-QML -0.0006 0.0103 0.0480 0.1000 0.9850

1s-sGMM-2 (full) 0.0006 0.0131 0.0200 0.0464 1.2218

1s-sGMM-2 (2 lags) 0.0021 0.0144 0.0528 0.0976 1.0146

1s-sGMM-1 (collapsed) -0.0022 0.0134 0.0556 0.1088 0.9948

1s-sGMM-2 (collapsed) 0.0016 0.0136 0.0592 0.1092 1.0040

2s-sGMM-2 (collapsed) 0.0022 0.0139 0.0588 0.1140 1.0059

γ 2s-QML 0.0049 0.4457 0.0492 0.0996 0.9834

1s-sGMM-2 (full) -0.0663 6.0548 0.0132 0.0308 0.8904

1s-sGMM-2 (2 lags) -0.2418 0.4377 0.1492 0.2140 1.0029

1s-sGMM-1 (collapsed) 0.0275 0.3993 0.0576 0.1128 0.9800

1s-sGMM-2 (collapsed) -0.0233 0.4204 0.0712 0.1232 0.9764

2s-sGMM-2 (collapsed) 0.0133 0.4867 0.0532 0.1052 1.0058

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage

estimators, respectively. “QML” is the quasi-maximum likelihood estimator of Hsiao et al. (2002),

and “sGMM” refers to system GMM estimators. The subsequent digit declares one-step and two-

step GMM estimators. We follow Blundell et al. (2001) to form the first-step weighting matrix

(41). In parenthesis, we refer to the set of instruments. The bias statistic measures the average bias

relative to the true parameter value, e.g. (λ̂− λ)/λ. RMSE is the root mean square error. The size

statistics refer to the actual rejection rates of Wald tests that the parameter estimates equal their

true values, given a nominal size of 5% and 10%, respectively. SE/SD is the average standard error

relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors

are based on formula (38) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction

for two-step estimators. Two-stage standard errors account for the first-stage estimation error.
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Table 6: Summary Results for Alternative Calibrations

Coefficient Estimator Bias RMSE Size (5%) Size (10%) SE/SD

Design 3, T = 10, N = 50

λ 2s-QML 0.0186 0.0900 0.0708 0.1196 0.4616

1s-sGMM-2 (full) 0.2034 0.1013 0.2060 0.3020 1.1702

1s-sGMM-2 (2 lags) 0.3485 0.1536 0.6348 0.7336 0.9131

1s-sGMM-1 (collapsed) -0.0124 0.0598 0.0580 0.1100 0.9724

1s-sGMM-2 (collapsed) -0.0148 0.0637 0.0604 0.1128 0.9874

2s-sGMM-2 (collapsed) -0.0128 0.0648 0.0664 0.1172 0.9729

β 2s-QML -0.0070 0.0616 0.0708 0.1140 0.8155

1s-sGMM-2 (full) 0.0048 0.0741 0.0164 0.0440 1.3121

1s-sGMM-2 (2 lags) 0.0299 0.0890 0.0540 0.1068 1.0100

1s-sGMM-1 (collapsed) 0.0016 0.0761 0.0564 0.1180 0.9808

1s-sGMM-2 (collapsed) 0.0066 0.0736 0.0552 0.1116 1.0061

2s-sGMM-2 (collapsed) 0.0088 0.0739 0.0580 0.1112 1.0052

γ 2s-QML -0.0214 0.7465 0.0692 0.1200 0.9051

1s-sGMM-2 (full) -0.4728 0.7733 0.1200 0.1936 1.0943

1s-sGMM-2 (2 lags) -0.8602 1.0601 0.3516 0.4492 0.9771

1s-sGMM-1 (collapsed) 0.0303 0.7137 0.0628 0.1144 0.9820

1s-sGMM-2 (collapsed) -0.0242 0.7410 0.0696 0.1208 0.9889

2s-sGMM-2 (collapsed) 0.0082 0.7625 0.0532 0.1016 0.9998

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage

estimators, respectively. “QML” is the quasi-maximum likelihood estimator of Hsiao et al. (2002),

and “sGMM” refers to system GMM estimators. The subsequent digit declares one-step and two-

step GMM estimators. We follow Blundell et al. (2001) to form the first-step weighting matrix

(41). In parenthesis, we refer to the set of instruments. The bias statistic measures the average bias

relative to the true parameter value, e.g. (λ̂− λ)/λ. RMSE is the root mean square error. The size

statistics refer to the actual rejection rates of Wald tests that the parameter estimates equal their

true values, given a nominal size of 5% and 10%, respectively. SE/SD is the average standard error

relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors

are based on formula (38) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction

for two-step estimators. Two-stage standard errors account for the first-stage estimation error.
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Table 7: Summary Results for Alternative Calibrations

Coefficient Estimator Bias RMSE Size (5%) Size (10%) SE/SD

Design 4, T = 10, N = 50

λ 2s-QML -0.0002 0.0253 0.0600 0.1096 0.8460

1s-sGMM-2 (full) 0.0634 0.0575 0.3736 0.5016 1.1819

1s-sGMM-2 (2 lags) 0.0957 0.0815 0.7748 0.8460 0.9212

1s-sGMM-1 (collapsed) 0.0066 0.0343 0.0936 0.1484 0.9121

1s-sGMM-2 (collapsed) 0.0037 0.0353 0.0860 0.1396 0.9307

2s-sGMM-2 (collapsed) 0.0039 0.0358 0.0864 0.1384 0.9240

β 2s-QML -0.0007 0.0103 0.0480 0.1000 0.9853

1s-sGMM-2 (full) -0.0108 0.0145 0.0248 0.0564 1.2111

1s-sGMM-2 (2 lags) 0.0075 0.0169 0.0588 0.1076 1.0018

1s-sGMM-1 (collapsed) -0.0021 0.0179 0.0652 0.1192 1.0142

1s-sGMM-2 (collapsed) 0.0011 0.0159 0.0604 0.1084 1.0108

2s-sGMM-2 (collapsed) 0.0014 0.0161 0.0580 0.1128 1.0171

γ 2s-QML 0.0039 0.6396 0.0492 0.1056 1.0070

1s-sGMM-2 (full) -0.3108 1.2915 0.0548 0.0876 0.8194

1s-sGMM-2 (2 lags) -0.3912 0.5542 0.2316 0.3160 1.0031

1s-sGMM-1 (collapsed) -0.0220 0.5884 0.0556 0.1096 0.9854

1s-sGMM-2 (collapsed) -0.0782 0.6180 0.0632 0.1188 0.9852

2s-sGMM-2 (collapsed) -0.0170 0.6460 0.0476 0.1028 1.0136

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage

estimators, respectively. “QML” is the quasi-maximum likelihood estimator of Hsiao et al. (2002),

and “sGMM” refers to system GMM estimators. The subsequent digit declares one-step and two-

step GMM estimators. We follow Blundell et al. (2001) to form the first-step weighting matrix

(41). In parenthesis, we refer to the set of instruments. The bias statistic measures the average bias

relative to the true parameter value, e.g. (λ̂− λ)/λ. RMSE is the root mean square error. The size

statistics refer to the actual rejection rates of Wald tests that the parameter estimates equal their

true values, given a nominal size of 5% and 10%, respectively. SE/SD is the average standard error

relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors

are based on formula (38) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction

for two-step estimators. Two-stage standard errors account for the first-stage estimation error.
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Table 8: Summary Results for Alternative Sample Sizes

Coefficient Estimator Bias RMSE Size (5%) Size (10%) SE/SD

Design 1, T = 10, N = 200

λ 2s-QML -0.0001 0.0106 0.0496 0.0980 0.9986

1s-sGMM-2 (full) 0.0281 0.0267 0.3996 0.5108 0.9204

1s-sGMM-2 (2 lags) 0.0316 0.0315 0.3032 0.4180 0.9296

1s-sGMM-1 (collapsed) 0.0020 0.0164 0.0596 0.1140 0.9876

1s-sGMM-2 (collapsed) 0.0001 0.0155 0.0544 0.1012 1.0067

2s-sGMM-2 (collapsed) 0.0002 0.0156 0.0524 0.1032 1.0046

β 2s-QML -0.0001 0.0050 0.0444 0.0988 0.9992

1s-sGMM-2 (full) -0.0034 0.0072 0.0520 0.1024 0.9995

1s-sGMM-2 (2 lags) -0.0023 0.0082 0.0468 0.1028 1.0017

1s-sGMM-1 (collapsed) 0.0004 0.0099 0.0592 0.1136 0.9918

1s-sGMM-2 (collapsed) 0.0019 0.0067 0.0480 0.0964 1.0091

2s-sGMM-2 (collapsed) 0.0020 0.0067 0.0476 0.0976 1.0091

γ 2s-QML -0.0068 0.3288 0.0524 0.1016 0.9936

1s-sGMM-2 (full) -0.2035 0.3503 0.1288 0.2040 0.9998

1s-sGMM-2 (2 lags) -0.2333 0.3897 0.1588 0.2420 0.9544

1s-sGMM-1 (collapsed) -0.0213 0.3205 0.0580 0.0972 1.0084

1s-sGMM-2 (collapsed) -0.0619 0.3346 0.0644 0.1220 0.9854

2s-sGMM-2 (collapsed) -0.0115 0.3471 0.0508 0.1020 1.0020

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage

estimators, respectively. “QML” is the quasi-maximum likelihood estimator of Hsiao et al. (2002),

and “sGMM” refers to system GMM estimators. The subsequent digit declares one-step and two-

step GMM estimators. We follow Blundell et al. (2001) to form the first-step weighting matrix

(41). In parenthesis, we refer to the set of instruments. The bias statistic measures the average bias

relative to the true parameter value, e.g. (λ̂− λ)/λ. RMSE is the root mean square error. The size

statistics refer to the actual rejection rates of Wald tests that the parameter estimates equal their

true values, given a nominal size of 5% and 10%, respectively. SE/SD is the average standard error

relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors

are based on formula (38) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction

for two-step estimators. Two-stage standard errors account for the first-stage estimation error.
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Table 9: Summary Results for Alternative Sample Sizes

Coefficient Estimator Bias RMSE Size (5%) Size (10%) SE/SD

Design 1, T = 10, N = 500

λ 2s-QML -0.0001 0.0067 0.0472 0.1060 0.9962

1s-sGMM-2 (full) 0.0074 0.0100 0.1372 0.2012 0.9644

1s-sGMM-2 (2 lags) 0.0093 0.0129 0.1116 0.1924 0.9725

1s-sGMM-1 (collapsed) 0.0007 0.0102 0.0508 0.0956 1.0055

1s-sGMM-2 (collapsed) -0.0001 0.0095 0.0508 0.0908 1.0050

2s-sGMM-2 (collapsed) 0.0000 0.0095 0.0524 0.0928 1.0042

β 2s-QML 0.0004 0.0031 0.0412 0.0944 1.0189

1s-sGMM-2 (full) -0.0008 0.0038 0.0508 0.0964 1.0177

1s-sGMM-2 (2 lags) -0.0022 0.0047 0.0464 0.0996 1.0124

1s-sGMM-1 (collapsed) 0.0001 0.0063 0.0528 0.0960 1.0138

1s-sGMM-2 (collapsed) 0.0009 0.0041 0.0460 0.0924 1.0098

2s-sGMM-2 (collapsed) 0.0010 0.0041 0.0444 0.0944 1.0117

γ 2s-QML -0.0046 0.2104 0.0584 0.1048 0.9807

1s-sGMM-2 (full) -0.0535 0.2109 0.0724 0.1296 0.9675

1s-sGMM-2 (2 lags) -0.0675 0.2203 0.0920 0.1532 0.9304

1s-sGMM-1 (collapsed) -0.0084 0.2093 0.0540 0.1028 0.9803

1s-sGMM-2 (collapsed) -0.0286 0.2093 0.0632 0.1152 0.9729

2s-sGMM-2 (collapsed) -0.0053 0.2217 0.0544 0.1104 0.9852

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage

estimators, respectively. “QML” is the quasi-maximum likelihood estimator of Hsiao et al. (2002),

and “sGMM” refers to system GMM estimators. The subsequent digit declares one-step and two-

step GMM estimators. We follow Blundell et al. (2001) to form the first-step weighting matrix

(41). In parenthesis, we refer to the set of instruments. The bias statistic measures the average bias

relative to the true parameter value, e.g. (λ̂− λ)/λ. RMSE is the root mean square error. The size

statistics refer to the actual rejection rates of Wald tests that the parameter estimates equal their

true values, given a nominal size of 5% and 10%, respectively. SE/SD is the average standard error

relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors

are based on formula (38) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction

for two-step estimators. Two-stage standard errors account for the first-stage estimation error.
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Table 10: Summary Results for Alternative Sample Sizes

Coefficient Estimator Bias RMSE Size (5%) Size (10%) SE/SD

Design 1, T = 5, N = 50

λ 2s-QML 0.0021 0.0559 0.0588 0.1124 0.9120

1s-sGMM-2 (full) 0.0918 0.0843 0.5360 0.6152 0.9194

1s-sGMM-2 (2 lags) 0.0999 0.0921 0.5172 0.6048 0.9393

1s-sGMM-1 (collapsed) 0.0171 0.0619 0.1088 0.1644 0.9700

1s-sGMM-2 (collapsed) 0.0146 0.0649 0.1148 0.1752 0.9617

2s-sGMM-2 (collapsed) 0.0173 0.0655 0.1240 0.1828 0.9525

β 2s-QML 0.0007 0.0185 0.0548 0.1084 0.9752

1s-sGMM-2 (full) 0.0047 0.0216 0.0656 0.1172 0.9856

1s-sGMM-2 (2 lags) 0.0002 0.0249 0.0612 0.1116 0.9967

1s-sGMM-1 (collapsed) 0.0037 0.0281 0.0668 0.1188 1.0359

1s-sGMM-2 (collapsed) 0.0070 0.0243 0.0684 0.1104 0.9938

2s-sGMM-2 (collapsed) 0.0080 0.0243 0.0644 0.1172 0.9983

γ 2s-QML -0.0270 0.8277 0.0828 0.1376 0.8855

1s-sGMM-2 (full) -0.6765 0.8666 0.3632 0.4528 0.9810

1s-sGMM-2 (2 lags) -0.7285 0.9301 0.3628 0.4608 0.9829

1s-sGMM-1 (collapsed) -0.1482 0.7992 0.1116 0.1644 0.9944

1s-sGMM-2 (collapsed) -0.1767 0.8389 0.1156 0.1712 0.9881

2s-sGMM-2 (collapsed) -0.1622 0.8500 0.0920 0.1440 1.0028

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage

estimators, respectively. “QML” is the quasi-maximum likelihood estimator of Hsiao et al. (2002),

and “sGMM” refers to system GMM estimators. The subsequent digit declares one-step and two-

step GMM estimators. We follow Blundell et al. (2001) to form the first-step weighting matrix

(41). In parenthesis, we refer to the set of instruments. The bias statistic measures the average bias

relative to the true parameter value, e.g. (λ̂− λ)/λ. RMSE is the root mean square error. The size

statistics refer to the actual rejection rates of Wald tests that the parameter estimates equal their

true values, given a nominal size of 5% and 10%, respectively. SE/SD is the average standard error

relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors

are based on formula (38) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction

for two-step estimators. Two-stage standard errors account for the first-stage estimation error.
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