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Abstract

This paper considers Bayesian regression with normal and double-
exponential priors as forecasting methods based on large panels of time
series. We show that, empirically, these forecasts are highly correlated
with principal component forecasts and that they perform equally well
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Domenico Giannone, Université Libre de Bruxelles, ECARES,

Lucrezia Reichlin, European Central Bank, ECARES and CEPR

Summary

Many problems in economics require the exploitation of large panels of time
series. Recent literature has shown the “value” of large information for signal
extraction and forecasting and has proposed methods based on factor models
to handle the large dimensionality problem (Forni, Hallin, Lippi, and Reich-
lin, 2005; Giannone, Reichlin, and Sala, 2004; Stock and Watson, 2002a,b). A
related literature has explored the performance of Bayesian model averaging
for forecasting (Koop and Potter, 2003; Stock and Watson, 2004, 2005; Wright,
2003) but, surprisingly, few papers explore the performance of Bayesian re-
gression in forecasting with high dimensional data. Exceptions are Stock and
Watson (2005) who consider normal Bayes estimators for orthonormal regressors
and Giacomini and White (2006) who provide an empirical example in which a
large Bayesian VAR is compared with principal component regression (PCR).

Bayesian methods are part of the traditional econometrician toolbox and of-
fer a natural solution to overcome the curse of dimensionality problem by shrink-
ing the parameters via the imposition of priors. In particular, the Bayesian VAR
has been advocated as a device for forecasting macroeconomic data (Doan, Lit-
terman, and Sims, 1984; Litterman, 1986). It is then surprising that, in most
applications, these methods have been applied to relatively small systems and
that their empirical and theoretical properties for large panels have not been
given more attention by the literature.

This paper is a first step towards filling this gap. We analyze Bayesian
regression methods under Gaussian and double-exponential prior.

Our two choices for the prior correspond to two interesting cases: variable
aggregation and variable selection. Under Gaussian prior, maximizing the pos-
terior distribution generates coefficients (the mode) implying that all variables
in the panel are given non-zero coefficients. Regressors, as in PCR are linear
combinations of all variables in the panel. The double-exponential, on the other
hand, favors sparse models since it puts more mass near zero and in the tails
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which induces a tendency of the coefficients maximizing the posterior distribu-
tion to be either large or zero. As a result, it favors the recovery of a few large
coefficients instead of many small ones and truly zero rather than small values.
This case is interesting because it results in variable selection rather than in
variable aggregation and, in principle, this should give results that are more
interpretable from the economic point of view.

For the Gaussian case we show asymptotic results for the size of the cross
section n and the sample size T going to infinity. The analysis provides guid-
ance for the the setting of the prior, also interpreted as a Ridge penalization
parameter. The empirical analysis reports results for the optimal parameter and
for a larger range of parameter choice. The setting of the parameters for the
double-exponential case is exclusively empirical. It is designed so as to deliver
a given number of non zero coefficients at each estimation step in the out-of-
sample evaluation period. The algorithms provide good results by selecting few
variables in the regression. We use two algorithms recently proposed which
work without limitations of dimensionality: LARS (Least Angle Regression)
developed by Efron, Hastie, Johnstone, and Tibshirani (2004) and the Iterative
Landweber scheme with soft thresholding at each iteration developed by De Mol
and Defrise (2002) and Daubechies, Defrise, and De Mol (2004).

These results show that our data, which correspond to the typical macroe-
conomic data-set used for macroeconomic policy analysis, is characterized by
collinearity rather than sparsity. On the other hand, the result that few se-
lected variables are able to capture the space spanned by the common factors,
suggests that small models with accurately selected variables may do as well as
methods that use information on large panels and are based on regressions on
linear combinations of all variables. This point calls for further research since
our results show that the variable selection provided by the Lasso regression
is not clearly interpretable and they are not the typical ones that a macroe-
conomist would include in a VAR. Moreover, the selected variables change over
time. A conjecture, to be explored in further work, is that, although the under-
lying model implies parameter instability, a well chosen approximating model
based on a large cross-section has a chance of performing well in forecast since
the use of a large number of variables works as a sort of insurance against
parameter instability.
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Zusammenfassung 

Viele wirtschaftliche Probleme erfordern die Auswertung umfangreicher Zeitreihen. 
In jüngeren Veröffentlichungen wurde der „Wert“ großer Datenmengen für die 
Signalextraktion und für Prognosen aufgezeigt, und es wurden auf Faktormodellen 
basierende Methoden vorgeschlagen, um das Problem der hochdimensionalen Daten 
in den Griff zu bekommen (Forni, Hallin, Lippi und Reichlin, 2005; Giannone, Reichlin 
und Sals, 2004; Stock und Watson, 2002a,b). Darüber hinaus wurde die Eignung des 
Bayesian Model Averaging (BMA) für Vorhersagen untersucht (Koop und Potter, 
2003;  Stock und Watson, 2004, 2005; Wright, 2003), aber erstaunlicherweise wird 
nur in wenigen Arbeiten untersucht, inwieweit sich die Bayes’sche Regression für 
Prognosen mit hochdimensionalen Daten eignet. Ausnahmen bilden Stock und 
Watson (2005), die normale Bayes’sche Schätzungen für orthonormale Regressoren 
in Betracht ziehen, sowie Giacomini und White (2006), die ein empirisches Beispiel 
liefern, bei dem ein weit gefasstes Bayes’sches VAR-Modell mit der 
Hauptkomponentenregression (Principle Component Regression, PCR) verglichen 
wird. 

Die Bayes’schen Methoden gehören zum traditionellen ökonometrischen 
Instrumentarium und bieten eine natürliche Lösung zur Überwindung des 
Dimensionsproblems, die darin besteht, die Parameter durch Einführung von 
Vorwissen (priors) zu schrumpfen. Insbesondere das Bayes’sche VAR-Modell wurde 
zur Vorhersage makroökonomischer Daten empfohlen (Doan, Litterman und Sims, 
1984; Litterman, 1986). Es überrascht daher, dass diese Methoden in den meisten 
Fällen auf relativ kleine Systeme angewandt wurden und dass ihre empirische und 
theoretische Eignung für große Datenmengen keine größere Beachtung in der 
Literatur gefunden hat. 

Dieses Papier ist der erste Schritt zur Behebung dieses Mankos. Wir analysieren 
die Bayes’schen Regressionsmethoden mit Gaußschen und doppelexponentiellen 
apriori Verteilungen. 

Die beiden von uns gewählten apriori Verteilungen entsprechen zwei interessanten 
Fällen: variable Aggregation und variable Selektion. Beim Gaußschen prior erhält 
man durch die Maximierung der posterioren Verteilung Koeffizienten (den Modus), 
was impliziert, dass alle betroffenen Variablen Nicht-Null-Koeffizienten erhalten. 
Regressoren wie bei der PCR sind lineare Verbindungen aller verwendeten 
Variablen. Beim doppelexponentiellen prior hingegen werden Sparse-Modelle
bevorzugt, da sich dabei mehr Werte um den Nullpunkt und an den Enden der 
Verteilungskurve sammeln, wodurch die Koeffizienten die posteriore Verteilung 
tendenziell so maximieren, dass sie entweder groß oder null ist. Im Ergebnis führt es 
zur Wiederherstellung weniger großer statt vieler kleiner Koeffizienten und zu echten 
Null-Werten anstelle von kleinen Werten. Dieser Fall ist interessant, denn er führt 
eher zu einer variablen Selektion als zu einer variablen Aggregation und sollte im 
Prinzip zu Ergebnissen führen, die vom wirtschaftlichen Standpunkt aus besser zu 
interpretieren sind. 



Im Gaußschen Fall zeigen wir asymptotische Ergebnisse für den Querschnitt n und 
die Stichprobe T, die gegen unendlich geht. Die Analyse liefert eine Anleitung für das 
Setzen des priors, der auch als Ridge-Penalisierungsparameter bezeichnet wird. Die 
empirische Analyse liefert Ergebnisse für den optimalen Parameter und für eine 
größere Auswahl an Parametern. Das Setzen der Parameter beim 
doppelexponentiellen prior erfolgt rein empirisch. Es soll dazu dienen, bei jedem 
Schätzschritt des Schätzungszeitraums, in dem keine Stichproben genommen 
wurden, eine bestimmte Anzahl von Nicht-Null-Koeffizienten bereitzustellen. Die 
Algorithmen liefern gute Ergebnisse durch die Selektion weniger Variablen in der 
Regression. Wir verwenden zwei vor kurzem aufgestellte Algorithmen, die ohne 
Beschränkung der Dimensionalität funktionieren: die von Efron, Hastie, Johnstone 
und Tibshirani 2004 entwickelte Least Angle Regression (LARS) und die von De Mol 
und Defrise 2002 sowie von Daubechies, Defrise und De Mol 2004 entwickelte 
Landweber-Iteration mit einem weichen Übergang bei jeder Iteration.  

Die Ergebnisse zeigen, dass unsere Daten, die den typischen für die Analyse der 
Makropolitik verwendeten makroökonomischen Datensätzen entsprechen, eher durch 
Kollinearität gekennzeichnet sind. Zum anderen lässt das Ergebnis, dass einige 
ausgewählte Variablen den von den gemeinsamen Faktoren begrenzten Bereich 
erfassen können, den Schluss zu, dass kleine Modelle mit sorgfältig ausgesuchten 
Variablen genauso gut sein können wie Methoden, bei denen hochdimensionale 
Daten verwendet werden und die auf der Regression von linearen Verbindungen aller 
Variablen basieren. Dieser Punkt bedarf weiterer Untersuchungen, da unsere 
Ergebnisse zeigen, dass die Auswahl der Variablen auf Grundlage der Lasso-
Regression nicht klar interpretierbar ist; bei ihnen handelt es sich auch nicht um 
typische Variablen, die ein Makroökonomiker in einer Vektorautoregression 
verwenden würde. Außerdem verändern sich die gewählten Variablen mit der Zeit. 
Eine Vermutung, die weiter verfolgt werden muss, ist, dass ein sorgfältig 
ausgewähltes Schätzmodell auf der Grundlage eines großen Querschnitts bei der 
Prognose gute Ergebnisse liefern könnte, obwohl das zugrunde liegende Modell eine 
Instabilität der Parameter impliziert. Grund hierfür ist, dass eine große Anzahl von 
Variablen als eine Art Versicherung gegen diese Instabilität wirkt. 



1 Introduction

Many problems in economics require the exploitation of large panels of time
series. Recent literature has shown the “value” of large information for signal
extraction and forecasting and new methods have been proposed to handle the
large dimensionality problem (Forni, Hallin, Lippi, and Reichlin, 2005; Gian-
none, Reichlin, and Sala, 2004; Stock and Watson, 2002a,b).

A related literature has explored the performance of Bayesian model aver-
aging for forecasting (Koop and Potter, 2003; Stock and Watson, 2004, 2005a;
Wright, 2003) but, surprisingly, few papers explore the performance of Bayesian
regression in forecasting with high dimensional data. Exceptions are Stock and
Watson (2005) who consider normal Bayes estimators for orthonormal regressors
and Giacomini and White (2006) who provide an empirical example in which a
large Bayesian VAR is compared with principal component regression (PCR).

Bayesian methods are part of the traditional econometrician toolbox and of-
fer a natural solution to overcome the curse of dimensionality problem by shrink-
ing the parameters via the imposition of priors. In particular, the Bayesian VAR
has been advocated as a device for forecasting macroeconomic data (Doan, Lit-
terman, and Sims, 1984; Litterman, 1986). It is then surprising that, in most
applications these methods have been applied to relatively small systems and
that their empirical and theoretical properties for large panels have not been
given more attention by the literature.

This paper is a first step towards filling this gap. We analyze Bayesian re-
gression methods under Gaussian and double-exponential prior and study their
forecasting performance on the standard “large” macroeconomic dataset that
has been used to establish properties of principal component based forecast
(Stock and Watson, 2002a,b). Moreover we analyze the asymptotic properties
of Gaussian Bayesian regression for n, the size of the cross-section and T , the
sample size, going to infinity. The aim is to establish a connection between
Bayesian regression and the classical literature on forecasting with large panels
based on principal components.

Our two choices for the prior correspond to two interesting cases: variable
aggregation and variable selection. Under Gaussian prior, maximizing the pos-
terior distribution generates coefficients (the mode) implying that all variables
in the panel are given non-zero coefficients. Regressors, as in PCR are linear
combinations of all variables in the panel, but while the Gaussian prior gives de-
creasing weight to the ordered eigenvalues of the covariance matrix of the data,
principal components imply unit weight to the dominant ones and zero to the
others. The double-exponential, on the other hand, favors sparse models since
it puts more mass near zero and in the tails which induces a tendency of the
coefficients maximizing the posterior distribution to be either large or zero. As
a result, it favors the recovery of a few large coefficients instead of many small
ones and truly zero rather than small values. This case is interesting because it
results in variable selection rather than in variable aggregation and, in principle,
this should give results that are more interpretable from the economic point of
view.
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Under double-exponential prior there is no analytical form for the maximizer
of the posterior distribution, but we can exploit the fact that, under the prior
of i.i.d. regression coefficients, the solution amounts to a Lasso (least absolute
shrinkage and selection operator) regression for which there are several algo-
rithms. In the empirics we will use two algorithms recently proposed which
work without limitations of dimensionality: LARS (Least Angle Regression)
developed by Efron, Hastie, Johnstone, and Tibshirani (2004) and the Iterative
Landweber scheme with soft thresholding at each iteration developed by De Mol
and Defrise (2002) and Daubechies, Defrise, and De Mol (2004).

An interesting feature of the Lasso regression is that it combines variable
selection and parameter estimation. The estimator depends on the variable
to be predicted and this may have advantages in some empirical situations.
The availability of the algorithms mentioned above, which are computationally
feasible, makes the double-exponential prior an attractive alternative to other
priors used for variable selection such as the one proposed Fernandez, Ley, and
Steel (2001) in the contest of Bayesian Model Averaging and applied by Stock
and Watson (2005a) for macroeconomic forecasting with large cross-sections,
which require computationally demanding algorithms.

Although Gaussian and double-exponential Bayesian regressions imply a dif-
ferent form of the forecast equation, an out-of-sample evaluation based on the
Stock and Watson dataset, shows that, for a given range of the prior choice,
the two methods produce forecasts with similar mean-square errors and which
are highly correlated. These forecasts have also similar mean-square errors and
are highly correlated with those produced by principal components: they do
well when PCR does well. For the case of Lasso, the prior range corresponds
to the selection of few variables. However, the forecasts obtained from these
informative targeted predictors do not outperform PCR based on few principal
components1.

Since principal component forecasts are known to do well when variables are
nearly collinear and this is a typical feature of large panels of macroeconomic
data (see Giannone, Reichlin, and Sala, 2004), we study the case of Gaussian
regression under near-collinearity and derive conditions on the prior parameters
under which the forecast converges to the efficient one (i.e. the forecast under
knowledge of the true parameters) as n, the size of the cross-section and T , the
sample size, go to infinity.

The technical assumptions under which we derive the result are those that
define the approximate factor structure first introduced by Chamberlain and
Rothschild (1983) and generalized by Forni and Lippi (2001) and Forni, Hallin,
Lippi, and Reichlin (2000). Intuitively, near-collinearity is captured by assuming
that, as the size of the cross-section n increases, few eigenvalues increase while
the others are bounded. Related assumptions have been introduced by Bai
and Ng (2002), Bai (2003), Stock and Watson (2002a) and Stock and Watson

1Targeted predictors have recently found to improve performance of factor augmented
forecasts when used to form principal components for factor estimation by Bai and Ng (2006).
This result is not directly comparable with ours since we use targeted predictors directly as
regressors.

3
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(2002b). Bai (2003), Bai and Ng (2002), Forni, Hallin, Lippi, and Reichlin
(2000), Stock and Watson (2002a) and Stock and Watson (2002b) have used
them to derive the n and T asymptotic properties of the principal component
regression.

This result shows how to select the prior in relation to n and helps inter-
preting the empirical findings. Under near-collinearity, if the prior is chosen
appropriately in relation with n, Bayesian regression under normality will give
weight to the principal components associated with the dominant eigenvalues
and therefore will produce results which are similar to PCR. But this is what
we find in the empirics which indeed shows that our data structure is nearly
collinear.

However, our empirics also shows that the same results, similar performances
and high correlation with PCR forecasts, are achieved by the Lasso forecast
which is based on a regression on few variables. Again, we interpret this re-
sult as evidence that our panel is characterized by collinear rather than sparse
covariance matrix and that few variables span the space of the pervasive com-
mon factors. These variables must be correlated with the principal components.
Further work plans to explore this conjecture in more detail.

The paper is organized as follows. The second Section introduces the prob-
lem of forecasting using large cross sections. The third Section reports the result
of the out-of-sample exercise for the three methods considered: principal com-
ponents, Bayesian regression with normal and with double-exponential prior.
The fourth Section reports asymptotic results for the (zero mean) Gaussian
prior case under approximate factor structure. The fifth Section concludes and
outlines problems for future research.

2 Three solutions to the “curse of dimensional-
ity” problem

Consider the (n×1) vector of covariance-stationary processes Zt = (z1t, ..., znt)′.
We will assume that they all have mean zero and unitary variance.

We are interested in forecasting linear transformations of some elements of
Zt using all the variables as predictors. Precisely, we are interested in estimating
the linear projection

yt+h|t = proj {yt+h|Ωt}
where Ωt = span {Zt−p, p = 0, 1, 2, ...} is a potentially large time t information
set and yt+h = zh

i,t+h = fh(L)zi,t+h is a filtered version of zit, for a specific i.

Traditional time series methods approximate the projection using only a fi-
nite number, p, of lags of Zt. In particular, they consider the following regression
model:

yt+h = Z ′
tβ0 + ... + Z ′

t−pβp + ut+h = X ′
tβ + ut+h

where β = (β′
0, ..., β

′
p)

′ and Xt = (Z ′
t, ..., Z

′
t−p)

′.
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Given a sample of size T , we will denote by X = (Xp+1, ..., XT−h)′ the
(T − h − p) × n(p + 1) matrix of observations for the predictors and by y =
(yp+1+h, ..., yT )′ the (T −h−p)×1 matrix of the observations on the dependent
variable. The regression coefficients are typically estimated by Ordinary Least
Squares (OLS), β̂LS = (X ′X)−1X ′y, and the forecast is given by ŷLS

T+h|T =

X ′
T β̂LS . When the size of the information set, n, is large, such projection

involves the estimation of a large number of parameters. This implies loss
of degrees of freedom and poor forecast (“curse of dimensionality problem”).
Moreover, if the number of regressors is larger that the sample size, n(p+1) > T ,
the OLS is not feasible.

To solve this problem, the method that has been considered in the literature
is to compute the forecast as a projection on the first few principal components
(Forni, Hallin, Lippi, and Reichlin, 2005; Giannone, Reichlin, and Sala, 2004;
Giannone, Reichlin, and Small, 2005; Stock and Watson, 2002a,b).

Consider the spectral decomposition of the sample covariance matrix of the
regressors:

SxV = V D (1)

where D = diag(d1, ..., dn(p+1)) is a diagonal matrix having on the diagonal
the eigenvalues of Sx = 1

T−h−pX ′X in decreasing order of magnitude and
V = (v1, ..., vn(p+1)) is the n(p + 1) × n(p + 1) matrix whose columns are the
corresponding eigenvectors2. The normalized principal components (PC) are
defined as:

f̂it =
1√
di

v′
iXt (2)

for i = 1, · · · , N where N is the number of non zero eigenvalues3.
If most of the interactions among the variables in the information set is

due to few common underlying factors, while there is limited cross-correlation
among the variable specific components of the series, the information content
of the large number of predictors can indeed be summarized by few aggregates,
while the part not explained by the common factors can be predicted by means
of traditional univariate (or low-dimensional forecasting) methods and hence
just captured by projecting on the dependent variable itself (or on a small set
of predictors). In such situations, few principal components, F̂t = (f̂1t, ..., f̂rt)
with r << n(p + 1), provide a good approximation of the underlying factors.

Assuming for simplicity that lags of the dependent variable are not needed
as additional regressors, the principal component forecast is defined as:

yPC
t+h|t = proj

{
yt+h|ΩF

t

} ≈ proj {yt+h|Ωt} (3)

2The eigenvalues and eigenvectors are typically computed on 1
T−p

∑T

t=p+1
XtX′

t (see

for example Stock and Watson, 2002a). We instead compute them on 1
T−h−p

X′X =

1
T−p−h

∑T−h

t=p+1
XtX′

t for comparability with the other estimators considered in the paper.
3Note that N ≤ min{n(p + 1), T − h − p}.
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where ΩF
t = span

{
F̂t, F̂t−1, · · · ,

}
is a parsimonious representation of the in-

formation set. The parsimonious approximation of the information set makes
the projection feasible, since it requires the estimation of a limited number of
parameters.

The literature has studied rates of convergence of the principal component
forecast to the efficient forecast under assumptions defining an approximate
factor structure (see the next Section). Under those assumptions, once common
factors are estimated via principal components, the projection is computed by
OLS treating the estimated factors as if they were observables.

The Bayesian approach consists instead in imposing limits on the length of
β through priors and estimating the parameters as the posterior mode. The
parameters are hence used to compute the forecasts. Here we consider two
alternatives: Gaussian and double exponential prior.

Under Gaussian prior, ut ∼ i.i.d. N (0, σ2
u) and β ∼ N (β0, Φ0), and as-

suming for simplicity that all parameters are shrunk to zero, i.e. β0 = 0, we
have:

β̂bay =
(
X ′X + σ2

uΦ−1
0

)−1
X ′y.

The forecast is hence computed as:

ŷbay
T+h|T = X ′

T β̂bay.

In the case in which the parameters are independently and identically dis-
tributed, Φ0 = σ2

βI, the estimates are equivalent to those produced by penalized

Ridge regression with parameter ν = σ2
u

σ2
β

4. Precisely5:

β̂bay = arg min
β

{‖y − Xβ‖2 + ν‖β‖2
}

.

There is a close relation between OLS, PCR and Bayesian regressions. For
example, If the prior belief on the regression coefficients is that they are i.i.d.,
they can be represented as a weighted sum of the projections on the principal
components:

X ′
T β̂ =

N∑
i=1

wif̂iT α̂i (4)

where α̂i = 1√
di

v′
iX

′y/(T − h − p) is the regression coefficient of y on the ith
principal component. For OLS we have wi = 1 for all i. For the Bayesian

4Homogenous variance and mean zero are very naive assumptions. In our case, they are
justified by the fact that the variables in the panel we will consider for estimation are stan-
dardized and demeaned. This transformation is natural for allowing comparison with principal
components.

5In what follows we will denote by ‖ · ‖ the L2 matrix norm, i.e. for every matrix A,

‖A‖ =
√

λmax(A′A). For vectors it correspond to the Euclidean norm.
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estimates wi = di

di+
ν

T−h−p
, where ν = σ2

u

σ2
β

. For the PCR regression we have

wi = 1 if i ≤ r, and zero otherwise.
OLS, PCR and Gaussian Bayesian regression weight all variables. An alter-

native is to select variables. For Bayesian regression, variable selection can be
achieved by a double exponential prior, which, when coupled with a zero mean
i.i.d. prior, is equivalent to the method that is sometimes called Lasso regression
(least absolute shrinkage and selection operator)6. In this particular i.i.d. prior
case the method can also be seen as a penalized regression with a penalty on
the coefficients involving the L1 norm instead of the L2 norm. Precisely:

β̂lasso = arg min
β

{
‖y − Xβ‖2 + ν

n∑
i=1

|βi|
}

(5)

where ν = 1
τ where τ is the scale parameter of the prior density7 (see e.g.

Tibshirani, 1996).
Compared with the Gaussian density, the double-exponential puts more mass

near zero and in the tails and this induces a tendency to produce estimates of the
regression coefficients that are either large or zero. As a result, one favors the
recovery of a few large coefficients instead of many fairly small ones. Moreover,
as we shall see, the double-exponential prior favors truly zero values instead of
small ones, i.e. it favors sparse regression coefficients (sparse mode).

To gain intuition about Lasso regression, let us consider, as an example, the
case of orthogonal regressors, a case for which the posterior mode has known
analytical form. In particular, let us consider the case in which the regressors
are the principal components of X. In this case, Lasso has the same form of (4)
with wiα̂i replaced by Sν(α̂i) where Sν is the soft-thresholder defined by

Sν(α) =

⎧⎨⎩
α + ν/2 if α ≤ −ν/2

0 if |α| < ν/2
α − ν/2 if α ≥ ν/2.

(6)

As seen, this sparse solution is obtained by setting to zero all coefficients α̂i

which in absolute value lie below the threshold ν/2 and by shrinking the largest
ones by an amount equal to the threshold. Let us remark that it would also be
possible to leave the largest components untouched, as done in so-called hard-
thresholding, but we do not consider this variant here since the lack of continuity
of the function Sν(α) makes the theoretical framework more complicated.

In the general case, i.e. with non orthogonal regressors, the Lasso solution
will enforce sparsity on the variables themselves rather than on the principal
components and this is an interesting feature of the method since it implies
a regression on few observables rather than on few linear combinations of the
observables. Note that the model with non-Gaussian priors is not invariant
under orthogonal linear transformation of the data.

6It should be noted however that Lasso is actually the name of an algorithm for finding
the maximizer of the posterior proposed in Tibshirani (1996).

7We recall here that the variance of the prior density is proportional to 2τ2.
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Notice also that, unlike Ridge and PCR, where the selection of the regressors
is performed independently of the choice of the series to be forecasted, the Lasso
regression depends on that choice.

Methods described by equation (4) will perform well provided that no truly
significant coefficients αi are observed for i > r, because in principal component
regression they will not be taken into account and in Ridge their influence will
be highly weakened. Bad performances are to be expected if, for example, we
aim at forecasting a time series yt, which by bad luck is just equal or close to a
principal component f̂i with i > r. Lasso solves this problem.

Unfortunately, in the general case the maximizer of the posterior distribution
has no analytical form and has to be computed using numerical methods such as
the Lasso algortithm of Tibshirani (1996) or quadratic programming based on
interior point methods advocated in Chen, Donoho, and Saunders (2001). Two
efficient alternatives to the Lasso algorithm, which work without limitations
of dimensionality also for sample size T smaller than the number of regressors
n(p + 1), have been developed more recently by Efron, Hastie, Johnstone, and
Tibshirani (2004) under the name LARS (Least Angle Regression)8 and by
De Mol and Defrise (2002); Daubechies, Defrise, and De Mol (2004) who use
instead an Iterative Landweber scheme with soft thresholding at each iteration9.

The next section will consider the empirical performance of the three meth-
ods discussed in an out-of-sample forecast exercise based on a large panel of
time series.

3 Empirics

The data set employed for the out-of-sample forecasting analysis is the same as
the one used in Stock and Watson (2005b). The panel includes real variables
(sectoral industrial production, employment and hours worked), nominal vari-
ables (consumer and producer price indices, wages, money aggregates), asset
prices (stock prices and exchange rates), the yield curve and surveys. A full
description is given in Appendix C.

Series are transformed to obtain stationarity. In general, for real variables,
such as employment, industrial production, sales, we take the monthly growth
rate. We take first differences for series already expressed in rates: unemploy-
ment rate, capacity utilization, interest rate and some surveys. Prices and wages
are transformed to first differences of annual inflation following Giannone, Re-
ichlin, and Sala (2004); Giannone, Reichlin, and Small (2005).

Let us define IP as the monthly industrial production index and CPI as the
consumer price index. The variables we forecast are

8The LARS algorithm has also been used in econometric forecasting by Bai and Ng (2006)
for selecting variables to form principal components in factor augmented forecasts.

9The latter algorithm carries out most of the intuition of the orthogonal regression case
and is described in Appendix B. For the LARS algorithm we refer to Efron, Hastie, Johnstone,
and Tibshirani (2004).
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zh
IP,t+h = (ipt+h − ipt) = zIP,t+h + ... + zIP,t+1

and
zh
CPI,t+h = (πt+h − πt) = zCPI,t+h + ... + zCPI,t+1

where ipt = 100 × logIPt is the (rescaled) log of IP and πt = 100 × log CPIt

CPIt−12

is the annual CPI inflation (IP enters in the pre-transformed panel in first log
differences, while annual inflation in first differences).

The forecasts for the (log) IP and the level of inflation are recovered as:

îpT+h|T = ẑh
IP,T+h|T + ipT

and
π̂T+h|T = ẑh

CPI,T+h|T + πT

The accuracy of predictions is evaluated using the mean-square forecast error
(MSFE) metric, given by:

MSFEh
π =

1
T1 − T0 − h + 1

T1−h∑
T=T0

(π̂T+h|T − πT+h)2

and

MSFEh
ip =

1
T1 − T0 − h + 1

T1−h∑
T=T0

(îpT+h|T − ipT+h)2

The sample has a monthly frequency and ranges from 1959:01 to 2003:12.
The evaluation period is 1970:01 to 2002:12. T1=2003:12 is the last available
point in time, T0= 1969:12 and h = 12. We consider rolling estimates with a
window of 10 years, i.e. parameters are estimated at each time T using the most
recent 10 years of data.

All the procedures are applied to standardized data. Mean and variance are
re-attributed to the forecasts accordingly.

We report results for industrial production (IP) and the consumer price
index (CPI).

Let us start from principal component regression. We report results for the
choice of r = 1, 3, 5, 10, 25, 50, 75 principal components. The case r = 0 is the
forecast implied from a random walk with drift on the log of IP and the annual
CPI inflation, while r = n is the OLS solution. We only report results for p = 0
which is the one typically considered in macroeconomic applications and for
which the theory has been developed10 .

We report MSFE relative to the random walk, and the variance of the fore-
casts relative to the variance of the series of interest. The MSFE is also reported

10The empirical literature has also consider the inclusion of the past of the variable of
interest to capture series specific dynamic. We do not consider this case here since for once
few PC are included, series specific dynamics does not help forecasting our variables of interest
as shown in D’Agostino and Giannone (2005)
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for two sub-samples: the first half of the evaluation period 1970-1985, and the
second half 1985-2002. This would help us understand the relative performance
of the methods also in a case where the predictability of key macroeconomic time
series has dramatically decreased (on this point, see D’Agostino, Giannone, and
Surico (2006)). Results are reported in Table 1.

Table 1: Principal component forecasts

Industrial Production
Number of Principal Components

1 3 6 10 25 50 75
MFSE 1971-2002 0.91 0.62 0.56 0.54 0.65 0.93 1.56
MFSE 1971-1984 0.89 0.45 0.35 0.34 0.46 0.70 1.18
MFSE 1985-2002 0.98 1.13 1.16 1.13 1.21 1.60 2.68

Variance∗ 0.23 0.70 0.79 0.97 1.28 1.43 1.78

Consumer Price Index
Number of Principal Components

1 3 6 10 25 50 75
MFSE 1971-2002 0.57 0.55 0.57 0.69 0.83 1.17 1.69
MFSE 1971-1984 0.48 0.40 0.39 0.48 0.56 0.89 1.23
MFSE 1985-2002 1.03 1.28 1.43 1.71 2.11 2.47 3.83

Variance∗ 0.36 0.55 0.61 0.63 0.69 0.89 1.69

MSFE are relative to a the Naive, Random Walk, forecast. ∗The variance of the forecast
relative to the variance of the series.

Let us start from the whole evaluation sample. Results show that principal
components improve a lot over the random walk both for IP and CPI. The
advantage is lost when taking too many PC, which implies loss of parsimony.
Notice that, as the number of PC increases, the variance of the forecasts becomes
larger to the point of becoming larger than the variance of the series itself. This
is explained by the large sample uncertainty of the regression coefficients when
there is a large number of regressors. Looking at the two sub-samples, we see
that PCs perform very well in the first part of the sample, while in the most
recent period they perform very poorly, worse than the random walk.

For comparability, we focus on the case p = 0 also for the Bayesian regression
(no lags of the regressor). Note, that, for h = 1, this case corresponds to
a row of a VAR of order one. The exercise is for the i.i.d. Gaussian prior
(Ridge regression). This prior works well for the p = 0 case considered here.
However, for the case p > 0, it might be useful to shrink more the coefficients of
additional lagged regressors, as, for example, with the Minnesota prior (Doan,
Litterman, and Sims, 1984; Litterman, 1986). This is beyond the scope of the
present empirical analysis which is meant as a first assessment of the general
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performance of the methods11.
For the Bayesian (Ridge) case, we run the regression using the first estima-

tion sample 1959-1969 for a grid of priors. We then choose the priors for which
the in-sample fit explains a given fraction 1−κ of the variance of the variable to
be forecast. We report results for different values of κ (the associated ν, which
are kept fixed for the whole out-of-sample evaluation period, are also reported).
Notice that κ = 1 corresponds to the random walk since, in this case, all co-
efficients are set to zero. The other extreme, κ close to 0, is associated with a
quite uninformative prior and hence will be very close to the OLS. Results are
reported in Table 2.

Table 2: Bayesian forecasts with Gaussian prior
Industrial Production

In-sample Residual variance
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν 6 25 64 141 292 582 1141 2339 6025

MFSE 1971-2002 0.96 0.70 0.60 0.56 0.56 0.58 0.64 0.72 0.83
MFSE 1971-1984 0.74 0.50 0.41 0.38 0.40 0.44 0.52 0.63 0.78
MFSE 1985-2002 1.59 1.31 1.16 1.08 1.03 1.00 0.98 0.98 0.98

Variance∗ 0.71 0.63 0.57 0.49 0.39 0.29 0.19 0.12 0.07

Correlation with
PC forecasts (r=10) 0.62 0.81 0.89 0.92 0.93 0.91 0.85 0.74 0.48

Consumer Price Index

In-sample Residual variance
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν 16 60 143 288 528 949 1751 3532 9210

MFSE 1971-2002 0.88 0.72 0.66 0.63 0.62 0.63 0.66 0.73 0.84
MFSE 1971-1984 0.72 0.58 0.52 0.51 0.51 0.54 0.59 0.68 0.82
MFSE 1985-2002 1.60 1.41 1.29 1.19 1.11 1.04 0.98 0.95 0.95

Variance∗ 0.41 0.35 0.32 0.28 0.24 0.19 0.13 0.08 0.05

Correlation with
PC forecasts (r=10) 0.68 0.86 0.92 0.94 0.92 0.89 0.83 0.69 0.33

MSFE are relative to a the Naive, Random Walk, forecast. ∗The variance of the forecast
relative to the variance of the series.

The Ridge forecast performs well for a range of κ between 30% and 70%
that are associated with shrinkage parameters between half and ten times the
cross-sectional dimension, n. For the whole sample, the MSFE are close to that
obtained with principal component regression. Moreover, the forecasts produced
by Ridge regressions are smoother than the PC forecasts, which is a desirable
property.

11An additional feature of the Litterman priors is to shrink less coefficients associated with
the variable we are interested in forecasting. This can be helpful when series specific dynamics
have significant forecasting power. We do not consider here this case for comparability with
the PC case. See Footnote 3.
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The last line of the table shows the correlation among Ridge forecasts and
principal component forecasts12. Principal components and Ridge forecasts are
highly correlated, particularly when the prior is such that the forecasting per-
formances are good. The fact that correlation is maximal for parameters giving
the best forecasts suggests that there is a common explanation for the good
performance of the two methods.

As for the two sub-samples, results are also qualitatively similar to principal
component forecasts. Ridge performs particularly well in the first sub-sample
but loses all the advantage in the second. We can note, however, more stability
than in the principal components case. This is not surprising since Ridge uses
all eigenvalues in decreasing importance instead of truncating after r as in the
principal components case. Notice also that, for inflation, with ν in the inter-
mediate range, even in the most recent sample there is a slight improvement
over the random walk.

Finally, we analyze the case of double-exponential priors. In this case, in-
stead of fixing the values of the parameter ν, we select the prior that delivers
a given number (k) of non zero coefficients at each estimation step in the out-
of-sample evaluation period. We look at the cases of k = 1, 3, 5, 10, 25, 50, 75
non-zero coefficients13.

Results, reported in Table 3, show that good forecasts are obtained with
a limited number of predictors, between 5 and 25. As for Ridge, maximal
correlation with the principal component forecast is achieved for the selection
of parameters that gives the best results.

Comparable MSFE for the three methods as well as the correlation of the
forecast suggest that the covariance of our data are characterized by few domi-
nant eigenvalues. In this case, both PC and Ridge, by keeping the largest ones
and giving, respectively zero weight and small weight to the others, should per-
form similarly. This point will emerge more clearly in next Section on the basis
of the asymptotic analysis.

The result for Lasso is less straightforward to interpret since this is a regres-
sion on few variables rather than on few aggregates of the variables. The high
correlation of the Lasso forecast with the PC forecast implies two things. First,
the panel must be characterized by collinearity rather than sparsity and, sec-
ond, few variables must span approximately the space of the pervasive common
factors.

Again, the correlation of the two Bayesian forecasts with the principal com-
ponent forecast, for the priors that ensure good performance, implies that there
must be a common explanation for the success of the three methods.

12For the principal component forecasts we use r = 10. We obtain similar results also for
r = 3, 5, i.e. when PC forecasts perform well.

13For this exercise we use the LARS algorithm which delivers at once the Lasso solutions for
any given number of non zero coefficients, for k = 1, ..., n. An alternative is to select the prior
ν that deliver a given number (k) of non zero coefficients in the initial sample 1959 − 1970.
Then the prior ν can be kept fixed at each estimation step as done for the Ridge case. In this
case, we can use the iterated Landweber algorithm with soft thresholding whose input is the
prior ν rather than the number of non-zero coefficients. This alternative strategy provides
qualitatively similar results. They are available on request.
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Table 3: Lasso forecasts
Industrial Production

Number of non-zero coefficients
1 3 5 10 25 50 60

MFSE 1971-2002 0.86 0.69 0.64 0.60 0.64 0.77 1.10
MFSE 1971-1984 0.80 0.56 0.50 0.44 0.47 0.58 0.91
MFSE 1985-2002 1.05 1.05 1.05 1.07 1.14 1.32 1.67

Variance∗ 0.07 0.16 0.24 0.40 0.53 0.65 0.79
Correlation with

PC forecasts (r=10) 0.05 0.64 0.81 0.85 0.84 0.68 0.44

Consumer Price Index
Number of non-zero coefficients

1 3 5 10 25 50 75
MFSE 1971-2002 0.90 0.76 0.62 0.59 0.68 0.86 1.06
MFSE 1971-1984 0.88 0.70 0.54 0.48 0.52 0.70 0.93
MFSE 1985-2002 1.00 1.04 1.02 1.14 1.44 1.65 1.68

Variance∗ 0.05 0.09 0.18 0.26 0.33 0.39 0.50
Correlation with

PC forecasts (r=10) 0.05 0.64 0.81 0.85 0.84 0.68 0.44

MSFE are relative to a the Naive, Random Walk, forecast. ∗The variance of the forecast
relative to the variance of the series.

The variables selected for k ≈ 10 at the beginning and at the end of the
out-of-sample evaluation period are reported in the last two column of the table
describing the database in Appendix C. Two main results emerge. First, only
some of the variables selected are those typically included in small-medium
size models: the commodity price indexes, the spreads, money aggregates and
stock market variables. Some of the selected variables are sectoral (production,
labor market and price indicators) or regional (housing). Second, the selection
is different at different points in the sample. Only one variable selected at the
beginning of the 70s is also picked-up in the most recent period for CPI inflation
forecasts. For IP forecasts, no variables are selected in both periods.

We have two conjectures about these results. The fact that variables are
not clearly interpretable probably indicates that the panel contains clusters of
correlated variables and the procedure selects a particular one, not necessarily
the most meaningful from the economic point of view. This implies that variable
selection methods are not easily interpretable in this case. The fact that the
procedure selects different variables at different points of the sample, implies
temporal instability. On the other hands, results also indicate that temporal
instability does not affect the relative performance of principal components and
Ridge with respect to Lasso. This suggests that principal components and
Ridge, by aggregating all variables in the panel, stabilize results providing a sort
of insurance against temporal instability. These conjectures will be explored in
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further work.

4 Theory

We have seen that the Bayesian regression and PCR regression can be seen as
ways of stabilizing OLS when data are nearly collinear (sometimes called reg-
ularization methods). Large panels of macroeconomic time series are typically
highly collinear (Giannone, Reichlin, and Sala, 2004) so that these methods are
also appropriate to deal with the “curse of dimensionality” problem.

This observation motivates the assumptions that we will now introduce to
define the asymptotic analysis.

A1) Xt has the following representation14:

Xt = ΛFt + ξt

where Ft = (f1t, ..., frt)′, the common factors, is an r-dimensional station-
ary process with covariance matrix EFtF

′
t = Ir and ξt, the idiosyncratic

components, is an n(p+1)-dimensional stationary process with covariance
matrix Eξtξ

′
t = Ψ.

A2) yt+h = γFt + vt+h where vt+h is orthogonal to Ft and ξt.

Assumption A1 can be understood as a quasi-collinearity assumption whereby
the bulk of cross-correlation is driven by few orthogonal common factors while
the idiosyncratic components are allowed to have a limited amount of cross-
correlation. The conditions that limit the cross-sectional correlation are given
below (condition CR2).

Under assumption A2, if the common factors Ft were observed, we would
have the unfeasible optimal forecast15:

y∗
t+h|t = γFt

Following Forni, Hallin, Lippi, and Reichlin (2000, 2005); Forni, Giannone,
Lippi, and Reichlin (2005), we will impose two sets of conditions, conditions
that ensure stationarity (see appendix A) and conditions on the cross-sectional
correlation as n increases16. These conditions are a generalization to the dy-
namic case of the conditions defining an approximate factor structure given by
Chamberlain and Rothschild (1983). Precisely:

14Notice that here we define the factor model over Xt = (Z′
t, ...Z

′
t−p)′ while the literature

typically defines it over Zt. It can be seen that if Zt follows an approximate factor structure
defined below, with k common factors, then also Xt follows an approximate factor structure
with r ≤ k(p + 1) common factors.

15We are assuming here that common factors are the only source of forecastable dynamics.
We make this assumption for simplicity and since from an empirical point of view series specific
dynamics does not help forecasting our variables of interest. See footnote 3.

16Bai (2003), Bai and Ng (2002) and Stock and Watson (2002a) give similar conditions.
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CR1) 0 < lim infn→∞ 1
nλmin (Λ′Λ) < lim supn→∞

1
nλmax (Λ′Λ) < ∞

CR2) lim supn→∞ λmax (Ψ) < ∞ and lim infn→∞ λmin (Ψ) > 0

Note that CR1 implies that as the cross-sectional dimensional increases few
eigenvalues of Σx = ΛΛ′+Ψ remain pervasive while CR2 implies that the others
are asymptotically bounded.

We study now the properties of the Bayesian estimates if the data are gen-
erated from an approximate factor structure. Let us first notice that under our
assumptions we have Σx = E(XtX

′
t) = (ΛΛ′ + Ψ) and Σxy = E(Xtyt+h) = Λγ′.

Consequently, the population regression coefficients are given by

β = Σ−1
x Σxy = (ΛΛ′ + Ψ)−1Λγ′ = Ψ−1Λ(Λ′Ψ−1Λ + I)−1γ′

Consider now

yt+h|t = X ′
tβ = FtΛ′Ψ−1Λ(Λ′Ψ−1Λ + I)−1γ′ + ξtΨ−1Λ(Λ′Ψ−1Λ + I)−1γ′

.
Under assumptions CR1-2 we have

Λ′Ψ−1Λ(Λ′Ψ−1Λ + I)−1 = I + O

(
1
n

)
since

‖Λ′Ψ−1Λ(Λ′Ψ−1Λ + I)−1 − I‖ = ‖Λ′Ψ−1Λ(Λ′Ψ−1Λ + I)−1(Λ′Ψ−1Λ)−1‖
≤ ‖(Λ′Ψ−1Λ)−1‖2‖Λ′Ψ−1Λ‖ ≤

(
λmax(Ψ)

λmin(Λ′Λ)

)2
λmax(Λ′Λ)
λmin(Ψ) = O

(
1
n

)
Moreover, β = O

(
1√
n

)
since

‖Ψ−1Λ(Λ′Ψ−1Λ + I)−1‖ ≤ λmax(Ψ)
λmin(Λ′Λ)

√
λmax(Λ′Λ)
λmin(Ψ)

= O

(
1√
n

)
This implies that:

E
[
(ξtβ)2

]
= β′Ψβ ≤ ‖β‖2‖Ψ‖ = O

(
1
n

)
hence by the Markov’s inequality we have:

ξtβ = Op

(
1√
n

)
This proves the following result:

Proposition 1 Under assumptions A1-2 and CR1-2 we have:

yt+h|t = γFt + Op

(
1√
n

)
as n → ∞
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The result above tells us that, under the factor model representation, the
projection over the whole dataset Xt and the projection over the unobserved
common factors Ft are asymptotically equivalent for n → ∞.

In Proposition 1 we assume that the second order moments of the data are
known when performing the projection. What if they are estimated? Under the
above Assumptions, it has been shown that the forecasts based on the regres-
sion on the first r principal components provide consistent estimates for y∗

t+h|t.
The Proposition below gives conditions for the shrinkage parameter that allow
to obtain consistent forecasts from Bayesian regression under Gaussian priors.
We will need the additional Assumption A3 that insures that the elements of
the sample covariances of Xt and yt converge uniformly to their population
counterpart, see the Appendix A for details.

Proposition 2 Under assumptions A1-2 and CR1-2, if lim infn→∞
λmin(Φ0)

‖Φ0‖ > 0
then:

X ′
tβ̂

bay = X ′
tβ + Op

(
1

nT‖Φ0‖
)

+ Op

(
n
√

T‖Φ0‖
)

as n, T → ∞,

provided that 1
nT ‖Φ0‖−1 → 0 and 1

n
√

T
‖Φ0‖−1 → ∞ as n, T → ∞,

Proof. See the Appendix.

If coefficients are i.i.d. N (0, σ2
β), then the conditions are satisfied if σ2

β =
1

cnT 1/2+δ , where c is an arbitrary positive constant. Hence, we should shrink
the single regressors with an asymptotic rate faster than the 1

n . With non i.i.d.
prior, the condition lim infn→∞

λmin(Φ0)
‖Φ0‖ > 0 requires that all the regression

coefficients should be shrunk at the same asymptotic rate.

Combining Propositions 1 and 2 we obtain:

Corollary Under the assumptions A1-2 and CR1-2 and provided the conditions
of Proposition 2 are satisfied, we have

X ′
tβ̂

bay = γFt + Op

(
1√
n

)
+ Op

(
1

nT‖Φ0‖
)

+ Op

(
n
√

T‖Φ0‖
)

as n, T → ∞.

A suitable choice for the prior is ‖Φ0‖ = 1
cnT 1/2+δ . In this case we have:

∆nT

(
X ′

tβ̂
bay − γFt

)
= Op (1) as n, T → ∞,
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where ∆nT = min
{√

n, T δ, T ( 1
2−δ)

}
and 0 < δ < 1/2. These rates of con-

sistency are different from the ones derived for principal components in Forni,
Giannone, Lippi, and Reichlin (2005) and, using a different set of assumptions
by Bai (2003), and probably can be improved by imposing further assumptions.

Proposition 2 tells us that, under the factor structure assumption, the Bayesian
regression should use a prior that, as the cross-section dimension increases,
shrinks increasingly more all regression coefficients to zero. The reason is that,
if the factors are pervasive in the sense of condition CR1, then all variables are
informative for the common factors and we should give weight to all of them.
Consequently, as the number of predictors increases, the magnitude of each
regression coefficient has to decrease.

The intuition of this result is very simple. The factor structure implies that
there are few r dominant eigenvalues that diverge faster than the remaining
smaller ones as the cross-section dimension increases. The parameter’s prior
chosen as above ensures that the effect of the factors associated with the domi-
nant eigenvalues is not distorted asymptotically while for the effect of the smaller
ones goes to zero asymptotically. Clearly, as mentioned in the empirical Section,
if there are few dominant eigenvalues, both Bayesian regression under normality
and PCR will only give weight to the principal components associated to the
dominant eigenvalues.

5 Conclusions and open questions

This paper has analyzed the properties of Bayesian regression in large panels of
time series and compared them to PCR.

We have considered the Gaussian and the double exponential prior and show
that they offer a valid alternative to principal components. For the macroeco-
nomic panel considered, the forecast they provide is very correlated to that of
PCR and implies similar mean-square forecast errors.

This exercise should be understood as rather stylized. For the Bayesian case
there is room for improvement, in particular by using developments in BVAR
(Doan, Litterman, and Sims, 1984; Litterman, 1986) and related literature.

In the asymptotic analysis we have considered the Gaussian prior case. For
that case, we have shown n, T rates of convergence to the efficient forecast under
an approximate factor structure. This analysis guides us in the setting of the
prior, also interpreted as a Ridge penalization parameter. The empirical analysis
reports results for the optimal parameter and for a larger range of parameter
choice. The setting of the parameters for the double-exponential case has been
exclusively empirical. It is designed so as to deliver a given number of non zero
coefficients at each estimation step in the out-of-sample evaluation period. The
algorithm provides good results by selecting few variables in the regression.

These results show that our data, which correspond to the typical macroe-
conomic data-set used for macroeconomic policy analysis, is characterized by
collinearity rather than sparsity. On the other hand, the result that few se-
lected variables are able to capture the space spanned by the common factors,
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suggests that small models with accurately selected variables may do as well as
methods that use information on large panels and are based on regressions on
linear combinations of all variables. This point calls for further research since
our results show that the variable selection provided by the Lasso regression
is not clearly interpretable and they are not the typical ones that a macroe-
conomist would include in a VAR. Moreover, the selected variables change over
time. A conjecture, to be explored in further work, is that, although the under-
lying model implies parameter instability, a well chosen approximating model
based on a large cross-section has a chance of performing well in forecast since
the use of a large number of variables works as a sort of insurance against
parameter instability.
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Bruxelles.

D’Agostino, A., D. Giannone, and P. Surico (2006): “(Un)Predictability
and Macroeconomic Stability,” Working Paper Series 605, European Central
Bank.

Daubechies, I., M. Defrise, and C. De Mol (2004): “An iterative thresh-
olding algorithm for linear inverse problems with a sparsity constraint,”
Comm. Pure Appl. Math., 57, 1416–1457.

De Mol, C., and M. Defrise (2002): “A note on wavelet-based inversion
methods,” in Inverse Problems, Image Analysis and Medical Imaging, ed. by
M. Z. Nashed, and O. Scherzer, pp. 85–96. American Mathematical Society.

Doan, T., R. Litterman, and C. A. Sims (1984): “Forecasting and Condi-
tional Projection Using Realistic Prior Distributions,” Econometric Reviews,
3, 1–100.

18

17



Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004): “Least
angle regression,” Ann. Statist., 32, 407–499.

Fernandez, C., E. Ley, and M. F. J. Steel (2001): “Benchmark priors for
Bayesian model averaging,” Journal of Econometrics, 100(2), 381–427.

Forni, M., D. Giannone, M. Lippi, and L. Reichlin (2005): “Opening the
Black Box: Structural Factor Models with large cross-sections,” Manuscript,
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6 Appendix A: Proof of Proposition 2

Denote:

- by yt the generic variable to be forecast as yt = zh
it

- the covariance matrix of the regressors as Σx = E(xtx
′
t). The sample equiva-

lent will be denoted by Sx = X ′X/T . The estimation error will be denote
by Ex = Σx − Sx. These matrices are of dimension n × n.

- the covariance matrix of the regressors and the variable to be predicted as
Σxy = E(xty

′
t+h). The sample equivalent will be denoted by Sxy = X ′y/T .

The estimation error will be denote by Exy = Σxy − Sxy. These matrices
are of dimension n × 1.

We assume stationarity.
Moreover, we need the following assumption:

A3) There exists a positive constant K ≤ ∞, such that for all T ∈ N and
i, j ∈ N

T E[(ex,ij)
2] < K and T E[(exy,i)2] < K

as T → ∞, where ex,ij denote the i, jth entry of Ex and exy,i denote the
ith entry of Exy. Sufficient conditions can be found in Forni, Giannone,
Lippi, and Reichlin (2005).

Remark 1 We can consider here without loss of generality the case of iid prior
on the coefficients and we will denote by ν̃ = σ2

u

T‖Φ0‖ the rescaled penalization
in the Ridge regression. In fact, in the case of non-iid prior, we can redefine
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the regression in terms of Z̃t = Φ
1/2
0 Zt√
‖Φ0‖

. Then the resulting regression coeffi-

cients, β̃ =
√‖Φ0‖Φ−1/2

0 β will be iid with prior variance ‖Φ0‖. Moreover the
transformed regressors Z̃t have the factor representation

Z̃t = Λ̃Ft + ξ̃t

where Λ̃ = Φ
1/2
0 Λ√
‖Φ0‖

and ξ̃t = Φ
1/2
0 ξt√
‖Φ0‖

. The assumption lim infn→∞
λmin(Φ0)

‖Φ0‖ > 0

insures that the transformed model still satisfies conditions CR1 and CR2.

Remark 2 In what follows we will prove the proposition for the case p = 0.
The case p > 0 can be analyzed similarly by noticing that if Zt possesses an
approximate factor structure then also Xt has it.

Defining Σx(ν̃) = Σx + ν̃In and the sample equivalent Sx(ν̃) = Sx + ν̃In,
we are interested in the properties of β(ν̃) and β̂(ν̃) which are solutions of the
following linear system of equations:

Σx(ν̃)β(ν̃) = Σxy

Sx(ν̃)β̂(ν̃) = Sxy
(7)

Notice that β(0) = β is the population regression coefficient and β̂(0) = β̂
is the sample regression coefficient. For ν̃ > 0 we have the Ridge regression
coefficients.

Lemma 1 Under assumptions CR1-2 we have

‖β(ν̃)‖ = O

(
1√
n

)
(8)

and
‖β − β(ν̃)‖ = O

(
ν̃ n−3/2

)
as n → ∞ . (9)

Proof. We have:

‖β(ν̃)‖ = ‖(ΛΛ′ + Ψ + ν̃In)−1Λγ′‖ ≤ ‖(ΛΛ′)−1‖‖Λ‖‖γ′‖

which implies (8) by assumption CR1.
On the other hand, recalling that β = β(0), we have

β − β(ν̃) =
[
(ΛΛ′ + Ψ)−1 − (ΛΛ′ + Ψ + ν̃In)−1

]
Λγ′

= (ΛΛ′ + Ψ)−1ν̃In(ΛΛ′ + Ψ + ν̃In)−1Λγ′

thanks to the matrix identity

A−1 − B−1 = A−1(B − A)B−1 . (10)
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Hence
‖β − β(ν̃)‖ ≤ ν̃‖ΛΛ′‖−2‖Λ‖ ‖γ′‖ = O(ν̃ n−3/2)

by assumption CR1. Q.E.D.

Whereas for ν̃ = 0 the optimal regression coefficient β provides consistent
forecasts, the Ridge parameter ν̃ introduces a bias which tends to zero for large
cross-sectional dimensions provided that it does not increase too fast relatively
to the cross-sectional dimension n. Let us go now to sample estimates and
investigate relations between β(ν̃) and β̂(ν̃). We first need the following lemma:

Lemma 2

(i) ‖Ex‖ = Op

(
n√
T

)
(ii) ‖Exy‖ = Op

(√
n√
T

)
Proof. We have:

‖Ex‖2 ≤ trace [E′
xEx] =

n∑
i=1

n∑
j=1

e2
x,ij

Taking expectations, we obtain:

E

⎡⎣ n∑
i=1

n∑
j=1

e2
x,ij

⎤⎦ =
n∑

i=1

n∑
j=1

E
[
e2
x,ij

] ≤ n2K

T
= O

(
n2

T

)

We further have ‖Exy‖2 =
∑n

i=1 e2
xy,i. Taking expectations:

E

[
n∑

i=1

e2
xy,i

]
=

n∑
i=1

E
[
e2
xy,i

] ≤ nK

T
= O

( n

T

)
The results follow from the Markov’s inequality. Q.E.D.

Lemma 3 Under assumptions A1-3 and CR1-2,

‖β̂(ν̃) − β(ν̃)‖ = O

( √
n

ν̃
√

T

)
as n, T → ∞

Proof. From (7) we have

β̂(ν̃) − β(ν̃) = Sx(ν̃)−1Sxy − Σx(ν̃)−1Σxy
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and hence also

β̂(ν̃) − β(ν̃) = Sx(ν̃)−1[Sxy − Σxy] + Sx(ν̃)−1Σxy − Σx(ν̃)−1Σxy

Using again the identity (10), we get

β̂(ν̃) − β(ν̃) = Sx(ν̃)−1[Sxy − Σxy] + Sx(ν̃)−1[Σx(ν̃) − Sx(ν̃)]Σx(ν̃)−1Σxy

whence

‖β̂(ν̃) − β(ν̃)‖ ≤ ‖Sx(ν̃)−1‖ (‖Sxy − Σxy‖ + ‖Σx(ν̃) − Sx(ν̃)‖ ‖β(ν̃)‖)
Using Lemma 2, the bound (8) and the fact that ‖Sx(ν̃)−1‖ ≤ 1

ν̃ , we get the
desired result. Q.E.D.

Summing up, since ‖Xt‖ = Op (
√

n), Lemma 1 tells us that β(ν̃)′Xt con-
verges to the optimal projection β′Xt if ν̃

n → 0 as n, T → ∞. Lemma 3 tells us
that β̂(ν̃)′Xt converges to β(ν̃)′Xt if ν̃

n

√
T → ∞ as n, T → ∞. If ν̃ meets both

conditions we hence obtain a consistent estimate from β̂(ν̃)′Xt. The following
lemma combines both estimates (using the triangular inequality):

Lemma 4 Under the assumptions A1-3 and CR1-2, if ν̃
n → 0 and ν̃

n

√
T → ∞

as n, T → ∞, then:

β̂(ν̃)′Xt = β′Xt + Op

(
ν̃

n

)
+ Op

(
n

ν̃
√

T

)
as n → ∞,

A suitable choice for the regularization parameter is ν̃ = α nT−( 1
2−δ), where

α is a constant.

The Proposition 2 is now established using Proposition 1, Lemma 4 and the
definition of ν̃.

7 Appendix B

An alternative to matrix inversion for computing regression estimates is provided
by iterative methods as, for example, the so-called Landweber iteration which
was initially developed for solving the normal equations in (7).

To insure convergence the algorithm is applied to regressors with norm
smaller than 1. Since our regressors are standardized, this is insured by us-
ing the rescaled regressors X̃ = 1√

n(p+1)(T−h−p)
X, and hence estimate the

corresponding regression coefficients β̃ =
√

n(p + 1)(T − h − p)β.
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Starting from the normal equation of the ordinary least squares, we can
rewrite it as β̃ = β̃ + X̃ ′y − X̃ ′X̃β̃ and try to solve it through the successive
approximations scheme

β̃(j+1) = β̃(j) + X̃ ′y − X̃ ′X̃β̃(j); j = 0, 1, . . . (11)

A nice feature of the Landweber iteration is that it can be easily extended
to cope with additional constraints or penalties, and in particular those used in
Ridge or Lasso regression. As concerns the Lasso functional (5), Daubechies,
Defrise, and De Mol (2004) have recently the following thresholded Landweber
iteration

β̃(j+1) = Sν(β̃(j) + X̃ ′y − X̃ ′X̃β̃(j)); j = 0, 1, . . . (12)

where the thresholding operator is acting on a vector componentwise by per-
forming the soft-thresholding operation defined by (6) and is thus given by

Sν(β̃) = [Sν(β̃i)]i=1,···,n; i = 1, . . . , n (13)

This operation enforces the sparsity of the regression coefficients in the sense
that all coefficients below the threshold ν/2 are set to zero. The scheme (12)
has been proved in Daubechies, Defrise, and De Mol (2004) to converge to a
minimizer of the Lasso functional (5). Let us remark that this functional is not
strictly convex when the null-space of X̃ is not reduced to zero and therefore
the minimizer of (5) is not necessarily unique.
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8 Appendix C

Table A: Data Transformation

Definition Transformation

1 Xit = Zit no transformation
2 Xit = ∆Zit monthly difference
4 Xit = ln Zit log
5 Xit = ∆ ln Zit × 100 monthly growth rate

6 Xit = ∆ ln Zit
Zit−12

× 100 monthly difference of yearly growth rate

Lasso
Selection∗

Code Description Transf. IP CPI
a0m052 Personal income (AR, bil. chain 2000 $) 5
A0M051 Personal income less transfer payments (AR, bil. chain 2000 $) 5 II
A0M224 R Real Consumption (AC) A0m224gmdc 5
A0M057 Manufacturing and trade sales (mil. Chain 1996 $) 5
A0M059 Sales of retail stores (mil. Chain 2000 $) 5
IPS10 INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX 5
IPS11 INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL 5
IPS299 INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 5
IPS12 INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 5
IPS13 INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 5
IPS18 INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 5
IPS25 INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 5
IPS32 INDUSTRIAL PRODUCTION INDEX - MATERIALS 5 II
IPS34 INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 5 II
IPS38 INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 5 II
IPS43 INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 5
IPS307 INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES 5
IPS306 INDUSTRIAL PRODUCTION INDEX - FUELS 5
PMP NAPM PRODUCTION INDEX (PERCENT) 1
A0m082 Capacity Utilization (Mfg) 2
LHEL INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2
LHELX EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF 2
LHEM CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5
LHNAG CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5
LHUR UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA) 2
LHU680 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2
LHU5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5
LHU14 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 5
LHU15 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 5
LHU26 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5
LHU27 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) 5
A0M005 Average weekly initial claims, unemploy. insurance (thous.) 5
CES002 EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE 5
CES003 EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING 5
CES006 EMPLOYEES ON NONFARM PAYROLLS - MINING 5 II
CES011 EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION 5
CES015 EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING 5
CES017 EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS 5
CES033 EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS 5
CES046 EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING 5
CES048 EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, AND UTILITIES 5
CES049 EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE 5 II
CES053 EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE 5
CES088 EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES 5 I I
CES140 EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT 5
A0M048 Employee hours in nonag. establishments (AR, bil. hours) 5
CES151 AVG WEEKLY HOURS OF PROD. OR NONSUPERV. WORKERS ON PRIVATE NONFARM 1
CES155 AVG WEEKLY HOURS OF PROD. OR NONSUPERV. WORKERS ON PRIVATE NONFARM 2
aom001 Average weekly hours, mfg. (hours) 1
PMEMP NAPM EMPLOYMENT INDEX (PERCENT) 1 I
HSFR HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA 4
HSNE HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 4 II
HSMW HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 4 II
HSSOU HOUSING STARTS:SOUTH (THOUS.U.)S.A. 4
HSWST HOUSING STARTS:WEST (THOUS.U.)S.A. 4 I
HSBR HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4 I
HSBNE HOUSES AUTHORIZED BY BUILD. PERMITS:NORTHEAST(THOU.U.)S.A 4 II I
HSBMW HOUSES AUTHORIZED BY BUILD. PERMITS:MIDWEST(THOU.U.)S.A. 4 I-II
HSBSOU HOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH(THOU.U.)S.A. 4 I
HSBWST HOUSES AUTHORIZED BY BUILD. PERMITS:WEST(THOU.U.)S.A. 4
PMI PURCHASING MANAGERS’ INDEX (SA) 1
PMNO NAPM NEW ORDERS INDEX (PERCENT) 1 I
PMDEL NAPM VENDOR DELIVERIES INDEX (PERCENT) 1
PMNV NAPM INVENTORIES INDEX (PERCENT) 1 II
A0M008 Mfrs’ new orders, consumer goods and materials (bil. chain 1982 $) 5
A0M007 Mfrs’ new orders, durable goods industries (bil. chain 2000 $) 5
A0M027 Mfrs’ new orders, nondefense capital goods (mil. chain 1982 $) 5
A1M092 Mfrs’ unfilled orders, durable goods indus. (bil. chain 2000 $) 5 I
A0M070 Manufacturing and trade inventories (bil. chain 2000 $) 5 I
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Lasso
Selection∗

Code Description Transf. IP CPI
A0M077 Ratio, mfg. and trade inventories to sales (based on chain 2000 $) 2
FM1 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA) 6
FM2 MONEY STOCK:M2(M1+O’NITE RPS,EURO$,GP&BD MMMFS&SAV&SM TIME DEP(BIL$, 6 I
FM3 MONEY STOCK: M3(M2+LG TIME DEP,TERM RP’S&INST ONLY MMMFS)(BIL$,SA) 6
FM2DQ MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI) 5 I I
FMFBA MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 6
FMRRA DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 6
FMRNBA DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 6
FCLNQ COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI) 6
FCLBMC WKLY RP LG COM’L BANKS:NET CHANGE COM’L & INDUS LOANS(BIL$,SAAR) 1 II
CCINRV CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 6
A0M095 Ratio, consumer installment credit to personal income (pct.) 2
FSPCOM S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5
FSPIN S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5 II
FSDXP S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2 I
FSPXE S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 5
FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA) 2
CP90 Cmmercial Paper Rate (AC) 2
FYGM3 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2
FYGM6 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2
FYGT1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2
FYGT5 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2
FYGT10 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2
FYAAAC BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM) 2
FYBAAC BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM) 2 II
scp90 cp90-fyff 1 II
sfygm3 fygm3-fyff 1 I
sFYGM6 fygm6-fyff 1
sFYGT1 fygt1-fyff 1
sFYGT5 fygt5-fyff 1
sFYGT10 fygt10-fyff 1 II
sFYAAAC fyaaac-fyff 1
sFYBAAC fybaac-fyff 1
EXRUS UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 5
EXRSW FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5
EXRJAN FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5
EXRUK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5
EXRCAN FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5
PWFSA PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6
PWFCSA PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6
PWIMSA PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6
PWCMSA PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6
PSM99Q INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A) 6 I
PMCP NAPM COMMODITY PRICES INDEX (PERCENT) 1 II II
PUNEW CPI-U: ALL ITEMS (82-84=100,SA) 6 I
PU83 CPI-U: APPAREL & UPKEEP (82-84=100,SA) 6
PU84 CPI-U: TRANSPORTATION (82-84=100,SA) 6 I
PU85 CPI-U: MEDICAL CARE (82-84=100,SA) 6 II
PUC CPI-U: COMMODITIES (82-84=100,SA) 6
PUCD CPI-U: DURABLES (82-84=100,SA) 6
PUS CPI-U: SERVICES (82-84=100,SA) 6
PUXF CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) 6
PUXHS CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) 6
PUXM CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA) 6
GMDC PCE,IMPL PR DEFL:PCE (1987=100) 6
GMDCD PCE,IMPL PR DEFL:PCE; DURABLES (1987=100) 6
GMDCN PCE,IMPL PR DEFL:PCE; NONDURABLES (1996=100) 6
GMDCS PCE,IMPL PR DEFL:PCE; SERVICES (1987=100) 6
CES275 AVG HOURLY EARNINGS OF PROD. OR NONSUPERV. WORKERS ON PRIVATE NONFARM 6 I
CES277 AVG HOURLY EARNINGS OF PROD. OR NONSUPERV WORKERS ON PRIVATE NONFARM 6 II
CES278 AVG HOURLY EARNINGS OF PROD. OR NONSUPERV. WORKERS ON PRIVATE NONFARM 6
HHSNTN U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2
∗We indicate when forecasting IP or CPI, the variable has been selected by Lasso regression
at the beginning (I), 1970 : 1, and/or and the end (II), 2001 : 12, of the out-of-sample evaluation period.
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