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Abstract

Since Mandelbrot's seminal work (1963), alpha-stable distributions with infinite variance have been
regarded as a more realistic distributional assumption than the normal distribution for some economic
variables, especially financial data. After providing a brief survey of theoretical results on estimation
and hypothesis testing in regression models with infinite-variance variables, we examine the statistical
properties of the coefficient of determination in regression models with infinite-variance variables.
These properties differ in several important aspects from those in the well-known finite variance case.
In the infinite-variance case when the regressor and error term share the same index of stability, the
coefficient of determination has a nondegenerate asymptotic distribution on the entire [0,1] interval,
and the probability density function of this distribution is unbounded at 0 and 1. We provide closed-
form expressions for the cumulative distribution function and probability density function of this limit
random variable. In an empirical application, we revisit the Fama-MacBeth two-stage regression and
show that in the infinite variance case the coefficient of determination of the second-stage regression

converges to zero asymptotically.

Keywords: Regression models, alpha-stable distributions, infinite variance, coefficient of

determination, Fama-MacBeth regression, Monte Carlo simulation.
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Nicht-technische Zusammenfassung

Die Regressionsanalyse ist eine der am hiufigsten verwendeten statistisch/6konometrischen
Methoden. Dabei wird iiblicherweise die Normalverteilungsannahme fiir die Storprozesse getroffen.
Fiir viele empirische Daten im Finanzmarktbereich, zum Teil auch in der Makrodkonomie, erweist
sich die Normalverteilung aber als unzutreffend, weil deren Verteilung typischerweise wegen
iibermissiger Ausreifler dickere Verteilungsenden besitzt als die Normalverteilung. Als Alternative
bietet sich die sogenannte alpha-stabile Verteilung an, deren Eigenschaften durch den
Stabilitidtsparameter (Alpha) bestimmt werden. Diese Verteilung ist besser geeignet, das Verhalten
solcher Variablen zu beschreiben; die Normalverteilung ist als Spezialfall enthalten. Insofern ist die
Familie der alpha-stabilen Verteilungen als eine Verallgemeinerung der (restriktiven)

Normalverteilung anzusehen und nicht als Alternative.

Das Bestimmtheitsmal} ist eines der am haufigsten verwendeten Modellindikatoren. Es zeigt an, wie
gut das Modell den Zusammenhang zwischen den erkldrenden und erkldrten Variablen beschreibt. In
vielen empirischen Arbeiten wird diese Grofie genutzt, um bestimmte empirische Aussagen treffen zu
konnen. Fama und MacBeth (1973) haben beispielsweise eine sogenannte Zwei-Stufige-Regression
vorgeschlagen, wobei das Bestimmtheitsmal3 dartiber Aufschluf3 gibt, wie eng Rendite und Risiko von
Finanztiteln zusammenhingen. Bei Verwendung der Zwei-Stufigen-Regression haben Fama and
French (1992) die empirische Aussagekraft des Capital-Asset-Pricing-Modells (CAPM) gepriift und
gefolgert, dass die konventionelle Sharpe-Lintner-Version des CAPM nicht in der Lage sei, den
Zusammenhang zwischen Rendite und Risiko zu erkldren. Sie nahmen dabei an, dass die Renditen des

US amerikanischen Aktienmarktes normalverteilt sind.

Wir untersuchen die asymptotischen FEigenschaften des Bestimmtheitsmasses im Rahmen von
Regressionsmodellen. Dabei nehmen wir an, dass sowohl die Storvariable als auch die erkldrende
Variable alpha-stabil verteilt sind. Unsere theoretischen Ergebnisse zeigen, dass das asymptotische
Verhalten des Bestimmtheitsmasses unter der alpha-stabilen Verteilungsannahme vollig anders ist als
unter der Normalverteilungsannahme: die Unterschiede aus statistischer Sicht sowie in der
6konomischen Interpretation sind so groB3, dass sich viele empirische Aussagen, die in der Literatur
gemacht worden sind, als unzureichend, beziechungsweise falsch herausstellen. Zum Beispiel miissen
die in der finanzwirtschaftlichen Literatur allgemein anerkannten empirischen Ergebnisse von Fama

und French (1992) nach unserer asymptotischen Analyse grundsétzlich revidiert werden.



Non technical summary

Regression analysis is one of the most widely used methods in econometrics and statistics; the
disturbances of a regression are usually assumed to be normally distributed. However, the normality
assumption is not appropriate for many economic variables, especially financial market variables and
also, in some cases, macroeconomic variables. Financial data are typically fat-tailed and excessively
peaked around zero. Alpha-stable distributions, whose shape is governed by the stability parameter,
alpha, represent one alternative distribution assumption. They are better suited to describing such
financial variables; the normal distribution is a special case of the alpha-stable distribution. To that

extent, the family of alpha-stable distributions is more of a generalization than an alternative.

The coefficient of determination is one of the most widely used goodness-of-fit measures for
regression models. It shows how well a regression model describes the relationship between
exogenous and endogenous variables. In many practical studies, this property is used to draw
empirical conclusions. Fama and MacBeth (1973), for example, propose a “two-stage regression”,
which is designed, based on the property of the coefficient of determination, to test for the existence of
a significant relationship between risk and return. Fama and French (1992, Journal of Finance)
employ the two-stage regression to test the empirical performance of the capital asset pricing model
(CAPM) and conclude that the conventional Sharpe-Lintner version of CAPM is not able to explain
the relationship between risk and return. In so doing, however, they assume normality of US stock

returns (CRSP data).

We study the asymptotic properties of the coefficient of determination in the framework of regression
models. For our analysis, we assume that disturbances and exogenous variables alike are alpha-stable
distributed. Our theoretical results show that the asymptotic behaviours of the coefficient of
determination under the alpha-stable distributional assumption are far removed from those under the
normality assumption: the difference is so vast — both statistically and in terms of their economic
interpretation — that many empirical conclusions in the literature prove insufficient and/or invalid. For
example, the mostly-cited result of Fama and French (1992) in the financial market literature, which,
according to our result has no asymptotic background, should be thoroughly revised — both statistically

and in terms of their economic interpretation.
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A note on the coefficient of determination in relgression models with
infinite-variance variables

1. Introduction

Granger and Orr (1972) begin their article, “ ‘Infinite variance’ and research strategy in time series
analysis,” by questioning the uncritical use of the normal distribution assumption in economic
modelling and estimation:

It is standard procedure in economic modelling and estimation to assume that random variables are
normally distributed. In empirical work, confidence intervals and significance tests are widely used,
and these usually hinge on the presumption of a normal population. Lately, there has been a growing
awareness that some economic data display distributional characteristics that are flatly inconsistent
with the hypothesis of normality.

Due in part to the influential seminal work of Mandelbrot (1963), a-stable distributions are often
considered to provide the basis for more realistic distributional assumptions for some economic data,
especially for high-frequency financial time series such as those of exchange rate fluctuations and
stock returns. Financial time series are typically fat-tailed and excessively peaked around their
mean—phenomena that can be better captured by a-stable distributions with 1 < a < 2 rather than by
the normal distribution, for which o = 2.> The a-stable distributional assumption with a < 2 is thus a
eneralization of rather than an alternative to the Gaussian distributional assumption. If an economic
series fluctuates according to an a-stable distribution with a < 2, it is known that many of the standard
methods of statistical analysis, which often rest on the asymptotic properties of sample second
moments, do not apply in the conventional way. In particular, as we demonstrate in this paper, the
coefficient of determination—a standard criterion for judging goodness of fit in a regression
model—has several nonstandard statistical properties when a < 2.

The linear regression model is one of the most commonly used and basic econometric tools, not only
for the analysis of macroeconomic relationships but also for the study of financial market data. Typical
examples for the latter case are estimation of the ex-post version of the capital asset pricing model
(CAPM) and the two-stage modelling approach of Fama and MacBeth (1973). The first purpose of the
present paper is to survey theoretical results of estimation and hypothesis testing in regression models
with infinite-variance distributions, and the second is to establish that infinite variance of the
regression variables has important consequences for the statistical properties of the coefficient of
determination. Third, we revisit the Fama-MacBeth two-stage regression approach and demonstrate
that infinite variance of the regression variables can affect decisively the interpretation of the empirical
results. The rest of our paper is structured as follows. In 2 we provide a brief summary of the
properties of alpha-stable distributions and of aspects of estimation, hypothesis testing, and model
diagnostic  checking in  regression models with infinite-variance regressors and

! Jeong-Ryeol Kurz-Kim: Corresponding author. Research support from the Alexander von Humboldt Foundation is gratefully
acknowledged. Deutsche Bundesbank, Wilhelm-Epstein-Strasse 14, 60431 Frankfurt am Main, Germany; email: jeong-
ryeol kurz-kim@bundesbank.de, Tel: +49-69-9566-4576, Fax: +49-69-9566-2982. Mico Loretan: Mailstop 18, Board of
Governors of the Federal Reserve System, Washington DC 20551, USA; email: mico.loretan@fib.gov; Tel: +1-202-452-2219;
Fax: +1-202-263-4850. The views expressed in this paper are solely the responsibility of the authors and should not be
interpreted as reflecting the views of the staff of the Deutsche Bundesbank, the Board of Govemors of the Federal Reserve
System, or of any other person associated with the Federal Reserve System. We are grateful to Peter Phillips, Werner Ploberger,
and Jonathan Wright for valuable comments and to Zhenyu Wang for the data used in the empirical section of this paper.

* The normal distribution is the only member of the family of alpha-stable distributions that has finite second (and higher-
order) moments; all other members of this family have infinite variance.
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disturbance terms. Section 3 provides a detailed analysis of the asymptotic distribution of the coefficient of
determination in regression models with infinite-variance variables. In our empirical application, presented
in Section 4, we revisit the data used in Fama and French (1992), and we show that the statistical and/or
economic interpretation of their findings can be quite different under the maintained assumption of a-stable
distributions from and interpretation based on the assumption of normal distributions. Section 5 summarizes

the paper and offers some concluding remarks.

2 Framework

2.1 «-stable distributions

A random variable X is said to have a stable distribution if, for any positive integer n > 2, there exist
constants a,, > 0 and b,, € R such that X; +---+ X, 4 anX + b, where X1, ..., X, are independent copies
of X and < signifies equality in distribution. The coefficient a,, above is necessarily of the form a, = n'/®
for some « € (0,2] (see Feller, 1971, Section VI). The parameter « is called the index of stability of the
distribution, and a random variable X with index « is called a-stable. An a-stable distribution is described
by four parameters and will be denoted by S(a, 3,7,d). Closed-form expressions for the probability density
functions of a-stable distributions are known to exist only for three special cases.? However, closed-form ex-

pressions for the characteristic functions of a-stable distributions are readily available. One parameterization

of the logarithm of the characteristic function of S(«, 8,7, ) is
In (Ee™X) = idt —4*|t|*(1 + iBsign(t) w(t, o)), (1)

where sign(t) = —1 for t < 0, sign(¢) = 0 for ¢ = 0, and sign(¢) = 41 for ¢ > 0; and w(¢, o) = — tan(wa/2)
for o # 1 and w(t, ) = (2/7) In|t| for o = 1.

The tail shape of an a-stable distribution is determined by its index of stability « € (0,2]. Skewness is
governed by 8 € [—1, 1]; the distribution is symmetric about ¢ if and only if § = 0. The scale and location
parameters of a-stable distributions are denoted by v > 0 and § € R, respectively. When « = 2, the log

2¢2 which is that of a Gaussian random

characteristic function given by equation (1) reduces to 0t — =y
variable with mean § and variance 2¢2. For o < 2 and |3| < 1, the tail behavior of an a-stable random

variable X satisfies

2The three special cases are: (i) the Gaussian distribution S(2,0,7,8) = N(8,2v?), (ii) the symmetric Cauchy distribution
S(1,0,7,9), and (iii) the Lévy distribution S(0.5,+1,7, d); see Zolotarev (1986), Section 2, and Rachev et al. (2005), Section 7.



lim P(X > ) = [C(a)7*(1+ B)/2]z™* and (2)

r— 00

lim P(X < —z) = [C(a)y*(1 - B8)/2]z, (3)

r—00

i.e., both tails of the probability density function (pdf) of X are asymptotically Paretian. For a < 2
and 8 = +1 (—1), the distribution is maximally right-skewed (left-skewed) and only the right (left) tail is

asymptotically Paretian.®> The term C(a) in equations (2) and (3) is given by

l-«o
Cla) = fora #£1 (4)
(2 — a) cos(mar/2)

and 2/7 for a = 1; see, e.g., Samorodnitsky and Taqqu (1994), p. 17.* The function C(«), which is shown in
Figure 1, is continuous and strictly decreasing in o € (0, 2), with lim,|o C'(«) = 1 and limy1e C(a) = 0. This
illustrates the well-known issue that even though all stable distributions with o < 2 have asymptotically
Paretian tails, as « T 2 proportionately less and less of the distribution’s probability mass is located in the
tail region. This, in turn, requires the availability of large sample sizes in order to be able to estimate the

index of stability with adequate precision when « is close to (but smaller than) 2.

Because E | X|¢ = limy_ fObP(|X|5 > ) dz, it follows that E|X|® < oo for £ € (0,) and E|X|¢ = oo
for ¢ > o when X is stable with a € (0,2).° Only moments of order up to but not including « are finite
when a < 2, and a non-Gaussian stable distribution’s index of stability is also equal to its maximal moment
exponent.’ In particular, if o € (1,2), the variance is infinite but the mean exists. For a > 1, it follows that

E X = 0; in addition, for § = 0, d is equal to the distribution’s mode and median irrespective of the value

3For @ < 1 and B = +1, P(X < §) = 0, i.e., the distribution’s support is bounded below by 8. Zolotarev (1986, Theorem
2.5.3) and Samorodnitsky and Taqqu (1994, pp. 17-18) provide expressions for the rate of decline of the non-Paretian tail when
B ==1and a > 1.

4Note that the numerator and the second term in the denominator of equation (4) converge smoothly to 0 as a — 1;
C(1) = 2/x therefore follows from an application of L’Hopital’s Rule.

5Tbragimov and Linnik (1971, Theorem 2.6.4) show that this property applies not only to stable distributions, but that it
pertains to all distributions that are in the domain of attraction of a stable distribution with index of stability «. Ibragimov
and Linnik (1971, Theorem 2.6.1) provide necessary and sufficient conditions for a probability distribution to be in the domain
of attraction of a stable law.

6The maximal moment exponent of a distribution is either a finite positive number, or it is infinite when a distribution has
finite moments of all orders. For a Student-¢ distribution, the degrees of freedom parameter is equal to its maximal moment
exponent.
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of a, justifying the use of the term “central location parameter” for ¢ in the finite-mean or symmetric cases.
In addition, for o # 1, one can show that S(a, 8,7, 0) 4 v-S(a, B,1,8/7)." We make use of this property
below in the derivations of Theorem 1 and Remark 3.

The class of a-stable distributions is an interesting distributional candidate for disturbances in regression
models because (i) it is able to capture the relative frequency of extreme observations in the economic
variables, (ii) it has the convenient statistical property of closure under convolution, and (iii) only a-stable
distributions can serve as limiting distributions of sums of independent and identically distributed (iid)
random variables, as proven in Zolotarev (1986). The latter two properties are appealing for regression
analysis, given that disturbances can be viewed as random variables which represent the sum of all external
effects not captured by the regressors. For more details on the properties of a-stable distributions, we refer
to Gnedenko and Kolmogorov (1954), Feller (1971), Zolotarev (1986), and Samorodnitsky and Taqqu (1994).
The role of the a-stable distribution in financial market and econometric modelling is surveyed in McCulloch

(1996) and Rachev et al. (1999).

2.2 Regression models with infinite-variance variables

Let X and Y be two jointly symmetric a-stable (henceforth, SaS) random variables with a > 1, i.e.,
we require E(X) < oo and E(Y) < oo. Our main reason for concentrating on the case a@ > 1 lies in
its empirical relevance. Estimated maximal moment exponents for most empirical financial data, such as
exchange rates and stock prices, are generally greater than 1.5; see, for example, de Vries (1991) and Loretan
and Phillips (1994). An econometric (purposeful) reason for studying the case o > 1 is that, for a-stable
distributions with @ > 1, regression analysis that is based on sample second moments, such as least squares,
is still asymptotically consistent for the regression coefficients, even though the limit distributions of these
regression coefficients are nonstandard.® Suppose that the regression of a random variable Y on a random

variable X is linear, i.e., there exists a constant 6 such that

E(Y|X)=0X a.s., (5)
with
g Xl
Yz

"This result also holds for the case & =1 and 8 = 0, but it does not for the asymmetric Cauchy case.

8 Another reason for this restriction comes from the viewpoint of statistical modelling. The conditional expectation of the
bivariate symmetric stable distribution in (5) is, as in the Gaussian case, linear in X only when o € (1,2). The regression
function is in general nonlinear, or rather only asymptotically linear, under other conditions. For more on bivariate linearity,
see Samorodnitsky and Taqqu (1994, Sections 4 and 5).



where 7, is the scale parameter of the Sa.S random variable X, and [, -], is covariation (covariance in the
Gaussian case), which can be calculated as E(XY <¢=1>) /E(|Y ), for all £ € (1, ) with a<¢> = |a|®sign(a).

For estimation and diagnostics, the relation (5) can be written as a regression model with a constant
term,

Yy = ¢+ O0xy + uy, (6)

where the maintained hypothesis is that u; is iid SaS, with o € (1,2]. The econometric issues of interest
are to estimate 6 properly, to test the hypothesis of significance for the estimated parameter, usually based
on the t-statistic, as well as to compute model diagnostics, such as the coefficient of determination, the
Durbin-Watson statistic, and the F-test of parameter constancy across subsamples.

The effects of infinite variance in the disturbance term can be substantial. The ordinary least squares
(OLS) estimate of 6 is still consistent, but its asymptotic distribution is a-stable with the same « as the

a=1)/a gmaller than the

underlying variables. Furthermore, the convergence rate to the true parameter is 7'¢
rate T/? which applies in the finite-variance case. If @ < 2, OLS loses its best linear unbiased estimate
(BLUE) property, i.e., it is no longer the minimum-dispersion estimator in the class of linear estimators of 6.
In addition, the asymptotic efficiency of the OLS estimator converges to zero as the index of stability «

declines to 1. Blattberg and Sargent (1971), henceforth BS, derived the BLUE for 6 in (6) for the case when

the value of « is known. The BS estimator is given by

T <1l/(a—1)>
) XL ey,

aaBS
2:{:1 ||/ (=)

) l<a<?2, (7)

which coincides with the OLS estimator when o = 2. Kim and Rachev (1999) prove that the asymptotic
distribution of the BS estimator is also a-stable. Furthermore, Kurz-Kim et al. (2006) consider an optimal
power estimate based on the BS estimator for unknown «. Other efficient estimators of the regression
coefficients have been studied as well; Kanter and Steiger (1974) propose an unbiased Lj-estimator, which
excludes very large shocks in its estimation to avoid excess sensitivity due to outliers. Using a weighting
function, McCulloch (1998) considers a maximum-likelihood estimator which is based on an approximation
to a symmetric stable density. Kurz-Kim et al. (2006) provide a survey of consistent estimators of the
regression coefficients for various configurations of the indices of stability of x; and w.

Hypothesis testing is also affected considerably when the regressors and disturbance terms have infinite-
variance stable distributions. For example, the t-statistic, commonly used to test the null hypothesis of
parameter significance, no longer has a conventional Student-t distribution if o < 2. Rather, as established

by Logan et al. (1973), its pdf has modes at —1 and +1; for a < 1 these modes are infinite. Kim (2003)



provides empirical distributions of the t¢-statistic for finite degrees of freedom and various values of a by
simulation. The usual applied goodness-of-fit test statistics, such as the likelihood ratio, Lagrange multiplier,
and Wald statistics, also no longer have the conventional asymptotic x? distribution, but have a stable y?
distribution, a term that was introduced by Mittnik et al. (1998).

In time series regressions with infinite-variance innovations, Phillips (1990) shows that the limit distrib-
ution of the augmented Dickey-Fuller tests for a unit root are functionals of Lévy processes, whereas they
are functionals of Brownian motion processes in the finite-variance case. The F-test statistic for parameter
constancy that is based on the residuals from a sample split test has an F-distribution in the conventional,
finite-variance case. Kurz-Kim et al. (2005) obtain the limiting distribution of the F-test when the ran-
dom variables have infinite variance. As shown by the authors, as well as by Runde (1993), the limiting
distribution of the F-statistic for @ < 2 behaves completely differently from the Gaussian case: whereas
in the latter case the statistic converges to 1 under the null as the degrees of freedom for both numerator
and denominator approach infinity, in the former case the statistic converges to a ratio of two independent,
positive, and maximally right-skewed a/2-stable distributions. This result is used in our paper to establish
the closed-form expressions for the pdf and cumulative distribution function (cdf) of the limiting distribution
of the R? statistic when the regressor and disturbance term share the same index of stability o < 2.

Moreover, commonly used criteria for judging the validity of some of the maintained hypotheses of a
regression model, such as the Durbin-Watson statistic and the Box-Pierce Q-statistic, would be inappropriate
if one were to rely on conventional critical values. Phillips and Loretan (1991) study the properties of
the Durbin-Watson statistic for regression residuals with infinite variance, and Runde (1997) examines the
properties of the Box-Pierce @-statistic for random variables with infinite variance. Loretan and Phillips
(1994) and Phillips and Loretan (1994) establish that both the size of tests of covariance stationarity under
the null and their rate of divergence of these tests under the alternative are strongly affected by failure
of standard moment conditions; indeed, standard tests of covariance stationarity are inconsistent when

population second moments do not exist.

3 Asymptotic properties of the coefficient of determination under

infinite-variance errors and infinite-variance regressors

3.1 The basic result

For the general asymptotic theory of stochastic processes with stable random variables, we refer to Resnick

(1986) and Davis and Resnick (1985a, 1985b, 1986). Our results in this section are, in large part, an



application of their work to the regression diagnostic context.

The maintained assumptions are:

1. The relationship between the dependent and independent variable conforms to the classical bivariate

linear regression model,

Ye = c+ 0z + uy . (8)

2. uy is iid SaS(ay,0,7,,0), with «, € (1,2).
3. x; is exogenous and is also iid SaS(ay,0,7,,0), with a, € (1,2).
4. The regressor and error term have the same index of stability, i.e., a;, = a,, = a.

5. The coefficients ¢ and 6 are consistently estimated by ¢ and 6.

The requirement that regressor and error term share the same index of stability is potentially rather
strong. In Corollary 2 below, we examine the consequences of having different values for the indexes of
stability for x; and u; for the asymptotic properties of the coefficient of determination.

The coefficient of determination measures the proportion of the total variation in the dependent variable
that is explained by the regression. Because §; —§ = 0(x; — Z) and y; — §j = 0(x; — T) + @i¢, where § and Z are
the respective sample averages of y; and x¢, and because Zle(zt — Z)t;=0 by construction, the coefficient

of determination may be written as

B2 _ Explained Sum of Squares

Total Sum of Squares
_ Z?:l@t - 9)
i (v~ 9)?
_ Oyl @
VORI v

Because z7 and u? are in the normal domain of attraction of stable distributions with index of stability
/2, norming by T2/ rather than by T~ is required to obtain non-degenerate limits for the sums of the
squared variables. Because 6 —p 0 by the assumption of consistent estimation, an application of the law of

large numbers to Z, the continuous mapping theorem, and the results of Davis and Resnick (1985b) yield

If ay < ag, OLS is not a consistent estimator. See Kurz-Kim et al. (2006) for a discussion of estimation methods that are
consistent for various combinations of a,, and ay.



the following expression for the joint limiting distribution of the elements in equation (8):

T T T
( —2/a, Z T2/ =2 Z(:Et _ 3—7)2) N ( —2/0 =2 Zu 02T —2/ -2 Zx?)
=1 t=1 t=
/a d 2m—2/a <
( Z Ut/W’u , 0°T Z Tt /Yy) )
t=1 t=1
—a (Su, 0%5,) . (9)

For a < 2, the random variables S, and S, are independent, maximally right-skewed, and positive stable

random variables with index of stability «/2 < 1, =41, v =1, § = 0, and log characteristic function
InE (e"5) = InE (") = C(a)|t|*/?(1 — isign(t) tan(ra/4)), (10)

where C(a) = (1 — a/2)/(I'(2 — o/2)cos(ma/4)). This leads us directly to the conclusion that the R?

statistic of the regression model (8) has the following asymptotic limit.

Theorem 1 Under the maintained assumptions of the model in equation (8), the coefficient of determination

18 distributed asymptotically as

2’7in - nSe o

R? = = R(a,n), say, 11
TS, 428, M8t s .

where n = 9273/73 >0.' Fora <2, S, and S, are independent and are identically distributed, have unit

scale coefficient, and are strictly positive a-stable random variables with index of stability /2.

Thus, for @ < 2 and 17 > 0, the coeflicient of determination does not converge to a constant but has a
nondegenerate distribution on the interval [0,1]. This contrasts strongly with the standard, finite-variance

result, which is stated here for completeness.

Corollary 1 When x; and u; have finite variance, the limit variables S, and S, in Theorem 1 are non-
random constants and are, in fact, equal to 1. The limit of R? as T — 00 in the finite-variance case is given

by
2
" 6“Var(x) _n

Y 0*Var(z) + Var(u) 7111 ’

where now 1 = §*Var(z) /Var(u).

100bserve that = 0 if and only if § = 0, as the dispersion parameters v, and ~, are necessarily positive.



When o < 2, S, and S, are not constants, and it is this fact that causes the distribution of R to be
nondegenerate. We postpone providing a more in-depth discussion of the intuition that underlies this result
to the end of this section, i.e., after we provide a detailed analysis of the statistical properties of }N%(oz,n)
when a < 2.

Before conducting this analysis, however, we note that the fourth maintained assumption, i.e., that the
regressor and error term in (8) share the same index of stability, is crucial for obtaining the result that the
asymptotic distribution of Ris nondegenerate. Indeed, when the two indices of stability differ, the following

asymptotic results apply.

Corollary 2 Suppose that the maintained assumptions of Theorem 1 apply, except that o, # v, i.e., that
the indices of stability of the regressor and error term are unequal. Suppose also that 0 # 0 to rule out the

trivial case from further consideration. Then,
o ifa, <ay,, 1—R?>=o0, (TQ/““_Q/%); and
o if a, < g, R?*=o0, (TZ/az_z/%).
Thus, R? converges to 1 in probability if o, < , and it converges to 0 in probability if v, < .

Proof. These results follow immediately from the fact that when «, # «, different norming factors,
viz., T?®= and T2/ are needed in equation (9) to achieve joint convergence of the terms 92?:1(% —z)?
and Zle @2 to the limiting random variables S, and S,. When the two norming factors differ, then as
T — oo the larger factor dominates the ratio that defines R?, and this statistic must therefore converge
either to 0 or 1 in probability. E.g., suppose that o, < a; then, T?/% > T2/%u and T2/ Saz =

T2/ (T?/w=2/0a) 5742 = o, (T?/@u=2/a). Therefore,

0’ T2/ (2, — )?

O T2/ () — 3)2 + T2/ Y 22
0°72S,

—d 9273590 + 0, (TQ/au—2/aw)

~2
R2 _

—p 1.

Similarly, if o, < az, T~/ 3 (2,—7)% = 0, (T2/af_2/‘”‘"), and R? converges to 0 in probability. H Observe
that if o, # «;, the maintained assumption that the regression coefficients are estimated consistently could
be relaxed, to require merely that an estimation method be employed that guarantees 6 # 0p(1). The result

that R? converges either to 0 or to 1 would continue to hold in this case.
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Returning to the main case of o, = a,, = «, we note that the limiting random variable R is defined for
all values of a € (0,2). As we demonstrate later in this section, closed-form expressions for the cdf and pdf

of R exist. We first establish some important qualitative properties of R.

Remark 1 For > 0, the median m of R equals 1/(n+ 1).

Proof. For n > 0, observe that

~ Ul NS Ul
P(R<—"_)=pP <
( 77+1) <n5x+5u77+1>

1
PlS, < —(nS; + 5,
( S+ >)

=P((n+1)S, — 1S, < S.)

=P (S, <5, .

Because S, and S, are iid and have continuous cdfs, P(S, < S,) = 0.5 by an application of Fubini’s

Theorem.!! W
Remark 2 The distribution of }Nﬁ(a,n) is skew-symmetric for n > 0, viz.,
Rla,m) £1 = R(o, 1/n),
or, equivalently, E(a, m) 41 E(a, 1—m). The pdf of R therefore satisfies
SR (r) = fé(%l_m)(l —-r) Vrel0,1].

The distribution ofé is symmetric about 0.5 for n = 1.

Proof. Recall that S, and S, are iid. Thus, for n > 0

1 See, e.g., Resnick (1999, p. 155).
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(1/1)Sz
(1/1)Se 4 Su
Su
(1/n)Sz + S
NSy
NSy + Sz
d NS
1Sy + Su

1—R(a,1/n) =1—

= R(Oé, 77) .

The symmetry of R about 0.5 for n = 1 follows immediately from this result and the fact that the distribu-
tion’s support is the interval [0,1]. W

Thus, the median m of R is equal to the non-random limit of R? in the finite-variance case. However, m
need not be representative of the distribution’s (dominant) modes or indicate where most of the distribution’s
probability mass is located. As the following remark shows, the pdf of R has infinite modes at 0 and 1, i.e.,

at the endpoints of its support.

Remark 3 For n > 0, the pdf of R is unbounded at 0 and 1, i.e., f5(0) = fz(1) = co. The cdf of R is

continuous on [0, 1], and the distribution does not have atoms at 0 and 1.

Proof. To demonstrate the validity of the first part of this statement, we apply a standard result for the
pdf of the ratio of two random variables,'> adapted to the present case where the random variables in the

numerator and denominator are both strictly positive. For n > 0, set V.= 7S, and W = nS; +S5,. We have

fr(r) = / wfyw(rw,w)dw,  0<r <1,
0

where the joint pdf fy,w(-,-) is nonzero on RT x R*. The case » = 1 can occur only if S,, = 0; if S,, =0,
however, the random variables V and W are perfectly dependent, their joint pdf is nonzero only on the
positive 45°-halfline, and the joint pdf fyv (w,w) reduces to (1/v/2)fy(w), w > 0. Hence, for r = 1 we find

f5(1) = /Ooowfv’v(l cw,w) dw = % /Ooowfv(w) dw = (nSy) = 0.

1
— E
V2

By Remark 2, we have fz(0) = oo as well.

128ee, e.g., Mood, Graybill, and Boes (1974), p. 187.
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The continuity of the cdf of R on [0,1] for nn > 0 follows from the continuity of the cdfs of S, and S,

on RT and the fact that their pdfs are equal to zero at the origin. For example, one finds that P(R = 1) =

P(S, = 0) = 0; the result P(R = 0) = 0 then follows from Remark 2. W

3.2 The cdf and pdf of R

The preceding remarks provide qualitative information about some of the unusual distributional properties
of R. However, they do not address issues such as whether the distribution has modes beyond those at 0
and 1, whether the discontinuity of the pdf at the endpoints is simple or if fz(r) diverges (and, if so, at
which rate) as r | 0 or 7 T 1, or how much of the distribution’s mass is concentrated near the endpoints of
the support. To examine these issues, we provide expressions for the cdf and pdf of fz(r). These results
are based on the following statistical properties of the ratio of two independent, positive, and maximally

right-skewed stable random variables.

Proposition 1 (Zolotarev 1986, p. 205; Runde 1993, p. 11) Let Sy and Sy be two positive, indepen-
dent, and identically distributed a-stable random wvariables with common parameters a/2 € (0,1), 8 = 1,

vy=1,and 6 =0. Set Z = 51/S3. For z > 0, the cdf of Z is given by

22/2 4 cos(ra/2) 1
arctan < Sn(ra/2) > - +1. (12)

Fz(2)=P(Z <2)= wo}/Q

Differentiating this expression with respect to z, the pdf of Z for z > 0 is obtained as

4 B sin(mra/2)
fz(2) = Fz(2) = Tz[270/2 4+ 22/2 + 2 cos(ma/2)] | -

Because Z is a positive random variable, Fz(z) = fz(z) =0 for z < 0. In addition, lim, o fz(z) = +o0, and

1—a/2

its rate of divergence is proportional to (1/2) Thus, the pdf of Z has a one-sided infinite singularity

at 0.

Note that as z — o0, fz(2) ~ k- 2~*/271 for a suitable constant x > 0. This implies that Z lies in the
normal domain of attraction of a stable distribution with index of stability /2, the same parameter as the
variables S; and Ss. In the special case of o = 1, S; and S5 are each distributed as a Lévy stable random
variable, which is well known to be equivalent to the inverse of a x?(1) random variable. For ov = 1, then,

the pdf of Z reduces to (71'2'1/2(1 + z))_l, which is also the pdf of an F} ; distribution; see Runde (1993).
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Because P(S, > 0) = 1, we may re-write R as

D nS.L
r= NSz + Su
_ W(Sa:/SU)
N(Sz/Su) +1
nz

= nZ + 1 :g(Z)v say.

Note that Z = S,/S, satisfies the conditions of Proposition 1 and that the functions g(Z) and g~*(R) =
(1/m) (E/ (1- ﬁ)) are strictly increasing and continuously differentiable in the interiors of their respective

domains. We are therefore able to provide the following expressions for the cdf and pdf of R.

Theorem 2 For r € (0,1) and n > 0, set z = g~'(r) = (1/n)(r/(1 — 7)), and let the cdf and pdf of Z be

given by equations (12) and (13). The cdf ofR is given by

F=

7(r)=Fz[g7'(n)], 0<r<1. (14)

Forr € (0,1), the pdf ofé is given by

F3() = | 4970 2l )
_ 1 . sin(ma/2)
=10 rg=1(r) ([g= ()] =2/2 + [ (7)]*/2 + 2 cos(ma/2))
= m . [z_o‘/2 +2/%2 4 2cos(7r0z/2)]71 ., where z =1/(n(1—71)). (15)

1-«a/2

Asr | 0orr 11, fz(r) diverges to 0o at a rate proportional to (1/7)'=%/% and (1/(1—r)) , respectively.

Proof. The results stated in equations (14) and (15) follow immediately from Proposition 1 and the density
transformation theorem.'® Because lim, o dg~'(r)/dr = n~', the rate of divergence of fz(r) as r | 0 is
equal to—apart from the multiplicative constant 7~ *—that of fz(z) as z | 0, which is (1/2)*~%/2. Finally,
it follows from Remark 2 that as r T 1 the pdf of R also diverges to infinity at this rate. W

The probability density functions and cumulative distribution functions of E(a,n) for values of a be-
tween 0.25 and 1.98 are graphed in Figures 2 and 3. (In call cases, we have set n = 1.) The pdfs in Figure 2
are shown with a logarithmic scale on the ordinate. Since we know that fz(0) = fz(1) = oo, we graph the

functions only for r € (10*13, 1-— 10*13). The graphs show that

13Gee, e.g., Mood, Graybill, and Boes (1974, p. 200).
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e If v is close to but less than 2, e.g., if @« = 1.98 or @ = 1.90, the pdf has an interior mode, and most of
the probability mass of R is concentrated near its median. Conversely, only very little mass is located
near 0 and 1, and the pdfs register only mild increases as r approaches either edge of the distribution’s

support.

e For a = 1.75 and o = 1.50, the distribution of R continues to have an interior mode (as well as, of
course, the two unbounded modes at 0 and 1). However, the distribution is noticeably less concentrated

around the interior mode than when « is closer to 2.

e By «a = 1.20, the interior mode has disappeared and the distribution is nearly uniform over the entire

interval [0, 1].

e When « takes on even smaller values, less and less probability mass of R is located near the median,
and more and more of the probability mass becomes concentrated at 0 and 1. E.g., when o = 0.25,
about 75 percent of the probability mass lies within 0.001 of the two endpoints of the distribution,

while the probability of observing a realization of R for r € [0.25,0.75] is less than 5 percent.

A heuristic explanation of these properties of R is straightforward. We begin by recalling that the term
C(a), shown in equation (4) and Figure 1, factors into the probability of obtaining very large values of the
random variables in question; if « is close to 2, C(a) is close to 0, and the fraction of observations of x¢
and ut that fall into the Paretian-tail region is therefore very low. This low probability of observing large
observations of x¢ and wt, in turn, makes it unlikely to observe a very large draw of either Sz or Su, i.e., of
generating an observation of R that is either close to 1 or close to 0. As a result, if « is close to 2, most of
the mass of R is concentrated near its median. As o moves down and away from 2, say to around 1.5, the
probability of observing tail observations for x+ and ut increases, leading to a higher frequency of observing
very large values of Sz and Su as well; in consequence, the central mode of R around m becomes less
pronounced and more of its probability mass is located near the edges of its support. Finally, as a decreases
further, the central mode vanishes entirely because it is more and more likely that some extremely large
observations of zt¢ or ut will influence the realization of R. In the limit, as o | 0, R degenerates to a

Bernoulli random variable, with all of its mass concentrated at 0 and 1.
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4 An empirical application

Fama and MacBeth (1973) proposed the so-called Fama-MacBeth regression to test the hypothesis of a
linear relationship between risk and risk premium in stock returns in a cross-sectional setting. Let r;; be the
return on the i-th market portfolio at time ¢t. The whole return of the market portfolio with cross-sectional

dimension N and time dimension T can be written in matrix form as

N1 - TN,T

Define 7 := T~' Y1 7y, i = 1,...,N; Ry == NN ry t = 1,...,T; and pp = T-' 321 R;. The

first-stage Fama-MacBeth regression is an ex post CAPM,
rit = Ooi +0i R +ug, t=1,...,T, (16)

where Eu; = 0, E(u:R;) = 0, and w; is iid SaS with the same a € (1,2] as r;;. We may assume that the
distribution of 6; has a finite mean and variance. Denote the OLS estimates of the regression coefficients in

equation (16) by 0; and ;. The second-stage Fama-MacBeth regression is given by

Ti = +710i + e, i=1,...,N, (17)

where e; is iid SaS with the same « as r;¢, Ee; =0, and E(eiéi) = 0. Again, v; and 7, in the second-stage
Fama-MacBeth regression can be estimated by OLS. The R? statistic of the second-stage Fama-MacBeth

regression is given by
PN N /) 2
N (0 - 6)

R? = i
N3N (0, -0+ N1N &2

(18)

The following theorem states the limiting values of R? in the finite-variance and the infinite-variance cases.

Theorem 3 If the returns ry follow an iid a-stable distribution with o € (1,2] and if pp > 0, the R?

statistic in (18) has the following limits as T — oo and N — oo
o Ifa =2, R* -, viVar(6;)/ (3 Var(6;) + Var(e)); and
o Ifa <2, R*=o,(N'""2/).

Thus, when a < 2, R? —p 0, at a rate that is proportional to N1-2/a,
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Proof. The result for the finite-variance case follows immediately from Corollary 1. For a < 2, observe that
the normalized estimator of 0;, T(*~1)/« (91 —0,-), is in the domain of attraction of an a-stable distribution for
finite values of T'. As T" — oo, the dispersion of 0, about 6, therefore converges to 0, and the distributional
properties of the regressor 0, in the second-stage Fama-MacBeth regression converge to those of 6;; by
assumption, the variance of 6; is finite. Thus, as N — oo and T" — oo, the numerator in equation (18)
converges to y3Var(6;). In contrast, the second summand in the denominator of (18) requires norming by
N?/® > N in order to attain a proper limit. The coefficient of determination therefore converges to 0 as
N — 0o and T — oo, at a rate equal to N'=2/«. W

This result does not conflict with the one provided in Theorem 1, as the present case is one of an
unbalanced regression design: the regressor has an asymptotically finite variance, whereas the error term has
infinite variance. Instead, this result is closely related to the one provided in Theorem 2, which examined
the asymptotic limit of R? when «, # a,. We note that even if T is fixed (as is generally taken to be the
case in Fama-MacBeth regressions), the dispersion of 0; will likely be quite a bit smaller than that of e;,
indicating that the expected value of 17, and hence the expected value of the median of R?, in the second-stage
regression will be quite small unless 77 is sufficiently large. These qualitative observations are confirmed by
a small Monte Carlo simulation, shown in Table 1, in which we report the median value of R? as a function
of @, N, and T. In particular, it is evident for o = 1.5 and a = 1.75 that the median value of R? declines

as N increases when 7T is fixed, and that this effect is particularly pronounced when T is large.

On the basis of the small value of coefficient of determination from the Fama-MacBeth regression, Ja-
gannathan and Wang (1996) confirm the finding of Fama and Macbeth (1973) of a “flat” relation between
average return and market beta. They report a very low coefficient of determination of 1.35%=0.0135 for the
Sharpe-Lintner-Black (SLB) static CAPM. Regarding “thick-tailed” phenomena in empirical data, Fama
and French (1992) conjectured that neglecting the heavy-tails phenomenon of the data does not lead to
serious errors in the interpretation of empirical results.

In the following, we use the same CRSP dataset as was used by Jagannathan and Wang (1996); the
data are very similar to those that were used by Fama and French (1992). The data consist of stock returns
of nonfinancial firms listed on the NYSE and AMEX from 1962 until 1990 covered by CRSP alone. For

our analysis we generalize the implicit assumption of normality to that of a-stable distributions. The point
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Table 1: Coefficient of determination R? as a function of T', N, o, and pup

T N o LR
0.0 0.1 0.3 0.5 1.0
100 30 1.5 0.0404 0.0425 0.0576 0.1009 0.2963
1.75 0.0488 0.0543 0.1332 0.2944 0.6410
2 0.0613 0.0820 0.3064 0.5525 0.8316
100 1.5 0.0162 0.0172 0.0292 0.0596 0.2019
1.75 0.0260 0.0328 0.1032 0.2413 0.5756
2 0.0420 0.0640 0.2829 0.5223 0.8140
500 1.5 0.0068 0.0075 0.0147 0.0325 0.1206
1.75 0.0177 0.0222 0.0779 0.1941 0.5055
2 0.0374 0.0587 0.2749 0.5131 0.8083
1000 1.5 0.0046 0.0055 0.0114 0.0264 0.0973
1.75 0.0149 0.0199 0.0720 0.1778 0.4792
2 0.0371 0.0610 0.2768 0.5140 0.8082
250 30 1.5 0.0402 0.0426 0.0779 0.1598 0.4417
1.75 0.0474 0.0642 0.2509 0.4899 0.7993
2 0.0608 0.1237 0.5253 0.7542 0.9248
100 1.5 0.0161 0.0190 0.0448 0.1058 0.3304
1.75 0.0265 0.0430 0.2066 0.4264 0.7560
2 0.0428 0.1049 0.4965 0.7328 0.9164
500 1.5 0.0064 0.0075 0.0220 0.0565 0.2020
1.75 0.0169 0.0290 0.1571 0.3500 0.6950
2 0.0385 0.1027 0.4893 0.7260 0.9137
1000 1.5 0.0047 0.0058 0.0172 0.0452 0.1667
1.75 0.0143 0.0251 0.1440 0.3273 0.6730
2 0.0352 0.1002 0.4860 0.7239 0.9128
1000 30 1.5 0.0387 0.0484 0.1499 0.3320 0.6748
1.75 0.0470 0.1193 0.5351 0.7665 0.9309
2 0.0592 0.3340 0.8175 0.9254 0.9802
100 1.5 0.0162 0.0223 0.0940 0.2272 0.5558
1.75 0.0265 0.0871 0.4612 0.7124 0.9115
2 0.0434 0.3041 0.7988 0.9167 0.9778
500 1.5 0.0065 0.0104 0.0521 0.1341 0.3994
1.75 0.0169 0.0635 0.3910 0.6507 0.8865
2 0.0387 0.2995 0.7920 0.9136 0.9768
1000 1.5 0.0046 0.0072 0.0399 0.1079 0.3443
1.75 0.0144 0.0579 0.3663 0.6257 0.8744
2 0.0362 0.2964 0.7908 0.9131 0.9767
2500 30 1.5 0.0403 0.0580 0.2478 0.4806 0.7962
1.75 0.0480 0.2185 0.7214 0.8804 0.9677
2 0.0589 0.5557 0.9179 0.9688 0.9920
100 1.5 0.0155 0.0294 0.1621 0.3581 0.6973
1.75 0.0255 0.1704 0.6599 0.8474 0.9578
2 0.0418 0.5256 0.9086 0.9650 0.9910
500 1.5 0.0066 0.0130 0.0883 0.2243 0.5507
1.75 0.0169 0.1251 0.5900 0.8066 0.9452
2 0.0372 0.5136 0.9047 0.9634 0.9906
1000 1.5 0.0047 0.0103 0.0737 0.1896 0.4970
1.75 0.0149 0.1202 0.5674 0.7902 0.9394
2 0.0370 0.5163 0.9045 0.9633 0.9906

The numbers in the table are the median R? from each simulated distribution with 100,000 replications.
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estimate of a for stock returns the CRSP data, using both the Hill method (Hill, 1975) and the Dufour and
Kurz-Kim Monte Carlo method (Dufour and Kurz-Kim, 2006), is & = 1.86. McCulloch’s quantile estimation
method (McCulloch, 1986) produces & = 1.89. The total return for the sample period is jip = 0.1088. The
simulated median R?, from 100,000 replications, is 0.3823 for a = 2, but it is only 0.0940 for o = 1.86. The
empirical cumulative probability of obtaining a coefficient of determination of 0.0135 is a minuscule 1.28%
for a = 2, but it is a more sizable 18.61% for a = 1.86. Thus, the inference drawn from the low value of R?
by Fama and French (1992)—that the empirical usefulness of the SLB CAPM is refuted—does not seem to
be robust once proper allowance is made for the distributional properties of the data that give rise to this

statistic.

5 Concluding remarks

After providing a brief overview of some of the properties of a-stable distributions, this paper surveys
the literature on the estimation of linear regression models with infinite-variance variables and associated
methods of conducting hypothesis and specification tests. Our paper adds to the already-wide body of
knowledge that there are substantial differences between regression models with infinite-variance and finite-
variance regressors and error terms by examining the properties of the coefficient of determination. In the
infinite-variance case with iid regressors and error terms that share the same index of stability «, we find
that the R? statistic does not converge to a constant but instead that it has a nondegenerate asymptotic
distribution on the [0, 1] interval, with a pdf that has infinite singularities at 0 and 1. We provide closed-
form expressions for the cdf and pdf of this limit random variable. Finally, we provide an application of our
methods to the Fama-MacBeth two-stage regression setup and show that the coefficient of determination
asymptotically converges to 0 in probability when the regression variables have infinite variance.

Given the random nature and some of the unusual properties of the limit law R when the regressors and
error terms share the same index of stability, and given our related finding that R? converges to zero in
probability when the tail index of the disturbance term is smaller than that of the regressor, we view our
results as establishing that one should not rely on R? as a measure of the goodness of fit of a regression
model whenever the regressors and disturbance terms are sufficiently heavy-tailed to call into question the
existence of second (population) moments. At the very least, if one insists on reporting the coefficient of
determination in regressions with infinite-variance variables, one should also report a point estimate of the
median of R?, /. = 7/(f) + 1), where 7 is as in Theorem 1, and indicate whether the error terms and
regressors may reasonably be assumed to share the same index of stability. It is widely known—and is

certainly stressed in all introductory econometrics textbooks—that a high value of R? does not provide a
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sufficient basis for concluding that an empirical regression model is a “good” explanation of the dependent
variable, or even that the regression is correctly specified. Nevertheless, one suspects, researchers may view
empirical regressions with low values of R? as an indication that the (linear) regression relationship is either
weak or unreliable. A direct implication of the work presented in this paper is that whenever the data are
characterized by significant outlier activity, a low value of R? should not by itself be used to disqualify the
model from further consideration.

Several extensions to the work presented here are possible. First, it seems desirable to study how well the
distribution of R approximates the empirical distribution of R? in finite samples, for various types of heavy-
tailed distributions and for various types of estimators (including OLS, Blattberg-Sargent’s BLUE, and the
least-absolute deviation estimator). Second, the theoretical results presented in our paper depend crucially
on the assumption that the random variables are iid. Relaxing this assumption would seem to be useful,
as many economic time series have interesting dependence and heterogeneity features. Introducing serial
dependence and heterogeneity, especially conditional heterogeneity, in our model would serve the purpose of
studying how the properties of R may be affected by such departures from the basic case of iid variables. The

authors are considering conducting research to extend the work presented in this paper along these lines.
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