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Abstract:

Using a stochastic discount factor approach, we derive the exact solution for arbitrage-
free bond yields for the case that the short-term interest rate follows a threshold process
with the intercept switching endogenously. The yield functions, mapping the one-month
rate into n-period yields, exhibit a convex-concave shape to the left and the right of the
threshold value, respectively. This is in contrast to linear short-rate processes which imply
an affine yield function. The intervals for which convexity or concavity prevails increase

with time to maturity.

JEL Classification: E43, G12, C63
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Non-Technical Summary

In dynamic factor models of the term structure, the joint evolution of interest rates
of different maturities is ascribed to a small set of driving forces. If there is a single
factor, it will usually coincide with the short-term (one-month) interest rate. The reaction
of long-term yields to variations of the short rate is restricted by the condition of no
arbitrage. Loosely speaking, the no-arbitrage assumption precludes trading strategies in
bond portfolios that are characterized by zero initial net payments but guaranteed profits
in the future. In no-arbitrage models it is mostly assumed that the factor process is
linear and has Gaussian innovations. This setting implies that arbitrage-free bond yields
are linear functions of the short rate: the sensitivity of long-term yields with respect to

changes of the short rate is independent of the short rate’s level.

In contrast, the empirical literature finds evidence that the dynamics of the short-term
interest rate is characterized by nonlinearities, time-varying volatility and innovations
which are not normally distributed. These deviations from linear Gaussian short rate

models usually render an analytical solution for arbitrage-free bond yields infeasible.

This paper analyzes the term structure implications for such a nonlinear case. The
short-term interest rate follows a threshold process, for which the intercept switches en-
dogenously in an otherwise standard first-order autoregressive specification. As shown
in the literature, this specification is especially suited to capture the near-random walk
behavior of short-term interest rates. We derive the pricing function, that is the mapping
between the one-month rate and n-period yields. The relationship between the short
rate and any yield of longer maturity exhibits a convex-concave shape: the sensitivity of
long-term yields with respect to changes in the short rate is first increasing in the level of
the short rate but then decreases as the short-term interest rate increases further. This

pattern is the more distinct the higher the maturity of the long-term bond.



Nicht technische Zusammenfassung

In dynamischen Faktormodellen der Zinsstruktur wird die gemeinsame zeitliche Entwick-
lung von Zinsen verschiedener Laufzeiten auf eine kleine Zahl von Bestimmungsgrofien
zuriickgefiihrt. In Modellen mit nur einem Faktor ist dies meist der kurzfristige Zins
(Laufzeit ein Monat). Die Reaktion von langfristigen Renditen auf Verdnderungen des
Einmonatszinses wird durch die Bedingung der Arbitragefreiheit beschrinkt. Das heifst,
dass es keine Handelsstrategien gibt, die durch einen anféinglichen Nettokapitaleinsatz
von Null, aber einen garantierten Gewinn in der Zukunft charakterisiert sind. In arbi-
tragefreien Modellen wird meist unterstellt, dass der Faktorprozess linear ist und nor-
malverteilte Innovationen aufweist. Unter diesen Annahmen lassen sich Anleiherenditen
fiir alle Laufzeiten als lineare Funktionen des kurzfristigen Zinses darstellen. Das be-
deutet, dass das AusmaR der Reaktion von langfristigen Renditen auf Anderungen im

Einmonatssatz unabhingig von dessen Niveau ist.

Die empirische Literatur liefert allerdings Belege dafiir, dass die Dynamik des kurzfristi-
gen Zinses durch Nichtlinearititen, zeitvariierende Volatilitdt und Innovationen, die nicht
normalverteilt sind, charakterisiert ist. Mit diesen Abweichungen vom linearen Gaufsschen
Modell ist es nur in wenigen Spezialfillen moglich, arbitragefreie Anleiherenditen ana-

lytisch zu berechnen.

Dieses Papier ermittelt die arbitragefreie Zinsstrukturdynamik fiir einen solchen Fall:
Der kurzfristige Zins folgt einem autoregressiven Schwellenwert-Prozess, bei dem der
Niveauparameter endogen zwischen zwei Werten hin und her wechselt. Wie in der Lite-
ratur gezeigt wird, ist diese Spezifikation besonders gut geeignet, das dynamische Verhal-
ten des Kurzfristzinses, das oft dem eines Random Walk nahe kommt, zu beschreiben.
Wir leiten analytisch die Preisfunktion, das heift den funktionalen Zusammenhang zwi-
schen Kurzfristzins und langfristigen Renditen, her. Diese Funktion weist eine konvex-
konkave Gestalt auf: Langfristzinsen reagieren mit zunehmendem Niveau der Einmonats-
rate zuniichst stirker auf deren Anderungen, ab einem bestimmten Zinsniveau nimmt die
Starke der Zinsreaktion allerdings ab. Je ldnger die Laufzeit der betrachteten Anleihe ist,

desto ausgepragter ist dieses Muster.
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Bond Pricing when the Short Term Interest
Rate Follows a Threshold Process®

1 Introduction

Starting from the seminal contributions of Vasi¢ek (1977) and Cox, Ingersoll, and Ross
(1985), there is by now a large and growing literature that tries to explore the nature
of the dynamics of interest rates and the relationship of yields with different maturities
in an arbitrage-free framework. While models in the finance literature were preferably
formulated in continuous time with continuous state space or in discrete time with dis-
crete state space, models that are using discrete time and a continuous state space have
become increasingly popular recently. This may in part be attributed to the fact that
this framework is familiar to macroeconomists enabling them to integrate term structure

elements in models of macroeconomic dynamics.

Models of the latter type (continuous state space, discrete time), usually consist of
two components: a specification of the dynamics of the state vector and a formulation
of the stochastic discount factor. Given these, the condition of no-arbitrage determines
the dynamics of the whole spectrum of bond yields. If the state or factor vector is one-

dimensional it usually coincides with the short-term (one-month) interest rate.

While the large empirical literature devoted to modeling and estimating short term
interest rate dynamics is bringing up increasingly rich and advanced specifications, the
literature on arbitrage-free term structure models usually restricts itself to simple linear
state dynamics. This is because “researchers are inevitably confronted with trade-offs
between the richness of econometric representations of the state variables and the com-
putational burdens of pricing and estimation” as Dai and Singleton (2000) observe. They

conclude that this is the reason why there is a huge emphasis on models from the affine

*Wolfgang Lemke: Deutsche Bundesbank, E-Mail: wolfgang.lemke@bundesbank.de. Theofanis Ar-
chontakis: Graduate Program Finance & Monetary Economics, Johann-Wolfgang-Goethe Universitét
Frankfurt, Uni-PF77, 60054 Frankfurt am Main, Germany, E-Mail: archontakis@finance.uni-frankfurt.de.
The views expressed here are those of the authors and not necessarily those of the Deutsche Bundesbank.
We thank Julia von Borstel, Heinz Herrmann, Malte Kniippel, Christian Schlag and seminar participants

at the Bundesbank for discussion.



class in the literature. Affine models are treated in a unified framework by Duffie and

Kan (1996), their properties are further analyzed by Dai and Singleton (2000).

Models of this class are characterized by a solution that expresses bond yields as an
affine function of the state vector. This follows from linear state dynamics, Gaussian
innovations and a stochastic discount factor that is a linear function of the state vector.
If one of these assumptions is dropped, bond yields can generally not be expressed as

2 Moreover, there are only a few models outside the

affine functions of the state vector.
affine class that allow for an analytic solution at all: examples are the regime switching
model by Bansal and Zhou (2002) and the quadratic model by Ahn, Dittmar, and Gallant

(2002).

This paper contributes to the literature by deriving the analytical solution for bond
yields for the case that the short rate follows a threshold process of the type presented
by Lanne and Saikkonen (2002). Their formulation is especially suited to capture the
near unit-root dynamics of interest rates. We consider the simplest version of their model
in which the law of motion is an AR(1) with homoscedasitic Gaussian innovations. The
intercept is allowed to change between two regimes. The regime prevailing is determined
by the previous period’s realization of the short rate, i.e. the model is of the SETAR (self

exciting threshold autoregressive) type.

Papers that consider term structure implications of threshold dynamics usually do so
by means of simulation.? However, Gospodinov (2005) remarks in a footnote that an
analytical solution may be feasible for certain special cases of the fairly general TAR-
GARCH model considered there.

Compared to an affine Gaussian one-factor model, the only difference of our state pro-
cess is the changing intercept. However, it turns out that this slight modification induces
substantial changes to the solution compared to the affine model. The yield function,
mapping realizations of the short rate into yields of longer maturities, is nonlinear and
exhibits a point of discontinuity at the threshold value. The function exhibits a convex-
concave pattern, a phenomenon that qualitatively matches similar patterns observed in
the data. For values of the short rate sufficiently far off the threshold value, however, the

yield function is approximately linear. The width of the interval for which nonlinearity

!The discrete-time version of the affine class is described by Backus, Foresi, and Telmer (1998).
2See, however, Backus et al. (1998) and Lemke (2006) who show that replacing the normal distribution

of innovations by a Gaussian mixture still leads to an affine yield function.
3See Pfann, Schotman, and Tschernig (1996) and Gospodinov (2005). The paper by Audrino and

Giorgi (2005) can be seen as an exception. It features beta-distributed regime shifts and exhibits a

similar structure as the Markov regime switching model in Bansal and Zhou (2002).



in the yield function prevails is increasing with time to maturity.

However, there is a problem with the derived exact yield function as it can actu-
ally be computed for yields with a small time to maturity only (say up to six months).
This is because computing the function for the n-period yield requires the value of the
cumulative distribution function of an (n — 2)—dimensional normal with non-diagonal
variance-covariance matrix. Moreover, the number of required computations increases
exponentially with time to maturity, posing in addition a curse-of-dimensionality prob-
lem. Accordingly, for longer times to maturity, approximations of our exact solution or

simulation-based techniques have to be applied.*

The structure of the paper is as follows. The next section gives a description of the
model, section 3 derives the analytical yield function, followed by a numerical example in
section 4. The fifth section concludes, an appendix contains a detailed derivation of the

yield function.

2 The Model

The model that we consider is in discrete time and operates on a continuous state space.
One unit of time may be thought of as one month. The single state variable in our
one-factor model is the one-month interest rate. Its dynamics is given by the SETAR
specification

Xe=v+pBI(X;1>c)+rXi1+o0€6, €~ N(O1) (2.1)

where () is the indicator function and the innovations ¢, are serially independent. The
parameter x is in the interval (0,1), guaranteeing stationarity of the process. The only
difference to a linear Gaussian model —i.e. the discrete-time version of the Vasi¢ek model®

is the time-varying intercept. Depending on the previous realization of the short rate
it is given by v or v + 3, respectively. Note that a regime-dependent intercept induces a
regime-dependent long-run mean of the short rate. Approximating the data generating
process of the one-month interest rate with a standard AR model (one intercept) usually
requires a value of k close to unity to capture the high persistence of the short rate process
as observed in the data. Heuristically, the two-intercepts specification requires a lower x

since the short rate process is now allowed to revert to two different means.

4See Archontakis and Lemke (2005).
°See Backus et al. (1998).



The process given by (2.1) is the simplest member in a class of models proposed by

Lanne and Saikkonen (2002). The more general specification is written as

T p
Xe=v+ > Bl(Xia>c)+ Y kX +0(Xia)e (2.2)

k=1 j=1
i.e. it allows for more than two regimes, for more lags in the autoregressive specification,
and for the threshold variable being lagged by more than one period. The coefficient of
state innovations is also allowed to be regime-dependent, allowing for regime-dependent
variance. In fact, the speciation that is most adequate empirically turns out to be hetero-
scedastic, with 7, d, p all exceeding unity.® The reason for sticking to the case with r =
d = p =1 is that we want to point out the effects on the term structure of interest rates
that are implied by only this slight modification of the purely linear case. Moreover, the
solution approach that we take should be transferrable to the more general case, but we
think that its structure can be made most transparent when concentrating on the special

case.

Given the process (2.1) for the short term interest rate, we will now derive bond price
processes for all maturities. Let P denote the time ¢ price of a default-free zero-coupon
bond with n periods left until maturity. The payoff is normalized to one, so P = 1.

Continuously compounded monthly yields are computed from bond prices as

n In P/
Yy = — nt : (2.3)

Absence of arbitrage is equivalent to the existence of a strictly positive stochastic
discount factor (SDF) process {M;}, with E|M,P'| < oo and

P} = E(My P |F), (2.4)

where F; denotes the o-algebra generated by {X;_;};>0. Since the short-rate dynamics
has the Markov property, any expectation over the future conditional on F; equals the
expectation conditional on the information contained in X; alone. We will thus write the

basic pricing equation simply as

Pl' = E(My PIYX). (2.5)

For the stochastic discount factor we assume

Mt+1 = exp{—(5 — Xt — )\O—Et+1}, (26)

6See Lanne and Saikkonen (2002) for the UK and Switzerland as well as Archontakis and Lemke
(2005) for Germany and the US.



where the exponential specification is chosen to guarantee positivity. We set

1
5= 50%2 (2.7)

with hindsight since this specification will lead to y}, the one-month yield, being equal to
X,.” The parameter X\ is referred to as the market price of risk, it governs the covariance
of shocks to the state variable and the discount factor. In affine models, the expected
one-period excess return of a long-term bond over the short rate, divided by its standard

deviation, is a linear function of \.%

The model specification is now complete: given the state process (2.1) and the pricing
kernel specification (2.6), arbitrage free bond price processes { P"} are given as the solution
of the stochastic difference equation (2.5). An explicit solution of the model writes bond

prices, or equivalently yields, as functions of the factor X;, i.e they are of the form

i = fu(Xe ), (2.8)

where v collects all model parameters. The next section is devoted to finding this solution

function f,, for our threshold model.

3 Arbitrage-free Term Structure

We start by writing bond prices as a function of future discount factors. Substituting the
basic pricing equation (2.5) repeatedly into itself, using the law of iterated expectations

and noting that P? = 1, we can write the time ¢ price of the n-period bond as

P = E(My. P Xy)
= E(Myq1 E(My2 P | X)) X0)

= E(Mt+1 . Mt+2 teel Mt+n|Xt)7 (31)
equivalently using discount factors in logs,

Pl = E(exp[mi1+ ...+ min]|Xy). (3.2)

Before we turn to the model based on (2.1) it is instructive to consider the special case

of =0, that is with X, following the linear Gaussian process

Xi=v+rXy1+o0e, ¢~ N(O1). (3.3)

"See Backus et al. (1998).
8See Campbell, Lo, and MacKinlay (1997) and Cochrane (2001).



Since for this case X, is a linear process, the sum of log SDFs can be written as a linear

combination of X; and future ¢; only. This yields for the bond price

Pl =E | exp |—a, — B X, + Y Blei| | X, (3.4)
i=1
where a,, B, and ¥, are coefficients depending on the model parameters v, x, o, and \

as well as on time to maturity n.’?

Since the ¢, are Gaussian white noise, their sum is also normal and the exponential
expression in (3.4) has a conditional lognormal distribution. Computing the required

expectation yields the solution!®

P' = exp|— A, — B, X4, (3.5)
where
— 1—k"
B, = C = , 3.6
;m — (3.6)
n—1
A, = > G(By), (3.7)
i=0
with

1
G(Bl) =90 + BZ Vv — 5()\ + BZ‘)QO'Q.
Using (2.3), we obtain bond yields as an affine function of the short-term interest rate,

A, B,
=242y, (3.8)
n n

Note that this implies that for a given time to maturity n, the sensitivity of yields with

respect to interest rate changes does not depend on the level of the short rate.

We now turn to the case that the short rate follows the threshold process (2.1). That

is, the only little difference to the case considered up to now is that the intercept of

9The important point is the exponential-affine structure. The exact form of these coefficients, expressed
in terms of v, K, o, and A is not relevant here. For the threshold model (which nests the linear model)

they are given in proposition 3.1 below.
10Usually, bond prices for the linear Gaussian case are obtained using a method of undetermined

coefficients, cf. Backus et al. (1998) or Cochrane (2001). One assumes that bond prices are in fact of the
form (3.5) and inserts this expression on both sides of (2.5). It turns out that for A, and B,, (viewed as
a function of n) to satisfy (2.5) for all n and ¢, they have to solve a system of difference equations the
solution of which is given by (3.6) and (3.7). Here we have chosen the approach using the moving average

representation in order to parallel it to the solution approach for the threshold case.



the process is allowed to switch endogenously. However, it turns out that this slight
modification makes the computation of bond prices a much more intricate task. The
following will describe the basic idea of solving for bond prices and state the exact solution.

The detailed derivation is delegated to the appendix.

For n = 1, we should obtain the short rate itself, i.e. y} = X;. This is in fact the case

since

P! = E(My-1|X,)
= FE(exp[—6 — X; — Aoeq])| Xy)
= exp[—0 — X; + N0,

and thus, using (2.7),
1
Yy =06+ X; — §A2 =X,

For treating maturities n > 2 we introduce the notation
Sy =I(Xy > ¢) and a(S;) = v + (S;,
so for the threshold process (2.1),

Xt+1 = G(St) + IiXt + O€¢41- (39)

The price of the two-period bond is given by

P} = E(exp[mu1 + muo]| Xy)
= E(exp[—20 — X; — X1 — oA (641 + €12)] | X2)
= exp[—20 — X; —a(S;) — kXy] - E(exp[—o(1 + AN)ery1 — orérya] | Xy)

Conditional on X;, the last exponent is normally distributed with mean 0 and vari-
ance 02((1 + A\)? + X?). Thus, the exponential expression has a conditional lognormal

distribution, and
1
E (exp [0 (1 + N)err1 — 0Aerga] | Xi) = exp 502((1 + A2+ A% .

Collecting terms delivers
P? = exp[—A2(X;) — ByX] (3.10)
with
As(X,) = a(S,) + 26 — %(;2@2 F(1+A)?) (3.11)



and
By = (1+k). (3.12)
Hence, using (2.3), for the yield we obtain

As(X;) B
vi = 2(2t>+72

The derivation has employed the same techniques as in the purely Gaussian case. The

X,. (3.13)

structure of the solution, however, does differ from (3.8). The two-period yield is a
stepwise linear function of the short rate: the intercept depends on a(S;) =v+5-1(X; >
c). Thus, y? viewed as a function of X; features a discontinuity at X; = c¢. However, at
all points of continuity, the derivative of the two-month yield with respect to the short

rate is constant. Moreover, the expression B,, is the same as in the linear case.

For n > 2 the solution of the bond price can be written in a similar form as in (3.4).
However, since the underlying short-rate process now involves the time-varying intercepts,
the representation of future log SDFs involves not only future ¢; but also future intercepts
which in turn are dependent on future X;. In the appendix it is shown that bond prices

can be written as

P! = E(explmyt1 + ...+ mupn]|Xe)
n n—2
= FE <exp [—né — B, X; + Z blepy; + Z cj - a(SHj)] ‘ Xt) )

i=1 §=0
where B, b}, ¢ are coefficients depending on the model parameters x, o and A. The
crucial thing to note is that the expression in parentheses is not a linear function of future
X; anymore as it was in the case of a simple linear AR(1) for X;.'! Accordingly, condi-
tional on X;, the expression is not lognormal. Our solution for this case makes use of a
similar idea as employed in Bansal and Zhou (2002). We will evaluate the expression by
first computing the expectation for an arbitrary given realization of (Sii1,...,Siin_2),
say (Sit1,--.,Stin_2)', and then take the probability-weighted sum over all possible real-
izations of (Siy1,...,Sn—2)". That is, we first enlarge the conditioning information set

and then integrate out the enlargement again.

However, even under the extended information set { X, Siity-- ., S'Hn,g}, the exponen-
tial does not have a plain lognormal distribution. This is because (S;i1,...,Siin_2)" and
(€41, -, €rin—2)" are not independent. In other words, knowing that a particular path of
intercepts (a(Sit1), .- ,a(Siin_2))" has been realized, restricts the set of possible realiza-
tions of (€,41,...,€1n_2)": conditional on the extended information set, (€,41,...,€1n_2)

has a truncated multivariate lognormal distribution.

HRecall that a(S;) =v+ B-I1(X; > c).



A final point to note is that, since S;;; can assume two different values, 1 and 0, the
number of different extended information sets, {X;, S;y1,...,Siin_2}, amounts to 272,
It is obvious that this will be one obstacle for obtaining numerical values for bond yields

with longer times to maturity.

The following proposition states the solution for bond yields with time to maturity

exceeding two months.

Proposition 3.1 (Yield function for n > 2). For the short rate process given by (2.1)
and the pricing kernel defined by (2.6), yields with time to maturity n > 2 as a function

of the short rate X; are given as:

A (X B,
g = X | Buy, (3.14)
n n
with .
B = 3.15
" 1—xr ( )
and
An(Xy)
1
= n-0—cya(S) — Eb/b (3.16)

“In (Z F(ﬁ(k); Ak, ﬁ(k;)ﬁ(k)') exp [ ; & a (stﬂ-(k;))])

k=1

which uses the following definitions:

ron=2 1—k

1 — n—1i
b= (0,00, b=, 0" )’withb?:—a(k+7ﬁ>

1—grit
n o __ y
Cj__ﬁ7 j—O,l,...,n—Q
The function F(r; u, X)) denotes the cumulative distribution function of the multivariate

normal N(u,Y) evaluated at the vector .

The first summation in (3.16) runs over all possible realizations of the sequence
{Sts1,- -, Stan_o}, i.e. over all possible sequences of length n — 2 that consist of ze-
ros and ones. {Sii1(k), ..., Siin_o(k)} denotes a particular sequence of this sort. The
indexing may be such that k is the decimal number (plus one) that corresponds to the

binary number represented by the sequence. For instance, the sequence

{§t+1(k)7 St+2(k)) St+3(k>a St+4(k)} = {17 07 07 1}



corresponds to the decimal number 9 and would carry the indexr k = 10(= 9+ 1).

The wvector h(k) is given by

h(k) = &(k) — f(k) - X, — G(k) - a(G (R)) - (3.17)
The remaining expressions are defined as follows:

C_t*(k) = (St7 ‘gt+1<k)7 gt+2(k)7 sy gt+n—3(k>>,v (3'18)

a(G; (k) = (a(S1), a(Si1(k)), a(Ses2(k)), - - a(Stsn-3(k)))', (3.19)

f(k) = : (3.20)

where
- 1, ifS=0
R(S) = { L ifS— (3.21)
a1(k) 0
é(k) _ glfk) g2§k) O O (3.22)
gr2(k) g5 (k) g5 (k) gn=3(k)
with
Gik) = R(Surs (k) - 5577, (3.23)
R(Si41(k))
ék)y=c- : , (3.24)
R(gt+n—2<k))
and
hl(k) 0
H(k) = h%:(k) hg@ 0 ? (3.25)
WYk hyTR(k) BETR(k) ... hp3(k)

12The expressions h(k), &(k), f(k), G(k), ék), H(k) depend on n and t. However, we omit these

arguments in order to avoid an even more messy notation.

10



with
hi(k) = R(Spyj(k)) - ok, (3.26)

Given the parameters of the threshold model, v, 9§, ¢, k, o and J, it is in principle
possible to compute any n-period yield that corresponds to a realization X; of the short

rate. However, as n gets larger, the following computational obstacles occur.

First, as already mentioned above, the number of different intercept combina-
tions increases exponentially with time to maturity. Second, the formula involves
F(ﬁ(k), H(k)b*, f[(k)]z[(k;)’), the c.d.f. of a multivariate normal with general (i.e. non-
diagonal) covariance matrix. Numerical software'® usually has difficulties to compute the
corresponding multiple integral for higher dimensions, say exceeding 6. Since computing
bond yields of maturity n requires the computation of a c.d.f of an (n — 2)-variate normal,

maturities exceeding eight months cannot be obtained in a straightforward fashion.

In the companion paper Archontakis and Lemke (2005) we circumvent these prob-
lems by computing bond prices for higher n employing a simulation-based approach.
Conditional on a realization X; of the short rate we generate N realizations — say
N-—-100,000 of (X41,..., X¢yn1) and (&,...,€4n) and compute the corresponding
exp[myy1 + ... myyy]. The average of the latter expression over all runs is an estimate of
Py, see (3.2). Using the simulation method, that paper explores the properties of bond
yields in some detail. In this paper here, we restrict ourselves to illustrate some properties

of the yield function for small n which is done in the next section.

4 A Numerical Example

Based on parameter estimates for US data in Archontakis and Lemke (2005), figure 1
draws yields of two-, three- and six-month yields as a function of the one-month rate.

The parameters are given as

v =0.3058/1200, [ = 0.2603/1200, ~ = 0.9253,
¢ =5.5296/1200, o =0.7136/1200, X = —155.

Recall that for a linear one-factor model, the function that maps the short rate into n-
period yields is given by (3.8), i.e. it is affine. For the threshold model, the two-period

yield is obtained via (3.13), a stepwise linear function, for n > 3, the yield function (given

13We use GAUSS 6.0 here.

11
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Figure 1: Two-, three- and six-month yield as a function of the short rate.

in proposition 3.1) is nonlinear. It turns out that the 'degree of nonlinearity’ increases
with time to maturity.!* However, for small n, for which yields can be actually computed,

nonlinearity is hardly visible from the graph.

Therefore, we choose another representation that plots a measure of the second deriva-
tive of the yield function against the short rate. Let f,,(z) denote the function that assigns
the short rate x the corresponding n-period yield, i.e. f,(z) = A, (x)/n+ B, /n - x, with
An(+) and B,, given by (3.16) and (3.15). For a small number h, we approximate the

second derivative as

d® fu(@) _ falz —h) = 2fu(z) + falz +h)
yi i = ko (2), (4.1)

at all points of continuity. That is, we do not compute k,(x) if [x — h, z 4+ h] contains the

threshold value c. Figure 2 plots k,(x) against x for n = 2,3 and 6.

For n = 2 the function is identically zero since fy(x) is stepwise linear, so the second

derivative disappears at all points of continuity. For n = 3 and n = 6 the figure shows that

14See Archontakis and Lemke (2005).
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Figure 2: Second derivative of the yield function against the short rate.

there is in fact a nonlinearity around the threshold value (that could not be made visible
in figure 1). In particular, the yield functions f3 and fg exhibit a convex-concave pattern:
on the left of the threshold value the sensitivity of y" with respect to = increases (positive
second derivative, i.e. increase in (positive) first derivative), on the right it decreases
(negative second derivative, i.e. decrease in (positive) first derivative). Moreover, the
interval in which 'nonlinearity prevails’ is bigger for n = 6 than for n = 3. As shown in

Archontakis and Lemke (2005) it tends to rise monotonically with time to maturity.

5 Summary and Outlook

Assuming a linear Gaussian process for the short-term interest rate and an adequately
chosen pricing kernel induces bond yields to be affine functions of the short rate under
the condition of no-arbitrage. While this is a convenient property of linear models, the
empirical literature on interest rate dynamics finds evidence for nonlinearities in short-

rate dynamics. This poses the question how certain forms of nonlinear dynamics translate

13



into the cross-sectional relationship between bond yields of different maturities. This
paper considered a very simple case of a nonlinear specification for the one-month rate: a
SETAR process that allows the intercept parameter to switch, while all other parameters
are assumed to be constant. This specification has been proposed by Lanne and Saikkonen

(2002) as it is especially suited to capture the near-unit-root behavior of interest rates.

We derive the exact formula for bond yields as a function of the one-month rate. It
turns out that the yield functions exhibit a convex-concave pattern around the threshold
value. The region in which nonlinearity prevails increases with time to maturity. That
is, for small time to maturity n, the corresponding yield as a function of the short rate is

nearly (stepwise) linear.

While our solution for bond prices delivers the exact solution in a finite number of
operations, two numerical problems arise for the computation of yields for longer (i.e.
n > 7 months) time to maturity. First, the solution for the n-period yield requires the
computation of the c.d.f. of an (n — 2)-variate normal with general variance-covariance
matrix, which is usually not feasible to be computed. The second problem lies in the
fact that the computational burden increases exponentially with time to maturity. The
companion paper Archontakis and Lemke (2005) circumvents these problems by relying
on a pure simulation-based approach for longer times to maturity. For future research
it is conceivable to use more clever numerical routines to compute the required c.d.f.s.
Concerning the curse of dimensionality problem, one may employ a mixed approach that

makes use of our analytical solution within a simulation-based approach.

The solution approach introduced in this paper can be transferred to richer nonlinear
models of the term structure. For instance, parameters other than intercepts may be
allowed to switch as well. This includes models for which the degree of mean reversion
depends on the level of interest rates. Moreover, the technique introduced in this paper
should be easily transferable to multifactor models. If solution functions for those models
can actually be made computable, those nonlinear models should be compared to the

well-established multifactor affine models.
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A  Two Auxiliary Results

We first provide two auxiliary results about the expectations of the (truncated) multivari-
ate log-normal distribution. Let = be distributed as an m-variate normal, x ~ N(0, §2),

and let d and r be vectors of length m. Then:

E(exp[d'x]) = exp Ed’@d} (A.1)
and / . -
E(expld'z]lz <r) = WF(T;Q(L Q) exp [§d Qd} : (A.2)

where F(r;Qd, Q) denotes the c.d.f. of the multivariate normal with mean Qd and

variance-covariance matrix €2 evaluated at 7.

Noting that d’'z is a scalar normal random variable, the first expression is a standard
result. To show the second result, first note that the conditional density required to
compute the expectation is given by

p(x)

plzler <r)= m

where p(x) is the density of the normal N(0,2) and Pr(z < r) is the c.d.f. of that normal

evaluated at r.'°

Then we have

E(exp[d'z]lx <)
# T
Pr(x <) ) (2m)(m/2)

rm rl 1 12
= Q
Pr (x <) / / (m ‘ I~

xexp —1/2)(2'Q e — 2d’ —d'Qd+d'Qd)| dvy . .. duy,

_ i 1/2
Pr (x <) / / (27) m/2 Zh

x exp[(—1/2)(z — Qd)Q ! (x — Qd) + (1/2)d’Qd]dr1 e,
_ m.exp[u/z)md]./_ /_ W\QW?
x exp[(—1/2)(z — Qd)Q (2 — Qd)| dry .. . dr,,

1 / :
- e exp[(1/2)d'Qd] - F(r; Qd, Q).

71921” Y2 exp[—1/22'Q~ 2] expld'a] dry . . . dip,

1580 we could write here and in (A.2) F(r;0,Q) instead of Pr(x < r). However, we stick to Pr(z < r)

since this is a more convenient notation for the derivation following in section B.
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B Derivation of the Bond Pricing Formula for n > 2

1. Representation of X;,; and partial sums of log SDFs
In the following we will need X;,; written in terms of X;, future ¢ and future intercepts

as well as partial sums of the pricing kernel M.

Starting with X, and iterating (3.9) forward leads to

Xy = KXo+ r71a(S) + 5 72a(Spy1) + ...+ ka(Siioe) + a(Sipio1)

i—1 i—2
+0K' €1 + 0K T 6o+ ...+ OKE i1 + O€yy,

in compact form

Xipi = /‘fiXt + Zglia<5t+l—1) + h;€t+l- (B-3)
=1

For partial sums of X; we obtain

X1+ X2+ oo+ X
= (k+r2+... + X,
+(1+r+. " Ha(S) + (T +r+... " Ha(Se1) + . ..
+(1 + K)a(Strm—2) + a(Stym-1)
to(l+k+ .. .+ DNegr+o(l+ 6+ +™" Dega+ ...

+o(1+ K)érm-1 + O€im,

Using the latter result, the sum of the log discount factors, m; = In(M;), can be written

as
me4a + Mty + ...+ Miin
= —nd— Xt — Xt+1 — ... — Xt+n71 — O')\Et+1 — O')\Et+2 — ... U>\6t+n
= nd—(1+r+...+c"HX,
1+ k+... +6"Da(S) — T+r+...+&"Ha(Sp1) — ...
(14 K)a(Stn_s) — (Sern2)
oA+ 146+ "D —oAF1+r+ . K" Dego— ...
—0(A+ 1)étin-1 — OAErp 2,
compactly,

n n—2
mt+1 + e + mt+n = —n5 — BnXt + Z b?Et_H‘ + Z C;-l . CL(St+j). (B4)
i=1 7=0
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2. Bond price as product of three factors
We plug (B.4) into the bond price formula (3.2) and obtain

Pl = E(exp[mi1+ ...+ mun]|Xy)
n—2
= F <exp [—né B Xt + Zb (S + ZC St+J)] ‘ ) .

=1 7=0

The random variables X; and S; are part of the conditioning information set and can thus
be taken outside the expectation. (Note that knowing X, implies knowing if X; < ¢ is
true and thus knowing the realization of S; = I(X; > ¢).) Moreover, €, and ¢, are

independent of (S;, Si11, Stan_2, €141, - - - €1n_2)’. Hence, we can write

P = exp[—nd — B, X; + cya(Sy)]

X E(explby_i€rrn—1 + bp€rin] | X1)
n—2
x K <6Xp Z b,:-LEt+i + C?Q(StJri)] ‘ Xt> . (B5)

i=1
The product consists of three factors. The first factor contains only quantities known at
time t. The expectation of the second factor can be computed using the first of our aux-
iliary results, (A.1), since (€41, €4,) is conditionally (and unconditionally) normally
distributed. Thus, using the terms of (A.1) we have d = (b'_1,b""), * = (€r4n—1, €t4n)’,

p = 02, and © = I and we obtain for the second factor in (B.5)

E(exp[by_y€ten—1 + bperen] | Xe) = exp[0.5(0) )" + 0.5(b)°]. (B.6)

3. Computation of F (exp [ZZ bl + ZJ L Cha(Seyj ”Xt>

For computing the third factor in (B.5) it is important to note that (Sii1, ..., Si1n_2) and
(€141, -, €in_2)" are not independent. We will evaluate the expression by first computing
the expectation for an arbitrary given realization of (Syy1,..., Siin_2) and then take the
probability-weighted sum over all possible realizations of (Sii1,...,Siin_2). That is,
we first enlarge the conditioning information set and then integrate out the enlargement

again.'®

Let
ét - (gt+17 ceey gt—i—n—?)/

16 A similar approach is taken by Bansal and Zhou (2002), deriving bond prices for the case that the

state evolution is subject to Markov regime switching.
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denote a realization of

G = (St+1; cee 7St+n72)/v
i.e (; is a sequence of zeros and ones. There are 2"~ 2 different such sequences. They will
be indexed k = 1,2,...,2" 2 such that k — 1 is that decimal number that corresponds to
the binary number represented by (;. For example for n = 6, (;,(k = 1) = (0,0,0,0)" and
Gk =14) = (1,1,0,1).

Thus, we have

n—2
E (exp [Z bi€rri + C?G(Stﬂ')] ‘ Xt)
i=1
2n—2

= PT( Et(k)’ Xt) E (exp [i bi€ri + C?a(gﬂri(k))] ‘ Xt Ct(k>>

k=1 =1

where Pr(¢;(k)|X;) denotes the conditional probability of the realization ¢; = (;(k).

For the expectation conditional on the augmented information set we can pull out

expressions involving S;,;, hence

n—2

E (exp [Z b €ryi + C?G(St+i>] ‘ Xt)
i=1

on— 2

[n—2
= ZPT Gi(k)] Xi) exp ZC?G(gtH(k))]
| i=1

X FE (exp [Z b%tﬂ'] Xtact(k)) . (B.7)

=1

4. Computation of F (exp [Z?:_f brei| | X, G(k)).
In order to compute the last conditional expectation appearing in the latter expression
we will make use of our auxiliary result (A.2). For this we will rewrite the conditioning

information set as a set of inequality conditions.

To explain the approach, we consider the following example. If, for n = 5, (,(3) =

(0,1,0), this is equivalent to the event
X1 <6, Xy 20, X3 <c.
Making use of (B.3), these three inequalities can be written as

kX + g%a(St) + h%Gt—i-l < c
K/QXt + Q%G(Sf) + aga(gtﬂ(k)) + h%€t+1 + h§€t+2 > c
/{ZSXt + gfa(St) + gga(5t+1(k)) + g§a<5t+2(k)) + hzlgEH_l + h%EH_Q + hg€t+3 < c
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To be able to apply our auxiliary result (A.2) we only want to have ’<’ inequalities. So we
multiply every ">’ inequality by -1. Technically, we multiply through any inequality by a
factor R(Sy,(k)), where for the function R(-) defined on {0,1}, R(0) = 1, and R(1) = —1.
Hence, in the above example R(S;;1(k)) = R(0) = 1, R(S;y2(k)) = —1, and R(S;3(k))

= 1. Thus, the inequality corresponding to a particular S'Hi(k) is written as
R(§t+z(k)) . I{iXt + Zg;a(s’t-‘rl—l) + h’liGt_H < R(St_H(k?))C (Bg)
I=1

Accordingly, the set of inequalities corresponding to a particular (S;41(k), ..., Sitn_o(k))

can be written in vector-matrix notation as

R(Sp41(k)) K
R(S;o(k 2
( H‘-2< ) - " x,
R(Spsn—2(k)) K
g1 0 0o ... 0 a(Sy)
N R (k)
+ . : : : : .
a7 e g g )\ alSka-s(R))
B0 0 ... 0 €oia
R
A Y VS €t4m_2
R(Sp1(k))
R(Sts2(k))
< cC .

R(Spin—2(k))

where ‘© denotes elementwise multiplication of two vectors. Using the definitions (3.17)

- (3.26), and & = (€41, - - -, €14n—2) this is written compactly as
FR)X, + G(K)a(C (k) + H(k)E < é(k) (B.9)
or
H(k)E < h(k). (B.10)

19



It is important to note that multiplying both sides of (B.10) by the inverse of H (k) would

not be an equivalent transformation of that inequality.!” We define a new random vector
i(k) = H(E)E,.

Since & ~ N(0,,_2, I,_2), we have

Z(k) ~ N(0, H (k) H (k)

Now we can turn the expression to be computed,

E (exp [b7&]] X1, G(K)),

into the form of (A.2).1® That is we rewrite the exponential in terms of Z(k) and the

conditioning on (;(k) in terms of an inequality for Z(k). Then we apply (A.2). We obtain

E (exp [bV&]| X0, Gi(K))
- E (exp [(ﬁ](k:)_l b*)’é(k)] ) X, 3(k) < B(k))
1
Pr(z(k) < h(k)|X,)
X exp [0.5 b*’ﬂ(k)_lﬁ(k)ﬁ(k)’ﬁ(k)‘llb*]

< F (h(h); H(k)H (k) H(R) ™5, H(k)VH(K))
1

Pr(z(k) < h(k)| X,)

X exp [0.5 b*'b*}

< F (h(k); H(k)b", A (KY )

Finally note that
Pr(z(k) < E(k)|Xt) = Pr(G(k)|X,),

since {Z(k) < h(k)|X,} and {{,(k)|X,} are equivalent events as we derived above.

5. Putting things together

a1 0

17As a simple example, one can easily verify that Az < ¢ — with A = <
a2 asg

)a r = (1‘1,1‘2)/,

c=(c1,¢2), a1, az, as, c1, cz all positive — defines a different region in 1, xo space than x < A~ te.
8Note that the only slight difference to (A.2) is that everything is conditional on X;. However, a

‘conditional version’ of (A.2) could be derived in the same way as the unconditional version.
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In step 4 we computed the last term in (B.7). Plugging in we obtain

n—2
E (exp [Z bi'eiri + C?G(StJri)] ‘ Xt)

i=1

= Zexp [Zc a(Sit;(k))

Pr({(k)| X¢)

xE (exp [Z b;’let-‘,—i] XtaCt(k))
= Z exp [Z C;La SH_] PT’ Ct ‘Xt
Xk exp [0567H] - F (ks Fr k)0, AL (k) (K))

Using the latter and (B.6) we obtain for the bond price (B.5),

)

5(bn1)* +0.5(by)7]

P! = exp[—nd — B, + X; + cpa(S)]
x E(explby,_y€t1n—1 + byerin]| Xt)

n—2
xXE (exp Z b €ri + C?G(Sﬂri)]

i=1
= exp[—ndé — B Xt + cya

- exp[0
on—2
xZexp anStﬂ ]
k); H(k

Lj=1

x exp [0.55"'5] - <h H(k) (k;)')
= exp[—n(5 - B Xt + cya(Sy)] - exp[0.5 b'D]

X Zexp Zc a(Sie;(k))

Transferring the price into a yield using (2.3) completes the proof.

F (h(k); H (k) H (k) (R))
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