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Abstra
t:Using a sto
hasti
 dis
ount fa
tor approa
h, we derive the exa
t solution for arbitrage-free bond yields for the 
ase that the short-term interest rate follows a threshold pro
esswith the inter
ept swit
hing endogenously. The yield fun
tions, mapping the one-monthrate into n-period yields, exhibit a 
onvex-
on
ave shape to the left and the right of thethreshold value, respe
tively. This is in 
ontrast to linear short-rate pro
esses whi
h implyan a�ne yield fun
tion. The intervals for whi
h 
onvexity or 
on
avity prevails in
reasewith time to maturity.JEL Classi�
ation: E43, G12, C63Keywords: Threshold pro
ess, term stru
ture of interest rates, nonlinear yieldfun
tion



Non-Te
hni
al SummaryIn dynami
 fa
tor models of the term stru
ture, the joint evolution of interest ratesof di�erent maturities is as
ribed to a small set of driving for
es. If there is a singlefa
tor, it will usually 
oin
ide with the short-term (one-month) interest rate. The rea
tionof long-term yields to variations of the short rate is restri
ted by the 
ondition of noarbitrage. Loosely speaking, the no-arbitrage assumption pre
ludes trading strategies inbond portfolios that are 
hara
terized by zero initial net payments but guaranteed pro�tsin the future. In no-arbitrage models it is mostly assumed that the fa
tor pro
ess islinear and has Gaussian innovations. This setting implies that arbitrage-free bond yieldsare linear fun
tions of the short rate: the sensitivity of long-term yields with respe
t to
hanges of the short rate is independent of the short rate's level.In 
ontrast, the empiri
al literature �nds eviden
e that the dynami
s of the short-terminterest rate is 
hara
terized by nonlinearities, time-varying volatility and innovationswhi
h are not normally distributed. These deviations from linear Gaussian short ratemodels usually render an analyti
al solution for arbitrage-free bond yields infeasible.This paper analyzes the term stru
ture impli
ations for su
h a nonlinear 
ase. Theshort-term interest rate follows a threshold pro
ess, for whi
h the inter
ept swit
hes en-dogenously in an otherwise standard �rst-order autoregressive spe
i�
ation. As shownin the literature, this spe
i�
ation is espe
ially suited to 
apture the near-random walkbehavior of short-term interest rates. We derive the pri
ing fun
tion, that is the mappingbetween the one-month rate and n-period yields. The relationship between the shortrate and any yield of longer maturity exhibits a 
onvex-
on
ave shape: the sensitivity oflong-term yields with respe
t to 
hanges in the short rate is �rst in
reasing in the level ofthe short rate but then de
reases as the short-term interest rate in
reases further. Thispattern is the more distin
t the higher the maturity of the long-term bond.



Ni
ht te
hnis
he ZusammenfassungIn dynamis
hen Faktormodellen der Zinsstruktur wird die gemeinsame zeitli
he Entwi
k-lung von Zinsen vers
hiedener Laufzeiten auf eine kleine Zahl von Bestimmungsgröÿenzurü
kgeführt. In Modellen mit nur einem Faktor ist dies meist der kurzfristige Zins(Laufzeit ein Monat). Die Reaktion von langfristigen Renditen auf Veränderungen desEinmonatszinses wird dur
h die Bedingung der Arbitragefreiheit bes
hränkt. Das heiÿt,dass es keine Handelsstrategien gibt, die dur
h einen anfängli
hen Nettokapitaleinsatzvon Null, aber einen garantierten Gewinn in der Zukunft 
harakterisiert sind. In arbi-tragefreien Modellen wird meist unterstellt, dass der Faktorprozess linear ist und nor-malverteilte Innovationen aufweist. Unter diesen Annahmen lassen si
h Anleiherenditenfür alle Laufzeiten als lineare Funktionen des kurzfristigen Zinses darstellen. Das be-deutet, dass das Ausmaÿ der Reaktion von langfristigen Renditen auf Änderungen imEinmonatssatz unabhängig von dessen Niveau ist.Die empiris
he Literatur liefert allerdings Belege dafür, dass die Dynamik des kurzfristi-gen Zinses dur
h Ni
htlinearitäten, zeitvariierende Volatilität und Innovationen, die ni
htnormalverteilt sind, 
harakterisiert ist. Mit diesen Abwei
hungen vom linearen Gauÿs
henModell ist es nur in wenigen Spezialfällen mögli
h, arbitragefreie Anleiherenditen ana-lytis
h zu bere
hnen.Dieses Papier ermittelt die arbitragefreie Zinsstrukturdynamik für einen sol
hen Fall:Der kurzfristige Zins folgt einem autoregressiven S
hwellenwert-Prozess, bei dem derNiveauparameter endogen zwis
hen zwei Werten hin und her we
hselt. Wie in der Lite-ratur gezeigt wird, ist diese Spezi�kation besonders gut geeignet, das dynamis
he Verhal-ten des Kurzfristzinses, das oft dem eines Random Walk nahe kommt, zu bes
hreiben.Wir leiten analytis
h die Preisfunktion, das heiÿt den funktionalen Zusammenhang zwi-s
hen Kurzfristzins und langfristigen Renditen, her. Diese Funktion weist eine konvex-konkave Gestalt auf: Langfristzinsen reagieren mit zunehmendem Niveau der Einmonats-rate zunä
hst stärker auf deren Änderungen, ab einem bestimmten Zinsniveau nimmt dieStärke der Zinsreaktion allerdings ab. Je länger die Laufzeit der betra
hteten Anleihe ist,desto ausgeprägter ist dieses Muster.
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Bond Pri
ing when the Short Term InterestRate Follows a Threshold Pro
ess∗1 Introdu
tionStarting from the seminal 
ontributions of Vasi£ek (1977) and Cox, Ingersoll, and Ross(1985), there is by now a large and growing literature that tries to explore the natureof the dynami
s of interest rates and the relationship of yields with di�erent maturitiesin an arbitrage-free framework. While models in the �nan
e literature were preferablyformulated in 
ontinuous time with 
ontinuous state spa
e or in dis
rete time with dis-
rete state spa
e, models that are using dis
rete time and a 
ontinuous state spa
e havebe
ome in
reasingly popular re
ently. This may in part be attributed to the fa
t thatthis framework is familiar to ma
roe
onomists enabling them to integrate term stru
tureelements in models of ma
roe
onomi
 dynami
s.Models of the latter type (
ontinuous state spa
e, dis
rete time), usually 
onsist oftwo 
omponents: a spe
i�
ation of the dynami
s of the state ve
tor and a formulationof the sto
hasti
 dis
ount fa
tor. Given these, the 
ondition of no-arbitrage determinesthe dynami
s of the whole spe
trum of bond yields. If the state or fa
tor ve
tor is one-dimensional it usually 
oin
ides with the short-term (one-month) interest rate.While the large empiri
al literature devoted to modeling and estimating short terminterest rate dynami
s is bringing up in
reasingly ri
h and advan
ed spe
i�
ations, theliterature on arbitrage-free term stru
ture models usually restri
ts itself to simple linearstate dynami
s. This is be
ause �resear
hers are inevitably 
onfronted with trade-o�sbetween the ri
hness of e
onometri
 representations of the state variables and the 
om-putational burdens of pri
ing and estimation� as Dai and Singleton (2000) observe. They
on
lude that this is the reason why there is a huge emphasis on models from the a�ne
∗Wolfgang Lemke: Deuts
he Bundesbank, E-Mail: wolfgang.lemke�bundesbank.de. Theofanis Ar-
hontakis: Graduate Program Finan
e & Monetary E
onomi
s, Johann-Wolfgang-Goethe UniversitätFrankfurt, Uni-PF77, 60054 Frankfurt am Main, Germany, E-Mail: ar
hontakis��nan
e.uni-frankfurt.de.The views expressed here are those of the authors and not ne
essarily those of the Deuts
he Bundesbank.We thank Julia von Borstel, Heinz Herrmann, Malte Knüppel, Christian S
hlag and seminar parti
ipantsat the Bundesbank for dis
ussion. 1




lass in the literature. A�ne models are treated in a uni�ed framework by Du�e andKan (1996), their properties are further analyzed by Dai and Singleton (2000).1Models of this 
lass are 
hara
terized by a solution that expresses bond yields as ana�ne fun
tion of the state ve
tor. This follows from linear state dynami
s, Gaussianinnovations and a sto
hasti
 dis
ount fa
tor that is a linear fun
tion of the state ve
tor.If one of these assumptions is dropped, bond yields 
an generally not be expressed asa�ne fun
tions of the state ve
tor.2 Moreover, there are only a few models outside thea�ne 
lass that allow for an analyti
 solution at all: examples are the regime swit
hingmodel by Bansal and Zhou (2002) and the quadrati
 model by Ahn, Dittmar, and Gallant(2002).This paper 
ontributes to the literature by deriving the analyti
al solution for bondyields for the 
ase that the short rate follows a threshold pro
ess of the type presentedby Lanne and Saikkonen (2002). Their formulation is espe
ially suited to 
apture thenear unit-root dynami
s of interest rates. We 
onsider the simplest version of their modelin whi
h the law of motion is an AR(1) with homos
edasiti
 Gaussian innovations. Theinter
ept is allowed to 
hange between two regimes. The regime prevailing is determinedby the previous period's realization of the short rate, i.e. the model is of the SETAR (selfex
iting threshold autoregressive) type.Papers that 
onsider term stru
ture impli
ations of threshold dynami
s usually do soby means of simulation.3 However, Gospodinov (2005) remarks in a footnote that ananalyti
al solution may be feasible for 
ertain spe
ial 
ases of the fairly general TAR-GARCH model 
onsidered there.Compared to an a�ne Gaussian one-fa
tor model, the only di�eren
e of our state pro-
ess is the 
hanging inter
ept. However, it turns out that this slight modi�
ation indu
essubstantial 
hanges to the solution 
ompared to the a�ne model. The yield fun
tion,mapping realizations of the short rate into yields of longer maturities, is nonlinear andexhibits a point of dis
ontinuity at the threshold value. The fun
tion exhibits a 
onvex-
on
ave pattern, a phenomenon that qualitatively mat
hes similar patterns observed inthe data. For values of the short rate su�
iently far o� the threshold value, however, theyield fun
tion is approximately linear. The width of the interval for whi
h nonlinearity1The dis
rete-time version of the a�ne 
lass is des
ribed by Ba
kus, Foresi, and Telmer (1998).2See, however, Ba
kus et al. (1998) and Lemke (2006) who show that repla
ing the normal distributionof innovations by a Gaussian mixture still leads to an a�ne yield fun
tion.3See Pfann, S
hotman, and Ts
hernig (1996) and Gospodinov (2005). The paper by Audrino andGiorgi (2005) 
an be seen as an ex
eption. It features beta-distributed regime shifts and exhibits asimilar stru
ture as the Markov regime swit
hing model in Bansal and Zhou (2002).2



in the yield fun
tion prevails is in
reasing with time to maturity.However, there is a problem with the derived exa
t yield fun
tion as it 
an a
tu-ally be 
omputed for yields with a small time to maturity only (say up to six months).This is be
ause 
omputing the fun
tion for the n-period yield requires the value of the
umulative distribution fun
tion of an (n − 2)−dimensional normal with non-diagonalvarian
e-
ovarian
e matrix. Moreover, the number of required 
omputations in
reasesexponentially with time to maturity, posing in addition a 
urse-of-dimensionality prob-lem. A

ordingly, for longer times to maturity, approximations of our exa
t solution orsimulation-based te
hniques have to be applied.4The stru
ture of the paper is as follows. The next se
tion gives a des
ription of themodel, se
tion 3 derives the analyti
al yield fun
tion, followed by a numeri
al example inse
tion 4. The �fth se
tion 
on
ludes, an appendix 
ontains a detailed derivation of theyield fun
tion.2 The ModelThe model that we 
onsider is in dis
rete time and operates on a 
ontinuous state spa
e.One unit of time may be thought of as one month. The single state variable in ourone-fa
tor model is the one-month interest rate. Its dynami
s is given by the SETARspe
i�
ation
Xt = ν + β I(Xt−1 ≥ c) + κXt−1 + σǫt, ǫt ∼ N(0, 1) (2.1)where I(·) is the indi
ator fun
tion and the innovations ǫt are serially independent. Theparameter κ is in the interval (0, 1), guaranteeing stationarity of the pro
ess. The onlydi�eren
e to a linear Gaussian model � i.e. the dis
rete-time version of the Vasi£ek model5� is the time-varying inter
ept. Depending on the previous realization of the short rateit is given by ν or ν + β, respe
tively. Note that a regime-dependent inter
ept indu
es aregime-dependent long-run mean of the short rate. Approximating the data generatingpro
ess of the one-month interest rate with a standard AR model (one inter
ept) usuallyrequires a value of κ 
lose to unity to 
apture the high persisten
e of the short rate pro
essas observed in the data. Heuristi
ally, the two-inter
epts spe
i�
ation requires a lower κsin
e the short rate pro
ess is now allowed to revert to two di�erent means.4See Ar
hontakis and Lemke (2005).5See Ba
kus et al. (1998).
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The pro
ess given by (2.1) is the simplest member in a 
lass of models proposed byLanne and Saikkonen (2002). The more general spe
i�
ation is written as
Xt = ν +

r
∑

k=1

βk I(Xt−d ≥ ck) +

p
∑

j=1

κjXt−j + σ(Xt−d)ǫt (2.2)i.e. it allows for more than two regimes, for more lags in the autoregressive spe
i�
ation,and for the threshold variable being lagged by more than one period. The 
oe�
ient ofstate innovations is also allowed to be regime-dependent, allowing for regime-dependentvarian
e. In fa
t, the spe
iation that is most adequate empiri
ally turns out to be hetero-s
edasti
, with r, d, p all ex
eeding unity.6 The reason for sti
king to the 
ase with r =

d = p = 1 is that we want to point out the e�e
ts on the term stru
ture of interest ratesthat are implied by only this slight modi�
ation of the purely linear 
ase. Moreover, thesolution approa
h that we take should be transferrable to the more general 
ase, but wethink that its stru
ture 
an be made most transparent when 
on
entrating on the spe
ial
ase.Given the pro
ess (2.1) for the short term interest rate, we will now derive bond pri
epro
esses for all maturities. Let P n
t denote the time t pri
e of a default-free zero-
ouponbond with n periods left until maturity. The payo� is normalized to one, so P 0

t = 1.Continuously 
ompounded monthly yields are 
omputed from bond pri
es as
yn

t = −
ln P n

t

n
. (2.3)Absen
e of arbitrage is equivalent to the existen
e of a stri
tly positive sto
hasti
dis
ount fa
tor (SDF) pro
ess {Mt}, with E|MtP

n
t | < ∞ and

P n
t = E(Mt+1P

n−1
t+1 |Ft), (2.4)where Ft denotes the σ-algebra generated by {Xt−i}i≥0. Sin
e the short-rate dynami
shas the Markov property, any expe
tation over the future 
onditional on Ft equals theexpe
tation 
onditional on the information 
ontained in Xt alone. We will thus write thebasi
 pri
ing equation simply as

P n
t = E(Mt+1P

n−1
t+1 |Xt). (2.5)For the sto
hasti
 dis
ount fa
tor we assume

Mt+1 = exp{−δ − Xt − λσǫt+1}, (2.6)6See Lanne and Saikkonen (2002) for the UK and Switzerland as well as Ar
hontakis and Lemke(2005) for Germany and the US. 4



where the exponential spe
i�
ation is 
hosen to guarantee positivity. We set
δ =

1

2
σ2λ2 (2.7)with hindsight sin
e this spe
i�
ation will lead to y1

t , the one-month yield, being equal to
Xt.7 The parameter λ is referred to as the market pri
e of risk, it governs the 
ovarian
eof sho
ks to the state variable and the dis
ount fa
tor. In a�ne models, the expe
tedone-period ex
ess return of a long-term bond over the short rate, divided by its standarddeviation, is a linear fun
tion of λ.8The model spe
i�
ation is now 
omplete: given the state pro
ess (2.1) and the pri
ingkernel spe
i�
ation (2.6), arbitrage free bond pri
e pro
esses {P n

t } are given as the solutionof the sto
hasti
 di�eren
e equation (2.5). An expli
it solution of the model writes bondpri
es, or equivalently yields, as fun
tions of the fa
tor Xt, i.e they are of the form
yn

t = fn(Xt; ψ), (2.8)where ψ 
olle
ts all model parameters. The next se
tion is devoted to �nding this solutionfun
tion fn for our threshold model.3 Arbitrage-free Term Stru
tureWe start by writing bond pri
es as a fun
tion of future dis
ount fa
tors. Substituting thebasi
 pri
ing equation (2.5) repeatedly into itself, using the law of iterated expe
tationsand noting that P 0
t = 1, we 
an write the time t pri
e of the n-period bond as

P n
t = E(Mt+1P

n−1
t+1 |Xt)

= E(Mt+1E(Mt+2P
n−2
t+2 |Xt+1)|Xt)

= . . .

= E(Mt+1 · Mt+2 · . . . · Mt+n|Xt), (3.1)equivalently using dis
ount fa
tors in logs,
P n

t = E(exp[mt+1 + . . . + mt+n]|Xt). (3.2)Before we turn to the model based on (2.1) it is instru
tive to 
onsider the spe
ial 
aseof β = 0, that is with Xt following the linear Gaussian pro
ess
Xt = ν + κXt−1 + σǫt, ǫt ∼ N(0, 1). (3.3)7See Ba
kus et al. (1998).8See Campbell, Lo, and Ma
Kinlay (1997) and Co
hrane (2001).5



Sin
e for this 
ase Xt is a linear pro
ess, the sum of log SDFs 
an be written as a linear
ombination of Xt and future ǫt only. This yields for the bond pri
e
P n

t = E

(

exp

[

−an − BnXt +
n

∑

i=1

bn
i ǫt+i

]∣

∣

∣

∣

∣

Xt

) (3.4)where an, Bn and bi
n are 
oe�
ients depending on the model parameters ν, κ, σ, and λas well as on time to maturity n.9Sin
e the ǫt are Gaussian white noise, their sum is also normal and the exponentialexpression in (3.4) has a 
onditional lognormal distribution. Computing the requiredexpe
tation yields the solution10

P n
t = exp[−An − BnXt], (3.5)where

Bn =
n−1
∑

i=0

κi =
1 − κn

1 − κ
, (3.6)

An =
n−1
∑

i=0

G(Bi), (3.7)with
G(Bi) = δ + Bi ν −

1

2
(λ + Bi)

2σ2.Using (2.3), we obtain bond yields as an a�ne fun
tion of the short-term interest rate,
yn

t =
An

n
+

Bn

n
Xt. (3.8)Note that this implies that for a given time to maturity n, the sensitivity of yields withrespe
t to interest rate 
hanges does not depend on the level of the short rate.We now turn to the 
ase that the short rate follows the threshold pro
ess (2.1). Thatis, the only little di�eren
e to the 
ase 
onsidered up to now is that the inter
ept of9The important point is the exponential-a�ne stru
ture. The exa
t form of these 
oe�
ients, expressedin terms of ν, κ, σ, and λ is not relevant here. For the threshold model (whi
h nests the linear model)they are given in proposition 3.1 below.10Usually, bond pri
es for the linear Gaussian 
ase are obtained using a method of undetermined
oe�
ients, 
f. Ba
kus et al. (1998) or Co
hrane (2001). One assumes that bond pri
es are in fa
t of theform (3.5) and inserts this expression on both sides of (2.5). It turns out that for An and Bn (viewed asa fun
tion of n) to satisfy (2.5) for all n and t, they have to solve a system of di�eren
e equations thesolution of whi
h is given by (3.6) and (3.7). Here we have 
hosen the approa
h using the moving averagerepresentation in order to parallel it to the solution approa
h for the threshold 
ase.6



the pro
ess is allowed to swit
h endogenously. However, it turns out that this slightmodi�
ation makes the 
omputation of bond pri
es a mu
h more intri
ate task. Thefollowing will des
ribe the basi
 idea of solving for bond pri
es and state the exa
t solution.The detailed derivation is delegated to the appendix.For n = 1, we should obtain the short rate itself, i.e. y1
t = Xt. This is in fa
t the 
asesin
e

P 1
t = E(Mt+1 · 1|Xt)

= E(exp[−δ − Xt − λσǫt+1])|Xt)

= exp[−δ − Xt + λ2σ2],and thus, using (2.7),
y1

t = δ + Xt −
1

2
λ2σ2 = Xt.For treating maturities n > 2 we introdu
e the notation

St = I(Xt ≥ c) and a(St) = ν + βSt,so for the threshold pro
ess (2.1),
Xt+1 = a(St) + κXt + σǫt+1. (3.9)The pri
e of the two-period bond is given by

P 2
t = E(exp[mt+1 + mt+2]|Xt)

= E (exp [−2δ − Xt − Xt+1 − σλ(ǫt+1 + ǫt+2)] |Xt)

= exp [−2δ − Xt − a(St) − κXt] · E (exp [−σ(1 + λ)ǫt+1 − σλǫt+2] |Xt)Conditional on Xt, the last exponent is normally distributed with mean 0 and vari-an
e σ2((1 + λ)2 + λ2). Thus, the exponential expression has a 
onditional lognormaldistribution, and
E (exp [−σ(1 + λ)ǫt+1 − σλǫt+2] |Xt) = exp

[

1

2
σ2((1 + λ)2 + λ2)

]

.Colle
ting terms delivers
P 2

t = exp[−A2(Xt) − B2Xt] (3.10)with
A2(Xt) = a(St) + 2δ −

1

2
σ2(λ2 + (1 + λ)2) (3.11)7



and
B2 = (1 + κ). (3.12)Hen
e, using (2.3), for the yield we obtain

y2
t =

A2(Xt)

2
+

B2

2
Xt. (3.13)The derivation has employed the same te
hniques as in the purely Gaussian 
ase. Thestru
ture of the solution, however, does di�er from (3.8). The two-period yield is astepwise linear fun
tion of the short rate: the inter
ept depends on a(St) ≡ ν +β · I(Xt ≥

c). Thus, y2
t viewed as a fun
tion of Xt features a dis
ontinuity at Xt = c. However, atall points of 
ontinuity, the derivative of the two-month yield with respe
t to the shortrate is 
onstant. Moreover, the expression Bn is the same as in the linear 
ase.For n > 2 the solution of the bond pri
e 
an be written in a similar form as in (3.4).However, sin
e the underlying short-rate pro
ess now involves the time-varying inter
epts,the representation of future log SDFs involves not only future ǫt but also future inter
eptswhi
h in turn are dependent on future Xt. In the appendix it is shown that bond pri
es
an be written as

P n
t = E(exp[mt+1 + . . . + mt+n]|Xt)

= E

(

exp

[

−nδ − BnXt +
n

∑

i=1

bn
i ǫt+i +

n−2
∑

j=0

cn
j · a(St+j)

]∣

∣

∣

∣

∣

Xt

)

,where Bn, bn
i , cn

j are 
oe�
ients depending on the model parameters κ, σ and λ. The
ru
ial thing to note is that the expression in parentheses is not a linear fun
tion of future
Xt anymore as it was in the 
ase of a simple linear AR(1) for Xt.11 A

ordingly, 
ondi-tional on Xt, the expression is not lognormal. Our solution for this 
ase makes use of asimilar idea as employed in Bansal and Zhou (2002). We will evaluate the expression by�rst 
omputing the expe
tation for an arbitrary given realization of (St+1, . . . , St+n−2)

′,say (S̄t+1, . . . , S̄t+n−2)
′, and then take the probability-weighted sum over all possible real-izations of (St+1, . . . , St+n−2)

′. That is, we �rst enlarge the 
onditioning information setand then integrate out the enlargement again.However, even under the extended information set {Xt, S̄t+1, . . . , S̄t+n−2}, the exponen-tial does not have a plain lognormal distribution. This is be
ause (St+1, . . . , St+n−2)
′ and

(ǫt+1, . . . , ǫt+n−2)
′ are not independent. In other words, knowing that a parti
ular path ofinter
epts (a(S̄t+1), . . . , a(S̄t+n−2))

′ has been realized, restri
ts the set of possible realiza-tions of (ǫt+1, . . . , ǫt+n−2)
′: 
onditional on the extended information set, (ǫt+1, . . . , ǫt+n−2)

′has a trun
ated multivariate lognormal distribution.11Re
all that a(St) = ν + β · I(Xt ≥ c). 8



A �nal point to note is that, sin
e St+i 
an assume two di�erent values, 1 and 0, thenumber of di�erent extended information sets, {Xt, S̄t+1, . . . , S̄t+n−2}, amounts to 2n−2.It is obvious that this will be one obsta
le for obtaining numeri
al values for bond yieldswith longer times to maturity.The following proposition states the solution for bond yields with time to maturityex
eeding two months.Proposition 3.1 (Yield fun
tion for n > 2). For the short rate pro
ess given by (2.1)and the pri
ing kernel de�ned by (2.6), yields with time to maturity n > 2 as a fun
tionof the short rate Xt are given as:
yn

t =
An(Xt)

n
+

Bn

n
Xt (3.14)with

Bn =
1 − κn

1 − κ
(3.15)and

An(Xt)

= n · δ − cn
0a(St) −

1

2
b′b (3.16)

− ln

(

2n−2

∑

k=1

F
(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
)

exp

[

n−2
∑

j=1

cn
j · a

(

S̄t+j(k)
)

])whi
h uses the following de�nitions:
b = (bn

1 , . . . , b
n
n)′, b∗ = (bn

1 , . . . , b
n
n−2)

′ with bn
i = −σ

(

λ +
1 − κn−i

1 − κ

)

cn
j = −

1 − κn−j−1

1 − κ
, j = 0, 1, . . . , n − 2The fun
tion F (r; µ, Σ) denotes the 
umulative distribution fun
tion of the multivariatenormal N(µ, Σ) evaluated at the ve
tor r.The �rst summation in (3.16) runs over all possible realizations of the sequen
e

{St+1, . . . , St+n−2}, i.e. over all possible sequen
es of length n − 2 that 
onsist of ze-ros and ones. {S̄t+1(k), . . . , S̄t+n−2(k)} denotes a parti
ular sequen
e of this sort. Theindexing may be su
h that k is the de
imal number (plus one) that 
orresponds to thebinary number represented by the sequen
e. For instan
e, the sequen
e
{S̄t+1(k), S̄t+2(k), S̄t+3(k), S̄t+4(k)} = {1, 0, 0, 1}9




orresponds to the de
imal number 9 and would 
arry the index k = 10(= 9 + 1).The ve
tor h̃(k) is given by12
h̃(k) = c̃(k) − f̃(k) · Xt − G̃(k) · a

(

ζ̄∗
t (k)

)

. (3.17)The remaining expressions are de�ned as follows:
ζ̄∗
t (k) = (St, S̄t+1(k), S̄t+2(k), . . . , S̄t+n−3(k))′, (3.18)

a(ζ̄∗
t (k)) = (a(St), a(S̄t+1(k)), a(S̄t+2(k)), . . . , a(S̄t+n−3(k)))′, (3.19)

f̃(k) =









R(S̄t+1(k)) · κ1...
R(S̄t+n−2(k)) · κn−2









(3.20)where
R(S̄) =

{

1, if S̄ = 0

−1, if S̄ = 1,
(3.21)

G̃(k) =















g̃1
1(k) 0 0 . . . 0

g̃2
1(k) g̃2

2(k) 0 . . . 0... ... ... ... ...
g̃n−2
1 (k) g̃n−2

2 (k) g̃n−2
3 (k) . . . g̃n−2

n−2(k)















(3.22)with
g̃i

j(k) = R(S̄t+j(k)) · κi−j, (3.23)
c̃(k) = c ·









R(S̄t+1(k))...
R(S̄t+n−2(k))









, (3.24)and
H̃(k) =















h̃1
1(k) 0 0 . . . 0

h̃2
1(k) h̃2

2(k) 0 . . . 0... ... ... ... ...
h̃n−2

1 (k) h̃n−2
2 (k) h̃n−2

3 (k) . . . h̃n−2
n−2(k)















(3.25)12The expressions h̃(k), c̃(k), f̃(k), G̃(k), c̃(k), H̃(k) depend on n and t. However, we omit thesearguments in order to avoid an even more messy notation.10



with
h̃i

j(k) = R(S̄t+j(k)) · σκi−j. (3.26)Given the parameters of the threshold model, ν, δ, c, κ, σ and λ, it is in prin
iplepossible to 
ompute any n-period yield that 
orresponds to a realization Xt of the shortrate. However, as n gets larger, the following 
omputational obsta
les o

ur.First, as already mentioned above, the number of di�erent inter
ept 
ombina-tions in
reases exponentially with time to maturity. Se
ond, the formula involves
F

(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
), the 
.d.f. of a multivariate normal with general (i.e. non-diagonal) 
ovarian
e matrix. Numeri
al software13 usually has di�
ulties to 
ompute the
orresponding multiple integral for higher dimensions, say ex
eeding 6. Sin
e 
omputingbond yields of maturity n requires the 
omputation of a 
.d.f of an (n−2)-variate normal,maturities ex
eeding eight months 
annot be obtained in a straightforward fashion.In the 
ompanion paper Ar
hontakis and Lemke (2005) we 
ir
umvent these prob-lems by 
omputing bond pri
es for higher n employing a simulation-based approa
h.Conditional on a realization Xt of the short rate we generate N realizations � sayN=100,000 � of (Xt+1, . . . , Xt+n−1)

′ and (ǫt, . . . , ǫt+n)′ and 
ompute the 
orresponding
exp[mt+1 + . . . mt+n]. The average of the latter expression over all runs is an estimate of
P n

t , see (3.2). Using the simulation method, that paper explores the properties of bondyields in some detail. In this paper here, we restri
t ourselves to illustrate some propertiesof the yield fun
tion for small n whi
h is done in the next se
tion.4 A Numeri
al ExampleBased on parameter estimates for US data in Ar
hontakis and Lemke (2005), �gure 1draws yields of two-, three- and six-month yields as a fun
tion of the one-month rate.The parameters are given as
ν = 0.3058/1200, β = 0.2603/1200, κ = 0.9253,

c = 5.5296/1200, σ = 0.7136/1200, λ = −155.Re
all that for a linear one-fa
tor model, the fun
tion that maps the short rate into n-period yields is given by (3.8), i.e. it is a�ne. For the threshold model, the two-periodyield is obtained via (3.13), a stepwise linear fun
tion, for n ≥ 3, the yield fun
tion (given13We use GAUSS 6.0 here. 11



Figure 1: Two-, three- and six-month yield as a fun
tion of the short rate.in proposition 3.1) is nonlinear. It turns out that the 'degree of nonlinearity' in
reaseswith time to maturity.14 However, for small n, for whi
h yields 
an be a
tually 
omputed,nonlinearity is hardly visible from the graph.Therefore, we 
hoose another representation that plots a measure of the se
ond deriva-tive of the yield fun
tion against the short rate. Let fn(x) denote the fun
tion that assignsthe short rate x the 
orresponding n-period yield, i.e. fn(x) = An(x)/n + Bn/n · x, with
An(·) and Bn given by (3.16) and (3.15). For a small number h, we approximate these
ond derivative as

d2 fn(x)

d x2
≈

fn(x − h) − 2fn(x) + fn(x + h)

h2
=: kn(x), (4.1)at all points of 
ontinuity. That is, we do not 
ompute kn(x) if [x− h, x + h] 
ontains thethreshold value c. Figure 2 plots kn(x) against x for n = 2, 3 and 6.For n = 2 the fun
tion is identi
ally zero sin
e f2(x) is stepwise linear, so the se
ondderivative disappears at all points of 
ontinuity. For n = 3 and n = 6 the �gure shows that14See Ar
hontakis and Lemke (2005). 12



Figure 2: Se
ond derivative of the yield fun
tion against the short rate.there is in fa
t a nonlinearity around the threshold value (that 
ould not be made visiblein �gure 1). In parti
ular, the yield fun
tions f3 and f6 exhibit a 
onvex-
on
ave pattern:on the left of the threshold value the sensitivity of yn with respe
t to x in
reases (positivese
ond derivative, i.e. in
rease in (positive) �rst derivative), on the right it de
reases(negative se
ond derivative, i.e. de
rease in (positive) �rst derivative). Moreover, theinterval in whi
h 'nonlinearity prevails' is bigger for n = 6 than for n = 3. As shown inAr
hontakis and Lemke (2005) it tends to rise monotoni
ally with time to maturity.5 Summary and OutlookAssuming a linear Gaussian pro
ess for the short-term interest rate and an adequately
hosen pri
ing kernel indu
es bond yields to be a�ne fun
tions of the short rate underthe 
ondition of no-arbitrage. While this is a 
onvenient property of linear models, theempiri
al literature on interest rate dynami
s �nds eviden
e for nonlinearities in short-rate dynami
s. This poses the question how 
ertain forms of nonlinear dynami
s translate13



into the 
ross-se
tional relationship between bond yields of di�erent maturities. Thispaper 
onsidered a very simple 
ase of a nonlinear spe
i�
ation for the one-month rate: aSETAR pro
ess that allows the inter
ept parameter to swit
h, while all other parametersare assumed to be 
onstant. This spe
i�
ation has been proposed by Lanne and Saikkonen(2002) as it is espe
ially suited to 
apture the near-unit-root behavior of interest rates.We derive the exa
t formula for bond yields as a fun
tion of the one-month rate. Itturns out that the yield fun
tions exhibit a 
onvex-
on
ave pattern around the thresholdvalue. The region in whi
h nonlinearity prevails in
reases with time to maturity. Thatis, for small time to maturity n, the 
orresponding yield as a fun
tion of the short rate isnearly (stepwise) linear.While our solution for bond pri
es delivers the exa
t solution in a �nite number ofoperations, two numeri
al problems arise for the 
omputation of yields for longer (i.e.
n > 7 months) time to maturity. First, the solution for the n-period yield requires the
omputation of the 
.d.f. of an (n − 2)-variate normal with general varian
e-
ovarian
ematrix, whi
h is usually not feasible to be 
omputed. The se
ond problem lies in thefa
t that the 
omputational burden in
reases exponentially with time to maturity. The
ompanion paper Ar
hontakis and Lemke (2005) 
ir
umvents these problems by relyingon a pure simulation-based approa
h for longer times to maturity. For future resear
hit is 
on
eivable to use more 
lever numeri
al routines to 
ompute the required 
.d.f.s.Con
erning the 
urse of dimensionality problem, one may employ a mixed approa
h thatmakes use of our analyti
al solution within a simulation-based approa
h.The solution approa
h introdu
ed in this paper 
an be transferred to ri
her nonlinearmodels of the term stru
ture. For instan
e, parameters other than inter
epts may beallowed to swit
h as well. This in
ludes models for whi
h the degree of mean reversiondepends on the level of interest rates. Moreover, the te
hnique introdu
ed in this papershould be easily transferable to multifa
tor models. If solution fun
tions for those models
an a
tually be made 
omputable, those nonlinear models should be 
ompared to thewell-established multifa
tor a�ne models.

14



A Two Auxiliary ResultsWe �rst provide two auxiliary results about the expe
tations of the (trun
ated) multivari-ate log-normal distribution. Let x be distributed as an m-variate normal, x ∼ N(0, Ω),and let d and r be ve
tors of length m. Then:
E(exp[d′x]) = exp

[

1

2
d′Ωd

] (A.1)and
E(exp[d′x]|x < r) =

1

Pr(x < r)
F (r; Ωd, Ω) exp

[

1

2
d′Ωd

]

, (A.2)where F (r; Ω d, Ω) denotes the 
.d.f. of the multivariate normal with mean Ωd andvarian
e-
ovarian
e matrix Ω evaluated at r.Noting that d′x is a s
alar normal random variable, the �rst expression is a standardresult. To show the se
ond result, �rst note that the 
onditional density required to
ompute the expe
tation is given by
p(x|x < r) =

p(x)

Pr(x < r)
.where p(x) is the density of the normal N(0, Ω) and Pr(x < r) is the 
.d.f. of that normalevaluated at r.15Then we have

E(exp[d′x]|x < r)

=
1

Pr(x < r)

∫ rm

−∞

. . .

∫ r1

−∞

1

(2π)(m/2)
|Ω|−1/2 exp[−1/2x′Ω−1x] exp[d′x] dx1 . . . dxm

=
1

Pr(x < r)

∫ rm

−∞

. . .

∫ r1

−∞

1

(2π)(m/2)
|Ω|−1/2

× exp[(−1/2)(x′Ω−1x − 2d′x − d′Ωd + d′Ωd)] dx1 . . . dxm

=
1

Pr(x < r)

∫ rm

−∞

. . .

∫ r1

−∞

1

(2π)(m/2)
|Ω|−1/2

× exp[(−1/2)(x − Ωd)′Ω−1(x − Ωd) + (1/2)d′Ωd] dx1 . . . dxm

=
1

Pr(x < r)
· exp[(1/2)d′Ωd] ·

∫ rm

−∞

. . .

∫ r1

−∞

1

(2π)(m/2)
|Ω|−1/2

× exp[(−1/2)(x − Ωd)′Ω−1(x − Ωd)] dx1 . . . dxm

=
1

Pr(x < r)
· exp[(1/2)d′Ωd] · F (r; Ωd, Ω).15So we 
ould write here and in (A.2) F (r; 0,Ω) instead of Pr(x < r). However, we sti
k to Pr(x < r)sin
e this is a more 
onvenient notation for the derivation following in se
tion B.15



B Derivation of the Bond Pri
ing Formula for n > 21. Representation of Xt+i and partial sums of log SDFsIn the following we will need Xt+i written in terms of Xt, future ǫt and future inter
eptsas well as partial sums of the pri
ing kernel Mt.Starting with Xt and iterating (3.9) forward leads to
Xt+i = κiXt + κi−1a(St) + κi−2a(St+1) + . . . + κa(St+i−2) + a(St+i−1)

+σκi−1ǫt+1 + σκi−2ǫt+2 + . . . + σκǫt+i−1 + σǫt+i,in 
ompa
t form
Xt+i = κiXt +

i
∑

l=1

gi
la(St+l−1) + hi

lǫt+l. (B.3)For partial sums of Xt we obtain
Xt+1 + Xt+2 + . . . + Xt+m

= (κ + κ2 + . . . + κm)Xt

+(1 + κ + . . . + κm−1)a(St) + (1 + κ + . . . + κm−2)a(St+1) + . . .

+(1 + κ)a(St+m−2) + a(St+m−1)

+σ(1 + κ + . . . + κm−1)ǫt+1 + σ(1 + κ + . . . + κm−2)ǫt+2 + . . .

+σ(1 + κ)ǫt+m−1 + σǫt+m,Using the latter result, the sum of the log dis
ount fa
tors, mt = ln(Mt), 
an be writtenas
mt+1 + mt+2 + . . . + mt+n

= −nδ − Xt − Xt+1 − . . . − Xt+n−1 − σλǫt+1 − σλǫt+2 − . . . − σλǫt+n

= −nδ − (1 + κ + . . . + κn−1)Xt

−(1 + κ + . . . + κn−2)a(St) − (1 + κ + . . . + κn−3)a(St+1) − . . .

−(1 + κ)a(St+n−3) − a(St+n−2)

−σ(λ + 1 + κ + . . . + κn−2)ǫt+1 − σ(λ + 1 + κ + . . . + κn−2)ǫt+2 − . . .

−σ(λ + 1)ǫt+n−1 − σλǫt+n−2,
ompa
tly,
mt+1 + . . . + mt+n = −nδ − BnXt +

n
∑

i=1

bn
i ǫt+i +

n−2
∑

j=0

cn
j · a(St+j). (B.4)16



2. Bond pri
e as produ
t of three fa
torsWe plug (B.4) into the bond pri
e formula (3.2) and obtain
P n

t = E(exp[mt+1 + . . . + mt+n]|Xt)

= E

(

exp

[

−nδ − BnXt +
n

∑

i=1

bn
i ǫt+i +

n−2
∑

j=0

cn
j · a(St+j)

]∣

∣

∣

∣

∣

Xt

)

.The random variables Xt and St are part of the 
onditioning information set and 
an thusbe taken outside the expe
tation. (Note that knowing Xt implies knowing if Xt < c istrue and thus knowing the realization of St = I(Xt ≥ c).) Moreover, ǫt+n−1 and ǫt+n areindependent of (St, St+1, St+n−2, ǫt+1, . . . , ǫt+n−2)
′. Hen
e, we 
an write

P n
t = exp[−nδ − BnXt + cn

0a(St)]

× E(exp[bn
n−1ǫt+n−1 + bn

nǫt+n]|Xt)

× E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(St+i)

]∣

∣

∣

∣

∣

Xt

)

. (B.5)The produ
t 
onsists of three fa
tors. The �rst fa
tor 
ontains only quantities known attime t. The expe
tation of the se
ond fa
tor 
an be 
omputed using the �rst of our aux-iliary results, (A.1), sin
e (ǫt+n−1, ǫt+n)′ is 
onditionally (and un
onditionally) normallydistributed. Thus, using the terms of (A.1) we have d = (bn
n−1, b

n
n)′, x = (ǫt+n−1, ǫt+n)′,

µ = 02, and Ω = I2 and we obtain for the se
ond fa
tor in (B.5)
E(exp[bn

n−1ǫt+n−1 + bn
nǫt+n]|Xt) = exp[0.5(bn

n−1)
2 + 0.5(bn

n)2]. (B.6)3. Computation of E
(

exp
[

∑n−2
i=1 bn

i ǫt+i +
∑n−2

j=1 cn
j a(St+j)

]∣

∣

∣
Xt

).For 
omputing the third fa
tor in (B.5) it is important to note that (St+1, . . . , St+n−2)
′ and

(ǫt+1, . . . , ǫt+n−2)
′ are not independent. We will evaluate the expression by �rst 
omputingthe expe
tation for an arbitrary given realization of (St+1, . . . , St+n−2)

′ and then take theprobability-weighted sum over all possible realizations of (St+1, . . . , St+n−2)
′. That is,we �rst enlarge the 
onditioning information set and then integrate out the enlargementagain.16Let

ζ̄t = (S̄t+1, . . . , S̄t+n−2)
′16A similar approa
h is taken by Bansal and Zhou (2002), deriving bond pri
es for the 
ase that thestate evolution is subje
t to Markov regime swit
hing.17



denote a realization of
ζt = (St+1, . . . , St+n−2)

′,i.e ζ̄t is a sequen
e of zeros and ones. There are 2n−2 di�erent su
h sequen
es. They willbe indexed k = 1, 2, . . . , 2n−2 su
h that k − 1 is that de
imal number that 
orresponds tothe binary number represented by ζ̄t. For example for n = 6, ζ̄t(k = 1) = (0, 0, 0, 0)′ and
ζ̄t(k = 14) = (1, 1, 0, 1)′.Thus, we have

E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(St+i)

]∣

∣

∣

∣

∣

Xt

)

=
2n−2

∑

k=1

Pr
(

ζ̄t(k)
∣

∣ Xt

)

E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(S̄t+i(k))

]∣

∣

∣

∣

∣

Xt, ζ̄t(k)

)where Pr(ζ̄t(k)|Xt) denotes the 
onditional probability of the realization ζt = ζ̄t(k).For the expe
tation 
onditional on the augmented information set we 
an pull outexpressions involving S̄t+i, hen
e
E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(St+i)

]∣

∣

∣

∣

∣

Xt

)

=
2n−2

∑

k=1

Pr
(

ζ̄t(k)
∣

∣ Xt

)

exp

[

n−2
∑

i=1

cn
i a(S̄t+i(k))

]

×E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i

]∣

∣

∣

∣

∣

Xt, ζ̄t(k)

)

. (B.7)4. Computation of E
(

exp
[
∑n−2

i=1 bn
i ǫt+i

]∣

∣ Xt, ζ̄t(k)
).In order to 
ompute the last 
onditional expe
tation appearing in the latter expressionwe will make use of our auxiliary result (A.2). For this we will rewrite the 
onditioninginformation set as a set of inequality 
onditions.To explain the approa
h, we 
onsider the following example. If, for n = 5, ζ̄t(3) =

(0, 1, 0), this is equivalent to the event
Xt+1 < c,Xt+2 ≥ c,Xt+3 < c.Making use of (B.3), these three inequalities 
an be written as

κXt + g1
1a(St) + h1

1ǫt+1 < c

κ2Xt + g2
1a(St) + a2

2a(S̄t+1(k)) + h2
1ǫt+1 + h2

2ǫt+2 ≥ c

κ3Xt + g3
1a(St) + g3

2a(S̄t+1(k)) + g3
3a(S̄t+2(k)) + h3

1ǫt+1 + h3
2ǫt+2 + h3

3ǫt+3 < c18



To be able to apply our auxiliary result (A.2) we only want to have '<' inequalities. So wemultiply every '≥' inequality by -1. Te
hni
ally, we multiply through any inequality by afa
tor R(S̄t+i(k)), where for the fun
tion R(·) de�ned on {0, 1}, R(0) = 1, and R(1) = −1.Hen
e, in the above example R(S̄t+1(k)) = R(0) = 1, R(S̄t+2(k)) = −1, and R(S̄t+3(k))

= 1. Thus, the inequality 
orresponding to a parti
ular S̄t+i(k) is written as
R(S̄t+i(k)) ·

[

κiXt +
i

∑

l=1

gi
la(S̄t+l−1) + hi

lǫt+l

]

< R(S̄t+i(k))c. (B.8)A

ordingly, the set of inequalities 
orresponding to a parti
ular (S̄t+1(k), . . . , S̄t+n−2(k))′
an be written in ve
tor-matrix notation as














R(S̄t+1(k))

R(S̄t+2(k))...
R(S̄t+n−2(k))















⊙





























κ

κ2...
κn−2















Xt

+















g1
1 0 0 . . . 0

g2
1 g2

2 0 . . . 0... ... ... ... ...
gn−2
1 gn−2

2 gn−2
3 . . . gn−2

n−2





























a(St)

a(S̄t+1(k))...
a(S̄t+n−3(k))















+















h1
1 0 0 . . . 0

h2
1 h2

2 0 . . . 0... ... ... ... ...
hn−2

1 hn−2
2 hn−2

3 . . . hn−2
n−2





























ǫt+1

ǫt+2...
ǫt+n−2





























< c ·















R(S̄t+1(k))

R(S̄t+2(k))...
R(S̄t+n−2(k))













where `⊙' denotes elementwise multipli
ation of two ve
tors. Using the de�nitions (3.17)- (3.26), and Et = (ǫt+1, . . . , ǫt+n−2)
′ this is written 
ompa
tly as

f̃(k)Xt + G̃(k)a(ζ̄∗
t (k)) + H̃(k)Et < c̃(k) (B.9)or

H̃(k)Et < h̃(k). (B.10)19



It is important to note that multiplying both sides of (B.10) by the inverse of H̃(k) wouldnot be an equivalent transformation of that inequality.17 We de�ne a new random ve
tor
z̃(k) = H̃(k) Et.Sin
e Et ∼ N(0n−2, In−2), we havẽ

z(k) ∼ N(0, H̃(k)H̃(k)′)Now we 
an turn the expression to be 
omputed,
E

(

exp
[

b∗′Et

]∣

∣ Xt, ζ̄t(k)
)

,into the form of (A.2).18 That is we rewrite the exponential in terms of z̃(k) and the
onditioning on ζ̄t(k) in terms of an inequality for z̃(k). Then we apply (A.2). We obtain
E

(

exp
[

b∗′Et

]∣

∣ Xt, ζ̄t(k)
)

= E
(

exp
[

(H̃(k)
−1′

b∗)′z̃(k)
]∣

∣

∣
Xt, z̃(k) < h̃(k)

)

=
1

Pr(z̃(k) < h̃(k)|Xt)

× exp
[

0.5 b∗′H̃(k)
−1

H̃(k)H̃(k)′H̃(k)−1′b∗
]

×F
(

h̃(k); H̃(k)H̃(k)′H̃(k)−1′b∗, H̃(k)H̃(k)′
)

=
1

Pr(z̃(k) < h̃(k)|Xt)

× exp
[

0.5 b∗′b∗
]

×F
(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
)Finally note that

Pr(z̃(k) < h̃(k)|Xt) = Pr(ζ̄t(k)|Xt),sin
e {z̃(k) < h̃(k)|Xt} and {ζ̄t(k)|Xt} are equivalent events as we derived above.5. Putting things together17As a simple example, one 
an easily verify that Ax < c � with A =

(

a1 0

a2 a3

), x = (x1, x2)
′,

c = (c1, c2)
′, a1, a2, a3, c1, c2 all positive � de�nes a di�erent region in x1, x2 spa
e than x < A−1c.18Note that the only slight di�eren
e to (A.2) is that everything is 
onditional on Xt. However, a`
onditional version' of (A.2) 
ould be derived in the same way as the un
onditional version.20



In step 4 we 
omputed the last term in (B.7). Plugging in we obtain
E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(St+i)

]∣

∣

∣

∣

∣

Xt

)

=
2n−2

∑

k=1

exp

[

n−2
∑

j=1

cn
j a(S̄t+j(k))

]

Pr
(

ζ̄t(k)
∣

∣Xt

)

×E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i

]∣

∣

∣

∣

∣

Xt, ζ̄t(k)

)

=
2n−2

∑

k=1

exp

[

n−2
∑

j=1

cn
j a(S̄t+j(k))

]

Pr
(

ζ̄t(k)
∣

∣Xt

)

×
1

Pr
(

ζ̄t(k)
∣

∣ Xt

) · exp
[

0.5 b∗′b∗
]

· F
(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
)

=
2n−2

∑

k=1

exp

[

n−2
∑

j=1

cn
j a(S̄t+j(k))

]

× exp
[

0.5 b∗′b∗
]

· F
(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
)Using the latter and (B.6) we obtain for the bond pri
e (B.5),

P n
t = exp[−nδ − Bn + Xt + cn

0a(St)]

×E(exp[bn
n−1ǫt+n−1 + bn

nǫt+n]|Xt)

×E

(

exp

[

n−2
∑

i=1

bn
i ǫt+i + cn

i a(St+i)

]∣

∣

∣

∣

∣

Xt

)

= exp[−nδ − BnXt + cn
0a(St)] · exp[0.5(bn

n−1)
2 + 0.5(bn

n)2]

×

2n−2

∑

k=1

exp

[

n−2
∑

j=1

cn
j a(S̄t+j(k))

]

× exp
[

0.5 b∗′b∗
]

· F
(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
)

= exp[−nδ − BnXt + cn
0a(St)] · exp[0.5 b′b]

×
2n−2

∑

k=1

exp

[

n−2
∑

j=1

cn
j a(S̄t+j(k))

]

F
(

h̃(k); H̃(k)b∗, H̃(k)H̃(k)′
)Transferring the pri
e into a yield using (2.3) 
ompletes the proof.
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