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Abstrat:Using a stohasti disount fator approah, we derive the exat solution for arbitrage-free bond yields for the ase that the short-term interest rate follows a threshold proesswith the interept swithing endogenously. The yield funtions, mapping the one-monthrate into n-period yields, exhibit a onvex-onave shape to the left and the right of thethreshold value, respetively. This is in ontrast to linear short-rate proesses whih implyan a�ne yield funtion. The intervals for whih onvexity or onavity prevails inreasewith time to maturity.JEL Classi�ation: E43, G12, C63Keywords: Threshold proess, term struture of interest rates, nonlinear yieldfuntion



Non-Tehnial SummaryIn dynami fator models of the term struture, the joint evolution of interest ratesof di�erent maturities is asribed to a small set of driving fores. If there is a singlefator, it will usually oinide with the short-term (one-month) interest rate. The reationof long-term yields to variations of the short rate is restrited by the ondition of noarbitrage. Loosely speaking, the no-arbitrage assumption preludes trading strategies inbond portfolios that are haraterized by zero initial net payments but guaranteed pro�tsin the future. In no-arbitrage models it is mostly assumed that the fator proess islinear and has Gaussian innovations. This setting implies that arbitrage-free bond yieldsare linear funtions of the short rate: the sensitivity of long-term yields with respet tohanges of the short rate is independent of the short rate's level.In ontrast, the empirial literature �nds evidene that the dynamis of the short-terminterest rate is haraterized by nonlinearities, time-varying volatility and innovationswhih are not normally distributed. These deviations from linear Gaussian short ratemodels usually render an analytial solution for arbitrage-free bond yields infeasible.This paper analyzes the term struture impliations for suh a nonlinear ase. Theshort-term interest rate follows a threshold proess, for whih the interept swithes en-dogenously in an otherwise standard �rst-order autoregressive spei�ation. As shownin the literature, this spei�ation is espeially suited to apture the near-random walkbehavior of short-term interest rates. We derive the priing funtion, that is the mappingbetween the one-month rate and n-period yields. The relationship between the shortrate and any yield of longer maturity exhibits a onvex-onave shape: the sensitivity oflong-term yields with respet to hanges in the short rate is �rst inreasing in the level ofthe short rate but then dereases as the short-term interest rate inreases further. Thispattern is the more distint the higher the maturity of the long-term bond.



Niht tehnishe ZusammenfassungIn dynamishen Faktormodellen der Zinsstruktur wird die gemeinsame zeitlihe Entwik-lung von Zinsen vershiedener Laufzeiten auf eine kleine Zahl von Bestimmungsgröÿenzurükgeführt. In Modellen mit nur einem Faktor ist dies meist der kurzfristige Zins(Laufzeit ein Monat). Die Reaktion von langfristigen Renditen auf Veränderungen desEinmonatszinses wird durh die Bedingung der Arbitragefreiheit beshränkt. Das heiÿt,dass es keine Handelsstrategien gibt, die durh einen anfänglihen Nettokapitaleinsatzvon Null, aber einen garantierten Gewinn in der Zukunft harakterisiert sind. In arbi-tragefreien Modellen wird meist unterstellt, dass der Faktorprozess linear ist und nor-malverteilte Innovationen aufweist. Unter diesen Annahmen lassen sih Anleiherenditenfür alle Laufzeiten als lineare Funktionen des kurzfristigen Zinses darstellen. Das be-deutet, dass das Ausmaÿ der Reaktion von langfristigen Renditen auf Änderungen imEinmonatssatz unabhängig von dessen Niveau ist.Die empirishe Literatur liefert allerdings Belege dafür, dass die Dynamik des kurzfristi-gen Zinses durh Nihtlinearitäten, zeitvariierende Volatilität und Innovationen, die nihtnormalverteilt sind, harakterisiert ist. Mit diesen Abweihungen vom linearen GauÿshenModell ist es nur in wenigen Spezialfällen möglih, arbitragefreie Anleiherenditen ana-lytish zu berehnen.Dieses Papier ermittelt die arbitragefreie Zinsstrukturdynamik für einen solhen Fall:Der kurzfristige Zins folgt einem autoregressiven Shwellenwert-Prozess, bei dem derNiveauparameter endogen zwishen zwei Werten hin und her wehselt. Wie in der Lite-ratur gezeigt wird, ist diese Spezi�kation besonders gut geeignet, das dynamishe Verhal-ten des Kurzfristzinses, das oft dem eines Random Walk nahe kommt, zu beshreiben.Wir leiten analytish die Preisfunktion, das heiÿt den funktionalen Zusammenhang zwi-shen Kurzfristzins und langfristigen Renditen, her. Diese Funktion weist eine konvex-konkave Gestalt auf: Langfristzinsen reagieren mit zunehmendem Niveau der Einmonats-rate zunähst stärker auf deren Änderungen, ab einem bestimmten Zinsniveau nimmt dieStärke der Zinsreaktion allerdings ab. Je länger die Laufzeit der betrahteten Anleihe ist,desto ausgeprägter ist dieses Muster.
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Bond Priing when the Short Term InterestRate Follows a Threshold Proess∗1 IntrodutionStarting from the seminal ontributions of Vasi£ek (1977) and Cox, Ingersoll, and Ross(1985), there is by now a large and growing literature that tries to explore the natureof the dynamis of interest rates and the relationship of yields with di�erent maturitiesin an arbitrage-free framework. While models in the �nane literature were preferablyformulated in ontinuous time with ontinuous state spae or in disrete time with dis-rete state spae, models that are using disrete time and a ontinuous state spae havebeome inreasingly popular reently. This may in part be attributed to the fat thatthis framework is familiar to maroeonomists enabling them to integrate term strutureelements in models of maroeonomi dynamis.Models of the latter type (ontinuous state spae, disrete time), usually onsist oftwo omponents: a spei�ation of the dynamis of the state vetor and a formulationof the stohasti disount fator. Given these, the ondition of no-arbitrage determinesthe dynamis of the whole spetrum of bond yields. If the state or fator vetor is one-dimensional it usually oinides with the short-term (one-month) interest rate.While the large empirial literature devoted to modeling and estimating short terminterest rate dynamis is bringing up inreasingly rih and advaned spei�ations, theliterature on arbitrage-free term struture models usually restrits itself to simple linearstate dynamis. This is beause �researhers are inevitably onfronted with trade-o�sbetween the rihness of eonometri representations of the state variables and the om-putational burdens of priing and estimation� as Dai and Singleton (2000) observe. Theyonlude that this is the reason why there is a huge emphasis on models from the a�ne
∗Wolfgang Lemke: Deutshe Bundesbank, E-Mail: wolfgang.lemke�bundesbank.de. Theofanis Ar-hontakis: Graduate Program Finane & Monetary Eonomis, Johann-Wolfgang-Goethe UniversitätFrankfurt, Uni-PF77, 60054 Frankfurt am Main, Germany, E-Mail: arhontakis��nane.uni-frankfurt.de.The views expressed here are those of the authors and not neessarily those of the Deutshe Bundesbank.We thank Julia von Borstel, Heinz Herrmann, Malte Knüppel, Christian Shlag and seminar partiipantsat the Bundesbank for disussion. 1



lass in the literature. A�ne models are treated in a uni�ed framework by Du�e andKan (1996), their properties are further analyzed by Dai and Singleton (2000).1Models of this lass are haraterized by a solution that expresses bond yields as ana�ne funtion of the state vetor. This follows from linear state dynamis, Gaussianinnovations and a stohasti disount fator that is a linear funtion of the state vetor.If one of these assumptions is dropped, bond yields an generally not be expressed asa�ne funtions of the state vetor.2 Moreover, there are only a few models outside thea�ne lass that allow for an analyti solution at all: examples are the regime swithingmodel by Bansal and Zhou (2002) and the quadrati model by Ahn, Dittmar, and Gallant(2002).This paper ontributes to the literature by deriving the analytial solution for bondyields for the ase that the short rate follows a threshold proess of the type presentedby Lanne and Saikkonen (2002). Their formulation is espeially suited to apture thenear unit-root dynamis of interest rates. We onsider the simplest version of their modelin whih the law of motion is an AR(1) with homosedasiti Gaussian innovations. Theinterept is allowed to hange between two regimes. The regime prevailing is determinedby the previous period's realization of the short rate, i.e. the model is of the SETAR (selfexiting threshold autoregressive) type.Papers that onsider term struture impliations of threshold dynamis usually do soby means of simulation.3 However, Gospodinov (2005) remarks in a footnote that ananalytial solution may be feasible for ertain speial ases of the fairly general TAR-GARCH model onsidered there.Compared to an a�ne Gaussian one-fator model, the only di�erene of our state pro-ess is the hanging interept. However, it turns out that this slight modi�ation induessubstantial hanges to the solution ompared to the a�ne model. The yield funtion,mapping realizations of the short rate into yields of longer maturities, is nonlinear andexhibits a point of disontinuity at the threshold value. The funtion exhibits a onvex-onave pattern, a phenomenon that qualitatively mathes similar patterns observed inthe data. For values of the short rate su�iently far o� the threshold value, however, theyield funtion is approximately linear. The width of the interval for whih nonlinearity1The disrete-time version of the a�ne lass is desribed by Bakus, Foresi, and Telmer (1998).2See, however, Bakus et al. (1998) and Lemke (2006) who show that replaing the normal distributionof innovations by a Gaussian mixture still leads to an a�ne yield funtion.3See Pfann, Shotman, and Tshernig (1996) and Gospodinov (2005). The paper by Audrino andGiorgi (2005) an be seen as an exeption. It features beta-distributed regime shifts and exhibits asimilar struture as the Markov regime swithing model in Bansal and Zhou (2002).2



in the yield funtion prevails is inreasing with time to maturity.However, there is a problem with the derived exat yield funtion as it an atu-ally be omputed for yields with a small time to maturity only (say up to six months).This is beause omputing the funtion for the n-period yield requires the value of theumulative distribution funtion of an (n − 2)−dimensional normal with non-diagonalvariane-ovariane matrix. Moreover, the number of required omputations inreasesexponentially with time to maturity, posing in addition a urse-of-dimensionality prob-lem. Aordingly, for longer times to maturity, approximations of our exat solution orsimulation-based tehniques have to be applied.4The struture of the paper is as follows. The next setion gives a desription of themodel, setion 3 derives the analytial yield funtion, followed by a numerial example insetion 4. The �fth setion onludes, an appendix ontains a detailed derivation of theyield funtion.2 The ModelThe model that we onsider is in disrete time and operates on a ontinuous state spae.One unit of time may be thought of as one month. The single state variable in ourone-fator model is the one-month interest rate. Its dynamis is given by the SETARspei�ation
Xt = ν + β I(Xt−1 ≥ c) + κXt−1 + σǫt, ǫt ∼ N(0, 1) (2.1)where I(·) is the indiator funtion and the innovations ǫt are serially independent. Theparameter κ is in the interval (0, 1), guaranteeing stationarity of the proess. The onlydi�erene to a linear Gaussian model � i.e. the disrete-time version of the Vasi£ek model5� is the time-varying interept. Depending on the previous realization of the short rateit is given by ν or ν + β, respetively. Note that a regime-dependent interept indues aregime-dependent long-run mean of the short rate. Approximating the data generatingproess of the one-month interest rate with a standard AR model (one interept) usuallyrequires a value of κ lose to unity to apture the high persistene of the short rate proessas observed in the data. Heuristially, the two-interepts spei�ation requires a lower κsine the short rate proess is now allowed to revert to two di�erent means.4See Arhontakis and Lemke (2005).5See Bakus et al. (1998).
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The proess given by (2.1) is the simplest member in a lass of models proposed byLanne and Saikkonen (2002). The more general spei�ation is written as
Xt = ν +

r
∑

k=1

βk I(Xt−d ≥ ck) +

p
∑

j=1

κjXt−j + σ(Xt−d)ǫt (2.2)i.e. it allows for more than two regimes, for more lags in the autoregressive spei�ation,and for the threshold variable being lagged by more than one period. The oe�ient ofstate innovations is also allowed to be regime-dependent, allowing for regime-dependentvariane. In fat, the speiation that is most adequate empirially turns out to be hetero-sedasti, with r, d, p all exeeding unity.6 The reason for stiking to the ase with r =

d = p = 1 is that we want to point out the e�ets on the term struture of interest ratesthat are implied by only this slight modi�ation of the purely linear ase. Moreover, thesolution approah that we take should be transferrable to the more general ase, but wethink that its struture an be made most transparent when onentrating on the speialase.Given the proess (2.1) for the short term interest rate, we will now derive bond prieproesses for all maturities. Let P n
t denote the time t prie of a default-free zero-ouponbond with n periods left until maturity. The payo� is normalized to one, so P 0

t = 1.Continuously ompounded monthly yields are omputed from bond pries as
yn

t = −
ln P n

t

n
. (2.3)Absene of arbitrage is equivalent to the existene of a stritly positive stohastidisount fator (SDF) proess {Mt}, with E|MtP

n
t | < ∞ and

P n
t = E(Mt+1P

n−1
t+1 |Ft), (2.4)where Ft denotes the σ-algebra generated by {Xt−i}i≥0. Sine the short-rate dynamishas the Markov property, any expetation over the future onditional on Ft equals theexpetation onditional on the information ontained in Xt alone. We will thus write thebasi priing equation simply as

P n
t = E(Mt+1P

n−1
t+1 |Xt). (2.5)For the stohasti disount fator we assume

Mt+1 = exp{−δ − Xt − λσǫt+1}, (2.6)6See Lanne and Saikkonen (2002) for the UK and Switzerland as well as Arhontakis and Lemke(2005) for Germany and the US. 4



where the exponential spei�ation is hosen to guarantee positivity. We set
δ =

1

2
σ2λ2 (2.7)with hindsight sine this spei�ation will lead to y1

t , the one-month yield, being equal to
Xt.7 The parameter λ is referred to as the market prie of risk, it governs the ovarianeof shoks to the state variable and the disount fator. In a�ne models, the expetedone-period exess return of a long-term bond over the short rate, divided by its standarddeviation, is a linear funtion of λ.8The model spei�ation is now omplete: given the state proess (2.1) and the priingkernel spei�ation (2.6), arbitrage free bond prie proesses {P n

t } are given as the solutionof the stohasti di�erene equation (2.5). An expliit solution of the model writes bondpries, or equivalently yields, as funtions of the fator Xt, i.e they are of the form
yn

t = fn(Xt; ψ), (2.8)where ψ ollets all model parameters. The next setion is devoted to �nding this solutionfuntion fn for our threshold model.3 Arbitrage-free Term StrutureWe start by writing bond pries as a funtion of future disount fators. Substituting thebasi priing equation (2.5) repeatedly into itself, using the law of iterated expetationsand noting that P 0
t = 1, we an write the time t prie of the n-period bond as

P n
t = E(Mt+1P

n−1
t+1 |Xt)

= E(Mt+1E(Mt+2P
n−2
t+2 |Xt+1)|Xt)

= . . .

= E(Mt+1 · Mt+2 · . . . · Mt+n|Xt), (3.1)equivalently using disount fators in logs,
P n

t = E(exp[mt+1 + . . . + mt+n]|Xt). (3.2)Before we turn to the model based on (2.1) it is instrutive to onsider the speial aseof β = 0, that is with Xt following the linear Gaussian proess
Xt = ν + κXt−1 + σǫt, ǫt ∼ N(0, 1). (3.3)7See Bakus et al. (1998).8See Campbell, Lo, and MaKinlay (1997) and Cohrane (2001).5



Sine for this ase Xt is a linear proess, the sum of log SDFs an be written as a linearombination of Xt and future ǫt only. This yields for the bond prie
P n

t = E

(

exp

[

−an − BnXt +
n

∑

i=1

bn
i ǫt+i

]∣

∣

∣

∣

∣

Xt

) (3.4)where an, Bn and bi
n are oe�ients depending on the model parameters ν, κ, σ, and λas well as on time to maturity n.9Sine the ǫt are Gaussian white noise, their sum is also normal and the exponentialexpression in (3.4) has a onditional lognormal distribution. Computing the requiredexpetation yields the solution10

P n
t = exp[−An − BnXt], (3.5)where

Bn =
n−1
∑

i=0

κi =
1 − κn

1 − κ
, (3.6)

An =
n−1
∑

i=0

G(Bi), (3.7)with
G(Bi) = δ + Bi ν −

1

2
(λ + Bi)

2σ2.Using (2.3), we obtain bond yields as an a�ne funtion of the short-term interest rate,
yn

t =
An

n
+

Bn

n
Xt. (3.8)Note that this implies that for a given time to maturity n, the sensitivity of yields withrespet to interest rate hanges does not depend on the level of the short rate.We now turn to the ase that the short rate follows the threshold proess (2.1). Thatis, the only little di�erene to the ase onsidered up to now is that the interept of9The important point is the exponential-a�ne struture. The exat form of these oe�ients, expressedin terms of ν, κ, σ, and λ is not relevant here. For the threshold model (whih nests the linear model)they are given in proposition 3.1 below.10Usually, bond pries for the linear Gaussian ase are obtained using a method of undeterminedoe�ients, f. Bakus et al. (1998) or Cohrane (2001). One assumes that bond pries are in fat of theform (3.5) and inserts this expression on both sides of (2.5). It turns out that for An and Bn (viewed asa funtion of n) to satisfy (2.5) for all n and t, they have to solve a system of di�erene equations thesolution of whih is given by (3.6) and (3.7). Here we have hosen the approah using the moving averagerepresentation in order to parallel it to the solution approah for the threshold ase.6



the proess is allowed to swith endogenously. However, it turns out that this slightmodi�ation makes the omputation of bond pries a muh more intriate task. Thefollowing will desribe the basi idea of solving for bond pries and state the exat solution.The detailed derivation is delegated to the appendix.For n = 1, we should obtain the short rate itself, i.e. y1
t = Xt. This is in fat the asesine

P 1
t = E(Mt+1 · 1|Xt)

= E(exp[−δ − Xt − λσǫt+1])|Xt)

= exp[−δ − Xt + λ2σ2],and thus, using (2.7),
y1

t = δ + Xt −
1

2
λ2σ2 = Xt.For treating maturities n > 2 we introdue the notation

St = I(Xt ≥ c) and a(St) = ν + βSt,so for the threshold proess (2.1),
Xt+1 = a(St) + κXt + σǫt+1. (3.9)The prie of the two-period bond is given by

P 2
t = E(exp[mt+1 + mt+2]|Xt)

= E (exp [−2δ − Xt − Xt+1 − σλ(ǫt+1 + ǫt+2)] |Xt)

= exp [−2δ − Xt − a(St) − κXt] · E (exp [−σ(1 + λ)ǫt+1 − σλǫt+2] |Xt)Conditional on Xt, the last exponent is normally distributed with mean 0 and vari-ane σ2((1 + λ)2 + λ2). Thus, the exponential expression has a onditional lognormaldistribution, and
E (exp [−σ(1 + λ)ǫt+1 − σλǫt+2] |Xt) = exp

[

1

2
σ2((1 + λ)2 + λ2)

]

.Colleting terms delivers
P 2

t = exp[−A2(Xt) − B2Xt] (3.10)with
A2(Xt) = a(St) + 2δ −

1

2
σ2(λ2 + (1 + λ)2) (3.11)7



and
B2 = (1 + κ). (3.12)Hene, using (2.3), for the yield we obtain

y2
t =

A2(Xt)

2
+

B2

2
Xt. (3.13)The derivation has employed the same tehniques as in the purely Gaussian ase. Thestruture of the solution, however, does di�er from (3.8). The two-period yield is astepwise linear funtion of the short rate: the interept depends on a(St) ≡ ν +β · I(Xt ≥

c). Thus, y2
t viewed as a funtion of Xt features a disontinuity at Xt = c. However, atall points of ontinuity, the derivative of the two-month yield with respet to the shortrate is onstant. Moreover, the expression Bn is the same as in the linear ase.For n > 2 the solution of the bond prie an be written in a similar form as in (3.4).However, sine the underlying short-rate proess now involves the time-varying interepts,the representation of future log SDFs involves not only future ǫt but also future intereptswhih in turn are dependent on future Xt. In the appendix it is shown that bond priesan be written as

P n
t = E(exp[mt+1 + . . . + mt+n]|Xt)

= E

(

exp

[

−nδ − BnXt +
n

∑

i=1

bn
i ǫt+i +

n−2
∑

j=0

cn
j · a(St+j)

]∣

∣

∣

∣

∣

Xt

)

,where Bn, bn
i , cn

j are oe�ients depending on the model parameters κ, σ and λ. Theruial thing to note is that the expression in parentheses is not a linear funtion of future
Xt anymore as it was in the ase of a simple linear AR(1) for Xt.11 Aordingly, ondi-tional on Xt, the expression is not lognormal. Our solution for this ase makes use of asimilar idea as employed in Bansal and Zhou (2002). We will evaluate the expression by�rst omputing the expetation for an arbitrary given realization of (St+1, . . . , St+n−2)

′,say (S̄t+1, . . . , S̄t+n−2)
′, and then take the probability-weighted sum over all possible real-izations of (St+1, . . . , St+n−2)

′. That is, we �rst enlarge the onditioning information setand then integrate out the enlargement again.However, even under the extended information set {Xt, S̄t+1, . . . , S̄t+n−2}, the exponen-tial does not have a plain lognormal distribution. This is beause (St+1, . . . , St+n−2)
′ and

(ǫt+1, . . . , ǫt+n−2)
′ are not independent. In other words, knowing that a partiular path ofinterepts (a(S̄t+1), . . . , a(S̄t+n−2))

′ has been realized, restrits the set of possible realiza-tions of (ǫt+1, . . . , ǫt+n−2)
′: onditional on the extended information set, (ǫt+1, . . . , ǫt+n−2)

′has a trunated multivariate lognormal distribution.11Reall that a(St) = ν + β · I(Xt ≥ c). 8



A �nal point to note is that, sine St+i an assume two di�erent values, 1 and 0, thenumber of di�erent extended information sets, {Xt, S̄t+1, . . . , S̄t+n−2}, amounts to 2n−2.It is obvious that this will be one obstale for obtaining numerial values for bond yieldswith longer times to maturity.The following proposition states the solution for bond yields with time to maturityexeeding two months.Proposition 3.1 (Yield funtion for n > 2). For the short rate proess given by (2.1)and the priing kernel de�ned by (2.6), yields with time to maturity n > 2 as a funtionof the short rate Xt are given as:
yn

t =
An(Xt)

n
+

Bn

n
Xt (3.14)with

Bn =
1 − κn

1 − κ
(3.15)and

An(Xt)

= n · δ − cn
0a(St) −

1

2
b′b (3.16)

− ln

(

2n−2

∑

k=1

F
(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
)

exp

[

n−2
∑

j=1

cn
j · a

(

S̄t+j(k)
)

])whih uses the following de�nitions:
b = (bn

1 , . . . , b
n
n)′, b∗ = (bn

1 , . . . , b
n
n−2)

′ with bn
i = −σ

(

λ +
1 − κn−i

1 − κ

)

cn
j = −

1 − κn−j−1

1 − κ
, j = 0, 1, . . . , n − 2The funtion F (r; µ, Σ) denotes the umulative distribution funtion of the multivariatenormal N(µ, Σ) evaluated at the vetor r.The �rst summation in (3.16) runs over all possible realizations of the sequene

{St+1, . . . , St+n−2}, i.e. over all possible sequenes of length n − 2 that onsist of ze-ros and ones. {S̄t+1(k), . . . , S̄t+n−2(k)} denotes a partiular sequene of this sort. Theindexing may be suh that k is the deimal number (plus one) that orresponds to thebinary number represented by the sequene. For instane, the sequene
{S̄t+1(k), S̄t+2(k), S̄t+3(k), S̄t+4(k)} = {1, 0, 0, 1}9



orresponds to the deimal number 9 and would arry the index k = 10(= 9 + 1).The vetor h̃(k) is given by12
h̃(k) = c̃(k) − f̃(k) · Xt − G̃(k) · a

(

ζ̄∗
t (k)

)

. (3.17)The remaining expressions are de�ned as follows:
ζ̄∗
t (k) = (St, S̄t+1(k), S̄t+2(k), . . . , S̄t+n−3(k))′, (3.18)

a(ζ̄∗
t (k)) = (a(St), a(S̄t+1(k)), a(S̄t+2(k)), . . . , a(S̄t+n−3(k)))′, (3.19)

f̃(k) =









R(S̄t+1(k)) · κ1...
R(S̄t+n−2(k)) · κn−2









(3.20)where
R(S̄) =

{

1, if S̄ = 0

−1, if S̄ = 1,
(3.21)

G̃(k) =















g̃1
1(k) 0 0 . . . 0

g̃2
1(k) g̃2

2(k) 0 . . . 0... ... ... ... ...
g̃n−2
1 (k) g̃n−2

2 (k) g̃n−2
3 (k) . . . g̃n−2

n−2(k)















(3.22)with
g̃i

j(k) = R(S̄t+j(k)) · κi−j, (3.23)
c̃(k) = c ·









R(S̄t+1(k))...
R(S̄t+n−2(k))









, (3.24)and
H̃(k) =















h̃1
1(k) 0 0 . . . 0

h̃2
1(k) h̃2

2(k) 0 . . . 0... ... ... ... ...
h̃n−2

1 (k) h̃n−2
2 (k) h̃n−2

3 (k) . . . h̃n−2
n−2(k)















(3.25)12The expressions h̃(k), c̃(k), f̃(k), G̃(k), c̃(k), H̃(k) depend on n and t. However, we omit thesearguments in order to avoid an even more messy notation.10



with
h̃i

j(k) = R(S̄t+j(k)) · σκi−j. (3.26)Given the parameters of the threshold model, ν, δ, c, κ, σ and λ, it is in priniplepossible to ompute any n-period yield that orresponds to a realization Xt of the shortrate. However, as n gets larger, the following omputational obstales our.First, as already mentioned above, the number of di�erent interept ombina-tions inreases exponentially with time to maturity. Seond, the formula involves
F

(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
), the .d.f. of a multivariate normal with general (i.e. non-diagonal) ovariane matrix. Numerial software13 usually has di�ulties to ompute theorresponding multiple integral for higher dimensions, say exeeding 6. Sine omputingbond yields of maturity n requires the omputation of a .d.f of an (n−2)-variate normal,maturities exeeding eight months annot be obtained in a straightforward fashion.In the ompanion paper Arhontakis and Lemke (2005) we irumvent these prob-lems by omputing bond pries for higher n employing a simulation-based approah.Conditional on a realization Xt of the short rate we generate N realizations � sayN=100,000 � of (Xt+1, . . . , Xt+n−1)

′ and (ǫt, . . . , ǫt+n)′ and ompute the orresponding
exp[mt+1 + . . . mt+n]. The average of the latter expression over all runs is an estimate of
P n

t , see (3.2). Using the simulation method, that paper explores the properties of bondyields in some detail. In this paper here, we restrit ourselves to illustrate some propertiesof the yield funtion for small n whih is done in the next setion.4 A Numerial ExampleBased on parameter estimates for US data in Arhontakis and Lemke (2005), �gure 1draws yields of two-, three- and six-month yields as a funtion of the one-month rate.The parameters are given as
ν = 0.3058/1200, β = 0.2603/1200, κ = 0.9253,

c = 5.5296/1200, σ = 0.7136/1200, λ = −155.Reall that for a linear one-fator model, the funtion that maps the short rate into n-period yields is given by (3.8), i.e. it is a�ne. For the threshold model, the two-periodyield is obtained via (3.13), a stepwise linear funtion, for n ≥ 3, the yield funtion (given13We use GAUSS 6.0 here. 11



Figure 1: Two-, three- and six-month yield as a funtion of the short rate.in proposition 3.1) is nonlinear. It turns out that the 'degree of nonlinearity' inreaseswith time to maturity.14 However, for small n, for whih yields an be atually omputed,nonlinearity is hardly visible from the graph.Therefore, we hoose another representation that plots a measure of the seond deriva-tive of the yield funtion against the short rate. Let fn(x) denote the funtion that assignsthe short rate x the orresponding n-period yield, i.e. fn(x) = An(x)/n + Bn/n · x, with
An(·) and Bn given by (3.16) and (3.15). For a small number h, we approximate theseond derivative as

d2 fn(x)

d x2
≈

fn(x − h) − 2fn(x) + fn(x + h)

h2
=: kn(x), (4.1)at all points of ontinuity. That is, we do not ompute kn(x) if [x− h, x + h] ontains thethreshold value c. Figure 2 plots kn(x) against x for n = 2, 3 and 6.For n = 2 the funtion is identially zero sine f2(x) is stepwise linear, so the seondderivative disappears at all points of ontinuity. For n = 3 and n = 6 the �gure shows that14See Arhontakis and Lemke (2005). 12



Figure 2: Seond derivative of the yield funtion against the short rate.there is in fat a nonlinearity around the threshold value (that ould not be made visiblein �gure 1). In partiular, the yield funtions f3 and f6 exhibit a onvex-onave pattern:on the left of the threshold value the sensitivity of yn with respet to x inreases (positiveseond derivative, i.e. inrease in (positive) �rst derivative), on the right it dereases(negative seond derivative, i.e. derease in (positive) �rst derivative). Moreover, theinterval in whih 'nonlinearity prevails' is bigger for n = 6 than for n = 3. As shown inArhontakis and Lemke (2005) it tends to rise monotonially with time to maturity.5 Summary and OutlookAssuming a linear Gaussian proess for the short-term interest rate and an adequatelyhosen priing kernel indues bond yields to be a�ne funtions of the short rate underthe ondition of no-arbitrage. While this is a onvenient property of linear models, theempirial literature on interest rate dynamis �nds evidene for nonlinearities in short-rate dynamis. This poses the question how ertain forms of nonlinear dynamis translate13



into the ross-setional relationship between bond yields of di�erent maturities. Thispaper onsidered a very simple ase of a nonlinear spei�ation for the one-month rate: aSETAR proess that allows the interept parameter to swith, while all other parametersare assumed to be onstant. This spei�ation has been proposed by Lanne and Saikkonen(2002) as it is espeially suited to apture the near-unit-root behavior of interest rates.We derive the exat formula for bond yields as a funtion of the one-month rate. Itturns out that the yield funtions exhibit a onvex-onave pattern around the thresholdvalue. The region in whih nonlinearity prevails inreases with time to maturity. Thatis, for small time to maturity n, the orresponding yield as a funtion of the short rate isnearly (stepwise) linear.While our solution for bond pries delivers the exat solution in a �nite number ofoperations, two numerial problems arise for the omputation of yields for longer (i.e.
n > 7 months) time to maturity. First, the solution for the n-period yield requires theomputation of the .d.f. of an (n − 2)-variate normal with general variane-ovarianematrix, whih is usually not feasible to be omputed. The seond problem lies in thefat that the omputational burden inreases exponentially with time to maturity. Theompanion paper Arhontakis and Lemke (2005) irumvents these problems by relyingon a pure simulation-based approah for longer times to maturity. For future researhit is oneivable to use more lever numerial routines to ompute the required .d.f.s.Conerning the urse of dimensionality problem, one may employ a mixed approah thatmakes use of our analytial solution within a simulation-based approah.The solution approah introdued in this paper an be transferred to riher nonlinearmodels of the term struture. For instane, parameters other than interepts may beallowed to swith as well. This inludes models for whih the degree of mean reversiondepends on the level of interest rates. Moreover, the tehnique introdued in this papershould be easily transferable to multifator models. If solution funtions for those modelsan atually be made omputable, those nonlinear models should be ompared to thewell-established multifator a�ne models.

14



A Two Auxiliary ResultsWe �rst provide two auxiliary results about the expetations of the (trunated) multivari-ate log-normal distribution. Let x be distributed as an m-variate normal, x ∼ N(0, Ω),and let d and r be vetors of length m. Then:
E(exp[d′x]) = exp

[

1

2
d′Ωd

] (A.1)and
E(exp[d′x]|x < r) =

1

Pr(x < r)
F (r; Ωd, Ω) exp

[

1

2
d′Ωd

]

, (A.2)where F (r; Ω d, Ω) denotes the .d.f. of the multivariate normal with mean Ωd andvariane-ovariane matrix Ω evaluated at r.Noting that d′x is a salar normal random variable, the �rst expression is a standardresult. To show the seond result, �rst note that the onditional density required toompute the expetation is given by
p(x|x < r) =

p(x)

Pr(x < r)
.where p(x) is the density of the normal N(0, Ω) and Pr(x < r) is the .d.f. of that normalevaluated at r.15Then we have

E(exp[d′x]|x < r)

=
1

Pr(x < r)

∫ rm

−∞

. . .

∫ r1

−∞

1

(2π)(m/2)
|Ω|−1/2 exp[−1/2x′Ω−1x] exp[d′x] dx1 . . . dxm

=
1

Pr(x < r)

∫ rm

−∞

. . .

∫ r1

−∞

1

(2π)(m/2)
|Ω|−1/2

× exp[(−1/2)(x′Ω−1x − 2d′x − d′Ωd + d′Ωd)] dx1 . . . dxm

=
1

Pr(x < r)

∫ rm

−∞

. . .

∫ r1

−∞

1

(2π)(m/2)
|Ω|−1/2

× exp[(−1/2)(x − Ωd)′Ω−1(x − Ωd) + (1/2)d′Ωd] dx1 . . . dxm

=
1

Pr(x < r)
· exp[(1/2)d′Ωd] ·

∫ rm

−∞

. . .

∫ r1

−∞

1

(2π)(m/2)
|Ω|−1/2

× exp[(−1/2)(x − Ωd)′Ω−1(x − Ωd)] dx1 . . . dxm

=
1

Pr(x < r)
· exp[(1/2)d′Ωd] · F (r; Ωd, Ω).15So we ould write here and in (A.2) F (r; 0,Ω) instead of Pr(x < r). However, we stik to Pr(x < r)sine this is a more onvenient notation for the derivation following in setion B.15



B Derivation of the Bond Priing Formula for n > 21. Representation of Xt+i and partial sums of log SDFsIn the following we will need Xt+i written in terms of Xt, future ǫt and future intereptsas well as partial sums of the priing kernel Mt.Starting with Xt and iterating (3.9) forward leads to
Xt+i = κiXt + κi−1a(St) + κi−2a(St+1) + . . . + κa(St+i−2) + a(St+i−1)

+σκi−1ǫt+1 + σκi−2ǫt+2 + . . . + σκǫt+i−1 + σǫt+i,in ompat form
Xt+i = κiXt +

i
∑

l=1

gi
la(St+l−1) + hi

lǫt+l. (B.3)For partial sums of Xt we obtain
Xt+1 + Xt+2 + . . . + Xt+m

= (κ + κ2 + . . . + κm)Xt

+(1 + κ + . . . + κm−1)a(St) + (1 + κ + . . . + κm−2)a(St+1) + . . .

+(1 + κ)a(St+m−2) + a(St+m−1)

+σ(1 + κ + . . . + κm−1)ǫt+1 + σ(1 + κ + . . . + κm−2)ǫt+2 + . . .

+σ(1 + κ)ǫt+m−1 + σǫt+m,Using the latter result, the sum of the log disount fators, mt = ln(Mt), an be writtenas
mt+1 + mt+2 + . . . + mt+n

= −nδ − Xt − Xt+1 − . . . − Xt+n−1 − σλǫt+1 − σλǫt+2 − . . . − σλǫt+n

= −nδ − (1 + κ + . . . + κn−1)Xt

−(1 + κ + . . . + κn−2)a(St) − (1 + κ + . . . + κn−3)a(St+1) − . . .

−(1 + κ)a(St+n−3) − a(St+n−2)

−σ(λ + 1 + κ + . . . + κn−2)ǫt+1 − σ(λ + 1 + κ + . . . + κn−2)ǫt+2 − . . .

−σ(λ + 1)ǫt+n−1 − σλǫt+n−2,ompatly,
mt+1 + . . . + mt+n = −nδ − BnXt +

n
∑

i=1

bn
i ǫt+i +

n−2
∑

j=0

cn
j · a(St+j). (B.4)16



2. Bond prie as produt of three fatorsWe plug (B.4) into the bond prie formula (3.2) and obtain
P n

t = E(exp[mt+1 + . . . + mt+n]|Xt)

= E

(

exp

[

−nδ − BnXt +
n

∑

i=1

bn
i ǫt+i +

n−2
∑

j=0

cn
j · a(St+j)

]∣

∣

∣

∣

∣

Xt

)

.The random variables Xt and St are part of the onditioning information set and an thusbe taken outside the expetation. (Note that knowing Xt implies knowing if Xt < c istrue and thus knowing the realization of St = I(Xt ≥ c).) Moreover, ǫt+n−1 and ǫt+n areindependent of (St, St+1, St+n−2, ǫt+1, . . . , ǫt+n−2)
′. Hene, we an write

P n
t = exp[−nδ − BnXt + cn

0a(St)]

× E(exp[bn
n−1ǫt+n−1 + bn

nǫt+n]|Xt)

× E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(St+i)

]∣

∣

∣

∣

∣

Xt

)

. (B.5)The produt onsists of three fators. The �rst fator ontains only quantities known attime t. The expetation of the seond fator an be omputed using the �rst of our aux-iliary results, (A.1), sine (ǫt+n−1, ǫt+n)′ is onditionally (and unonditionally) normallydistributed. Thus, using the terms of (A.1) we have d = (bn
n−1, b

n
n)′, x = (ǫt+n−1, ǫt+n)′,

µ = 02, and Ω = I2 and we obtain for the seond fator in (B.5)
E(exp[bn

n−1ǫt+n−1 + bn
nǫt+n]|Xt) = exp[0.5(bn

n−1)
2 + 0.5(bn

n)2]. (B.6)3. Computation of E
(

exp
[

∑n−2
i=1 bn

i ǫt+i +
∑n−2

j=1 cn
j a(St+j)

]∣

∣

∣
Xt

).For omputing the third fator in (B.5) it is important to note that (St+1, . . . , St+n−2)
′ and

(ǫt+1, . . . , ǫt+n−2)
′ are not independent. We will evaluate the expression by �rst omputingthe expetation for an arbitrary given realization of (St+1, . . . , St+n−2)

′ and then take theprobability-weighted sum over all possible realizations of (St+1, . . . , St+n−2)
′. That is,we �rst enlarge the onditioning information set and then integrate out the enlargementagain.16Let

ζ̄t = (S̄t+1, . . . , S̄t+n−2)
′16A similar approah is taken by Bansal and Zhou (2002), deriving bond pries for the ase that thestate evolution is subjet to Markov regime swithing.17



denote a realization of
ζt = (St+1, . . . , St+n−2)

′,i.e ζ̄t is a sequene of zeros and ones. There are 2n−2 di�erent suh sequenes. They willbe indexed k = 1, 2, . . . , 2n−2 suh that k − 1 is that deimal number that orresponds tothe binary number represented by ζ̄t. For example for n = 6, ζ̄t(k = 1) = (0, 0, 0, 0)′ and
ζ̄t(k = 14) = (1, 1, 0, 1)′.Thus, we have

E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(St+i)

]∣

∣

∣

∣

∣

Xt

)

=
2n−2

∑

k=1

Pr
(

ζ̄t(k)
∣

∣ Xt

)

E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(S̄t+i(k))

]∣

∣

∣

∣

∣

Xt, ζ̄t(k)

)where Pr(ζ̄t(k)|Xt) denotes the onditional probability of the realization ζt = ζ̄t(k).For the expetation onditional on the augmented information set we an pull outexpressions involving S̄t+i, hene
E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(St+i)

]∣

∣

∣

∣

∣

Xt

)

=
2n−2

∑

k=1

Pr
(

ζ̄t(k)
∣

∣ Xt

)

exp

[

n−2
∑

i=1

cn
i a(S̄t+i(k))

]

×E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i

]∣

∣

∣

∣

∣

Xt, ζ̄t(k)

)

. (B.7)4. Computation of E
(

exp
[
∑n−2

i=1 bn
i ǫt+i

]∣

∣ Xt, ζ̄t(k)
).In order to ompute the last onditional expetation appearing in the latter expressionwe will make use of our auxiliary result (A.2). For this we will rewrite the onditioninginformation set as a set of inequality onditions.To explain the approah, we onsider the following example. If, for n = 5, ζ̄t(3) =

(0, 1, 0), this is equivalent to the event
Xt+1 < c,Xt+2 ≥ c,Xt+3 < c.Making use of (B.3), these three inequalities an be written as

κXt + g1
1a(St) + h1

1ǫt+1 < c

κ2Xt + g2
1a(St) + a2

2a(S̄t+1(k)) + h2
1ǫt+1 + h2

2ǫt+2 ≥ c

κ3Xt + g3
1a(St) + g3

2a(S̄t+1(k)) + g3
3a(S̄t+2(k)) + h3

1ǫt+1 + h3
2ǫt+2 + h3

3ǫt+3 < c18



To be able to apply our auxiliary result (A.2) we only want to have '<' inequalities. So wemultiply every '≥' inequality by -1. Tehnially, we multiply through any inequality by afator R(S̄t+i(k)), where for the funtion R(·) de�ned on {0, 1}, R(0) = 1, and R(1) = −1.Hene, in the above example R(S̄t+1(k)) = R(0) = 1, R(S̄t+2(k)) = −1, and R(S̄t+3(k))

= 1. Thus, the inequality orresponding to a partiular S̄t+i(k) is written as
R(S̄t+i(k)) ·

[

κiXt +
i

∑

l=1

gi
la(S̄t+l−1) + hi

lǫt+l

]

< R(S̄t+i(k))c. (B.8)Aordingly, the set of inequalities orresponding to a partiular (S̄t+1(k), . . . , S̄t+n−2(k))′an be written in vetor-matrix notation as














R(S̄t+1(k))

R(S̄t+2(k))...
R(S̄t+n−2(k))















⊙





























κ

κ2...
κn−2















Xt

+















g1
1 0 0 . . . 0

g2
1 g2

2 0 . . . 0... ... ... ... ...
gn−2
1 gn−2

2 gn−2
3 . . . gn−2

n−2





























a(St)

a(S̄t+1(k))...
a(S̄t+n−3(k))















+















h1
1 0 0 . . . 0

h2
1 h2

2 0 . . . 0... ... ... ... ...
hn−2

1 hn−2
2 hn−2

3 . . . hn−2
n−2





























ǫt+1

ǫt+2...
ǫt+n−2





























< c ·















R(S̄t+1(k))

R(S̄t+2(k))...
R(S̄t+n−2(k))













where `⊙' denotes elementwise multipliation of two vetors. Using the de�nitions (3.17)- (3.26), and Et = (ǫt+1, . . . , ǫt+n−2)
′ this is written ompatly as

f̃(k)Xt + G̃(k)a(ζ̄∗
t (k)) + H̃(k)Et < c̃(k) (B.9)or

H̃(k)Et < h̃(k). (B.10)19



It is important to note that multiplying both sides of (B.10) by the inverse of H̃(k) wouldnot be an equivalent transformation of that inequality.17 We de�ne a new random vetor
z̃(k) = H̃(k) Et.Sine Et ∼ N(0n−2, In−2), we havẽ

z(k) ∼ N(0, H̃(k)H̃(k)′)Now we an turn the expression to be omputed,
E

(

exp
[

b∗′Et

]∣

∣ Xt, ζ̄t(k)
)

,into the form of (A.2).18 That is we rewrite the exponential in terms of z̃(k) and theonditioning on ζ̄t(k) in terms of an inequality for z̃(k). Then we apply (A.2). We obtain
E

(

exp
[

b∗′Et

]∣

∣ Xt, ζ̄t(k)
)

= E
(

exp
[

(H̃(k)
−1′

b∗)′z̃(k)
]∣

∣

∣
Xt, z̃(k) < h̃(k)

)

=
1

Pr(z̃(k) < h̃(k)|Xt)

× exp
[

0.5 b∗′H̃(k)
−1

H̃(k)H̃(k)′H̃(k)−1′b∗
]

×F
(

h̃(k); H̃(k)H̃(k)′H̃(k)−1′b∗, H̃(k)H̃(k)′
)

=
1

Pr(z̃(k) < h̃(k)|Xt)

× exp
[

0.5 b∗′b∗
]

×F
(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
)Finally note that

Pr(z̃(k) < h̃(k)|Xt) = Pr(ζ̄t(k)|Xt),sine {z̃(k) < h̃(k)|Xt} and {ζ̄t(k)|Xt} are equivalent events as we derived above.5. Putting things together17As a simple example, one an easily verify that Ax < c � with A =

(

a1 0

a2 a3

), x = (x1, x2)
′,

c = (c1, c2)
′, a1, a2, a3, c1, c2 all positive � de�nes a di�erent region in x1, x2 spae than x < A−1c.18Note that the only slight di�erene to (A.2) is that everything is onditional on Xt. However, a`onditional version' of (A.2) ould be derived in the same way as the unonditional version.20



In step 4 we omputed the last term in (B.7). Plugging in we obtain
E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(St+i)

]∣

∣

∣

∣

∣

Xt

)

=
2n−2

∑

k=1

exp

[

n−2
∑

j=1

cn
j a(S̄t+j(k))

]

Pr
(

ζ̄t(k)
∣

∣Xt

)

×E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i

]∣

∣

∣

∣

∣

Xt, ζ̄t(k)

)

=
2n−2

∑

k=1

exp

[

n−2
∑

j=1

cn
j a(S̄t+j(k))
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