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Abstract

The well-known problem of too many instruments in dynamic panel data GMM is
dealt with in detail in Roodman (2009, Oxford Bull. Econ. Statist.). The present
paper goes one step further by providing a solution to this problem: factorisation
of the standard instrument set is shown to be a valid transformation for ensuring
consistency of GMM. Monte Carlo simulations show that this new estimation
technique outperforms other possible transformations by having a lower bias and
RMSE as well as greater robustness of overidentifying restrictions. The researcher’s
choice of a particular transformation can be replaced by a data-driven statistical

decision.

Keywords: Dynamic Panel Data, Generalised Method of Moments,

Instrument Proliferation, Factor Analysis
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Non-technical summary

Dynamic panel data (DPD) models have become increasingly popular. They are
characterised by two features. The first one is their dynamic structure, i.e. the
model equation has at least one lagged dependent variable on the right-hand side.
The second one is their panel structure, i.e. the data have both a cross-sectional
and a time series dimension. Not only individual effects can be estimated with
the aid of panel data — also the problem of aggregation bias can be avoided, where
an aggregate regression is said to suffer from aggregation bias when the aggregate
regression slope parameter does not correctly reflect the average of the individ-
ual slope parameters. However, DPD models are a source for biases themselves.
The Least Squares Dummy Variables (LSDV) estimator has a non-vanishing bias
for small T" and large N, in particular it is downward biased because the lagged
endogenous variable correlates negatively with the transformed error term.

The problem of DPD bias was solved with unbiased DPD estimators based
on Generalised Method of Moments (GMM) in the 1990s: first with Difference
GMM and later with System GMM. The basic idea of these estimators is that
lagged levels (Difference GMM) and additionally lagged differences (System GMM)
are valid instruments for the lagged endogenous variable, i.e. are uncorrelated
with the transformed error term. However, one issue with regard to DPD GMM
still remains problematic; the number of instruments grows quadratically with 7.
GMM becomes inconsistent as the number of instruments becomes too large. This
begs the question: “what is the optimal set of instruments?” Currently, there are
two techniques in use to reduce the instrument count. One of them is limiting the
lag depth, the other one is “collapsing” the instrument set. These transformations
are deterministic ones of the instrument matrix. Besides the fact that no widely
accepted rule of thumb for the instrument count exists, by choosing one of the
aforementioned approaches, the researcher decides which transformation is to be
used. Yet, the question this paper addresses is, “can we let the data decide how
the transformation matrix should look?” The answer is found here by means of
principal components analysis (PCA) of the instrument set and is shown to be “yes,
we can.” The resulting DPD GMM estimator is characterised by both a lower bias

and a lower root mean squared error (RMSE) than the standard techniques.



The results of a Monte Carlo simulation strongly suggest the use of factorised
instruments as these produce the lowest bias and RMSE. This generates a set
of instruments which reduces the uncertainty in the choice of instruments. Fur-
thermore, there is a clear recommendation to collapse the instrument set prior to
factorisation. Preferably, the lag depth is also limited. Most importantly, the bias
of standard GMM increases due to instrument proliferation. The simulation fur-
ther shows that LSDV should be applied only if the time dimension is much larger
than 30, while pooled OLS has clearly sub-optimal properties for the estimation
of DPD.



Nicht-technische Zusammenfassung

Modelle dynamischer Paneldaten (DPD) erfreuen sich immer groBerer Beliebtheit.
Sie sind durch zwei Eigenschaften charakterisiert. Die Erste ist ihre dynamische
Struktur, d. h. die Modellgleichung hat zumindest eine verzdgerte abhéngige Varia-
ble auf der rechten Seite. Die Zweite ist ihre Panelstruktur, d. h. die Daten haben
sowohl eine Querschnitts- als auch eine Zeitreihendimension. Nicht nur konnen mit
Hilfe von Paneldaten individuelle Effekte geschéitzt werden — ebenso kann das Pro-
blem der Verzerrung bei Verwendung aggregierter Daten vermieden werden, wobei
eine Regression mit Aggregatdaten verzerrt ist, wenn die Regressionskoeffizien-
ten auf Basis von aggregierten Daten den Durchschnitt der Regressionskoeffizien-
ten auf Basis von disaggregierten Daten nicht korrekt widerspiegeln. Aber auch
Schéitzungen von DPD-Modellen konnen verzerrt sein. Der Kleinste-Quadrate-
Schétzer mit Dummy-Variablen (LSDV) weist eine nicht-verschwindende Verzer-
rung fiir kleines T" und grofles N auf, im Speziellen ist er nach unten verzerrt,
weil die verzogerte endogene Variable und der transformierte Storterm negativ
miteinander korrelieren.

Das Problem dieser DPD-Verzerrung wurde mit unverzerrten DPD-Schétzern
basierend auf der Verallgemeinerten Methode der Momente (GMM) in den neun-
ziger Jahren gelost: zuerst mit Differenzen-GMM und spéter mit System-GMM.
Die Grundidee dieser Schitzer ist dabei, dass verzogerte Niveaus (Differenzen-
GMM) bzw. zusétzlich verzogerte Differenzen (System-GMM) als valide Instru-
mente fiir die verzogerte endogene Variable fungieren, d. h. unkorreliert mit dem
transformierten Storterm sind. Jedoch bleibt ein Sachverhalt beziiglich DPD-GMM
weiterhin problematisch; die Anzahl der Instrumente wichst quadratisch mit T
GMM wird inkonsistent, wenn die Anzahl der Instrumente zu grofl wird. Dies
wirft die Frage auf: ,Was ist der optimale Instrumentensatz?“ Gegenwiirtig sind
zwei Techniken in Gebrauch, um die Anzahl der Instrumente zu reduzieren. Die-
se sind zum einen das Begrenzen der Anzahl der verzogerten Variablen und zum
anderen das sogenannte Kollabieren des Instrumentensatzes. Diese Transformatio-
nen der Instrumentenmatrix sind deterministischer Natur. Davon abgesehen, dass
keine allgemein akzeptierte Faustregel fiir die Anzahl der Instrumente existiert,

wird durch die Wahl eines der vorstehenden Anséitze vom Forscher entschieden,



welche Transformation zu verwenden ist. Dieses Papier stellt eine Methode vor,
bei der die Daten selbst dariiber entscheiden, wie die Transformationsmatrix aus-
sehen soll. Dazu werden im Rahmen einer Hauptkomponentenanalyse (PCA) die
verfiigbaren Informationen aller infrage kommenden Instrumente in einigen weni-
gen Variablen zusammengefasst, die dann wiederum bei der Schitzung — anstelle
des urspriinglichen Instrumensatzes — als Instrumente verwendet werden. Der re-
sultierende DPD-GMM-Schétzer ist charakterisiert durch eine kleinere Verzerrung
und eine kleinere Wurzel aus dem mittleren quadratischen Fehler (RMSE) als die
Standardtechniken.

Die Ergebnisse einer Monte Carlo-Simulation liefern starke Evidenz fiir die
Vorteilhaftigkeit der Verwendung von faktorisierten Instrumenten, da diese die ge-
ringste Verzerrung und den geringsten RMSE produzieren. Dies generiert einen
Instrumentensatz, der die Unsicherheit bei der Wahl der Instrumente reduziert.
Dariiber hinaus leitet sich eine klare Empfehlung dafiir ab, den Instrumenten-
satz vor der Faktorisierung zu kollabieren. Vorzugsweise wird auch die Anzahl
der verzogerten Variablen begrenzt. Am wichtigsten ist jedoch, dass die Verzer-
rung von Standard-GMM durch das rasante Wachstum der Instrumente steigt.
Die Simulation kommt ferner zu dem Ergebnis, dass LSDV nur angewandt werden
sollte, wenn die Zeitdimension deutlich grofler als 30 ist, wihrend gepooltes OLS

eindeutig sub-optimale Eigenschaften aufweist fiir die Schétzung von DPD.
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A Solution to the Problem of Too Many
Instruments in Dynamic Panel Data GMM*

1 Introduction

Dynamic panel data (DPD) models have become increasingly popular in the last
two decades. Nowadays the availability of micro level data, such as of firms or
banks, enables researchers to identify economic relationships at a disaggregate
level. Hence, the serious problem of aggregation bias (Lippi and Forni, 1990) can
be avoided. However, the solution is not without a drawback: DPD bias. As
Nickel (1981) has shown, the Least Squares Dummy Variables (LSDV) estimator
has a non-vanishing bias for small 7" and large N. Anderson and Hsiao (1982)
were the first to propose an unbiased DPD estimator with the notable trade-off
between lag depth and sample size. It was not until Holtz-Eatkin et al. (1988)
that an unbiased DPD estimator was constructed based on Generalised Method of
Moments (GMM) (Hansen, 1982). The breakthrough came with Difference GMM
by Arellano and Bond (1991), and System GMM by Arellano and Bover (1995) and
Blundell and Bond (1998). In the meantime, Kiviet (1995) proposed a corrected
LSDV estimator for balanced panels. However, one issue with regard to DPD
GMM still remains unresolved; the number of instruments grows quadratically in
T and GMM becomes inconsistent as the number of instruments diverges, thus
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begging the question “what is the optimal set of instruments?”
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Roodman (2009) addresses the problem of too many instruments. Increasing
the sample size causes the number of instruments to proliferate as DPD GMM
generates one instrument for each time period and lag available. Currently, there
are two techniques in use to reduce the instrument count. One of them is limit-
ing the lag depth, the other one is “collapsing” the instrument set. The former
implies a selection of certain lags to be included in the instrument set, making
the instrument count linear in 7T'. The latter embodies a different belief about the
orthogonality condition: it no longer needs to be valid for any one time period but
still for each lag, again making the instrument count linear in 7. A combination
of both techniques makes the instrument count invariant to 7. These transfor-
mations are deterministic ones of the instrument matrix, i.e. the transformation
matrix consists of zeroes and ones. Besides the fact that no widely accepted rule
of thumb for the instrument count exists, by choosing one of the aforementioned
approaches, the researcher decides which transformation is to be used for the data.
The point in question is, “can we let the data decide how the transformation ma-
trix should look?” The answer to this question is found by means of factor analysis
of the instrument set and is shown to be “yes, we can.” The resulting DPD GMM
estimator is characterised by both a lower bias and a lower root mean squared
error (RMSE) than the standard techniques.

The remainder of the paper is organised as follows. Section 2 introduces the
new estimation technique based on factorised instruments. Monte Carlo results

for this estimator are presented in Section 3. The final section concludes.

2 Factorisation as a solution

Consider an autoregressive panel model of order one for the endogenous variable

Yit, where a; = oo + 1, is a fixed effect and ¢, is the error term.

Yie =+ BYir—1 + 10 + iy (1)



The standard instrument set Z for the estimation of the autoregressive param-
eter 3 of Equation (1) with DPD GMM in first differences,

Ay = BAY; -1 + Agjy,

which will be treated here exclusively without loss of generality but for simplic-
ity of exposition, consists of lagged values of the endogenous variable, which are

uncorrelated with the first differences of the error term.

E(Z'Ae) =0 (2)

First, the conditions for consistency of the aforementioned techniques, along
with a whole class of transformations, to reduce the instrument count are verified
in the following theorem. Unlike other authors, who derive the limited or collapsed
instrument set from first principles by considering interpretable orthogonality con-
ditions, this paper applies transformation matrices to the standard instrument set
which yield the desired results (cf. Appendix C). Proofs for this and the following

theorem are to be found in Appendix A.

Theorem 1. Let Equation (2) be valid. Then E(Z*'Ae) = 0 with Z* = ZF for

any deterministic transformation matriz F.

It follows from Theorem 1 that limiting the lag depth, collapsing the instrument
set or both are valid transformations for consistent estimation of the parameter of
interest. Moreover, any transformation, no matter if it lacks a sensible interpreta-
tion, satisfies the conditions of the theorem as long as it is deterministic.

Second, the aim of this paper is to introduce a new technique rather than to
evaluate standards already in use. Hence, the focus here lies on stochastic transfor-
mations instead of deterministic ones. In order to solve the problem of instrument
proliferation, this paper suggests the application of factor analysis — more precisely
for the case in hand — principal components analysis (PCA) to the instrument set.
PCA extracts the largest eigenvalues of the estimated covariance matrix of Z and
assembles the corresponding eigenvectors in the matrix of component loadings F*,
the transformation matrix. In this case, the transformation matrix is stochastic

and Theorem 1 is no longer applicable. However, Theorem 2 provides a solution.



Theorem 2. Let y;1—1-4, ¢ = 1,2, ... (the elements of the Z matriz) and Ae;,
be independent random wvariables for all i and t. Then E(Z*'Ae) = 0 with
77 = ZF*, where F* is the matriz of component loadings from PCA of \//a\r(Z).

Theorem 2 is both more general and more specific than Theorem 1. The fact
that it also holds true for deterministic F* = F makes it more general. It is more
specific in the sense that it requires independence of ¥;;_1_, and Ae;; which is a
stronger property than uncorrelatedness. This assumption is not too strong if the

error term is thought of as being an exogenous shock.

3 Performance of factorised instruments

Judson and Owen (1999) provide Monte Carlo evidence that GMM is superior to
other estimation techniques when it comes to DPD. Among others, their findings
are: OLS produces biased estimates even for large 7', the bias of LSDV decreases
with 7" but may still be up to 20% of the true value even when 7' = 30, and
also that the LSDV bias increases with the true value of the autoregressive pa-
rameter. Additionally, OLS is upward biased while LSDV is downward biased.
Windmeijer (2005) adds to this list that GMM becomes more efficient when the
lag depth is limited, and thus fewer instruments are employed in the estimation.

Table 1 and Figures 1 and 2 present biases and RMSEs from a Monte Carlo
simulation of a one-step estimation of Equation (1) with parameter values of [ in
the range from close to zero to close to one. ¢;; is assumed to be standard normal,
as is «;. N is fixed at 100, T is 10, 20 and 30, respectively (large N, small T').
The pre-sample period length is 30. The standard instrument set is either taken
as it is, limited, collapsed or both, and additionally PCA has been applied to all
four variants. The experiment is repeated 1,000 times (cf. Appendix B).

The results confirm the findings of Judson and Owen (1999) and
Windmeijer (2005). In addition, factorised instruments outperform all other tech-
niques by having both a lower bias and RMSE, however, there are a few exceptions
when T" = 10. In general, factorisation of the limited and collapsed instrument set
results in the lowest bias, while factorisation of the collapsed but unlimited instru-
ment set yields the lowest RMSE. Biases are zero to the second decimal place or

in relative terms less than 1%, RMSEs are zero to the first decimal place.



Table 1: Bias, standard error (SE) and RMSE for 8 = .2 and § = .8

T =10 T =20 T = 30
Method Statistic =2 =8 pf=2p=8 =2 =218
Least Squares
OLS Bias +.477 +.180 +.477 +.180 +.477 +.180
SE .001  .000 .001  .000 .001  .000
RMSE 478 180 478 180 478 180
LSDV Bias —.136 —.243 —.064 —.111 —.042 —.070
SE .001  .001 .001  .001 .001  .000
RMSE .140 .245 .068 113 .045 071
Standard GMM
Untransformed Bias —.080 —.539 —.146 —.624 —.199 —.681
SE 002 .004 .001  .002 .001  .001
RMSE .101 .555 151 628 201 .683
Limited (Ltd.) Bias —.061 —.506 —.114 —.580 —.157 —.633
SE .002  .005 .001  .002 .001  .002
RMSE 089 528 121 585 160 .635
Collapsed (Col.) Bias —.014 —-373 —.017 —296 —.017 —.257
SE .002  .007 .001  .004 .001  .003
RMSE 070 435 047 325 .039  .275
Ltd. & Col. Bias —.001 —.172 —.007 —.159 —.007 —.137
SE .002  .008 .001  .004 .001  .003
RMSE 071 .297 .044  .205 036  .166
Factorised GMM
Untransformed Bias —.329 —.709 —.464 —.827 —.502 —.857
SE .014 .018 .014 015 011 .013
RMSE 555 916 633 .946 .607  .949
Limited (Ltd.) Bias —.178 —.587 —.308 —.664 —.400 —.762
SE .009  .018 011  .014 .010  .013
RMSE 324 825 456 799 503 .863
Collapsed (Col.) Bias +.006 —.015  +.003 —.005  +4.004  .000
SE .002  .006 .001  .002 .001  .002
RMSE 059 179 035  .075 029  .048
Ltd. & Col. Bias +.003 +.005 +.002 —.002 +.003  .000
SE .002  .007 .001  .003 .001  .002
RMSE 067 217 037 .084 .031  .055

Note: For the sake of brevity, results for values of the autoregressive parameter
other than § = .2 and § = .8 are not displayed here. The results obtained for
these values are similar to those presented above.
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Figure 1: Biases from a Monte Carlo simulation
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Figure 2: RMSEs from a Monte Carlo simulation



The advantage of factorised instruments over standard ones is the condensation
of the informational content of the instrument set into a much lower number of
instruments employed in the estimation thus lowering the risk of overfitting en-
dogenous variables but retaining almost all information. The next best approach
is standard GMM with the instrument set being both limited and collapsed. Ac-
ceptable results can also be derived from a collapsed but unlimited instrument set
in standard GMM. Limiting the lag depth on the one hand is a good idea as even
if the autoregressive parameter is high, serial correlation will be low after a few
periods and deeper lags are weak instruments, adding almost no new information
for estimation. Collapsing the instrument set on the other hand also condenses
the information in the instrument set into a lower number of instruments. The
techniques most frequently used in applied DPD research, the untransformed in-
strument set and the limited one in standard GMM, are the worst choices, that is
apart from the factorised variants of them. Both techniques are significantly down-
ward biased (which becomes even worse, the higher T is), although the estimate
still has the correct sign. Performance of their factorised variants is unacceptable;
not even the correct sign can be expected.

Explanations for the failure of the standard techniques can be found with re-
course to the Sargan (1958) test of overidentifying restrictions (cf. Table 2). The
failure of the factorised variants can be traced back to PCA and the Kaiser-Meyer-
Olkin (Kaiser, 1970) measure of sampling adequacy (MSA) (cf. Table 3). Through
testing for weak instruments according to Staiger and Stock (1997), more evidence
is found why both the standard techniques and the factorised variants do not
perform particularly well (cf. Table 4).

Table 2 shows the number of instruments employed in the estimation for each of
the methods used and the proportions for which the validity of the overidentifying
restrictions have been rejected at the nominal 5% significance level. It should be
borne in mind that the power of the test is not weakened by many instruments.
For limited instrument sets, the number of lags employed is set to be half of the
available lags; for factorised instrument sets, the number of retained components

has been fixed. Both choices are to a certain extent arbitrary.



Table 2: Instrument count J and rejection frequency of valid instruments
T =10 T =20 T =30
Method J =2p=.8 J =20=.2.8 J p=20=2.8
Standard GMM
Untransformed 36 .103 .203 171 176 .400 406 .318  .606

Limited (Ltd.) 26 .096 .182 126 .140 .365 301 .228  .569
Collapsed (Col.) 8 .091 .166 18 .077  .169 28 .093 185
Ltd. & Col. 4 .047 .097 9 .069 .096 14 .074 .099
Factorised GMM

Untransformed 3 .080 .076 4 .064 .057 5 .070 .065
Limited (Ltd.) 3 .103 .114 4 .063 .067 5 .075 .072
Collapsed (Col.) 2 .000 .000 3 .000 .000 4 .000 .000
Ltd. & Col. 2 .000 .001 3 .000 .000 4 .000 .000

Standard GMM with the untransformed or limited instrument set generates
invalid overidentifying restrictions in an unacceptably high number of cases. This
is due to the impossibility of fulfilling all restrictions simultaneously owing to the
large number of instruments and the resulting overfitting of endogenous variables.
Probabilities of rejection increase with § as well as with 7. As it is known a
priori that the null hypothesis of valid instruments or overidentifying restrictions
is true in all cases, severe size distortions of the test become visible. While the
test of the factorised variants of the collapsed (and limited) instrument set is
undersized, rejecting the null hypothesis in virtually none of the cases, all tests of
other instrument sets are oversized, some rather heavily.

Table 3 reports the explained variance and MSA from PCA. The explained
variance states the proportion of the instrument set’s variance that can be ex-
plained by the retained components. MSA is a statistical criterion to judge the
adequacy of the covariance matrix to be factorised; the closer it gets to one, the
better. A value in the .90s is regarded as being “marvellous” in the literature
(Kaiser and Rice, 1974).

The explained variance from PCA of the collapsed (and limited) instrument
set is in the high .70s, low .80s for # = .2 and in the high .90s for § = .8.
Almost all of the variation of the standard instrument set can be explained by
much fewer components. Irrespective of 3, PCAs of the untransformed or limited
instrument set do not score appreciable values. This is the main reason why these
procedures fail to result in plausible estimates (cf. Table 1). Although high MSAs



Table 3: Fraction of explained variance p and measure of sampling adequacy

T =10 T =20 T =30
Method Statistic f=.2 =8 (=2 p=8 p=2 =23
Untransformed p 398 562 247 363 200 297
MSA 424 988 250 973 149 954
Limited (Ltd.) p 350 457 197 279 154 224
MSA 283 979 190 962 127 .940
Collapsed (Col.) p 703 .892 673 911 669 923
MSA 936 .999 973 1.000 983 1.000
Ltd. & Col. p 824 961 764 963 748 967
MSA 939 999 979 1.000 988  1.000
can be achieved for # = .8, the explained variance remains low. MSAs for the

first two procedures are close to one in all instances. The collapsed instrument set
is much more suitable for PCA as each instrument is non-zero for all applicable
observations, unlike untransformed instruments which are non-zero for just a single
observation.

Table 4 gives the proportions for which the weakness of the instruments has
been rejected, along with the number of instruments employed in the estimation
for each of the methods used. As a rule of thumb, the instrument set is deemed to
be weak if the F-statistic from the first stage regression in two stages least squares
(TSLS) is less than ten. This is an approximate test at the 5% significance level
that the TSLS bias is at most 10% of the OLS bias (Stock and Yogo, 2005).

Irrespective of the instrument set used, the instruments get weaker, the higher
[ becomes. This is because the more the process approaches a random walk,
the lower is the correlation between levels and differences. Both in standard and
factorised GMM, as T rises, the untransformed or limited instrument set becomes
weaker, while the collapsed (and limited) instrument set gets stronger. Partial R?s
of deeper, uncollapsed instruments are virtually zero; thus, these add almost no
new information for estimation. Moreover, it seems as if many weak instruments
cause the entire instrument set to be weak even though it contains a few strong
ones. Again, the factorised variants of the collapsed (and limited) instrument set
perform best, while the factorised variants of the untransformed or limited instru-
ment set are worse than their standard GMM counterparts. Factorised instruments

are the only ones which are strong even for relatively high $ and any 7.
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Table 4: Instrument count J and rejection frequency of weak instruments
T =10 T =20 T =30
Method J =2p=.8 J =20=.2.8 J =20(=.8
Standard GMM
Untransformed 36 .316 .000 171 .000 .000 406 .000 .000
Limited (Ltd.) 26 .947 .000 126 .000 .000 301 .000 .000
Collapsed (Col.) 8 1.000 .000 18 1.000 .000 28 1.000 .000

Ltd. & Col. 4 1.000 .002 9 1.000 .000 14 1.000 .000
Factorised GMM
Untransformed .000 .000 4 .000 .000 .000 .000

3 2
Limited (Ltd.) 3 .003 .000 4 .000 .000 5 .000 .000
Collapsed (Col.) 2 1.000 .039 3 1.000 .199 4 1.000 .670
Ltd. & Col. 2 1.000 .068 3 1.000 .545 4 1.000 .966

4 Directions for applied research

The Monte Carlo results strongly suggest the use of factorised instruments as these
produce the lowest bias and RMSE. This generates an ultimate set of instruments
and reduces the uncertainty researchers face in their choice of instruments. Fur-
thermore, there is a clear recommendation to collapse the instrument set prior to
factorisation or, if factorisation is not to be used at all, then at the very least
the instrument set should be collapsed. To reiterate, this implies a deterministic
transformation of the standard instrument set, and the factorised variant of this
instrument set is the method of choice. Preferably, the lag depth is also limited.
The lag limit should be chosen based on a priori information on the value of the
autoregressive parameter, as serial correlation decreases exponentially. Most im-
portantly, standard GMM suffers from instrument proliferation. The findings in
this paper indicate that results of numerous applications of GMM in the literature
may benefit from factorised instruments. LSDV should be applied only if the time
dimension is much larger than 30, while pooled OLS should not be used at all in
the estimation of DPD.

In applied research, the number of retained components from PCA can be
derived from factor analytic criteria, such as MSA, and should be tested for their
validity in the GMM framework. The methodology outlined here can be applied
to System GMM or exogenous variables in a completely analogous fashion. It is
reasonable to make use of the correlation between all instruments to lower the

instrument count.

11



A Proof of theorems

Proof of Theorem 1. Using the definition of Z* in Theorem 1 and Equation (2), the
proposition follows directly from the linearity property of the expectation operator:
E(Z*Ae) = E(F'Z' Ae) = F'E(Z'Ae) = 0. m

Proof of Theorem 2. Per definitionem of Theorem 2, the corresponding elements of
Z and Ae, meaning those which form the cross products in Z' Ae, are independent
random variables, and thus Borel. For any pair ¢(-) and v (-) of Borel functions,
the corresponding elements of ¢(Z) and ¢ (Ae) are also independent.

@‘(Z) is a positive semi-definite symmetric matrix meaning that all eigenval-
ues are real and non-negative. It is well-established that the sum and product of
two real-valued measurable functions are measurable. That eigenvectors can be
found in a Borel measurable fashion was shown by Azoff (1974, Corollary 4).

Hence, the corresponding elements of Z** = ZA(Z) = ¢(Z), with F* = A(Z)
being the matrix of component loadings, and Ae = 1)(Aeg) are independent ran-
dom variables, too. Moreover, given quadratic integrability of the elements of Z**

and Ae, the corresponding ones are uncorrelated. The proposition follows from
the fact that this can be the case if and only if E(Z**'Ae) = 0 as E(Ag) =0. [

B Pseudocode

The pseudocode for the simulation reads as follows.

Pseudocode Input Output
Simulate data a, 3,e,y0, N, T y
Generate instrument set Y-1-¢ Z (Z¥)
Factorise instruments Z (Z%) VAN
Estimate parameter Ay, Ay 1, Z* B

12



C Structure of transformation matrices

For the sake of exposition, let 7' = 6 and ¢ = 1, 2, ..., N. Note that the first

observation is dropped due to differencing.

Untransformed

The standard instrument set consists of lagged values of the endogenous variable;
in particular, one instrument is generated for each time period and lag available.
The instrument count is J = (7' — 2)(T' — 1)/2 = 10.

0 0 0 0 0 0
yp 0 0 0 0 O
Zi= |0 %2 viu 0 0 0
0 0 0 ¥z Y2 ¥in
0O 0 0 0 0 0 Wi Y3 Y2 Yi1]

o O o O
o O O O
o o o O
o o o O

Limited (L)

Limiting the maximum lag depth of y;;,—1 to 7 = 2, for example, gives as trans-
formation matrix a block matrix of identity matrices up to dimension 7 (for each
time period, indicated by solid lines) separated by rows of zeroes (for excluded lags,
indicated by dashed lines). Using this technique reduces the instrument count to
Jb=J—-(T-2-7)(T—-1-7)/2=T1.

(110 0|0 0/0 0]
0ol1 0olo olo o
0lo 110 0/0 0 ) _
0 0 0
olo 0ol1 0lo o 0 0o
. L 0[0 00 1]0 0 v
Zi :ZIF :Zi *6*0**0**0**0**0*6’ = 0 yi,2 Yia 0 0 0 0
0olo olo of1 o 00 0 s vz 00
0/0 0o 0|0 1 L0000 0 e s
olo olo olo o
1 0/0 0/00/0 0
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Collapsed (C)

The transformation matrix for collapsing the instrument set is made up of identity
matrices of increasing dimension stacked one upon the other (indicated by solid
lines) with blocks of zero matrices to the right (indicated by dashed lines). By

collapsing the instrument count is cut to J¢ =T — 2 = 4.

110 0 O
.
1 000 O
|
0 1:0 0 - _
1 0 00 0
! Yi1
01 00 ’
ZiC:ZiFC:Zi 00 10 = Y2 Vi1 0
100 0 Yiz Yi2 Yin O
010 0 | Yia Yi3 Yi2 Yi1]
0010
i 0 0 01 ]

Limited & Collapsed (LC)

When both techniques are combined, i.e. rows of zeroes from F¥ and stacked

identity matrices (now again only up to dimension 7) from F€| the instrument

JLC

count becomes =7 =2

1:0
1 0
01 - -
To| |°0
Yi1 O
01 ’
ZiLC = ZiFLC = 7; 0* *0 = Y2 Yia
ﬁ Yi3 Yi2
01 | Yia  Yi3]
00
L 0 0 -
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