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Abstract

Measuring and displaying uncertainty around path-forecasts, i.e. forecasts made in period
T about the expected trajectory of a random variable in periods T+1 to T+H is a key
ingredient for decision making under uncertainty. The probabilistic assessment about the
set of possible trajectories that the variable may follow over time is summarized by the
simultaneous confidence region generated from its forecast generating distribution. However,
if the null model is only approximative or altogether unavailable, one cannot derive analytic
expressions for this confidence region, and its non-parametric estimation is impractical given
commonly available predictive sample sizes. Instead, this paper derives the approximate
rectangular confidence regions that control false discovery rate error, which are a function of
the predictive sample covariance matrix and the empirical distribution of the Mahalanobis
distance of the path-forecast errors. These rectangular regions are simple to construct and
appear to work well in a variety of cases explored empirically and by simulation. The
proposed techniques are applied to provide confidence bands around the Fed and Bank of
England real-time path-forecasts of growth and inflation.

Keywords: path forecast, forecast uncertainty, simultaneous confidence region, Scheffé’s
S-method, Mahalanobis distance, false discovery rate

JEL-Classification: C32, C52, C53



Non-technical ummary

In recent years, it has become more and more common to publish not only point forecasts

for major economic variables, but also uncertainty forecasts. Examples are the fan charts

of the Bank of England, the prediction intervals of the Eurosystem staff macroeconomic

projections, or the uncertainty margins of the projections of the Deutsche Bundesbank. In

all cases, the width of the published intervals conveys information about the probability that

the future value of the forecast variable will lie within a certain range. The forecasts are

often made for several periods ahead, and the forecast uncertainty typically increases with

the forecast horizon.

However, the prediction intervals used so far only contain information about the forecast

uncertainty at a particular point in time. Yet, decision makers often are not interested in

the value of a certain variable at a particular point in time, but in all values of that variable

during a certain time span, i.e. in the path of that variable. For example, for wage bargainers

it is not the assessment of the inflation rate at a particular point in time that matters, but the

assessment of the sequence of inflation rates — the inflation path — during the entire duration

of the wage agreement. Also, deflation is commonly understood as a sequence of several

periods with negative inflation rates. A similar statement can be made about recessions and

negative growth rates of GDP. Thus, in such cases, decision makers care about the path of

the forecast variable. Accordingly, the prediction intervals should then reflect the uncertainty

about the path of the forecast variable, not the uncertainty about individual points on that

path.

Jorda and Marcellino proposed a method for constructing prediction intervals which

reflect path-forecast uncertainty. For the application of this method, so far only the case

of a known forecasting model and optimal forecasts has been considered. In the context

of macroeconomic forecasts, both of these assumptions are likely to be violated. Even if

the forecasting model is known, the published forecasts are usually no pure model forecasts,

but modified by experts’ judgements. Therefore, the uncertainty related to these forecasts
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cannot be evaluated based on the forecasting model only.

In this work, we investigate the method proposed by Jorda and Marcellino with respect

to its performance if path-forecast uncertainty is calculated based either on past forecast

errors or a misspecified forecasting model. It is found that misspecified forecasting models

can only result in acceptable path-forecast intervals if the misspecification is not too severe.

Yet, for example, a strongly declining volatility of macroeconomic shocks as observed for US

data since about 1985 leads to far too wide path-forecast intervals. Estimating path-forecast

uncertainty based on past forecast errors, however, yields more robust results. If, though,

the sample of past forecast errors is small and the path forecast covers many periods, the

estimation based on past forecast errors can also lead to inaccurate path-forecast intervals.

The method proposed by Jorda and Marcellino is compared to two other methods for con-

structing prediction intervals, the traditional method and the so-called Bonferroni method.

It is found that the method proposed by Jorda and Marcellino is, in general, superior to

these alternatives.



Nicht-technische Zusammenfassung

In zunehmendem Maße werden heute für zentrale gesamtwirtschaftliche Größen zusätzlich

zu Punktprognosen auch Prognosen darüber, wie sicher diese Punktprognosen sind, veröf-

fentlicht. Beispiele dafür sind die sogenannten Fan Charts der Bank von England, die Prog-

noseintervalle der Stabsprognosen des Europäischen Systems der Zentralbanken oder die Un-

sicherheitsmargen der Prognosen der Deutschen Bundesbank. In allen Fällen vermittelt die

Breite des veröffentlichten Intervalls eine Einschätzung darüber, mit welcher Wahrschein-

lichkeit der zukünftige Wert der prognostizierten Variable innerhalb bestimmter Grenzen

liegen wird. Dabei werden Prognosen oft für mehrere Perioden im Voraus erstellt, wobei die

Unsicherheit üblicherweise mit dem Prognosehorizont ansteigt.

Die bisher verwendeten Prognoseintervalle lassen allerdings nur Rückschlüsse darauf zu,

wie groß die Prognoseunsicherheit zu einem bestimmten zukünftigen Zeitpunkt ist. Oft ist für

Entscheidungsträger jedoch nicht der Wert einer Variablen zu einem bestimmten Zeitpunkt

von Bedeutung, sondern alle Werte dieser Variablen in einem bestimmten Zeitintervall, also

der Pfad der Variablen. So ist zum Beispiel für Tarifparteien nicht die Einschätzung der

Inflationsrate zu einem bestimmten Zeitpunkt relevant, sondern vielmehr die Sequenz von

Inflationsraten — der Inflationspfad — während der gesamten Gültigkeitsdauer des Tarifver-

trags. Auch von einer Deflation wird üblicherweise erst dann gesprochen, wenn negative Infla-

tionsraten über einen längeren Zeitraum hinweg beobachtet werden. Ähnliches gilt bei einer

Rezession für die Veränderungsraten des Bruttoinlandsprodukts. In diesen Fällen richtet

sich das Interesse der Entscheidungsträger also auf den Pfad der prognostizierten Variablen.

Dementsprechend sollten dann auch die Unsicherheitsintervalle die Unsicherheit über den

Pfad der prognostizierten Variablen und nicht die Unsicherheit über einzelne Punkte auf

diesem Pfad widerspiegeln.

Ein Verfahren zur Konstruktion von Prognoseintervallen, die die Pfadunsicherheit dar-

stellen (Pfadprognoseintervalle), wurde von Jorda und Marcellino vorgeschlagen. Die Anwen-

dung dieses Verfahrens basierte bisher auf der Annahme, dass das Prognosemodell bekannt



ist und die Prognosen optimal sind. Im Zusammenhang mit makroökonomischen Prog-

nosen dürften beide Annahmen häufig verletzt sein. Selbst wenn das der Prognose zugrun-

deliegende Modell bekannt ist, so sind die veröffentlichten Prognosen zumeist doch keine

reinen Modellprognosen, sondern durch Experteneinschätzungen modifizierte Prognosen. Die

Unsicherheit, mit der diese Prognosen behaftet sind, kann dann nicht mehr allein auf der

Basis des vorliegenden Modells beurteilt werden.

In dieser Arbeit wird das von Jorda und Marcellino vorgeschlagene Verfahren daraufhin

untersucht, ob es auch dann verlässliche Ergebnisse liefert, wenn die Annahme eines

bekannten und optimalen Prognosemodells aufgegeben wird und die Pfadunsicherheit statt

dessen basierend auf vergangenen Prognosefehlern oder auf fehlspezifizierten Prognose-

modellen geschätzt wird. Es zeigt sich, dass fehlspezifizierte Prognosemodelle nur dann

akzeptable Pfadprognoseintervalle liefern können, wenn das Ausmaß der Fehlspezifikation

gering ist. Dagegen führt zum Beispiel eine sich stark abschwächende Volatilität der makro-

ökonomischen Schocks, wie sie in den USA seit etwa 1985 beobachtet worden ist, zu deutlich

zu breiten Pfadprognoseintervallen. Eine Schätzung der Pfadunsicherheit, die auf vergan-

genen Prognosefehlern basiert, weist hingegen eine größere Robustheit auf. Falls allerdings

die Stichprobe vergangener Prognosefehler klein und der Prognosepfad sehr lang ist, kann

auch eine solche Schätzung zu fehlerhaften Pfadprognoseintervallen führen.

Das von Jorda und Marcellino vorgeschlagene Verfahren wird zudem mit zwei anderen

Verfahren zur Konstruktion von Prognoseintervallen verglichen, dem bisher üblichen Ver-

fahren und dem sogenannten Bonferroni-Verfahren. Dabei zeigt sich, dass die Methode von

Jorda und Marcellino im Allgemeinen beiden Alternativen überlegen ist.
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Empirical Simultaneous Confidence Regions for
Path-Forecasts

1 Introduction

Policy-makers are frequently confronted with a decision problem that requires assessing the

set of possible trajectories that a state variable will follow over time. The prediction of such

trajectories is often embedded in a control problem so that certain deviations of the state

variable from pre-determined targets will trigger particular policy responses. For example,

many central banks produce forecasts of inflation over two year-ahead horizons to determine

the best monetary policy response (see e.g. Svensson, 2009 and references therein for a

discussion on optimal policy projections. For example, inflation path-forecasts and policy

path-projections are now regularly reported by the Swedish Riksbank at www.riksbank.com).

Interest is not about the point forecast for a specific horizon but on the sequence of forecasts

over the entire trajectory.

Such situations present at least two important statistical challenges: What is the proper

measure of uncertainty associated with the trajectory of a random variable over time?; and

How should one compute such a measure when the null distribution and the actual distribu-

tion of the forecasts may di er, or when the former may not even be available? Socioeconomic

models lack the precision and stability of models of physical phenomena so that their approx-

imative nature makes them more vulnerable to traditional assumptions commonly used to

derive closed-form expressions. In the extreme, the decision-maker may in fact be ignorant of

the model used to generate the forecasts themselves. This is often the case when the forecasts

Correspondence: Òscar Jordà: Department of Economics, University of California, Davis, One
Shields Ave., Davis, CA 95616, e-mail: ojorda@ucdavis.edu; Massimiliano Marcellino: European Univer-
sity Institute, Department of Economics, via della Piazzuola 43, 50133 Florence, Italy, e-mail: massimil-
iano.marcellino@eui.eu; Malte Knüppel: Deutsche Bundesbank, Wilhelm-Epstein-Straße 14, 60431 Frankfurt
am Main, Germany, e-mail: malte.knueppel@bundesbank.de. This paper represents the authors’ personal
opinions and does not necessarily reflect the views of the Deutsche Bundesbank. We thank seminar par-
ticipants at the Bundesbank for helpful comments and suggestions. Jordà acknowledges the hospitality of
the Federal Reserve Bank of San Francisco during the preparation of this manuscript, and partial financial
support of the Spanish Ministerio de Ciencia e Innovación, grant SEJ-2007-63098.
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are not produced under the direct supervision of the decision maker. For example, several

forecasting firms (Blue Chip Forecasting, Macroeconomic Advisors, Standard and Poor, etc.)

release U.S. inflation forecasts but not su cient details about the forecasting null model.

This paper addresses these challenges. Conceptually, interest about the trajectory of a

variable over time reflects an interest in its path-forecast (see Jordà and Marcellino, 2009):

the collection of forecasts 1- to H-steps ahead. For example, pricing many path-dependent

“exotic” options (see, e.g. Goldman, Sosin and Gatto, 1979 for an early treatment and

Conze, 1991 and Kwok and Lau, 2001 for more recent reviews) such as lookback, Asian and

cumulative Parisian options to cite a few, requires determining the behavior of the price of

the underlying asset throughout the maturity of the contract and not just the likelihood of

such a price exceeding the strike price at any given time before maturity.

Providing appropriate confidence bands for these path-forecasts is complicated for two

reasons: confidence bands for the path-forecast are the inverse of a multiple testing problem

that results in multidimensional elliptical confidence regions; moreover, the elements of the

path-forecast are correlated over time. Since communicating uncertainty about the path-

forecast is as important as the forecast itself, Jordà and Marcellino (2009) have suggested

how to construct rectangular approximations to the optimal confidence regions based on

Sche é’s (1953) S-method.

However, the derivations needed to obtain appropriate Sche é bands (as Jordà and Mar-

cellino, 2009 denominate these confidence regions) require fairly strict assumptions about the

Gaussianity of the error process and the correct specification of the null model. A violation

of either or both of these assumptions likely reflects the behavior of macroeconomic data.

Furthermore, when the forecasts themselves are available but not the model and parameter

estimates used to generate them, it becomes infeasible to derive analytic formulas.

For these reasons, we investigate a simple method to construct empirical simultaneous

confidence regions based on the methods by Williams and Goodman (1971), whose ideas

precede but are related to the resampling methods in Efron’s (1979) well-known bootstrap

procedures, and subsequent literature (see, e.g. Politis, Romano and Wolf 1999).
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The procedures we propose use the sequence of observed forecast errors at di erent hori-

zons to construct empirical estimates of the sampling covariance matrix of the forecast errors

across horizons. This approach is similar to the sample-splitting empirical approach used,

e.g. by Rubin, Dudoit and van der Laan (2006) in the context of cross-sectional multi-

ple testing environments. Because we are considering the path-forecast and simultaneous

confidence regions, it is not practical, given typical predictive sample sizes, to estimate non-

parametrically the joint empirical distribution of the forecast errors and the relevant quantile

contours, which would be the object one would need to formally construct optimal simulta-

neous confidence regions (allowing the predictive sample go to infinity). Instead, we obtain

rectangular confidence regions by constructing simultaneous confidence regions based on the

Mahalanobis (1936) distance induced by the empirical covariance matrix of the forecast er-

rors, and then derive rectangular regions with Sche é’s (1953) S-method. Although we rely

on the appropriate quantiles of the 2 distribution in our examples because of the particu-

lars of our analysis, we remark that one could use tail-probability estimates of the empirical

distribution of the Mahalanobis distance when predictive samples are su ciently large.

Standard methods used to compute forecast intervals assume the forecasting model de-

scribes the series adequately in the future. In contrast, our procedures rely on the empirical

distribution of the forecast errors remaining the same in the future, which is a weaker assump-

tion. We note that our procedures di er from common applications of bootstrap procedures

in econometric models because our interest is on the joint distribution of the forecast errors

for which no assumption is made about whether or not the null forecasting model is correct.

Typical applications of the bootstrap in forecasting with ARIMA models (e.g. Masarotto,

1990; Thombs and Schucany, 1990; Kim, 1999; Pascual, Romo and Ruiz, 2000; and Clements

and Taylor, 2001) are usually based on residual resampling given the null model, but our

applications entertain the possibility that the null model is incorrect or not available to the

decision-maker.

Therefore, the type of situation that we consider not only takes that data generating

distribution as unknown, but possibly the null model used to produce the forecasts as well,
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and for this reason we cannot produce closed-form analytic expressions using large-sample

arguments. Instead, we provide ample simulation evidence about how our procedures may

work in practice. In addition, we provide a realistic application of our procedures by assessing

the growth and inflation forecasts generated by the Bank of England and the U.S. Federal

Reserve, whose null models are not revealed to the public.

Our main findings can be summarized as follows. Perhaps not surprisingly, the empirical

simultaneous confidence regions that we propose provide more accurate coverage the smaller

the estimation sample (if available), the larger the forecast sample (because the empirical

estimates become more accurate) and in the presence of null model misspecification. These

improvements are most dramatic as the length of the forecast interval increases. In contrast,

the coverage rates of traditional confidence bands based on the marginal distributions of each

point forecast are very poor.

When the model is correctly specified (in our case a vector autoregression or VAR),

we find that coverage based on analytic formulas applied to VAR estimates is superior to

coverage provided by direct forecasts using local projections. However, such di erences are

quickly reversed when the model is misspecified. On the question of providing accurate

simultaneous confidence regions, we find that whether more traditional Bonferroni bounds

or Sche é rectangular regions are more accurate, the answer depends on the type of error

control metric considered. We argue that family wise error (FWE) control is not appropriate

for path-forecasts, suggesting instead that Benjamini and Hochberg’s (1995) false discovery

rate control (FDR) is superior. We investigate simulations using both metrics however, and

show that our methods are far superior at controlling FDR while being relatively good at

controlling FWE. In contrast, Bonferroni bounds control FWE but usually o er poor FDR

control. Finally, we find that in both simulations and the empirical applications, empirical

Sche é bands perform best in the vast majority of cases and therefore constitute the approach

that we recommend.

The paper is organized as follows. Section 2 discusses statistical issues related with

measuring path-forecast uncertainty. Section 3 provides simulation evidence on the coverage
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rates of alternative path confidence bands. Section 4 computes and assesses competing

uncertainty measures for the real-time Fed and Bank of England path-forecasts of growth

and inflation. Section 5 summarizes our main findings and concludes.

2 Statistical Discussion

Suppose at time we are interested in predicting the value of a random variable one to

periods into the future and hence define the vector of forecasts and actual realizations of

these random variables respectively as:

b ( )
×1

=

b (1)
...

b ( )

;
×1
=

+1

...

+

We call the vector b ( ) a path-forecast using the nomenclature in Jordà and Marcellino

(2009). Associated to these vectors, we can define the vector of forecast errors b ( )b ( ) with a distribution that is assumed to be centered at zero when the null

model is correctly specified and with × covariance matrix We call this the forecast

generating distribution.

This distribution reflects a variety of sources of uncertainty associated with the predic-

tions in b ( ) among these the most common are: (1) uncertainty about the data generating

distribution of from which innovations are drawn; (2) uncertainty about the null model

used to describe the data generating distribution; and (3) uncertainty from the parameter

estimates of the null model in finite samples with respect to their population values. The

reader is referred to Clements and Hendry (1998) for a more exhaustive list. For our pur-

poses, it is unnecessary to be explicit about this breakdown. Our framework also extends to

forecasting the paths of a vector of random variables and we do this in the simulations but

here we prefer to keep the discussion simple. It will be important for our purposes that the

forecast generating distribution be stable over time. This assumption is less restrictive than
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assuming that the data generating distribution is itself stable. In the next sections we discuss

some of the particular statistical issues on forecasting uncertainty with particular e ort in

distinguishing the results that do not require distributional assumptions from those that do.

2.1 One Period-ahead Forecasting

Consider the problem of constructing a confidence interval for a one period-ahead forecast

(i.e. = 1) In general, the confidence region can be described as:

= { +1 : 1(b (1)) } (1)

where the function 1( ) : R R and an example of such a function is the well-known t-ratio,

1(b (1)) = b (1) +1

1
(2)

and where the lower and upper bounds and are chosen respectively so that

( +1 ) = 1 (3)

When = = Chebyshev’s inequality provides a bound for this probability regardless

of the forecast generating distribution,

(|b (1) +1| 1) 1
1
2

and hence =
p
1 For conventional 68% and 95% coverage (the usual one- and two-

standard deviation limits under Gaussianity), one obtains = 1 77 and = 4 47 respectively,

which are clearly much larger values than if it were known that 1 (0 1), in which case,

of course, = 1 and = 2 would do the trick.

This confidence interval can also be interpreted as the inverse of the decision problem
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associated with the null hypothesis

0 : b (1) = 0 1 : b (1) 6= 0 (4)

This notation may look a little awkward from what is conventional but is meant to convey

that we are not interested in a test of the hypothesis

0 : [ (1)|I 1] = 0 1 : [ (1)|I 1] 6= 0

where I 1 refers to the conditioning information set. The di erence lies in the interest to

provide uncertainty about the possible realizations of (1) rather than its conditional mean.

Let 1 denote a statistic associated with the null in expression (4) and denote a false

positive, as:

1 = (| 1| | 0 is true)

where ( ) is the indicator function and for convenience from hereon we proceed with the

convention = = Then, the choice of such that

( 1 = 1) = (5)

for a pre-specified level is meant to control the probability of a false positive or Type I

error and hence generates a confidence interval with 1 coverage since

( 1 = 0) = ( (| 1| ) | 0 is true) = 1 (6)

In this case, the probability of Type II error is the probability of a false negative, that is

( 1 = 1) = where

1 = (| 1| | 1 is true)

If one is unwilling to make assumptions about the distribution of 1 one could use a predictive
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sample of forecast errors b + (1) for = 1 from which one could calculate

b21 = 1 X
=1

b + (1)
2

and hence obtain an empirical estimate of 1 from which the desired empirical quantile could

be used to obtain a value of that would meet condition (6) and hence define a confidence

region (1) For example, the confidence region associated when one defines 1 as in (2) would

be the usual rectangular region but where the value of is determined from the appropriate

quantiles of b1
2.2 Path-forecasting

The one-to-one correspondence between control of Type I error and the coverage of the con-

fidence interval breaks down when one considers multiple hypotheses and hence construction

of simultaneous confidence regions. Specifically, interest now is in obtaining regions of the

form

=
n

: (b ( ))
o

(7)

where ( ) : R R is some function and where and are chosen so that

( ) = 1 (8)

Notice that the values of that meet condition (8) will generate a multi-dimensional

geometric object that generally cannot be represented in two-dimensional space. We will

return to this issue below.

A common expression for ( ) is the well-known Mahalanobis distance

=

r³b ( )
´0

1
³b ( )

´
(9)

which together with Chebyshev’s inequality in the multi-dimensional case, and assuming
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= = can be used to obtain the probability bound

( ) 1 2

so that, for given , it is = ( )1 2 If we knew that 2 2 as is conventional

in many traditional multiple testing situations with cross sectional data in large samples,

then would be about 1.65 times as large as the critical value of a random variable with

distribution 2 evaluated at the 68% probability level and more than 3 times if we chose a

95% probability level instead. As we already discussed in the previous section, knowledge of

the distribution makes the bounds considerably tighter relative to what we can obtain with

Chebyshev’s inequality.

In the discussion that follows we find it convenient to note that is symmetric and

positive-definite and thus admits unique Cholesky decomposition = 0 where is

a lower triangular matrix with ones in the diagonal and is a diagonal matrix. Thus, the

Mahalanobis distance in (9) can be expressed as:

=

qb ( )0 1 b ( ) =

qb ( )0 1 b ( )

where b ( ) = 1 b ( ) Furthermore,

2 = b ( )0 1b ( ) =
X
=1

b ( )2
=
X
=1

( )2

One way to think of the b ( ) is as the orthogonalized versions of the b ( ) where one

projects b ( ) onto b ( 1) b (1) The are the elements in the diagonal of and

therefore the variances of the b ( ) The usefulness of this transformation will become clear
momentarily.

The simultaneous confidence region in expression (7) is now the inverse of a multiple
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testing procedure that involves the intersection of the family of hypotheses

0 : b ( ) = 0 1 : b ( ) 6= 0
The joint null is 0 = =1 0 and 1 = =1 1 Paralleling the discussion in the previous

section, let the total number of false positives among the hypotheses be

=
X ¡¯̄ ¯̄ ¢

where denotes the index set containing all true null hypotheses and where the are as

of yet, to be determined. Of course, because we are talking about the uncertainty of the

path-forecast then for practical purposes = but we retain the notation for the time

being to be more precise in the discussion that follows.

Unlike the familiar single hypothesis scenario described previously, there are several error

rates one may wish to control for. Specifically, the closest equivalent to expression (5) is

control of the generalized family wise error ( ) defined as:

= ( ) = for 1

from which corresponding values of could be chosen and where it is traditional to choose

= 1 in which case we can simply write = ( 1)

We pause our discussion of error control to remark that it has been standard practice

to construct confidence intervals for path-forecasts using the cut-o values associated with

control of the error rate for each individual hypothesis 0 so that the are chosen to meet

the condition

( = 1)

However, this causes Type I error for the intersection of nulls to approach 1 as the number

of hypothesis considered grows, and therefore generates severe distortions on the desired
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probability coverage of the path-forecast.

Instead notice that

( 1) = =
X

( = 1)

and hence Bonferroni’s inequality suggests choosing instead

( = 1) =

so that

( 1) =
X

( = 1) =
X

=

Therefore, traditional confidence bands constructed as

b ( )± ( )1 2 (10)

where ( ) is the ×1 vector of diagonal elements of and is chosen to ensure that

condition (3) is met, can be replaced with

b ( )± ( )1 2 (11)

where is chosen to meet the condition

( + ) = 1

and

= { + : | | }

for = for = 1

Control of has been found to be too stringent resulting in very low power (see

Dudoit and van der Laan, 2008). For example, in a prediction of the path of monthly

inflation over the next two years, control of would result in rejection of such paths
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as when the trajectory of inflation is correctly predicted for 23 periods but the prediction of

the last month is particularly poor.

For this reason, a number of alternative error control procedures have been proposed.

Perhaps the best known is Benjamini and Hochberg’s (1995) false discovery rate ( )

which can be described as the proportion of incorrectly rejected hypothesis, specifically

=

P
( )

max
n³P

=1 ( )
´
1
o

In our case and because we are interested in confidence regions for all periods then

=

"
1 X

=1

( )

#
=

where is the per-comparison error rate (see Dudoit and van der Laan, 2008). In

general, control of and is less conservative than control of although

when all hypotheses are true, then =

Control of is more appealing for path-forecasting where interest is in constructing

confidence bands that preserve the set of trajectories that mimic the overall shape of

rather than focusing on individual deviations of the elements of the path, as in our previous

inflation example. Therefore notice that control of at level implies that

=
1 X

=1

( ) =

or
1 X

=1

( ) = 1

Recall that a simultaneous confidence region based on the Mahalanobis distance with cov-

erage 1 can be constructed by choosing such that ( ) = 1 We now use

Sche é’s (1953) S-method in the derivations that follow to tie this result with a confidence

region that controls and can be represented in two-dimensional space.
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We have shown previously that 2 =
P

=1 ( )2 and hence

( 2 2) =

ÃX
=1

( )2 2

!

Dividing by 1 on both sides of the inequality and noticing that 1 =
P

=1 1
2 we

have that Ã
1 X

=1

( )2
2
!
= ( 2 2) = 1

and from the Cauchy-Schwarz inequality

X
=1

1
2

X
=1

( )2
Ã
1 X

=1

!2

so that Ã
1 X

=1

!2
2 ¡

2 2
¢
= 1

and therefore ¯̄̄̄
¯ 1 X

=1

¯̄̄̄
¯

s
2

1

but since the have been orthogonalized, at least for elliptically contoured distributions

(such as the multivariate Gaussian), we have then that

1 X
=1

(| | ) '
¯̄̄̄
¯ 1 X

=1

¯̄̄̄
¯

s
2

so that an approximate value of is
q

2 If the b ( ) were multivariate Gaussian, then

2 2 and hence one could then choose

=

r
2 ( )

where 2 ( ) is the -highest quantile of a 2 distributed random variable, and therefore ap-
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proximate simultaneous confidence intervals with joint 1 coverage (and with approximate

= ) as b ( )± 1 2

r
2 ( )

i (12)

where i is an × 1 vector of ones. As we will show in the simulations this approximation
to the is very accurate when the data are Gaussian.

The critical value therefore depends on the length of the path-forecast considered. As a

result, the width of the bands can vary for the earlier periods in the path when the researcher

chooses to evaluate a longer or shorter total horizon . This is a natural consequence of

the simultaneous nature of the evaluation problem and perfectly natural. However, if one

is willing to allow the to be possibly di erent from each other (since there is no such

theoretical restriction) then one can use a step-down procedure similar to Holm’s (1979)

that would get around this feature to some extent. We have experimented with multiple

values of and found to be the case that
q

2( )
q

2 ( ) for any and

0.05 (i.e. the traditional scientific standard of 95% confidence). For = 0 32 (one standard

deviation coverage) the approximation is still rather good. For = 0 5 the sequential

procedure tends to undercover but not by a large amount. Therefore, for practical purposes

one may consider modifying the bands in (12) with the following alternative:

b ( )± 1 2

s
2( )

=1

(13)

where the vector in brackets is of dimension × 1 with typical element
q

2( ) In the

Monte Carlo simulations and empirical application that we provide, we decided to follow this

last approach as we feel researchers may feel more comfortable with this choice and in any

case handicaps our methods with respect to the alternatives that we consider. Even with

this handicap, we will show that Sche é bands are a superior alternative.

Finally, all along we have tried to maintain the discussion by making minimal assump-

tions on the forecast generating distribution. Two conditions we have discussed is that this
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distribution be stable over time (even if the data generating distribution is not) and the

assumption that a local projection (obtained here with the Cholesky decomposition) is suf-

ficient to orthogonalize the forecast path. Under these conditions, we can use the empirical

predictive sample to construct

b =
1 X

=1

b
+ ( )b + ( )0

when the null model is correctly specified. Given the estimate b then one can construct the

set of Mahalanobis distances for each of the 1 path-forecasts in the predictive sample,

namely c2 = b
+ ( )0b 1 b

+ ( ) = 1

which can then be ranked in ascending order to obtain the % highest ranked value of c as

the natural value of b However, getting an accurate estimate for a small value of in small

samples is di cult (such as = 0.05 for 95% coverage). We have found that in such cases,

2 ( ) often provides a reasonable approximation, as we illustrate below.

3 Probability Coverage of Alternative Confidence Bands: Sim-

ulation Evidence

We now present extensive simulation evidence on the probability coverage of di erent types

of confidence bands for a path-forecast. The next section describes the experimental design,

the following section reports simulations when the null model coincides with the data gen-

erating process (DGP), and the last section considers simulations in which the null model is

misspecified with respect to the DGP.
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3.1 Experimental design

The experimental design is based on Stock and Watson’s (2001) well-cited review article on

vector autoregressions (VARs). In that article, Stock and Watson examine a three-variable

system, specifically: , inflation measured by the chain-weighted GDP price index; ,

civilian unemployment rate; and , the average federal funds rate. We estimate this VAR

over the sample beginning the first quarter of 1960 and ending the first quarter of 2007 (189

observations) for the purpose of using the coe cient estimates and residual covariance matrix

in our simulations.

With these estimates as parameter choices, we simulate data from this VAR as follows.

Let denote the estimation sample size, denote the predictive sample size, and denote

the length of the path-forecast considered. Then we allow = 100 400; = 40 80 and 200;

and = 1 4 8 and 12. For each combination and we generate 10,000 Monte Carlo

samples.

At each replication, we use that sample to generate path-forecasts of length over a

predictive sample using estimates from either a VAR or local projections fitted on

observations. We consider local projections for the misspecification examples following the

results in Marcellino, Stock and Watson (2006). Then, we construct three types of confi-

dence bands: (1) marginal error bands (using expression 10); (2) Bonferroni bounds (using

expression 11); and (3) Sche é bands (using expression 13). We consider both the analytic

formulas derived in Jorda and Marcellino (2009), based on the null model being the DGP,

as well as the empirical formulas described in the previous section. Moreover, we examine

bands for 68% and 95% probability coverage rates. We also entertain misspecification of the

null model in ways that will be made explicit momentarily. Forecasts are computed for each

of the three variables in the VAR ( and ) and reported separately.

Coverage is evaluated in terms of FWE and FDR control. In FWE control, any path that

has one or more elements outside the bands is considered to fall outside the bands, regardless

of whether its Mahalanobis distance meets the FDR criterion. In FDR control, we compute
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the Mahalanobis distance for all paths and record as being outside the bands all those paths

with Mahalanobis distance higher than 2 ( ) We do not use the empirical critical value

because then the Sche é bands would score perfect FDR by construction. Furthermore, in

empirical situations, a predictive sample with less than 100 observation probably does not

allow for a very accurate estimate of its -quantile. Therefore, we felt it would be best to

handicap our preferred procedures to make the results even more convincing.

Two final comments are worth making. First, initial conditions to generate the data are

chosen at random from the unconditional distribution. Second, in simulations when the null

model is misspecified with respect to the DGP, bands are computed around the path-forecast

and are not re-centered for misspecification, which is more realistic.

3.2 Simulation Results: Null Model is Correctly Specified

Tables 1-6 summarize the results of our experiments when the null model is correctly specified

with respect to the DGP described in the previous section. The top panel of each of these

tables contains the results for path-forecasts generated when the null model is a VAR, while

the bottom panel contains results when the null model is estimated with local projections

(which are less e cient but correctly specified nevertheless). Each panel computes the three

types of band we consider using both analytic and empirical methods (indicated with “emp.”

in parenthesis) under both FWE and FDR control. Hence, Tables 1-2 summarize results for

a predictive sample = 40 at 68% (Table 1) and 95% (Table 2) coverage; Tables 3-4

summarize the results for = 80; and Tables 5-6 for = 200

In Table 1, = 1 is a good benchmark case because then FWE and FDR control

are the same and marginal, Bonferroni and Sche é bands are identical by construction.

Interestingly, we find that bands calculated via the empirical method are more accurate

than with the analytic method. However, as the length of the path-forecast increases and

initial correspondence across methods and error control measures vanishes, the coverage of

the marginal bands deteriorates very rapidly, specially for inflation (labeled ) which is a

very persistent variable.
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As grows to 8 or 12, the analytic approach provides more accurate coverage than the

empirical approach. This is not surprising since for = 8 b has 36 potentially distinct

entries that need to be estimated, sometimes from a sample = 40 Estimation with small

sample sizes ( = 100) however, generates its own distortions on the analytic formulas that

improve markedly when = 400

Direct forecasts from local projections are systematically worse than those from a VAR,

as the bottom panel of Table 1 shows. This is to be expected because VAR estimates are

known to be more e cient as has been previously documented in Marcellino, Stock and

Watson (2006). This is specially true when the estimation sample is small ( = 100) The

results in Table 2 for 95% coverage essentially support the same conclusions as Table 1. We

also note that Bonferroni bounds appear to control FWE but fail considerably in controlling

FDR; while Sche é bands control FDR best but still maintain respectable FWE control.

The remaining tables (Tables 3-6) display the e ects of higher predictive samples ( = 80

200). Since only a ects the empirical estimates (the analytic estimates are based on )

we remark that coverage rates for all analytic procedures are virtually identical to those in

Tables 1-2. However, as is allowed to grow to 200, then the empirical approach appears

to be most accurate in almost every case (and even when = 400).

3.3 Simulation Results: Misspecified Null Model

In this section we report simulation results in which the null model estimated at each replica-

tion and then used to generate path-forecasts and confidence bands, is misspecified. Because

we consider several types of misspecification, we will focus exclusively on 95% coverage and

= 80 which according to Tables 1-6 appears to be a su ciently representative interme-

diate case on which to experiment with misspecification. Results with 68% coverage where

su ciently similar to those with 95% coverage that are omitted here for brevity but available

upon request.

We explore five di erent types of misspecification: Table 7 examines what happens when

the null model is specified as a VAR(1) instead of a VAR(4), the DGP. Table 8 examines
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what happens when the null model omits the variable from the system. Table 9 allows

for a structural break in the conditional means of the DGP that is ignored in the null model.

Table 10 allows for a structural break in the residual covariance matrix of the DGP but

not of the null model. Table 11 allows both types of break simultaneously. Tables 7-11 are

configured like Tables 1-6 for clarity.

When the forecasts are unbiased, as in the previous section, there is no need to recenter the

errors prior to estimating their variance covariance matrix ( ). However, misspecification

can induce bias, and therefore centering the errors could be important. Yet, it turns out

that is not: the simulation results indicate that the coverage rates resulting from estimating

with centered forecast errors are in general very similar to those with uncentered errors,

the gains are very limited. The reason is that in most of the cases considered the biases

are small, and taking their cross products makes them even smaller. A similar feature also

emerges in the empirical applications of the following section. Since, in addition, testing for

bias is often inconclusive in empirical applications due to the small sample size, we report

results based on estimating with uncentered forecast errors (results with centered errors

are available upon request).

We begin with a direct comparison between Tables 4 and 7, where the null model is

specified as VAR(1) in the latter case. There are few substantial di erences, mostly because

a VAR(1) captures most of the persistence in the data anyway so that path-forecasts are

not substantially biased. There is, however, a slight improvement of the direct forecasts.

Omitting from the system also has little e ect, as Table 8 reveals.

Finally, we discuss the consequences of structural breaks. What we did was to revisit the

parameter estimates of the Stock andWatson (2001) VAR and estimate two sets of coe cients

by breaking the sample in 1984:Q4 so as to capture the well-known “great moderation” in

inflation levels and output volatility (see e.g. McConnell and Pérez-Quirós, 2000). When we

simulate the data for Tables 9-11 we allow for a break that splits the samples = 100 400

in such a way so as to preserve the relative sizes of the two subsamples relative to the actual

data for the estimates. Table 9 uses the two sets of conditional mean parameters only; Table
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10 the two sets of residual covariance estimates only; and Table 11 uses both.

While we find few di erences between Tables 4 and 9 (with perhaps some visible im-

provements of forecasts by local projections), Tables 10 and 11 show more dramatic dis-

parity. There is a strong upward bias in the coverage rate of the analytic Bonferroni and

Sche é bands, and the bias is even (proportionally) stronger with coverage rate 68% (results

available upon request) than 95%. In this case the empirical approach provides more reli-

able results since estimation of the elements of based on the predictive sample reduces

substantially the bias with respect to estimation of with the analytic formulas and VAR

or local projection estimates.

Summarizing, the extensive Monte Carlo experiments we constructed in this section reveal

several interesting results. First, confidence bands constructed using empirical estimates

from the predictive sample are preferable to standard analytic formulas when: (1) the path-

forecast is low-dimensional so that the matrix has a small number of entries; (2) the

estimation sample is relatively small (so that the null model parameter estimates are

relatively imprecise); and (3) when the residual variance of the null model is misspecified.

Second, traditional confidence bands based on the marginal distribution of the per-horizon

forecast error provide very poor coverage. Since these are the bands typically reported for

policy making, we think its use should be completely abandoned. Third, when the null model

is correctly specified, direct forecasts based on local projections are less e cient but this

disadvantage quickly disappears and turns to advantage when the null model is misspecified.

Finally, Bonferroni bounds provide better control of FWE but generally poor control of FDR

whereas Sche é bands control FDR very well while maintaining reasonable FWE control.

4 Central Bank Forecasting: The Bank of England and The

Federal Reserve

The Bank of England and the Federal Reserve sta s provide inflation and output forecasts

to their policy-makers prior to deliberating on the future course of monetary policy. Data
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for the UK is available for a shorter sample and so we use the data for illustration purposes

primarily. Data for the U.S. is available for much longer and hence can be used to evaluate

our simultaneous confidence regions by splitting the predictive sample and saving the second

subsample for evaluation. Notice that while the forecasts and the realizations are available,

the null models are not and hence one has to rely entirely on the empirical approach we have

proposed. Finally, we also assess the impact of using real-time data rather than only final

vintage data since this is an important element when evaluating forecast uncertainty in a

decision making context.

4.1 Data

The source of quarterly time series for UK output and prices and their forecasts is the Bank

of England. Growth and inflation are measured as 100 ( 4), where is either output

or a price index. The predictive sample starts in 1998:Q1 and the maximum forecast horizon

is = 9. However, = 1 is actually a nowcast, so that the path-forecasts e ectively cover

a period of two year-ahead forecasts. These forecasts are conditional on the market interest

rates rather than conditional on a constant path for interest rates, the other guise under

which forecasts are reported by the Bank of England. Inflation forecasts refer to the RPIX

index (retail prices excluding mortgage interest payments) until 2003:Q4 and to the CPI

thereafter. Output forecasts always refer to GDP. As final data against whose realizations

we can compare the forecasts to, we use the currently available CPI and RPIX series, and

chain-weighted GDP. The CPI sample ends in 2009:Q2. The GDP sample ends in 2008:Q2,

since this is the last quarter for which real-time data were available as well.

Regarding the real-time data, CPI and RPIX are rarely and only marginally revised, and

as far as we know they are not available in real time. For GDP, there are up to three vintages

per quarter, one per month. We have used the vintages from February, May, August and

November since these are available for each quarter in our sample, and we have collected

the first 10 releases for each quarter (in addition to the final data, coinciding with the latest

available vintage).
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For the US, the data source is the Federal Reserve, with the forecasts coming from the

Greenbook. Specifically, we have collected quarterly forecasts starting in 1974:Q2, for which

= 5 is available. As for the UK, = 1 represents a nowcast, so that for the US we

have path-forecasts up to 1-year ahead. The sample ends in 2003:Q4, since the Greenbook

data are released with a delay of 5 years. Forecasts are for output growth (where output is

measured by GNP until 1991, GDP afterwards) and inflation (measured as growth in the

GNP deflator until 1991, in the GDP deflator afterwards) measured as 400 ( 1).

As final data against whose realizations we can compare the forecasts to, we use the latest

available vintage of chain-weighted GNP and GDP, and of their deflators. For the real time

data, we combine information from the Federal Reserve Bank of Philadelphia’s real-time

database and from the Alfred database maintained by the Federal Reserve Bank of St Louis.

4.2 Alternative measures of Path-forecast Uncertainty

Using forecasts and corresponding either final vintage or real time data, we have constructed

sequences of path-forecast errors and tested them for normality using the Bai and Ng’s (2005)

statistic, obtaining non-rejection of normality in the vast majority of cases (detailed results

are available upon request). We have then used the error sequences to estimate the

matrix empirically on the predictive sample. Of course, the analytic approach is unavailable

since the null models that produce the forecasts are unknown.

Next, we construct marginal, Bonferroni and Sche é bands for UK and US growth and

inflation forecasts, for di erent nominal coverage rates. In Figure 1 we plot the (one-sided)

68% bands, centered for convenience on zero. It clearly emerges that the commonly used

marginal bands can substantially under-estimate the uncertainty, in particular for large fore-

cast horizons. The Bonferroni bands are in general wider than the Sche é bands for low

values of , but sometimes narrower for higher values of A similar picture (but with larger

values for each type of band) emerges for a 95% coverage rate.

Due to the extent of data revisions for output, which were large for both the UK and the

US in the first part of the respective samples, the forecast errors computed with the real time
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growth data can be fairly di erent from those resulting from the final vintage data. Hence,

estimates of can be also di erent, and as a consequence the measures of path-forecast

uncertainty when computed in real time.

Figures 2 and 3 graph the UK and US path growth forecasts respectively, and the three

types of bands (marginal, Bonferroni and Sche é) when computed with each of the ten

vintages of data. It turns out that for the UK the uncertainty is smaller with the real time

data than with the final data. In particular, rather systematically across forecast horizons

and types of band, the uncertainty increases mildly for the first 2-3 releases, remains fairly

stable up to release 10, and then increases for the final (available) vintage. A similar pattern

emerges for the US, where however the di erences between the 10 and the final releases are

much smaller than for the UK, likely due to the longer sample available such that particular

episodes of large revisions are averaged out.

Overall, these results indicate that the measures of path-forecast uncertainty can be fairly

di erent in empirical applications, with the common marginal bands being the narrowest.

In addition, all measures can underestimate uncertainty when computed in real time, if the

forecast target is the final value of the variable of interest.

4.3 Coverage rates

The results in the previous subsection are interesting, but they do not indicate which of the

three measures is the most reliable in terms of actual coverage rates. On the basis of the

Monte Carlo results in Section 3, we expect the marginal bands to perform badly, but the

ranking of the Bonferroni and Sche é bands is uncertain because it also depends on what

error control one is interested in. Hence, we now assess their relative performance in the

application at hand.

We focus on the US, for which longer time series are available. If denotes the full sample,

then we split the sample at = 1985:Q1. With the sample of forecast paths starting in

1974:Q2 and ending in , we get 40 forecast paths and corresponding errors from which we

construct an empirical estimate of . This estimate is used to construct uncertainty bands
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for the forecast path from + 1, i.e. from 1985:Q2. Then we roll the window of forecast

paths for estimating one observation at a time by deleting the first path and adding one

path at the end, and we also roll the forecast path for which we construct uncertainty bands.

We do so until the uncertainty bands are constructed for the final path starting in =

2003:Q4, for which the final window of forecast paths starting from 1992:Q4 to 2002:Q3 is

used to estimate . In this way, we have produced uncertainty bands for 75 forecast paths.

The rolling window procedure described is repeated for every vintage of data = 1 10

and for the final data.

This procedure produces a set of measures of path-forecast uncertainty that can be com-

pared with the actual realizations in order to compute the actual coverage rate of each type

of confidence band. Table 12 reports actual coverage rates under and control for

U.S. inflation and output growth for nominal levels 50%, 68% and 95%, and for all data vin-

tages. We consider the nominal level of 50% because of the rather small size of the evaluation

sample.

As expected, the marginal bands perform very poorly, in particular for 50% and 68%

nominal coverage rates. For the same rates, the actual coverage of the Bonferroni bands is

systematically higher than the nominal level; and the Sche é bands appear to perform best

throughout at FDR control. For 95% nominal coverage, Bonferroni and Sche é bands mostly

yield similar results.

For output growth and FDR control, the coverage of the Sche é bands is close to nominal

for all nominal coverage rates and all data vintages. For nominal coverage of 50% and 68%

their coverage is far closer to the nominal level than that of the Bonferroni and the marginal

bands.

Regarding FWE control, the Sche é bands’ coverage is smaller than the nominal level,

but again far closer than the coverage of the marginal bands. The Bonferroni bands almost

always cover more than the nominal level, but are mostly closer to it than the Sche é bands.

For inflation and FDR control, the coverage of the Sche é bands exceeds the nominal

level for coverage rates of 50% and 68% and all data vintages, but only moderately so, and
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considerably less than the Bonferroni bands for vintages 1 to 10. Only for final release data,

Bonferroni and Sche é bands produce similar results. The marginal bands cover less than

the nominal level, in some cases extremely so.

In terms of FWE control for inflation, the Sche é bands’ coverage is too small for nominal

levels of 50% and 68%, but nevertheless they produce clearly the best results of all bands

considered for 50% coverage. The Bonferroni bands consistently cover more than the nominal

levels of 50% and 68%. For 68% coverage, the coverage of the Bonferroni bands can be closer

to the nominal level than the Sche é bands, depending on the data vintage. The marginal

bands perform worst for all vintages and coverage rates.

In summary, overall the Sche é bands yield the best results in terms of FDR control and

reasonable results for FWE control, while the Bonferroni bands can be superior for FWE

control, but perform clearly worse with FDR control. Moreover, the coverage of the marginal

bands is in general quite far from the nominal level for both types of error control. The

empirical results are in line with those found in the Monte Carlo simulations, and confirm

a certain robustness in the coverage of the bands also in the likely presence of structural

changes in distribution of the forecast errors.

5 Conclusions

This paper proposes a number of practical solutions to the problem of calculating and then

displaying the uncertainty associated with a path-forecast. Several features make this an

unusual statistical problem.

First, the forecast generating distribution is unknowable. Large sample arguments ap-

proximate the distribution of the parameters of the null model, and hence the conditional

mean path-forecast. But asymptotics do not reveal the data generating distribution from

which the actual realizations of the path-forecast will come. Moreover, sometimes the fore-

cast generating distribution itself is unavailable, such as when agencies publish forecasts but

not how they were generated. Even conventional use of resampling techniques is complicated
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or even made infeasible by such situations. In this paper we show that empirical methods

based on the predictive sample provide a natural solution.

However, the empirical approach cannot be directly implemented because confidence

regions for path-forecasts are a multiple comparison problem for which no unique equivalent

to control of Type I error exists. Further, we argue that control of family-wise error (the

closest relative to Type I error control) is inadequate for path-forecasts: should an inflation,

two-year path-forecast be rejected because the prediction of one of the periods is likely to

be erroneous? We argue instead in favor of evaluating the forecasts in the path jointly, and

hence control the false discovery rate, a more contemporary form of error control.

Confidence regions constructed on the basis of false discovery rate control solve the prob-

lem of simultaneous evaluation of outcomes but result in multidimensional geometric objects

that cannot be represented in two-dimensional space. Therefore, we show how to construct

approximate rectangular regions with approximate false discovery rate control that account

for the serial correlation among the elements of a path-forecast. We call the resulting con-

fidence bands Sche é bands because the rectangular approximation is based on Sche é’s

(1953) S-method, and show how they can be calculated with the empirical approach that we

propose.

Simulation evidence and our applications suggest that traditional confidence bands based

on the marginal distribution of each forecast in the path provide no reliable control of ei-

ther family-wise error or false discovery rate. Coverage is often o and by large amounts,

prompting us to recommend that its use be discontinued. In contrast, Sche é bands give

accurate false discovery rate control and relatively good family-wise error control even when

compared to Bonferroni bounds, which specifically control family-wise error but often result

in very imprecise false discovery rate control.
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 62.2 66.7 62.2 66.7 62.2 66.7 62.2 66.7 62.2 66.7 62.2 66.7
UN 63.4 67.5 63.4 67.5 63.4 67.5 63.4 67.5 63.4 67.5 63.4 67.5
FF 62.3 66.4 62.3 66.4 62.3 66.4 62.3 66.4 62.3 66.4 62.3 66.4

T=400 P 66.8 67.1 66.8 67.1 66.8 67.1 66.8 67.1 66.8 67.1 66.8 67.1
UN 66.9 67.0 66.9 67.0 66.9 67.0 66.9 67.0 66.9 67.0 66.9 67.0
FF 67.1 67.0 67.1 67.0 67.1 67.0 67.1 67.0 67.1 67.0 67.1 67.0

H: 4
T=100 P 24.2 30.2 67.4 74.4 48.3 55.0 16.9 18.3 63.9 65.7 58.5 62.5

UN 37.0 43.1 74.9 80.3 57.8 63.0 12.2 13.7 52.9 55.4 59.4 63.3
FF 30.5 36.8 71.6 78.0 54.8 60.9 12.6 13.8 56.3 58.6 58.6 62.5

T=400 P 27.7 28.6 74.6 73.7 54.5 53.7 20.2 20.7 71.9 69.0 65.7 62.4
UN 42.1 42.6 81.2 80.2 63.5 63.4 14.2 14.0 59.7 57.2 66.6 63.6
FF 35.7 35.7 78.2 77.2 60.9 60.3 14.8 15.0 62.6 60.0 65.2 62.3

H: 8
T=100 P 11.1 17.0 69.5 76.5 46.3 52.8 0.9 1.2 42.5 41.1 54.9 53.2

UN 21.0 26.1 76.1 80.7 55.4 60.0 1.4 1.7 48.7 46.4 56.3 52.2
FF 18.1 24.3 73.1 78.6 53.0 58.7 1.0 1.2 40.6 38.8 56.2 52.6

T=400 P 13.6 14.2 78.3 75.8 53.7 51.5 1.5 1.6 52.6 47.1 65.4 53.9
UN 25.1 25.4 83.6 81.1 61.3 59.5 2.0 2.3 58.2 50.6 65.7 54.3
FF 20.6 21.3 82.1 78.8 59.0 57.5 1.1 1.4 49.0 42.1 65.1 53.2

H: 12
T=100 P 6.7 11.9 70.9 75.8 46.5 51.6 0.0 0.1 28.7 25.1 54.4 43.1

UN 12.8 18.1 75.8 78.7 52.8 53.6 0.3 1.5 56.0 51.6 54.9 42.3
FF 11.0 16.7 73.2 78.3 52.4 56.7 0.0 0.1 30.1 27.0 54.3 41.9

T=400 P 6.8 8.3 79.8 75.2 52.9 50.1 0.0 0.1 35.6 29.7 64.4 43.1
UN 15.8 16.6 84.3 79.7 60.6 54.3 0.5 1.3 67.8 54.7 65.6 43.1
FF 13.8 14.3 83.2 78.5 59.8 56.8 0.1 0.2 37.5 31.2 64.7 42.6

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 62.4 66.7 62.4 66.7 62.4 66.7 62.4 66.7 62.4 66.7 62.4 66.7
UN 63.7 67.5 63.7 67.5 63.7 67.5 63.7 67.5 63.7 67.5 63.7 67.5
FF 62.6 66.4 62.6 66.4 62.6 66.4 62.6 66.4 62.6 66.4 62.6 66.4

T=400 P 66.9 67.1 66.9 67.1 66.9 67.1 66.9 67.1 66.9 67.1 66.9 67.1
UN 66.9 67.0 66.9 67.0 66.9 67.0 66.9 67.0 66.9 67.0 66.9 67.0
FF 67.2 67.0 67.2 67.0 67.2 67.0 67.2 67.0 67.2 67.0 67.2 67.0

H: 4
T=100 P 21.1 30.8 62.2 74.0 44.0 55.1 17.7 18.3 65.0 65.6 55.0 62.4

UN 33.6 43.2 70.6 79.9 56.0 63.2 11.3 13.3 51.1 55.4 56.3 63.0
FF 26.8 37.0 66.9 78.1 52.2 60.9 12.2 14.1 55.2 58.7 55.3 62.5

T=400 P 27.1 28.5 73.5 73.6 53.6 53.6 20.5 20.6 72.2 69.0 65.1 62.6
UN 41.0 42.4 80.7 80.2 63.2 63.4 13.9 14.0 59.5 57.1 65.7 63.3
FF 35.0 35.9 77.4 77.3 60.5 60.2 14.8 15.3 62.5 59.8 64.7 61.9

H: 8
T=100 P 6.7 17.1 56.6 76.6 37.3 52.8 1.2 1.2 45.1 42.1 45.4 52.7

UN 14.9 26.8 64.4 80.6 48.8 60.0 1.6 1.9 48.8 46.3 45.6 52.0
FF 12.3 24.7 61.2 78.9 46.9 58.8 0.8 1.3 38.9 39.5 44.8 52.2

T=400 P 12.1 14.3 76.3 75.6 52.7 51.6 1.7 1.8 53.4 47.3 63.8 53.8
UN 23.9 25.5 82.2 81.4 60.8 59.6 2.1 2.3 58.2 50.6 64.2 54.2
FF 19.3 21.4 80.4 78.8 58.5 57.4 1.0 1.3 48.6 42.4 63.8 53.4

H: 12
T=100 P 2.4 12.3 51.0 76.0 33.8 51.7 0.1 0.1 32.3 26.8 35.9 42.2

UN 7.0 18.3 59.1 79.4 34.4 51.9 1.2 2.6 62.3 52.0 36.8 41.1
FF 5.3 17.1 54.1 78.5 40.7 56.4 0.2 0.4 32.1 28.3 35.7 40.7

T=400 P 5.9 8.3 76.9 75.1 51.8 50.0 0.0 0.1 36.2 29.8 61.2 42.9
UN 14.4 16.7 81.8 79.7 59.0 54.1 0.5 1.4 69.1 54.6 61.8 43.1
FF 12.0 14.0 80.6 78.8 59.3 56.4 0.1 0.1 38.0 31.2 61.7 42.5

See text for more details.

“family-wise error control” and simply computes the proportion of paths strictly inside the bands. FDR control instead is the proportion of forecast paths whose
Mahalanobis distance attains a value that is lower than the chi-square statistic for probability equal to nominal coverage and degrees of freedom equal to H.

local projection (LP) on these 10,000 samples generates a forecast error variance (which includes estimation uncertainty) for the forecast path of length h, and
 hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Similarly, each estimated model generates N forecast paths whose associated
 error paths are used to generate a forecast error variance for the forecast path and hence the set of bands (marginal emp, Bonferroni emp, and Scheffé emp). 
Hence 10,000 actual paths are then compared with each set of 10,000 bands to determine the appropriate coverage rates. FWE control stands for 

Local Projections
FWE control FDR control

Notes:  10,000 samples generated from VAR(4) for three variables (P, UN, FF) with stable parameters. Model coincides with DGP. Each estimated VAR or

Table 1. MC results, well specified model, nominal coverage 68%, N=40

VAR
FWE control FDR control
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 92.0 94.4 92.0 94.4 92.0 94.4 92.0 94.4 92.0 94.4 92.0 94.4
UN 92.4 94.4 92.4 94.4 92.4 94.4 92.4 94.4 92.4 94.4 92.4 94.4
FF 92.2 94.4 92.2 94.4 92.2 94.4 92.2 94.4 92.2 94.4 92.2 94.4

T=400 P 94.7 94.4 94.7 94.4 94.7 94.4 94.7 94.4 94.7 94.4 94.7 94.4
UN 94.8 94.6 94.8 94.6 94.8 94.6 94.8 94.6 94.8 94.6 94.8 94.6
FF 94.3 94.4 94.3 94.4 94.3 94.4 94.3 94.4 94.3 94.4 94.3 94.4

H: 4
T=100 P 75.9 81.7 90.5 93.8 86.7 90.3 74.5 76.0 92.1 92.0 92.1 92.7

UN 81.9 86.3 92.8 95.4 90.3 93.1 64.0 66.5 85.8 86.7 90.5 90.8
FF 79.2 84.5 91.7 94.5 89.4 92.5 67.3 69.4 87.8 88.9 90.8 91.4

T=400 P 82.8 81.5 95.0 93.9 91.8 90.0 82.1 79.2 96.3 93.9 96.2 93.6
UN 87.6 86.7 96.3 95.5 93.7 93.1 70.8 67.8 90.8 87.0 94.4 90.7
FF 86.5 85.2 96.2 94.9 93.7 92.7 75.3 71.8 93.4 90.3 95.3 92.4

H: 8
T=100 P 65.2 72.0 89.5 92.5 85.5 88.7 37.1 36.1 81.0 75.9 89.5 84.3

UN 73.1 77.8 92.7 93.7 89.5 91.4 42.6 41.4 85.9 79.9 91.9 86.5
FF 69.9 76.1 91.1 93.1 88.3 90.9 34.9 33.7 79.9 74.4 90.4 85.2

T=400 P 74.3 71.2 95.3 92.7 91.5 88.7 45.3 40.0 90.2 80.7 95.9 86.8
UN 81.0 78.1 97.1 94.5 93.7 92.0 51.3 45.1 92.5 83.7 96.7 88.4
FF 79.4 76.1 96.3 93.7 93.2 91.7 41.8 37.2 87.2 77.3 95.8 86.9

H: 12
T=100 P 58.6 66.4 89.3 91.2 85.8 87.7 14.9 14.1 70.5 57.6 89.3 74.4

UN 65.1 69.8 91.9 92.2 87.1 83.9 36.3 37.3 89.6 79.0 92.6 80.4
FF 62.1 69.0 90.1 92.2 87.6 89.3 16.6 15.7 71.5 60.5 90.2 77.4

T=400 P 68.7 64.3 95.4 91.4 91.5 88.0 18.8 17.7 80.9 65.0 96.0 78.0
UN 74.8 71.2 96.6 93.4 93.3 85.3 46.3 40.5 96.4 83.6 97.4 83.2
FF 73.1 68.7 96.5 92.4 92.7 89.9 20.1 18.5 82.5 66.8 96.6 79.7

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 92.2 94.4 92.2 94.4 92.2 94.4 92.2 94.4 92.2 94.4 92.2 94.4
UN 92.5 94.4 92.5 94.4 92.5 94.4 92.5 94.4 92.5 94.4 92.5 94.4
FF 92.3 94.4 92.3 94.4 92.3 94.4 92.3 94.4 92.3 94.4 92.3 94.4

T=400 P 94.7 94.4 94.7 94.4 94.7 94.4 94.7 94.4 94.7 94.4 94.7 94.4
UN 94.8 94.6 94.8 94.6 94.8 94.6 94.8 94.6 94.8 94.6 94.8 94.6
FF 94.4 94.4 94.4 94.4 94.4 94.4 94.4 94.4 94.4 94.4 94.4 94.4

H: 4
T=100 P 71.0 81.5 86.9 93.7 82.9 90.2 75.5 76.1 92.3 92.1 90.4 92.5

UN 77.7 86.2 89.7 95.1 89.0 93.1 63.1 66.7 83.9 86.7 88.4 90.6
FF 74.5 84.7 88.5 94.3 87.4 92.4 66.1 69.6 86.4 88.7 88.8 91.4

T=400 P 81.9 81.3 94.6 93.9 91.6 90.0 82.3 79.0 96.4 94.0 96.1 93.6
UN 87.3 86.7 96.1 95.4 93.7 93.1 70.7 67.8 90.8 87.0 94.3 90.6
FF 85.8 85.0 95.9 94.9 93.6 92.6 75.1 72.1 93.3 90.3 95.1 92.6

H: 8
T=100 P 52.7 71.9 80.0 92.6 77.2 88.5 39.5 36.9 80.8 75.9 83.0 84.0

UN 61.2 77.6 84.5 93.6 83.9 91.2 43.7 41.5 84.6 79.6 85.9 86.3
FF 58.4 76.4 81.9 93.3 82.7 90.8 34.8 34.0 76.4 74.4 83.6 85.0

T=400 P 72.2 71.3 94.4 92.9 91.1 88.6 45.8 40.1 90.6 81.1 95.4 86.7
UN 79.2 78.3 96.5 94.4 93.6 91.9 51.5 45.1 92.7 83.8 96.2 88.4
FF 77.8 76.2 95.6 93.8 93.1 91.7 41.7 36.9 87.1 77.3 95.4 86.8

H: 12
T=100 P 39.7 66.2 73.1 91.6 71.8 87.6 18.5 15.0 68.4 58.3 74.6 73.7

UN 47.2 69.7 78.9 92.0 64.7 81.9 44.7 38.5 89.8 79.1 80.7 79.6
FF 43.0 69.2 74.7 92.1 74.5 88.7 19.5 17.5 69.2 61.4 76.6 75.8

T=400 P 65.5 64.8 93.9 91.7 91.2 88.0 19.5 17.9 80.8 65.4 95.0 77.8
UN 71.6 70.8 95.7 93.4 92.3 85.0 48.7 40.9 96.5 83.8 96.6 83.1
FF 70.2 68.7 95.3 92.6 92.4 89.8 20.0 18.6 82.4 66.6 95.6 79.4

Notes:  See notes to Table 1.

FWE control FDR control

Local Projections
FWE control FDR control

Table 2. MC results, well specified model, nominal coverage 95%, N=40

VAR
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 62.9 67.3 62.9 67.3 62.9 67.3 62.9 67.3 62.9 67.3 62.9 67.3
UN 62.4 66.8 62.4 66.8 62.4 66.8 62.4 66.8 62.4 66.8 62.4 66.8
FF 63.3 68.0 63.3 68.0 63.3 68.0 63.3 68.0 63.3 68.0 63.3 68.0

T=400 P 67.4 68.4 67.4 68.4 67.4 68.4 67.4 68.4 67.4 68.4 67.4 68.4
UN 67.2 67.9 67.2 67.9 67.2 67.9 67.2 67.9 67.2 67.9 67.2 67.9
FF 67.6 68.2 67.6 68.2 67.6 68.2 67.6 68.2 67.6 68.2 67.6 68.2

H: 4
T=100 P 23.6 31.0 67.4 76.1 47.6 56.5 16.2 17.8 63.9 67.2 57.9 64.7

UN 36.9 43.7 75.0 82.0 57.6 63.8 11.8 13.4 51.8 56.4 58.9 64.6
FF 31.4 39.5 72.0 79.9 55.0 62.3 12.8 15.1 56.5 60.5 59.0 65.2

T=400 P 27.9 28.9 75.1 75.5 55.1 55.5 19.9 20.3 72.1 71.4 66.2 65.7
UN 40.8 41.7 80.7 80.5 62.7 63.1 13.6 13.9 58.0 57.4 64.8 64.2
FF 35.1 36.1 78.3 78.5 59.9 60.3 15.6 15.6 62.6 61.4 65.0 64.1

H: 8
T=100 P 10.8 17.7 69.5 79.6 46.3 55.6 1.1 1.1 43.5 43.9 55.1 60.8

UN 21.2 28.6 76.2 83.4 56.0 62.9 1.5 1.5 49.8 49.5 57.2 60.5
FF 17.5 25.3 73.9 82.3 53.8 61.4 0.8 0.8 40.6 41.0 55.4 59.5

T=400 P 13.2 14.1 78.1 77.9 53.6 53.9 1.4 1.6 53.3 50.8 65.9 61.2
UN 25.3 26.5 84.0 83.2 62.4 62.1 1.7 1.9 58.2 54.7 65.9 61.0
FF 20.9 22.2 82.8 82.1 59.9 60.2 1.1 1.1 48.2 45.8 65.5 60.2

H: 12
T=100 P 6.6 11.9 70.4 79.9 46.3 54.8 0.1 0.0 29.0 25.6 53.8 54.4

UN 13.6 19.3 76.2 82.9 53.9 59.1 0.4 0.9 57.4 57.4 56.0 55.0
FF 10.8 17.9 74.1 83.3 52.6 60.5 0.1 0.1 31.5 29.6 54.9 54.8

T=400 P 7.5 8.7 80.0 78.8 53.2 52.6 0.1 0.1 36.4 32.7 65.3 54.8
UN 15.9 16.7 84.6 83.2 61.0 59.5 0.4 0.7 68.2 60.6 65.9 55.0
FF 14.5 15.4 83.8 82.7 61.1 60.8 0.0 0.0 38.2 34.6 65.5 55.0

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 63.1 67.3 63.1 67.3 63.1 67.3 63.1 67.3 63.1 67.3 63.1 67.3
UN 62.6 66.8 62.6 66.8 62.6 66.8 62.6 66.8 62.6 66.8 62.6 66.8
FF 63.5 68.0 63.5 68.0 63.5 68.0 63.5 68.0 63.5 68.0 63.5 68.0

T=400 P 67.5 68.4 67.5 68.4 67.5 68.4 67.5 68.4 67.5 68.4 67.5 68.4
UN 67.3 67.9 67.3 67.9 67.3 67.9 67.3 67.9 67.3 67.9 67.3 67.9
FF 67.6 68.2 67.6 68.2 67.6 68.2 67.6 68.2 67.6 68.2 67.6 68.2

H: 4
T=100 P 20.6 30.8 62.6 76.3 43.4 56.6 16.9 18.1 65.2 67.7 54.7 65.3

UN 33.2 43.4 70.9 82.0 55.5 63.8 11.5 13.7 50.5 56.7 55.8 64.8
FF 27.8 39.6 67.6 79.7 52.6 62.2 12.9 15.1 55.2 60.5 55.5 65.2

T=400 P 27.6 28.9 74.3 75.5 54.2 55.4 20.1 20.1 72.5 71.5 65.7 65.8
UN 40.4 41.8 80.1 80.6 62.4 63.2 13.8 13.8 57.7 57.2 64.6 64.2
FF 34.6 36.0 77.6 78.5 59.4 60.1 15.6 16.0 62.3 61.6 64.5 64.0

H: 8
T=100 P 6.6 18.1 57.0 79.0 38.4 55.3 1.4 1.1 45.1 44.2 45.4 59.9

UN 15.1 28.3 65.2 83.5 50.0 62.7 1.8 1.8 50.6 49.7 47.0 60.0
FF 11.8 25.6 62.8 82.8 47.7 61.6 1.1 1.0 39.7 41.8 45.9 59.7

T=400 P 11.9 14.3 76.0 78.0 52.6 53.8 1.4 1.6 54.0 50.8 64.2 61.1
UN 24.2 26.8 82.5 83.0 61.8 62.3 1.7 1.9 58.1 54.5 64.2 60.9
FF 19.7 22.6 80.9 81.9 59.3 60.3 1.1 1.2 48.2 45.7 63.7 60.4

H: 12
T=100 P 2.3 12.4 51.0 80.2 34.6 55.3 0.2 0.1 30.9 27.9 35.7 53.7

UN 7.4 19.4 59.8 83.0 36.2 58.1 1.2 1.6 63.4 57.5 37.7 54.6
FF 5.4 18.4 55.0 83.0 41.0 60.2 0.2 0.2 32.7 30.6 35.7 54.1

T=400 P 6.3 8.8 77.0 78.9 51.9 52.5 0.1 0.2 37.3 33.1 62.4 54.9
UN 14.4 16.6 82.4 83.2 59.4 59.5 0.4 0.8 69.8 60.7 62.5 55.0
FF 12.6 15.6 81.2 82.7 60.2 60.8 0.1 0.1 38.2 34.3 61.8 54.7

Local Projections
FWE control FDR control

Notes:  See notes to Table 1.

Table 3. MC results, well specified model, nominal coverage 68%, N=80

VAR
FWE control FDR control
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 91.8 94.6 91.8 94.6 91.8 94.6 91.8 94.6 91.8 94.6 91.8 94.6
UN 91.8 94.6 91.8 94.6 91.8 94.6 91.8 94.6 91.8 94.6 91.8 94.6
FF 91.6 94.5 91.6 94.5 91.6 94.5 91.6 94.5 91.6 94.5 91.6 94.5

T=400 P 94.6 94.8 94.6 94.8 94.6 94.8 94.6 94.8 94.6 94.8 94.6 94.8
UN 94.9 95.0 94.9 95.0 94.9 95.0 94.9 95.0 94.9 95.0 94.9 95.0
FF 94.4 94.6 94.4 94.6 94.4 94.6 94.4 94.6 94.4 94.6 94.4 94.6

H: 4
T=100 P 75.9 83.5 90.2 94.6 86.8 91.6 74.5 77.2 92.2 93.3 92.1 94.3

UN 81.3 87.7 92.6 95.9 89.8 93.3 64.1 69.0 86.2 88.7 90.6 92.9
FF 78.1 85.3 91.1 95.4 88.6 93.0 66.0 70.5 88.2 90.3 91.0 93.4

T=400 P 82.8 82.9 94.8 94.6 91.9 91.6 81.5 80.3 96.1 94.8 95.9 94.8
UN 87.5 87.5 96.2 95.9 93.7 93.6 71.0 69.8 90.8 89.6 94.5 93.2
FF 86.2 86.3 95.8 95.9 93.7 93.6 75.6 74.4 93.3 92.1 95.4 94.6

H: 8
T=100 P 65.2 75.5 89.9 94.4 85.6 90.9 36.6 37.2 81.8 80.6 90.0 90.4

UN 72.1 80.2 92.2 95.8 89.5 93.1 42.9 43.5 85.8 84.7 91.8 92.1
FF 70.2 79.6 91.0 95.5 88.4 93.2 34.6 35.2 80.1 79.2 90.2 91.5

T=400 P 74.0 73.6 95.1 94.3 91.2 90.5 45.7 43.4 89.5 86.0 95.7 92.0
UN 80.4 79.7 96.1 95.6 93.4 93.3 50.6 48.3 92.3 87.5 96.3 92.7
FF 79.0 78.5 96.3 95.4 93.5 93.3 42.8 40.2 88.2 83.5 96.0 92.5

H: 12
T=100 P 58.4 69.6 89.0 94.2 84.7 90.6 15.0 13.8 69.3 64.4 88.7 86.6

UN 65.6 74.2 92.1 94.9 87.8 90.2 37.0 39.7 89.2 86.7 92.8 91.0
FF 62.8 73.0 90.5 94.3 88.2 92.2 16.1 15.6 71.8 67.0 90.8 88.0

T=400 P 68.7 67.9 95.5 94.2 91.4 90.7 18.7 17.9 80.8 72.8 95.6 88.7
UN 74.7 73.1 96.4 95.2 92.9 90.5 45.5 42.5 96.2 90.5 97.5 92.1
FF 72.9 72.2 96.0 94.6 92.9 92.4 19.6 18.7 81.9 73.2 96.3 89.9

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 92.0 94.6 92.0 94.6 92.0 94.6 92.0 94.6 92.0 94.6 92.0 94.6
UN 92.0 94.6 92.0 94.6 92.0 94.6 92.0 94.6 92.0 94.6 92.0 94.6
FF 91.7 94.5 91.7 94.5 91.7 94.5 91.7 94.5 91.7 94.5 91.7 94.5

T=400 P 94.7 94.8 94.7 94.8 94.7 94.8 94.7 94.8 94.7 94.8 94.7 94.8
UN 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0
FF 94.4 94.6 94.4 94.6 94.4 94.6 94.4 94.6 94.4 94.6 94.4 94.6

H: 4
T=100 P 71.6 83.2 87.0 94.5 82.6 91.5 75.6 77.5 92.1 93.3 90.2 94.2

UN 77.7 87.7 89.8 95.8 88.8 93.3 62.2 69.2 84.4 88.9 88.5 92.7
FF 73.7 85.5 88.1 95.3 86.4 93.0 65.1 70.8 86.7 90.3 88.8 93.3

T=400 P 81.8 82.8 94.7 94.5 91.5 91.6 82.0 80.3 96.0 94.8 95.6 94.7
UN 87.2 87.5 95.9 96.0 93.6 93.6 70.9 70.3 90.5 89.7 94.3 93.2
FF 85.8 86.3 95.6 95.8 93.5 93.6 75.5 74.3 93.3 92.1 95.2 94.5

H: 8
T=100 P 52.5 75.0 80.8 94.4 77.7 90.8 39.3 37.9 80.8 80.7 83.5 90.3

UN 60.3 80.4 84.0 95.7 83.3 93.1 43.9 43.7 84.2 84.6 85.6 92.2
FF 58.3 79.5 82.3 95.5 83.2 93.2 33.6 36.0 76.4 79.4 84.1 91.3

T=400 P 71.7 73.6 94.3 94.3 90.8 90.6 46.4 43.2 89.7 85.9 95.2 92.0
UN 78.9 79.9 95.6 95.6 93.2 93.2 50.8 48.2 92.0 87.6 95.9 92.6
FF 77.2 78.6 95.5 95.4 93.4 93.2 42.5 40.3 88.0 83.6 95.6 92.5

H: 12
T=100 P 39.6 69.6 72.9 94.3 71.1 90.3 18.2 15.1 68.3 65.3 74.7 85.8

UN 48.6 74.1 79.4 94.9 65.2 88.8 45.8 41.0 89.9 86.3 81.0 90.7
FF 44.2 73.5 75.4 94.6 76.3 92.4 18.8 17.2 68.8 67.2 76.7 87.7

T=400 P 65.1 67.6 93.9 94.0 90.7 90.4 19.1 17.9 80.8 73.2 94.9 88.6
UN 71.8 73.3 95.6 95.4 91.8 90.5 48.1 42.5 96.5 90.5 96.8 92.1
FF 69.8 72.1 94.8 94.6 92.7 92.3 20.0 18.7 81.6 73.7 95.6 89.8

Local Projections
FWE control FDR control

Notes:  See notes to Table 1.

Table 4. MC results, well specified model, nominal coverage 95%, N=80

VAR
FWE control FDR control
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 62.4 67.7 62.4 67.7 62.4 67.7 62.4 67.7 62.4 67.7 62.4 67.7
UN 63.5 68.5 63.5 68.5 63.5 68.5 63.5 68.5 63.5 68.5 63.5 68.5
FF 61.9 67.0 61.9 67.0 61.9 67.0 61.9 67.0 61.9 67.0 61.9 67.0

T=400 P 66.5 67.3 66.5 67.3 66.5 67.3 66.5 67.3 66.5 67.3 66.5 67.3
UN 66.9 67.7 66.9 67.7 66.9 67.7 66.9 67.7 66.9 67.7 66.9 67.7
FF 65.9 66.9 65.9 66.9 65.9 66.9 65.9 66.9 65.9 66.9 65.9 66.9

H: 4
T=100 P 23.3 30.8 66.5 76.6 48.1 57.5 15.9 17.2 63.6 67.9 57.8 67.0

UN 35.6 43.7 74.4 82.2 56.9 63.8 11.1 13.0 51.7 57.0 58.9 66.7
FF 30.1 38.0 71.0 80.3 53.7 61.5 12.4 14.4 55.1 61.1 57.8 66.3

T=400 P 27.6 28.8 74.4 75.7 55.1 56.0 19.7 19.9 71.5 71.7 65.3 66.2
UN 41.7 43.0 82.1 83.1 63.2 64.4 14.6 14.6 60.3 60.7 67.0 67.7
FF 35.7 37.3 79.0 80.1 60.8 61.8 16.0 16.4 63.8 64.6 66.6 67.5

H: 8
T=100 P 11.1 18.3 70.5 81.2 47.3 57.5 1.2 1.2 44.3 45.7 56.0 65.3

UN 21.5 28.5 75.7 84.8 55.7 63.3 1.3 1.5 49.3 52.3 56.5 65.2
FF 17.8 25.5 74.1 84.9 53.5 61.9 1.0 1.0 41.1 43.9 56.4 65.5

T=400 P 13.4 14.3 79.0 80.1 53.3 55.0 1.4 1.5 53.7 52.4 65.9 65.4
UN 25.2 26.6 84.2 85.1 62.0 62.7 1.8 1.9 58.0 56.7 66.0 64.8
FF 21.6 23.3 82.6 83.6 60.5 61.5 1.1 1.1 49.8 48.9 66.3 65.6

H: 12
T=100 P 5.9 11.7 71.0 82.9 45.6 56.5 0.0 0.0 28.4 27.3 53.1 62.3

UN 12.7 18.7 75.8 85.3 53.4 61.8 0.3 0.6 56.5 59.6 55.9 61.9
FF 11.0 18.9 74.2 85.5 52.2 61.6 0.1 0.0 31.1 30.3 54.8 62.6

T=400 P 7.5 8.6 80.6 81.8 53.1 54.4 0.1 0.1 36.8 35.8 65.6 63.1
UN 15.9 16.9 84.4 85.0 61.1 61.7 0.4 0.5 68.6 66.0 66.5 63.6
FF 13.5 15.2 84.2 85.0 59.9 60.9 0.0 0.0 37.8 37.0 65.5 62.9

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 62.7 67.7 62.7 67.7 62.7 67.7 62.7 67.7 62.7 67.7 62.7 67.7
UN 63.8 68.5 63.8 68.5 63.8 68.5 63.8 68.5 63.8 68.5 63.8 68.5
FF 62.3 67.0 62.3 67.0 62.3 67.0 62.3 67.0 62.3 67.0 62.3 67.0

T=400 P 66.5 67.3 66.5 67.3 66.5 67.3 66.5 67.3 66.5 67.3 66.5 67.3
UN 66.9 67.7 66.9 67.7 66.9 67.7 66.9 67.7 66.9 67.7 66.9 67.7
FF 66.0 66.9 66.0 66.9 66.0 66.9 66.0 66.9 66.0 66.9 66.0 66.9

H: 4
T=100 P 19.8 30.7 61.8 76.6 43.6 57.3 16.9 17.5 64.1 68.2 54.1 66.7

UN 32.5 43.6 70.4 82.2 55.0 63.6 10.8 13.1 49.9 57.8 55.1 66.7
FF 26.7 38.2 66.3 80.2 51.2 61.6 12.9 14.6 54.2 61.0 54.4 66.2

T=400 P 26.9 28.9 73.8 76.0 54.4 56.1 19.7 20.0 71.8 71.8 64.9 66.3
UN 41.3 42.9 81.4 82.8 63.1 64.3 14.3 14.7 59.6 60.8 66.6 67.9
FF 35.2 37.4 78.5 80.2 60.4 61.6 15.8 16.4 63.5 64.2 65.9 67.4

H: 8
T=100 P 6.6 18.4 57.9 81.1 38.2 57.0 1.5 1.1 46.3 46.5 46.2 64.9

UN 15.6 29.5 64.5 84.8 49.0 62.5 1.8 1.6 50.1 52.6 46.7 64.9
FF 12.1 25.9 62.6 85.1 47.6 62.2 1.1 1.1 40.3 44.7 46.9 65.4

T=400 P 11.7 14.3 76.8 80.0 52.4 54.7 1.5 1.4 54.0 52.5 64.0 65.0
UN 24.1 26.4 82.8 85.2 61.7 63.0 1.9 1.8 58.7 57.1 64.4 65.2
FF 20.5 23.4 81.2 83.5 59.9 61.5 1.2 1.2 50.0 49.4 65.2 65.8

H: 12
T=100 P 2.3 12.6 50.4 82.6 33.5 56.0 0.2 0.1 31.4 28.9 35.3 61.8

UN 7.1 18.9 58.1 85.1 34.8 61.1 1.3 1.0 62.5 60.1 36.4 62.0
FF 5.1 19.1 56.3 85.5 40.6 61.0 0.1 0.1 33.1 32.0 36.4 62.4

T=400 P 6.4 8.5 77.8 81.7 52.1 54.5 0.1 0.1 37.6 35.8 62.5 63.0
UN 14.4 17.1 82.1 84.7 59.2 61.6 0.5 0.5 70.5 65.7 63.1 63.6
FF 12.0 15.1 81.9 85.1 59.2 60.9 0.0 0.1 38.6 36.9 62.4 62.9

Local Projections
FWE control FDR control

Notes:  See notes to Table 1.

Table 5. MC results, well specified model, nominal coverage 68%, N=200

VAR
FWE control FDR control
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 92.0 95.1 92.0 95.1 92.0 95.1 92.0 95.1 92.0 95.1 92.0 95.1
UN 91.9 94.8 91.9 94.8 91.9 94.8 91.9 94.8 91.9 94.8 91.9 94.8
FF 91.8 94.7 91.8 94.7 91.8 94.7 91.8 94.7 91.8 94.7 91.8 94.7

T=400 P 94.2 94.5 94.2 94.5 94.2 94.5 94.2 94.5 94.2 94.5 94.2 94.5
UN 94.7 95.2 94.7 95.2 94.7 95.2 94.7 95.2 94.7 95.2 94.7 95.2
FF 94.6 94.9 94.6 94.9 94.6 94.9 94.6 94.9 94.6 94.9 94.6 94.9

H: 4
T=100 P 76.3 84.5 90.5 95.8 86.7 92.9 74.6 78.9 92.3 94.6 92.4 95.8

UN 81.7 88.6 92.8 96.5 90.6 94.3 64.0 69.8 85.8 90.1 90.2 93.9
FF 78.9 86.7 91.2 96.0 88.9 93.6 67.1 73.1 87.8 91.4 90.6 94.4

T=400 P 83.0 84.1 94.9 95.4 91.7 92.6 81.9 82.1 96.2 95.9 96.0 95.9
UN 87.2 87.9 96.0 96.2 93.1 93.5 70.9 71.4 90.6 90.7 94.2 94.3
FF 85.5 86.4 95.4 95.9 93.3 93.6 74.7 75.3 93.0 93.1 95.3 95.1

H: 8
T=100 P 66.0 78.2 90.3 96.3 86.6 93.0 37.4 39.0 81.7 83.7 90.0 93.8

UN 73.0 82.2 92.1 96.9 89.3 93.8 43.1 45.5 85.9 88.4 92.0 95.2
FF 69.4 81.4 90.8 96.5 88.4 93.7 34.4 36.6 79.5 82.8 90.4 94.3

T=400 P 74.3 75.5 95.4 95.7 91.9 92.2 46.4 45.5 90.0 89.0 95.4 94.9
UN 79.9 81.2 96.4 96.6 93.5 93.9 50.1 48.9 91.7 90.5 96.2 95.5
FF 78.9 80.0 96.2 96.5 93.5 94.0 42.0 41.6 87.6 86.3 95.8 95.0

H: 12
T=100 P 59.5 72.9 89.1 96.0 85.5 92.6 15.1 13.3 70.5 69.9 89.3 92.7

UN 65.8 76.8 91.9 96.4 88.0 93.2 37.6 40.3 89.2 91.5 92.8 95.8
FF 63.1 76.4 90.6 96.7 88.3 93.9 15.6 15.2 72.3 72.7 90.8 94.2

T=400 P 69.0 70.4 95.9 95.7 91.9 92.4 19.1 18.6 81.2 78.6 95.5 93.9
UN 74.7 75.5 96.5 96.6 93.3 93.4 45.7 44.9 96.4 94.8 97.5 96.5
FF 72.8 74.5 96.2 96.7 92.8 93.5 19.6 19.0 81.3 79.2 96.1 94.7

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 92.2 95.1 92.2 95.1 92.2 95.1 92.2 95.1 92.2 95.1 92.2 95.1
UN 92.1 94.8 92.1 94.8 92.1 94.8 92.1 94.8 92.1 94.8 92.1 94.8
FF 92.0 94.7 92.0 94.7 92.0 94.7 92.0 94.7 92.0 94.7 92.0 94.7

T=400 P 94.3 94.5 94.3 94.5 94.3 94.5 94.3 94.5 94.3 94.5 94.3 94.5
UN 94.8 95.2 94.8 95.2 94.8 95.2 94.8 95.2 94.8 95.2 94.8 95.2
FF 94.7 94.9 94.7 94.9 94.7 94.9 94.7 94.9 94.7 94.9 94.7 94.9

H: 4
T=100 P 71.8 84.9 87.4 96.0 82.8 93.0 75.0 79.0 92.1 94.8 90.2 95.9

UN 77.5 88.6 89.6 96.6 88.9 94.2 62.2 69.8 83.9 89.9 88.2 94.0
FF 74.6 86.8 88.1 96.1 86.9 93.6 65.8 73.0 86.6 91.6 88.7 94.4

T=400 P 82.3 84.1 94.5 95.3 91.5 92.6 82.2 82.3 96.4 96.0 96.1 96.1
UN 86.7 87.8 95.6 96.2 92.9 93.5 70.8 71.5 90.6 90.7 93.9 94.4
FF 84.9 86.5 95.3 96.0 93.2 93.7 75.0 75.5 93.1 93.2 95.1 95.3

H: 8
T=100 P 53.0 78.0 80.7 96.1 78.0 92.8 39.1 39.4 81.2 84.2 83.5 93.4

UN 61.2 82.6 84.5 96.9 83.7 94.0 44.1 45.2 84.4 88.6 85.9 95.2
FF 57.2 81.2 81.7 96.4 83.0 93.7 33.4 37.1 76.5 82.6 83.9 94.2

T=400 P 72.0 75.5 94.4 95.6 91.4 92.1 46.9 46.3 90.2 89.1 95.0 94.9
UN 78.4 81.1 95.8 96.6 93.4 93.9 50.3 48.6 91.6 90.7 95.7 95.6
FF 76.9 79.9 95.6 96.4 93.4 93.9 42.1 41.8 87.4 86.4 95.4 95.0

H: 12
T=100 P 39.5 72.6 73.4 95.6 71.9 92.4 18.9 14.9 69.0 70.9 75.0 92.4

UN 48.6 76.9 79.5 96.4 65.4 92.3 46.4 40.9 89.0 90.5 81.1 95.6
FF 44.0 76.4 75.5 97.0 76.2 94.0 18.7 15.9 69.6 73.1 77.0 93.9

T=400 P 65.4 70.3 94.4 95.7 91.3 92.5 19.6 18.7 81.5 78.8 94.8 93.8
UN 71.9 75.5 95.5 96.7 92.4 93.4 47.8 44.7 96.7 94.7 96.9 96.4
FF 69.5 74.1 95.1 96.8 92.5 93.4 20.4 19.0 81.1 79.1 95.0 94.7

Local Projections
FWE control FDR control

Notes:  See notes to Table 1.

Table 6. MC results, well specified model, nominal coverage 95%, N=200

VAR
FWE control FDR control
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0 92.5 95.0
UN 93.3 94.9 93.3 94.9 93.3 94.9 93.3 94.9 93.3 94.9 93.3 94.9
FF 92.8 94.6 92.8 94.6 92.8 94.6 92.8 94.6 92.8 94.6 92.8 94.6

T=400 P 94.8 95.1 94.8 95.1 94.8 95.1 94.8 95.1 94.8 95.1 94.8 95.1
UN 94.9 94.5 94.9 94.5 94.9 94.5 94.9 94.5 94.9 94.5 94.9 94.5
FF 94.7 94.5 94.7 94.5 94.7 94.5 94.7 94.5 94.7 94.5 94.7 94.5

H: 4
T=100 P 79.1 84.7 91.6 95.3 88.9 92.7 70.4 72.8 89.8 91.7 91.6 93.7

UN 74.7 87.6 87.9 95.8 88.5 93.2 76.1 67.2 90.7 87.4 93.1 92.3
FF 78.7 86.4 91.1 95.4 90.5 93.1 69.2 69.6 88.8 89.6 92.1 93.1

T=400 P 87.0 83.1 96.4 94.5 93.1 91.7 74.4 75.8 92.6 93.0 94.7 94.1
UN 75.0 87.0 88.1 95.7 89.7 92.9 77.9 67.7 92.0 88.8 94.0 93.0
FF 82.5 85.7 93.8 95.2 92.4 93.0 73.1 70.9 91.6 90.2 94.6 93.6

H: 8
T=100 P 69.5 77.5 89.5 94.4 86.7 91.6 41.9 30.4 82.7 74.0 90.8 88.3

UN 64.0 81.3 87.0 95.9 87.7 92.9 57.0 43.8 88.6 84.6 94.6 92.4
FF 67.7 80.3 89.6 95.9 89.4 93.2 34.1 33.5 77.6 77.3 91.1 91.0

T=400 P 81.4 76.1 96.9 94.4 93.7 91.9 45.1 36.6 87.6 80.9 95.1 90.6
UN 62.8 80.9 87.0 95.9 89.3 93.0 60.0 47.2 91.1 87.7 95.6 93.5
FF 73.6 79.9 94.1 95.8 92.5 93.1 38.7 36.9 83.4 81.5 95.1 92.1

H: 12
T=100 P 63.6 72.5 89.1 94.1 86.2 90.8 22.7 9.6 77.4 55.2 90.7 83.7

UN 57.8 74.2 87.2 95.2 87.1 91.3 39.6 37.0 85.6 85.0 94.7 91.5
FF 60.4 74.4 88.3 94.9 88.7 92.4 14.2 13.0 66.0 62.8 90.7 88.0

T=400 P 75.7 69.8 96.5 94.1 93.6 91.5 22.5 12.3 82.7 63.1 95.8 86.9
UN 55.6 74.0 87.5 95.6 88.9 91.9 42.4 39.6 89.3 87.7 96.0 91.5
FF 66.9 73.5 93.8 95.2 92.3 92.5 14.8 15.2 71.4 69.1 94.6 89.1

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 92.6 95.0 92.6 95.0 92.6 95.0 92.6 95.0 92.6 95.0 92.6 95.0
UN 93.5 94.9 93.5 94.9 93.5 94.9 93.5 94.9 93.5 94.9 93.5 94.9
FF 93.0 94.6 93.0 94.6 93.0 94.6 93.0 94.6 93.0 94.6 93.0 94.6

T=400 P 94.9 95.1 94.9 95.1 94.9 95.1 94.9 95.1 94.9 95.1 94.9 95.1
UN 94.9 94.5 94.9 94.5 94.9 94.5 94.9 94.5 94.9 94.5 94.9 94.5
FF 94.7 94.5 94.7 94.5 94.7 94.5 94.7 94.5 94.7 94.5 94.7 94.5

H: 4
T=100 P 75.9 84.7 90.1 95.2 87.0 92.8 75.0 74.2 92.3 92.3 92.3 94.0

UN 82.6 87.2 93.1 95.7 91.4 93.1 64.3 66.0 85.4 87.2 90.6 91.9
FF 80.3 86.5 91.8 95.3 90.8 93.2 68.7 69.7 88.8 89.4 91.8 92.7

T=400 P 82.9 83.4 94.5 94.7 91.8 91.9 78.4 76.0 94.6 93.2 95.4 94.2
UN 87.9 87.0 96.4 95.7 93.6 93.0 68.6 67.1 89.5 87.6 94.2 92.7
FF 86.0 85.5 95.7 95.2 93.4 92.8 72.8 70.8 91.8 90.0 95.1 93.4

H: 8
T=100 P 60.8 77.0 85.8 94.8 83.6 91.9 37.8 32.1 80.7 76.3 87.1 89.2

UN 68.9 81.0 89.5 95.5 88.1 92.5 49.0 45.9 87.5 85.6 90.6 92.1
FF 66.8 79.6 87.7 95.6 88.2 93.2 36.1 33.3 79.9 76.8 89.2 90.7

T=400 P 74.8 75.2 95.1 95.1 92.7 92.3 40.1 36.6 86.4 81.1 95.2 91.1
UN 81.1 80.8 96.4 95.8 93.9 92.8 52.0 47.3 92.5 87.9 96.6 93.1
FF 79.5 79.4 96.2 95.5 93.7 93.0 39.5 36.4 85.9 81.0 95.6 92.0

H: 12
T=100 P 48.3 71.0 80.8 94.3 80.6 91.4 16.6 11.1 68.5 58.7 82.2 84.7

UN 57.6 73.7 86.5 94.8 75.7 88.7 51.6 44.0 92.5 88.4 89.0 91.2
FF 54.3 73.6 83.5 94.6 84.6 92.3 20.4 15.1 73.6 64.7 85.9 88.2

T=400 P 68.6 69.4 94.8 94.6 92.4 91.8 14.5 12.5 75.1 64.5 94.9 87.7
UN 74.0 73.8 96.2 95.3 92.8 90.1 50.8 43.9 96.8 89.6 97.2 91.5
FF 72.2 72.0 95.9 94.8 93.4 92.3 18.4 16.2 80.4 69.8 95.9 89.1

See text for more details.

“family-wise error control” and simply computes the proportion of paths strictly inside the bands. FDR control instead is the proportion of forecast paths whose
Mahalanobis distance attains a value that is lower than the chi-square statistic for probability equal to nominal coverage and degrees of freedom equal to H.

local projection (LP) on these 10,000 samples generates a forecast error variance (which includes estimation uncertainty) for the forecast path of length h, and
 hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Similarly, each estimated model generates q forecast paths whose associated
 error paths are used to generate a forecast error variance for the forecast path and hence the set of bands (marginal emp, Bonferroni emp, and Scheffé emp). 
Hence 10,000 actual paths are then compared with each set of 10,000 bands to determine the appropriate coverage rates. FWE control stands for 

Local Projections
FWE control FDR control

Notes:  10,000 samples generated from VAR(4) for three variables (P, UN, FF) with stable parameters. Forecasting model has one lag only. Each estimated VAR or

Table 7. MC results, model with wrong dynamics, nominal coverage 95%, N=80

VAR
FWE control FDR control
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 93.4 94.8 93.4 94.8 93.4 94.8 93.4 94.8 93.4 94.8 93.4 94.8
FF 92.7 94.6 92.7 94.6 92.7 94.6 92.7 94.6 92.7 94.6 92.7 94.6

T=400 P 94.6 94.7 94.6 94.7 94.6 94.7 94.6 94.7 94.6 94.7 94.6 94.7
FF 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1

H: 4
T=100 P 80.0 83.9 92.7 95.0 89.3 92.1 76.2 78.3 92.5 93.8 92.9 94.5

FF 82.5 86.9 93.5 95.6 91.5 93.7 68.1 69.7 88.3 89.5 91.5 93.1
T=400 P 83.7 83.5 95.2 94.8 92.2 92.0 81.8 80.3 95.7 95.0 95.9 95.1

FF 86.8 86.4 96.2 96.0 93.9 93.7 73.4 71.9 92.8 90.9 95.4 94.3
H: 8

T=100 P 70.1 75.9 92.4 94.7 88.8 91.5 40.0 38.5 84.2 81.4 91.6 91.2
FF 72.5 79.1 92.2 95.2 89.7 92.8 33.2 32.8 78.3 76.9 90.7 90.6

T=400 P 76.5 75.5 95.9 94.6 92.3 91.6 46.1 42.8 89.8 84.8 95.7 92.0
FF 79.7 79.2 96.3 95.5 93.5 93.2 38.8 36.0 85.4 80.4 95.7 92.2

H: 12
T=100 P 63.5 69.8 91.7 94.2 88.0 91.3 16.1 14.2 72.6 65.5 90.8 87.0

FF 66.3 74.5 91.7 94.9 89.9 93.0 14.7 13.4 69.4 64.3 91.0 88.3
T=400 P 70.1 68.3 95.8 94.1 92.2 90.6 19.4 17.0 81.4 71.7 96.2 88.5

FF 75.4 73.2 96.5 95.1 93.0 92.4 16.8 16.9 77.9 70.8 96.4 89.7

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 93.6 94.8 93.6 94.8 93.6 94.8 93.6 94.8 93.6 94.8 93.6 94.8
FF 92.9 94.6 92.9 94.6 92.9 94.6 92.9 94.6 92.9 94.6 92.9 94.6

T=400 P 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7
FF 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1

H: 4
T=100 P 76.4 83.7 90.9 94.9 87.4 92.0 76.9 79.0 92.6 93.5 91.8 94.4

FF 79.5 86.8 91.4 95.7 90.7 93.8 66.9 70.1 86.8 89.7 90.2 93.0
T=400 P 83.2 83.5 94.9 94.9 92.0 92.0 82.0 80.4 95.9 95.0 95.9 95.3

FF 86.4 86.5 96.2 96.2 93.9 93.7 73.0 71.9 92.4 91.1 95.3 94.2
H: 8

T=100 P 61.2 75.5 87.2 94.7 84.6 91.5 39.4 38.7 82.3 81.4 87.6 91.2
FF 63.9 79.2 86.2 94.8 86.8 92.6 32.0 32.9 75.6 76.5 86.1 90.2

T=400 P 74.7 75.6 95.3 94.7 92.0 91.7 45.1 42.9 89.0 84.8 95.0 92.0
FF 78.7 79.1 95.9 95.4 93.4 93.2 38.4 36.4 85.1 80.3 95.1 92.2

H: 12
T=100 P 49.0 69.2 81.9 93.9 81.3 90.7 16.5 14.9 68.7 65.6 81.0 86.6

FF 51.7 74.5 81.8 94.9 82.8 92.8 17.9 13.6 69.9 64.1 81.8 87.9
T=400 P 67.8 68.3 94.8 94.0 91.9 90.7 18.5 17.2 79.3 71.5 94.9 88.6

FF 72.3 72.9 95.5 95.2 92.8 92.3 18.4 16.8 80.3 71.4 95.8 89.7

See text for more details.

“family-wise error control” and simply computes the proportion of paths strictly inside the bands. FDR control instead is the proportion of forecast paths whose
Mahalanobis distance attains a value that is lower than the chi-square statistic for probability equal to nominal coverage and degrees of freedom equal to H.

local projection (LP) on these 10,000 samples generates a forecast error variance (which includes estimation uncertainty) for the forecast path of length h, and
 hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Similarly, each estimated model generates q forecast paths whose associated
 error paths are used to generate a forecast error variance for the forecast path and hence the set of bands (marginal emp, Bonferroni emp, and Scheffé emp). 
Hence 10,000 actual paths are then compared with each set of 10,000 bands to determine the appropriate coverage rates. FWE control stands for 

Local Projections
FWE control FDR control

Notes:  10,000 samples generated from VAR(4) for three variables (P, UN, FF) with stable parameters. Forecasting model omits UN. Each estimated VAR or

Table 8. MC results, model with omitted variables, nominal coverage 95%, N=80

VAR
FWE control FDR control
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 91.3 94.6 91.3 94.6 91.3 94.6 91.3 94.6 91.3 94.6 91.3 94.6
UN 90.1 93.9 90.1 93.9 90.1 93.9 90.1 93.9 90.1 93.9 90.1 93.9
FF 91.1 94.4 91.1 94.4 91.1 94.4 91.1 94.4 91.1 94.4 91.1 94.4

T=400 P 94.0 94.7 94.0 94.7 94.0 94.7 94.0 94.7 94.0 94.7 94.0 94.7
UN 94.0 94.6 94.0 94.6 94.0 94.6 94.0 94.6 94.0 94.6 94.0 94.6
FF 94.1 94.5 94.1 94.5 94.1 94.5 94.1 94.5 94.1 94.5 94.1 94.5

H: 4
T=100 P 73.7 81.3 89.7 94.0 84.4 88.9 73.9 82.8 91.4 95.8 89.8 94.7

UN 77.8 87.5 89.5 95.8 87.5 93.2 57.0 62.4 80.4 85.4 86.3 90.4
FF 76.1 87.9 88.4 96.0 87.8 93.6 66.3 67.4 86.4 87.3 90.2 91.8

T=400 P 83.6 80.8 95.5 94.6 91.1 87.4 83.1 89.7 96.3 98.1 95.1 96.0
UN 86.2 88.0 95.6 96.0 93.1 93.7 67.3 66.5 88.3 87.5 92.9 92.4
FF 81.8 88.1 92.8 96.2 92.3 94.2 74.1 69.5 91.9 89.3 94.6 93.0

H: 8
T=100 P 59.8 71.4 87.7 94.0 82.7 87.9 35.0 44.3 80.0 85.4 86.0 89.9

UN 68.8 82.5 88.4 95.9 87.2 93.1 28.1 26.1 72.6 70.3 87.4 88.6
FF 63.0 81.5 84.4 95.5 85.8 93.0 34.0 28.9 76.4 72.2 89.0 89.1

T=400 P 75.7 70.4 96.1 94.5 91.0 86.7 47.3 60.4 89.2 93.5 93.4 92.7
UN 77.4 81.9 94.3 95.8 92.4 93.5 34.6 29.6 81.6 73.7 93.3 90.1
FF 72.0 81.8 91.6 95.9 91.8 93.5 41.2 30.9 84.5 75.8 94.9 91.0

H: 12
T=100 P 53.1 65.3 87.2 94.3 83.0 87.7 15.7 21.5 68.7 72.2 84.2 85.6

UN 62.3 77.6 87.5 94.8 86.2 92.6 18.5 14.7 73.9 64.1 88.5 87.0
FF 54.3 76.8 82.6 95.1 84.4 92.7 17.7 11.6 70.7 60.4 89.3 86.4

T=400 P 69.8 61.8 96.7 94.1 90.9 85.3 19.7 31.4 79.9 84.5 92.8 88.7
UN 71.1 77.6 93.8 95.4 92.9 93.3 21.0 15.7 82.1 68.5 94.9 89.0
FF 63.7 77.0 90.8 95.6 91.3 93.4 20.7 13.5 79.4 65.1 95.6 88.8

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 91.5 94.6 91.5 94.6 91.5 94.6 91.5 94.6 91.5 94.6 91.5 94.6
UN 90.2 93.9 90.2 93.9 90.2 93.9 90.2 93.9 90.2 93.9 90.2 93.9
FF 91.3 94.4 91.3 94.4 91.3 94.4 91.3 94.4 91.3 94.4 91.3 94.4

T=400 P 94.0 94.7 94.0 94.7 94.0 94.7 94.0 94.7 94.0 94.7 94.0 94.7
UN 94.1 94.6 94.1 94.6 94.1 94.6 94.1 94.6 94.1 94.6 94.1 94.6
FF 94.1 94.5 94.1 94.5 94.1 94.5 94.1 94.5 94.1 94.5 94.1 94.5

H: 4
T=100 P 68.7 81.5 85.9 94.0 78.7 88.8 76.0 82.6 92.6 95.7 88.3 94.8

UN 73.3 87.6 85.7 96.0 85.2 93.2 54.9 63.3 77.5 85.5 83.3 90.5
FF 71.2 87.9 84.3 96.0 85.4 93.7 63.6 67.1 83.9 87.5 87.0 91.9

T=400 P 83.2 80.8 95.2 94.5 90.8 87.7 83.3 89.4 96.5 98.1 95.2 96.0
UN 85.3 88.1 95.1 96.0 92.9 93.8 66.7 66.2 88.1 87.4 92.8 92.3
FF 81.0 88.2 92.5 96.1 92.0 94.0 73.6 69.3 91.5 89.2 94.5 93.2

H: 8
T=100 P 45.3 71.4 75.9 94.2 70.2 87.9 38.5 44.5 80.5 84.9 77.5 89.5

UN 56.5 82.2 77.9 95.8 80.8 92.9 25.4 26.2 66.8 70.1 78.0 87.9
FF 50.2 81.0 72.8 95.1 78.1 92.8 29.8 29.3 69.0 72.4 78.6 88.5

T=400 P 73.8 70.8 95.5 94.7 90.4 86.9 47.7 60.0 89.5 93.4 92.9 92.7
UN 75.5 82.3 93.3 95.9 92.0 93.6 34.5 29.2 81.2 73.5 92.4 90.2
FF 69.3 82.0 90.0 96.0 91.1 93.4 39.7 30.9 83.4 76.3 94.0 90.9

H: 12
T=100 P 31.9 66.3 67.5 94.2 62.7 87.6 19.6 22.2 68.3 71.8 67.3 84.4

UN 43.1 77.6 71.4 94.9 71.1 92.4 19.8 16.6 67.3 63.5 71.7 85.7
FF 36.0 76.6 64.3 95.1 69.0 92.4 17.2 13.1 62.2 61.2 71.9 85.8

T=400 P 67.0 62.4 95.5 94.0 90.3 85.7 19.8 31.2 80.5 84.1 92.1 88.8
UN 68.0 77.6 92.2 95.5 92.2 93.3 20.5 15.4 81.3 67.7 93.7 88.8
FF 59.5 77.0 88.5 95.6 90.5 93.4 20.4 13.5 78.8 64.8 94.2 88.6

See text for more details.

“family-wise error control” and simply computes the proportion of paths strictly inside the bands. FDR control instead is the proportion of forecast paths whose
Mahalanobis distance attains a value that is lower than the chi-square statistic for probability equal to nominal coverage and degrees of freedom equal to H.

VAR or local projection (LP) on these 10,000 samples generates a forecast error variance (which includes estimation uncertainty) for the forecast path of length h, and
 hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Similarly, each estimated model generates q forecast paths whose associated
 error paths are used to generate a forecast error variance for the forecast path and hence the set of bands (marginal emp, Bonferroni emp, and Scheffé emp). 
Hence 10,000 actual paths are then compared with each set of 10,000 bands to determine the appropriate coverage rates. FWE control stands for 

Local Projections
FWE control FDR control

Notes:  10,000 samples generated from VAR(4) for three variables (P, UN, FF) with break in parameters. Forecasting model has stable parameters. Each estimated

Table 9. MC results, break in DGP coefficients, nominal coverage 95%, N=80

VAR
FWE control FDR control
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 98.5 94.9 98.5 94.9 98.5 94.9 98.5 94.9 98.5 94.9 98.5 94.9
UN 97.8 94.4 97.8 94.4 97.8 94.4 97.8 94.4 97.8 94.4 97.8 94.4
FF 99.8 94.9 99.8 94.9 99.8 94.9 99.8 94.9 99.8 94.9 99.8 94.9

T=400 P 99.7 94.9 99.7 94.9 99.7 94.9 99.7 94.9 99.7 94.9 99.7 94.9
UN 99.3 94.9 99.3 94.9 99.3 94.9 99.3 94.9 99.3 94.9 99.3 94.9
FF 100.0 94.9 100.0 94.9 100.0 94.9 100.0 94.9 100.0 94.9 100.0 94.9

H: 4
T=100 P 94.9 84.4 98.9 95.3 97.9 92.6 96.9 77.0 99.6 93.3 99.5 94.5

UN 93.4 87.6 98.4 96.0 97.3 93.5 89.8 67.9 98.4 88.1 99.1 92.3
FF 98.0 88.0 99.6 96.1 99.7 93.9 99.2 69.7 99.8 89.9 99.9 92.7

T=400 P 98.6 82.5 99.9 94.7 99.5 91.1 99.4 79.5 100.0 94.7 100.0 94.7
UN 97.8 87.3 99.8 95.8 99.2 93.7 96.1 70.4 99.7 89.5 99.9 93.1
FF 99.9 85.8 100.0 95.6 100.0 93.1 100.0 72.5 100.0 91.3 100.0 93.9

H: 8
T=100 P 90.1 76.9 98.5 94.8 97.4 91.6 88.6 36.0 99.4 79.2 99.7 90.0

UN 89.7 80.5 98.4 95.6 97.3 92.8 85.9 41.4 99.3 84.0 99.7 92.1
FF 95.2 81.8 99.1 95.9 99.5 93.0 98.0 32.7 99.8 75.8 99.9 89.7

T=400 P 97.4 74.2 100.0 94.9 99.7 91.1 96.4 41.2 100.0 84.7 100.0 91.9
UN 96.7 80.0 99.9 95.5 99.3 93.1 94.4 45.4 100.0 86.7 100.0 92.9
FF 99.7 79.7 100.0 96.0 100.0 93.0 100.0 37.3 100.0 81.8 100.0 92.0

H: 12
T=100 P 86.8 72.5 98.4 94.9 97.5 91.8 75.4 12.3 99.3 61.3 99.7 85.8

UN 87.5 75.2 98.6 95.4 96.9 90.7 87.2 38.7 99.7 85.8 99.8 91.3
FF 93.3 76.4 99.2 95.6 99.6 92.6 96.8 13.1 99.9 60.6 99.9 86.4

T=400 P 96.2 69.1 99.9 94.5 99.5 91.1 89.0 16.3 100.0 71.4 100.0 88.9
UN 95.8 72.9 100.0 95.2 99.2 90.0 96.1 42.3 100.0 90.2 100.0 91.8
FF 99.4 74.4 100.0 95.5 100.0 92.6 99.9 16.8 100.0 70.0 100.0 88.6

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 98.5 94.9 98.5 94.9 98.5 94.9 98.5 94.9 98.5 94.9 98.5 94.9
UN 97.9 94.4 97.9 94.4 97.9 94.4 97.9 94.4 97.9 94.4 97.9 94.4
FF 99.9 94.9 99.9 94.9 99.9 94.9 99.9 94.9 99.9 94.9 99.9 94.9

T=400 P 99.7 94.9 99.7 94.9 99.7 94.9 99.7 94.9 99.7 94.9 99.7 94.9
UN 99.3 94.9 99.3 94.9 99.3 94.9 99.3 94.9 99.3 94.9 99.3 94.9
FF 100.0 94.9 100.0 94.9 100.0 94.9 100.0 94.9 100.0 94.9 100.0 94.9

H: 4
T=100 P 92.3 84.1 97.9 95.2 96.7 92.5 96.1 77.0 99.3 93.3 99.0 94.5

UN 91.4 87.6 97.3 96.0 97.0 93.5 87.1 67.9 97.3 88.3 98.3 92.3
FF 96.6 87.9 98.9 96.3 99.3 93.9 98.2 70.2 99.6 89.7 99.6 92.9

T=400 P 98.5 82.4 99.9 94.6 99.5 91.2 99.4 79.8 100.0 94.5 100.0 94.7
UN 97.7 87.3 99.8 95.7 99.2 93.7 95.7 70.5 99.7 89.3 99.9 93.1
FF 99.9 85.8 100.0 95.6 100.0 93.1 100.0 72.8 100.0 91.2 100.0 93.8

H: 8
T=100 P 80.7 77.0 94.6 94.8 94.5 91.6 82.0 36.7 97.9 79.6 97.9 89.9

UN 81.6 80.5 95.1 95.5 94.8 93.0 81.0 41.4 98.0 83.4 98.1 91.7
FF 88.0 81.9 96.6 96.0 98.0 93.2 92.8 34.3 98.9 76.5 99.0 89.0

T=400 P 96.8 74.3 100.0 95.0 99.7 91.2 95.9 41.4 100.0 84.7 100.0 92.0
UN 96.3 80.1 99.9 95.5 99.3 93.2 93.8 45.5 100.0 86.7 100.0 93.0
FF 99.6 79.6 100.0 95.9 100.0 93.0 99.9 37.5 100.0 82.0 100.0 92.1

H: 12
T=100 P 69.2 72.1 90.9 94.8 91.2 91.7 63.2 14.3 95.4 62.5 96.0 85.2

UN 74.5 75.1 93.3 95.3 79.8 89.0 84.0 40.8 98.8 85.6 97.1 91.0
FF 78.8 76.7 93.7 95.4 94.3 92.6 86.5 16.5 98.3 63.3 98.2 85.7

T=400 P 95.0 69.0 99.9 94.5 99.5 91.2 87.4 16.5 99.9 71.8 100.0 88.6
UN 94.9 72.9 99.9 95.0 99.1 89.8 96.1 42.6 100.0 89.9 100.0 91.7
FF 98.9 74.2 100.0 95.3 100.0 92.6 99.8 17.0 100.0 70.1 100.0 88.9

See text for more details.

“family-wise error control” and simply computes the proportion of paths strictly inside the bands. FDR control instead is the proportion of forecast paths whose
Mahalanobis distance attains a value that is lower than the chi-square statistic for probability equal to nominal coverage and degrees of freedom equal to H.

errors. Each estimated VAR or local projection (LP) on these 10,000 samples generates a forecast error variance (which includes estimation uncertainty) for the
 forecast path of length h, and hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Similarly, each estimated model generates q forecast
paths whose associated error paths are used to generate a forecast error variance for the forecast path and hence the set of bands (marginal emp, Bonferroni emp,
and Scheffé emp). Hence 10,000 actual paths are then compared with each set of 10,000 bands to determine the appropriate coverage rates. FWE control stands for 

Local Projections
FWE control FDR control

Notes:  10,000 samples generated from VAR(4) for three variables (P, UN, FF) with break in var-cov matrix of errors. Forecasting model has stable var-cov matrix of

Table 10. MC results, break in DGP var-cov matrix of errors, nominal coverage 95%, N=80

VAR
FWE control FDR control
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Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 97.7 94.5 97.7 94.5 97.7 94.5 97.7 94.5 97.7 94.5 97.7 94.5
UN 96.1 94.3 96.1 94.3 96.1 94.3 96.1 94.3 96.1 94.3 96.1 94.3
FF 99.6 94.1 99.6 94.1 99.6 94.1 99.6 94.1 99.6 94.1 99.6 94.1

T=400 P 99.4 95.0 99.4 95.0 99.4 95.0 99.4 95.0 99.4 95.0 99.4 95.0
UN 98.7 94.5 98.7 94.5 98.7 94.5 98.7 94.5 98.7 94.5 98.7 94.5
FF 100.0 94.6 100.0 94.6 100.0 94.6 100.0 94.6 100.0 94.6 100.0 94.6

H: 4
T=100 P 92.2 83.2 98.1 95.4 96.5 91.0 94.4 78.9 99.2 94.2 99.1 94.7

UN 89.0 87.7 95.7 96.0 95.4 93.5 83.0 61.9 95.0 85.2 96.8 90.2
FF 95.2 87.9 98.6 95.9 99.1 93.5 97.4 68.1 99.5 88.6 99.6 92.0

T=400 P 98.7 81.6 99.9 94.4 99.3 89.6 98.7 85.7 99.9 96.8 99.9 95.4
UN 96.2 87.7 99.3 95.9 98.6 93.5 92.1 64.3 98.9 86.3 99.5 91.2
FF 99.4 88.0 99.9 96.1 100.0 93.6 99.8 69.3 100.0 89.6 100.0 93.1

H: 8
T=100 P 85.1 75.6 97.6 95.5 96.4 90.5 80.4 38.1 98.3 81.2 99.0 88.8

UN 81.2 81.8 94.5 95.7 94.3 93.0 72.4 25.4 96.2 69.3 97.8 88.0
FF 88.5 82.7 97.3 96.0 99.0 93.0 94.2 31.6 99.4 74.9 99.6 88.8

T=400 P 97.9 72.1 100.0 94.5 99.2 89.2 92.4 49.4 99.8 88.9 100.0 91.4
UN 92.0 82.0 98.8 95.7 98.6 93.5 85.4 29.3 99.4 73.1 99.9 90.1
FF 97.6 82.4 99.9 96.1 100.0 93.4 99.4 32.5 100.0 77.1 100.0 90.8

H: 12
T=100 P 79.9 71.0 97.0 95.6 96.3 90.4 64.0 15.2 98.0 63.9 99.3 83.0

UN 78.4 76.9 94.5 95.0 93.7 92.4 70.8 15.2 98.3 62.1 98.6 87.2
FF 83.7 78.7 96.5 96.4 98.6 92.9 92.0 15.4 99.5 64.3 99.7 87.5

T=400 P 97.5 65.8 100.0 94.9 99.3 88.8 80.6 22.6 99.7 77.4 100.0 88.2
UN 89.4 76.6 99.2 95.4 98.7 93.1 84.5 13.9 99.9 65.1 100.0 88.2
FF 95.7 77.9 99.8 95.8 100.0 92.8 99.0 15.3 100.0 68.2 100.0 88.8

Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp. Marg. Marg. emp. Bonf. Bonf. emp. Schef. Schef. emp.
H: 1

T=100 P 97.8 94.5 97.8 94.5 97.8 94.5 97.8 94.5 97.8 94.5 97.8 94.5
UN 96.2 94.3 96.2 94.3 96.2 94.3 96.2 94.3 96.2 94.3 96.2 94.3
FF 99.6 94.1 99.6 94.1 99.6 94.1 99.6 94.1 99.6 94.1 99.6 94.1

T=400 P 99.4 95.0 99.4 95.0 99.4 95.0 99.4 95.0 99.4 95.0 99.4 95.0
UN 98.7 94.5 98.7 94.5 98.7 94.5 98.7 94.5 98.7 94.5 98.7 94.5
FF 100.0 94.6 100.0 94.6 100.0 94.6 100.0 94.6 100.0 94.6 100.0 94.6

H: 4
T=100 P 88.7 82.7 96.4 95.3 94.5 90.7 92.8 79.1 98.6 94.0 97.9 94.5

UN 85.7 88.0 93.8 96.2 94.4 93.5 79.2 62.4 93.3 84.9 95.1 90.1
FF 92.5 87.7 97.2 95.9 98.5 93.4 95.3 68.6 98.9 88.6 99.0 92.0

T=400 P 98.6 81.5 99.9 94.4 99.3 89.7 98.6 85.6 99.9 96.6 99.9 95.6
UN 96.2 87.7 99.3 96.0 98.6 93.6 91.9 64.5 99.0 86.2 99.5 91.3
FF 99.4 87.8 99.9 96.1 100.0 93.5 99.8 69.6 100.0 89.8 100.0 93.4

H: 8
T=100 P 72.3 76.5 90.9 95.6 91.2 90.7 72.5 38.9 96.0 80.7 95.6 88.3

UN 72.4 81.9 89.2 95.8 90.5 93.0 63.7 26.3 92.2 70.0 93.8 88.0
FF 77.9 82.4 91.5 95.9 95.9 92.8 85.4 34.0 97.1 76.5 97.7 88.1

T=400 P 97.4 72.1 100.0 94.6 99.2 89.1 91.9 49.2 99.9 88.8 100.0 91.5
UN 92.1 82.1 98.9 95.7 98.5 93.6 85.1 29.5 99.3 73.4 99.8 90.3
FF 97.0 82.2 99.8 96.2 100.0 93.3 99.1 33.0 100.0 77.1 100.0 90.6

H: 12
T=100 P 56.3 71.4 83.2 95.7 84.8 90.2 50.9 16.1 91.2 63.0 91.8 81.5

UN 64.2 76.8 86.1 95.2 83.9 92.0 59.1 18.5 93.7 64.1 92.4 86.4
FF 65.4 78.3 86.1 96.0 90.1 92.7 77.3 20.6 95.3 68.2 95.7 86.6

T=400 P 96.5 66.1 99.9 94.8 99.3 88.8 79.5 21.7 99.7 77.0 100.0 87.6
UN 89.7 76.9 99.2 95.4 98.6 93.2 82.6 15.0 99.8 66.7 99.9 88.6
FF 94.4 77.3 99.8 95.6 100.0 92.8 98.6 15.7 100.0 69.1 100.0 88.7

equal to H. See text for more details.

FWE control stands for “family-wise error rate” and simply computes the proportion of paths strictly inside the bands. FDR control instead is the proportion of forecast
paths whose Mahalanobis distance attains a value that is lower than the chi-square statistic for probability equal to nominal coverage and degrees of freedom

stable var-cov matrix of errors. Each estimated VAR or local projection (LP) on these 10,000 samples generates a forecast error variance (which includes estimation
uncertainty) for the forecast path of length h, and hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Similarly, each estimated model
generates q forecast paths whose associated error paths are used to generate a forecast error variance for the forecast path and hence the set of bands (marginal
emp, Bonferroni emp, and Scheffé emp). Hence 10,000 actual paths are then compared with each set of 10,000 bands to determine the appropriate coverage rates.

Local Projections
FWE control FDR control

Notes:  10,000 samples generated from VAR(4) for three variables (P, UN, FF) with break in parameters and var-cov matrix of errors. Model has stable parameters and 

Table 11. MC results, break in DGP coefficients and var-cov matrix of errors, nominal coverage 95%, N=80

VAR
FWE control FDR control
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Figure 2. Alternative bands for UK growth forecasts, real time data
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Note: UK forecasts by the Bank of England, quarterly sample 1998q1-2008q2. See text for details.
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Figure 3. Alternative bands for US growth forecasts, real time data
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