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Monetary Policy with Model Uncertainty:
Distribution Forecast Targeting*

Abstract

We examine optimal and other monetary policies in a linear-quadratic setup with a relatively
general form of model uncertainty, so-called Markov jump-linear-quadratic systems extended to
include forward-looking variables. The form of model uncertainty our framework encompasses
includes: simple i.i.d. model deviations; serially correlated model deviations; estimable regime-
switching models; more complex structural uncertainty about very different models, for instance,
backward- and forward-looking models; time-varying central-bank judgment about the state of
model uncertainty; and so forth. We provide an algorithm for finding the optimal policy as well
as solutions for arbitrary policy functions. This allows us to compute and plot consistent distri-
bution forecasts—fan charts—of target variables and instruments. Our methods hence extend
certainty equivalence and “mean forecast targeting” to more general certainty non-equivalence
and “distribution forecast targeting.”
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Non-technical summary

Monetary Policy with Model Uncertainty: Distribution Forecast Targeting

Monetary policy is always conducted under considerable uncertainty about the
data and the state of the economy but also, in particular, about the transmission
mechanism of monetary policy, that is, the strength and the lags with which
interest changes affect inflation and output—so-called model uncertainty.
Determining the best design of monetary policy under model uncertainty is a
notoriously difficult problem and few general results are available.

In this paper we propose a flexible, powerful, and yet tractable framework to
investigate the appropriate design of monetary policy under model uncertainty.
We represent model uncertainty by the parameters of the transmission mechanism
shifting over time between different “modes” according to a Markov process with
an arbitrarily given probability distribution for the shifts between modes. This way
we can incorporate a number of very relevant different kinds of model uncertainty;
such as serially correlated random parameters and volatility; regime shifts; and
more complex but realistic uncertainty about structurally very different models,
such as backward-looking and forward-looking private-sector expectations
formation, different degrees of price and wage rigidity, and so forth. In particular,
we can incorporate shifting central-bank judgment about the nature and amount of
model uncertainty, such as temporary concerns with shifting degrees of exchange-
rate pass-through.

We develop an algorithm for determining the policy that is optimal under model
uncertainty given the central-bank objectives for monetary policy. We also show
how to determine the dynamics of the economy for arbitrary instrument rules and
instrument paths. These methods make it possible to illustrate policies and policy
choices for policymakers in terms of forecasts in the form of internally consistent
probability distributions (fan charts) for both target variables and policy
instruments. The framework allows the practical use of forecasts in the form of
probability distributions (distribution forecast targeting) rather than in the more
traditional form of probability averages (mean forecast targeting). This is a
significant improvement since the latter is not valid under model uncertainty.



Nichttechnische Zusammenfassung

Geldpolitik mit Modellunsicherheit: Ziele flr prognostizierte
Wahrscheinlichkeitsverteilungen

Geldpolitik muss immer unter betrachtlicher Unsicherheit betrieben werden: Das gilt
fur die Daten, den Zustand der Wirtschaft und besonders hinsichtlich des
Transmissionsprozess der Geldpolitik, das heil3t die Starke und die Verzégerungen
mit denen Zinsénderungen die Inflation und den Output beeinflussen. Dies ist die so
genannte Modellunsicherheit. Das beste Design fur die Geldpolitik unter
Modellunsicherheit zu bestimmen, ist ein schwieriges Problem und es gibt wenige
allgemein glltige Grundsatze.

In diesem Papier schlagen wir einen flexiblen, allgemeinen und doch handhabbaren
Rahmen vor, um das richtige Design fir eine Geldpolitik unter Modellunsicherheit zu
untersuchen. Modellunsicherheit wird dadurch dargestellt, dass Parameter des
Transmissionsprozesses im Zeitverlauf entsprechend einem Markov- Prozess
zwischen verschiedenen Zustdnden schwanken kénnen. Die Verschiebungen
zwischen den Zustéanden folgen einem beliebigen Wahrscheinlichkeitsprozess. Auf
diese Weise koénnen wir eine Anzahl von sehr relevanten Arten von
Modellunsicherheit behandeln: Dazu gehéren seriell korellierte Zufallsparameter und
Volatilitdt, Regimeshifts und komplexere, aber realistische Unsicherheiten Uber
strukturell sehr verschiedene Modelle, wie z. B. rickwarts- und vorwéartsschauende
Erwartungen des privaten Sektors, verschiedene Arten von Preis- und Lohnrigiditaten
und so weiter. Insbesondere kénnen wir berticksichtigen, dass Zentralbanken im
Zeitverlauf ihre Meinung Uber die Natur und das Ausmald von Modellunsicherheit
andern. Dazu gehoéren etwa zeitweilige Besorgnisse, dass der Durchwirkungsprozess
bei den Wechselkursen sich gedndert haben kénnte.

Wir entwickeln einen Algorithmus, um die optimale Geldpolitik unter
Modellunsicherheit zu bestimmen, wenn die Ziele der Notenbank gegeben sind. Wir
zeigen auch fir beliebige Instrumentenregeln und Instrumentenpfade, wie die
Dynamik der Volkswirtschaft bestimmt wird. Diese Methoden machen es méglich, die
Politikwahl in Form von konsistent Wahrscheinlichkeitsverteilungen (sog. fan charts )
fur die Zielvariablen und die Politikinstrumente darzustellen. Der Modellrahmen
erlaubt weiterhin, die praktische Nutzung von Prognosen in der Form von
Wahrscheinlichkeitsverteilungen  (distribution  forecast targeting) statt der
traditionellen Prognose von Wahrscheinlichkeitsdurchschnitten (mean forecast
targeting). Das stellt eine wesentliche Verbesserung dar, da letztere unter
Modellunsicherheit nicht galtig ist.
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1 Introduction

In recent years there has been a renewed interest in the study of optimal monetary policy under
uncertainty. Classical analyses of optimal policy consider only additive sources of uncertainty, where
in a linear-quadratic framework the well-known certainty-equivalence result applies and implies that
optimal policy is the same as if there were no uncertainty. Recognizing the uncertain environment
that policymakers face, recent research has considered broader forms of uncertainty for which
certainty equivalence no longer applies. While this may have important implications, in practice
the design of policy becomes much more difficult outside the classical linear-quadratic framework.

One of the conclusions of the Onatski and Williams [28] study of model uncertainty is that, for
progress to be made, the structure of the model uncertainty has to be explicitly modeled. In line
with this, in this paper we develop a very explicit but still relatively general form of model uncer-
tainty that remains quite tractable, using a so-called Markov jump-linear-quadratic (MJLQ) model,
where model uncertainty takes the form of different “modes” that follow a Markov process. Our
approach allows us to move beyond the classical linear-quadratic world with additive shocks, yet
remains close enough to the linear-quadratic framework that the analysis is transparent. We exam-
ine optimal and other monetary policies in an extended linear-quadratic setup, extended in a way
to capture model uncertainty. The forms of model uncertainty our framework encompasses include:
simple i.i.d. model deviations; serially correlated model deviations; estimable regime-switching mod-
els; more complex structural uncertainty about very different models, for instance, backward- and
forward-looking models; time-varying central-bank judgment—information, knowledge, and views
outside the scope of a particular model (Svensson [36])—about the state of model uncertainty; and
so forth. Moreover, while we focus on model uncertainty, our methods also apply to other linear
models with changes of regime which may capture boom/bust cycles, productivity slowdowns and
accelerations, switches in monetary and/or fiscal policy regimes, and so forth. We provide an algo-
rithm for finding the optimal policy as well as solutions for arbitrary policy functions. This allows
us to compute and plot consistent distribution forecasts—fan charts—of target variables and in-
struments. Our methods hence extend certainty equivalence and “mean forecast targeting,” where
only the mean of future variables matter (Svensson [36]), to more general certainty non-equivalence
and “distribution forecast targeting,” where the whole probability distribution of future variables

matter (Svensson [35]).!

! The importance of the whole distribution of future target variables was recently emphasized by Greenspan [18]
at the 2005 Jackson Hole symposium, with reference to his [17] so-called risk-management approach:



Certain aspects of our approach have been known in economics since the classic works of Aoki
[2] and Chow [8], who allowed for multiplicative uncertainty in a linear-quadratic framework. The
insight of those papers, when adapted to our setting, is that in MJLQ models the value function
remains quadratic in the state, but now with weights that depend on the mode. MJL(Q models
have also been widely studied in the control-theory literature for the special case when there are no
forward-looking variables (see Costa and Fragoso [10], Costa, Fragoso, and Marques [11] (henceforth
CFM), do Val, Geromel, and Costa [14], and the references therein). More recently, Zampolli
[41] uses an MJLQ model to examine monetary policy under shifts between regimes with and
without an asset-market bubble, although still in a model without forward-looking variables. Blake
and Zampolli [4] provide an extension of the MJLQ model to include forward-looking variables,
although with less generality than in our paper and with the analysis and the algorithms restricted
to discretion equilibria.

Relative to this previous literature, our contribution is the development of a general approach
for handling MJLQ models that include forward-looking variables. This extension is key for policy
analysis under rational expectations, but the forward-looking variables make the model nonrecur-
sive. We show that the recursive saddlepoint method of Marcet and Marimon [26] can nevertheless
be applied to express the model in a convenient recursive way, and we derive an algorithm for
determining the optimal policy and value functions.

In addition to considering the optimal policy, we also consider the behavior of the model for
arbitrary time-varying or time-invariant instrument rules. This allows us to construct model-
consistent probability distributions —fan charts—of the variables relevant to policy makers for any
arbitrary instrument-rate path. Moreover, much of the literature in monetary policy analysis has
focused on “simple” instrument rules which are restricted to respond to only a subset of all available
information, with Taylor rules and various generalizations being most prominent. We show how to
derive optimal restricted instrument rules in our setting. Importantly, our approach is not restricted
to instrument rules; any given or optimal restricted policy rule, including targeting rules, can be
considered.

For most of the paper, we focus on the case where agents can directly observe the mode. While

In this [risk management] approach, a central bank needs to consider not only the most likely [rather:
mean]| future path for the economy but also the distribution of possible outcomes about that path. The
decisionmakers then need to reach a judgment about the probabilities, costs, and benefits of various
possible outcomes under alternative choices for policy.

We agree with Feldstein [15] that Greenspan’s risk-management approach is best interpreted as standard expected-
loss minimization and we consider the risk-management approach and the approach of this paper as completely
consistent. See Blinder and Reis [5] for further discussion of possible interpretations of the risk-management approach.



this may be plausible for some environments, such as for example when a new policy regime is
announced, in many cases it is more fitting to assume that the modes are not observable. When
the modes are not observable, we can represent the decision maker’s information as a probability
distribution over possible modes, and optimal policy will depend on that distribution. In this
paper, we analyze the special case where decision makers do not learn from endogenous variables,
but rather the future the subjective distribution over modes is entirely governed by the transition
probabilities. In this case, the value function remains quadratic in the state, but with weights that
depend now on the probability distribution over modes. We develop a simple method of solving
this case.

The more general case where decision makers infer from their observations the probability
of being in a particular mode is much more difficult to solve. The optimal filter is nonlinear,
which destroys the tractability of the MJLQ approach.? Additionally, as in most Bayesian learning
problems, the optimal policy will also include an experimentation component. Thus, solving for the
optimal decision rules will be a more complex numerical task. Due to the curse of dimensionality, it
is only feasible in models with a relatively small number of state variables and modes. Confronted
with these difficulties, the literature has focused on approximations such as linearization or adaptive
control.> While these issues are important, they remain outside the scope of the present paper.

The rest of the paper is organized as follows. In section 2, we lay out the model. In section
3, we discuss how different kinds of model uncertainty can be incorporated by our framework.
In section 4, we present examples based on two empirical models of the US economy: regime-
switching versions of the backward-looking model of Rudebusch and Svensson [30] and the forward-
looking New Keynesian model of Lindé [24]. In section 5, we show how probability distributions of
forecasts of relevant variables can be constructed for arbitrary time-varying instrument-rate paths
or functions. In section 6, we show how the same probability distributions can be constructed
for arbitrary time-invariant instrument rules and optimal restricted instrument rules. Here we
derive optimal generalized and mode-dependent Taylor-type rules in the Lindé model. In section
7, we show how the optimal policy and value functions can be expressed as a function of the

probability distribution of the modes, in the realistic case when these modes are not observable.

? The optimal nonlinear filter is well-known, and it is a key component of the estimation methods as well (Hamilton
[19] and Kim and Nelson [22]).

3 In the first case, restricting attention to (sub-optimal) linear filters preserves the tractability of the linear-
quadratic framework. See CFM [11] for a brief discussion and references. In adaptive control, agents do not take into
account the informational role of their decisions. See do Val and Bagar [13] for an application of an adaptive control
MJLQ problem in economics. In a different setting, Cogley, Colacito, and Sargent [9] have recently studied how well
adaptive procedures approximate the optimal policies.



We then reconsider the examples from section 4 in the unobservable case, and find that the effects
of unobservability differ greatly across the two models. In section 8, we present some conclusions.

The appendices contain some technical details and extensions of the material in the text.

2 The model

We set up a relatively flexible model of an economy with a central bank, which allows for relatively
broad additive and multiplicative uncertainty as well as different relevant representations of the

central-bank information and judgment about the economy.

2.1 The baseline model

Consider the following model of an economy with a central bank:

Xit1 = A+ Xe + Argpnixe + Brgaie + Criagera, (2.1)

EiHiixip1 = A1 Xy + Aoy + Bayiy, (2.2)

where X} is an nx x 1 vector of predetermined variables (the state) in period ¢ (the first element may
be unity to incorporate nonzero intercepts in a convenient way), x; is an n, x 1 vector of forward-
looking variables in period ¢, i; is an n; X 1 vector of central-bank instruments (control variables) in
period ¢, and ¢ is an nyx X 1 vector of zero-mean i.i.d. shocks realized in period ¢t with covariance
matrix I. The forward-looking variables and the instruments are the nonpredetermined variables.*
The matrix Ags ¢ is nonsingular, so equation (2.2) determines the forward-looking variables in period
t. There is no restriction in including the shock ¢; only in the equations for the predetermined
variables, since, if necessary, the set of predetermined variables can always be expanded to include
the shocks and the shocks this way indirectly enter into the equations for the forward-looking
variables. The expression E;q;1+1 denotes the conditional expectation in period ¢ of any random
variable g;4+1 realized in period ¢ + 1. The informational assumptions underlying the conditional
expectations operator E; are specified below.

The central bank has an intertemporal loss function in period t¢:

[e.e]
B> 6 Lits, (2.3)
7=0

* Predetermined variables have exogenous one-period-ahead forecast errors, whereas non-predetermined variables
have endogenous one-period-ahead forecast errors.



where the period loss, L, satisfies

Ly = Y}IAtYZ,
where
Xy
Yi=D; |
1

is an ny x 1 vector of target variables and the weight matrix A; is a symmetric and positive

semidefinite matrix. It follows that the period loss function satisfies

!/

Xi Xi
Lt = Tt Wt Tt s (24)
it it

where the matrix W; = DjAyD; is symmetric and positive semidefinite. The scalar § is a discount
factor satisfying 0 < § < 1.5

The matrices Aq1¢, Ai2t, Biyt, Cr, Hy, Aory, Agayr, Bay, Ay, Dy, and W, (assumed to be of
appropriate dimension) are random and can each take n different values in period ¢, corresponding
to the n modes j; = 1,2,...,n in period t. We denote these values A11; = Ay1,, A121 = A12;,, and

so forth. The modes j; follow a Markov process with constant transition probabilities:

Pji, = Pr{jip1 = k|je = j} (5,k=1,..,n). (2.5)

While we focus throughout on the time-homogeneous case, it is straightforward to allow the modes
to depend directly on calendar time. Furthermore, P denotes the n x n transition matrix [Pj;] and
the 1 x n vector p = (pit, ..., pnt) (Where pjy = Pr{j; = j}, j = 1,...,n) denotes the probability

distribution of the modes in period ¢, so

Di+1 = piP.

Finally, the 1 x n vector p denotes the unique stationary distribution of the modes, so®

The shocks ¢; and the modes j; are assumed to be independently distributed (although we

allow the impact on the economy of the shocks €; to depend on the modes j; through the matrix

® When § = 1, the loss function (2.3) normally becomes unbounded. To handle this case, we scale the intertemporal
loss function by 1—4 for § < 1 and consider the loss function to be the limit lims_1(1—8)E; Y 67 Liyr. See appendix

T7=0
C for details.
% We assume that the Markov chain is recurrent and aperiodic, so the stationary distribution is unique and does
not depend on the initial mode (Karlin and Taylor [21]).



Cj,). However, this assumption is not restrictive. Mode-dependent additive shocks are actually
incorporated, since the fact that we allow one of the predetermined variables to be unity implies
that all our equations may have mode-dependent intercepts.’

In the beginning of period ¢, before the central bank chooses the instruments, 4;, the central
bank’s information set includes the history of the realizations of X;, ji, €+, X¢—1, jt—1, €t—1, Tt_1,
i¢—1, ... The central bank also knows the probability distribution of the innovation ¢, the tran-
sition matrix P, and the n different values each of the matrices can take. Hence, the conditional
expectations operator, E;, refers to expectations conditional on that information. In section 7 we
consider an alternative situation, which in many cases is more realistic, where the mode j; is not
observable in period t, and hence policy in period t is based on the probability distribution p; of
the modes.

We consider the optimization problem of minimizing (2.3) in period ¢, subject to (2.1), (2.2),
(2.4), and X; and j; given. In particular, we consider the optimization under commitment in a

timeless perspective (see Woodford [40] and Svensson and Woodford [39]).

2.2 Reformulation according to the recursive saddlepoint method

In order to apply the methods developed for similar models in control theory, we require that
the system be recursive. However, the presence of the forward-looking variables in (2.2) makes
the problem nonrecursive. Fortunately, the recursive saddlepoint method of Marcet and Marimon
[26] can be applied to reformulate the non-recursive problem with forward-looking variables as a
recursive saddlepoint problem (see Marcet and Marimon [26] for the general method and Svensson
[37] for the method applied to linear-quadratic problems).

More precisely, the problem of minimizing the intertemporal loss function in each period ¢ under

commitment in a timeless perspective can be reformulated as the dual saddlepoint problem:

0

max min E 5 Livr, ve
{Vegrtrzo {Berryitar}r>o t 7;) " (2.6)
with the dual period loss function,

~ / ~

T X T T X T

Lt+T = |: it—'_ :| ‘/ij-r |: ~t+ :| ’ (27)
t+7 U+r

T Without significant loss of generality, we could assume that the e shocks are discrete, e, € {&,}7_;, and hence
depend on separate modes h = 1,...,7 which may be correlated with the j modes. Then we could consider nn
generalized modes (j,h) (j = 1,...,n, h = 1,...,7) and incorporate the ¢ shocks in intercepts that depend on the
generalized modes. This way we could, without loss of generality, write the model without any explicit additive e
shocks.



subject to the dual model:

KXipri1 = Ajt+-r+1Xt+T + Bjt+-r+1it+T + Cjt+-r+15t+7'+1 (2'8)

for 7 > 0, where X, and Jt are given. Here, the new n g x 1 vector of predetermined variables X,

(ng =nx +n,) and the new n; x 1 vector of instruments ; (n; = n, + n; + ny) are defined as

T
th[_Xt ] W= ztt . (2.9)
"t
The elements of the n, x 1 vector Z;_; are the Lagrange multipliers for the equations (2.2) for the
forward-looking variables in period t — 1 from the optimization problem in that period. Hence, =;_
captures the history dependence of the optimal policy under commitment in a timeless perspective
(see Woodford [40] and Svensson and Woodford [39]). The elements of the n, x 1 vector v, are
the Lagrange multipliers for equations (2.2) in period ¢, considered as control variables in period ¢.
Hence, we have

=y (2.10)

as an additional dynamic equation, which is incorporated in (2.8).

The matrix th in (2.7) is constructed so the dual period loss L; satisfies

= N -
Li=L;— 72(A21tht + A22jt$t + BthZt) + g‘:';—lHjtwt' (211)
The matrices fljt 1o Bjt 41, and C’jt .. (partitioned conformably with X; and, for Bjt 1, also with %)
satisfy
~ | Anj 0 ~ _ | A1z By 0 = _ | Cj
Ajt+1 = [ Ojt+1 0 } ) Bj, = { gtﬂ g“ I Cj = j(t)+1 : (2.12)

2.3 Optimal policy and dynamics

The solution of the dual saddlepoint problem will result in a conditionally linear optimal policy

function with mode-dependent coeflicients,
w=F, Xy  (r=1,...,n) (2.13)

and a dual conditionally quadratic value function with mode-dependent coefficients,

o0

X\V;,X; +wj, = max min E; Z 6 Ly r, (je=1,..,n) (2.14)

Vesrdezo {@eariitertrzo T



(see appendix B for details and a convenient algorithm for computing f/] and Fj for j =1,...,n).
The optimal policy function for the dual problem is also the solution to the original problem.
Consider the composite state (X;, jt) in period t, where 7; = thf(t. The transition from this

composite state to the composite state (Xt+]_,jt+]_) in period t+1 with 7441 = F; Xt+1 will satisfy

Jt+1
Xipr = Mjij, . Xo + Cjp €41,

where
thjt+1 = Ajt+1 + B; th?

Jt+1

and will, for given realization of €411, occur with probability P; This determines the optimal

tJt+1-
distribution of future XHT, Jt+r, and 744+ (7 > 1) conditional on (Xt, Jt)-

Such conditional distributions can be illustrated by plots of future means, medians, and per-
centiles (fan charts). Plots of future means, medians, and percentiles can also be constructed for
individual chains of the modes, for instance, the median or mean chain corresponding to no model
uncertainty. The simplest way to generate such plots is by simulation, which we illustrate in some
examples below.

Note that the value function in (2.14) above corresponds to the dual period loss function and

the dual saddlepoint problem. The value function for the original problem of minimizing (2.3)

subject to (2.1), (2.2), and (2.4) under commitment in a timeless perspective with X; given is
Xt,Vtht + Wy, (2'15)

The matrices V; and the scalars w; for j = 1,...,n, can be determined in the following way.
Let F}, be partitioned conformably with x4, ¢, and -,
Fyj
th = F, ]t )
Fyj,

and note that we have

X roj
T = ijt Xt.
it Fij,

It follows that we can write the period loss function as

Ly = X[W;, X,

where ,
I0 I0
th = Fa:jt th Fl‘jt . (2'16)
Fij, Fj,



For each j = 1,...,n, the matrix V; will then satisfy the Lyapunov equation:

Vi = V_Vj +52ijM],-kaMjk, (2.17)
k

and the scalar w; will satisfy the equation:®
wj =06 Pigltr(ViCiCy) + wy]. (2.18)
k
The matrices V; and the scalar w; can also be found in a more direct way from the matrices ‘7]
and the scalar @;. Note that, by (2.2), (2.11), and (2.10), the identity
X[V Xy +w; = XV, Xy + b — %Eg_lHijth (G=1,..,n) (2.19)

must hold. We can write

1_ ~ 1, S5 — ~
g\:é_lHijth = %(12_1Hijth+X£F;j ]I-.:tfl) = Xt,

0 %F;XjHJ'.
s HiFoxj o5 (HjFuz;+ Pz HY)

Xtv
where F; is partitioned conformably with X; and =1 as Fy; = [F,x; Fyz;]. Then, identification

of terms implies that w; and V; are determined by

wj = W; (1=1,..,n),
- 0 L H
V=V, — 207 X7 g j=1,..,n).
P 5 HiFex  55(HiFuzj + Fiz HY) ( )

As discussed in CFM [11], mean square stability is an appropriate concept of stability for our
framework. Appendix D provides some details on the definition of mean square stability and shows
how the necessary and sufficient conditions for mean square stability derived in CFM [11] can be

applied to our framework.

3 Interpretation of model uncertainty in our framework

The assumption that the random matrices of coefficients take a finite number of values correspond-
ing to a finite number of modes allows us to use the convenient and flexible framework of MJLQ
systems—once we apply the recursive saddlepoint method of Marcet and Marimon to reformulate
the non-recursive model with forward-looking variables as a recursive model. By specifying different
configurations of modes and transition probabilities, we can approximate many different kinds of

model uncertainty.

8 Note that é’ké}c is the covariance matrix of the shocks ék5t+1 to Xt+1 when jiy1 =k (k= 1,...,n). Note also
that w; will normally have a bounded solution only if § < 1. See appendix C for how to handle the case § = 1.



e Both i.i.d. and serially correlated random coefficients of the model can be handled. This can
capture either generalized parameter uncertainty or different behavior in different modeled

regimes (such boom/bust states, and so forth).

e The modes can correspond to different structural models. The models can differ by having
different relevant variables, different number of leads or lags, or the same variable being
predetermined in one model and forward-looking in another. For example, one mode can
represent a model with forward-looking variables such as the New Keynesian model of Lindé
[24], another a backward-looking model such as that of Rudebusch and Svensson [30] (see
appendix E for details).

e The modes can correspond to situations when variables such as inflation and output have more
or less inherent persistence (are more or less autocorrelated), when the exogenous shocks have
more or less persistence (introduce a predetermined variable equal to the serially correlated
shock, letting it be an AR(1) process with a high or low coefficient), or when the uncertainty

about the coefficients or models is higher or lower.

e The modes can be structured such that they correspond to different central-bank judgments
about model coefficients and model uncertainty. Let j; = 1,...,n correspond to n different
model modes (different coefficients, different variances or persistence of coefficient distur-
bances, or different variances of the &; shocks). Let k; = 1,...,m correspond to m differ-
ent central-bank judgment modes, depicting some central-bank information about the model
modes. This can generally be modeled as a situation where the transition matrix for the
model modes depends on the judgment mode. Thus let the transition matrix for model modes
be p(k:t), and hence depend on k;. Let P° denote the transition matrix for the judgment
modes (assumed independent of the model modes). We can then consider a composite model-
judgment mode (j, k¢) in period ¢, with the transition probability from model-judgment mode
(h, k) in period ¢ to mode (7,1) in period ¢+ 1 given by p(k:)th,Sl. For instance, the judgment

modes may correspond to different persistence of the model modes.

e The mode j; may be observed in period ¢, in which case optimal policy and the value function
is conditional on the mode j;, as shown above. Alternatively, and more realistically, we may
assume that the mode cannot be perfectly observed. Then we can represent the central bank’s

information in period ¢ about the mode as the distribution p; of the modes. Then optimal
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policy and the value function in period ¢t will depend on the distribution p;. This case is

considered in section 7.

e As noted in appendix A, we can combine multiplicative uncertainty about the modes with
the additive uncertainty about future deviations. This way we can simultaneously handle
central-bank judgment about future additive deviations as in Svensson [36] and central-bank
judgment about model modes as in this paper. For instance, we can handle situations when
there is more or less uncertainty about shocks farther into the future relative to those in the

near future.

Generally, aside from dimensional and computational limitations, it is difficult to conceive of a

situation for a policymaker that cannot be approximated in this framework.

4 Examples

In this section we present examples based on two empirical models of the US economy: regime-
switching versions of the backward-looking model of Rudebusch and Svensson [30] and the forward-

looking New Keynesian model of Lindé [24].

4.1 An estimated backward-looking model

In this section we consider the effects of model uncertainty in the quarterly model of the US
economy of Rudebusch and Svensson [30], henceforth RS. Using the same data set as in their
paper, we estimate a three-mode MJLQ model using Bayesian methods to locate the maximum of
the posterior distribution, and we compare the implications to the constant-coefficient version of
RS.

The key variables in the model are quarterly annualized inflation 7, the output gap y:, and the
instrument rate (the federal funds rate) 7;. The model has a Phillips curve and an aggregate-demand

relation of the following form:

2 2

T4l = Z QrjTg—r + (1 - Z aTj) T3 + a3y + Crj€n i1, (4.1)
=0 =0

Yer1 = B1Y + Bojyi—1 + Bsj (e — Tt) + cyicyt1,

where j € {1,2,3} indexes the mode, % = Y°_i; /4 and 7, = S.°_ 7 /4 are 4-quarter

averages, and the shocks e.; and €, are each independent standard normal random variables.
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Parameter | Constant | Mode 1  Mode 2 Mode 3
Qg 0.6922 0.2402 0.4236 1.2387
a1 —0.1033 0.1654 —0.2219 -0.6911
Q9 0.2786 1.0388 0.0714 0.5491
o3 0.1284 0.1514 0.2755 —0.0304
B1 1.1591 1.0015 1.0302 1.8943
Bo —0.2521 | —0.0853 —0.1069 —1.0312
B —0.0990 | —0.3244 0.0315 —0.1011
Cr 0.9962 1.5504 0.1798 0.1562
Cy 0.8132 1.2696 0.1447 0.2365

Table 4.1: Estimates of the constant-coefficient and three-mode Rudebusch-Svensson model.

Table 4.1 reports our estimates of the peak of the posterior, with the OLS estimates of the
constant-coefficient version of the model for comparison. For the MJLQ model, we center our prior
distribution at the OLS estimates. Details of the estimation method and prior setting are given in
appendix F. Here we see that many of the coefficients differ substantially across modes. Perhaps
most notable is the large difference in volatility, as the standard deviations of the shocks (¢, and
cy) are from five to ten times larger in mode 1 than in the other two modes. In addition, the slope
of the Phillips curve, as, ranges from a large positive response in mode 2 to a small negative value
in mode 3. Similarly, the slope of the IS curve, 3, ranges from a relatively large negative response
in mode 1 to a small positive one in mode 2. The large differences in these key model coefficients
lead to sharp differences in the optimal policy across modes, as we show below.

The estimated probabilities of being in the different modes are shown in figure 4.1. The plots
show both the filtered estimates, in which the distribution in period t is estimated using data
only up to t, as well as the smoothed estimates, in which the distribution in period ¢ is estimated
using data for the whole sample. Clearly, there are more fluctuations in the filtered estimates than
in the smoothed ones, since by looking backward we can better assess the probability of being
in a particular regime. We see that, for the early part of the sample, the economy was mostly
assessed to be in the more volatile mode 1. From the early 1980s onward, the modes 2 and 3 were
more prominent, as the volatility moderated. The estimated transition matrix P and its implied

stationary distribution p are

0.8331 0.0921 0.0748
P = 0.0305 0.9194 0.0501 |, p= [ 0.1652 0.4483 0.3866 ] .
0.0360 0.0541 0.9100

From the standpoint of these estimates, the early part of the sample is a bit of an aberration, as

mode 1 has the lowest weight in the stationary distribution. Thus, although similar episodes will
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Figure 4.1: Estimated probabilities of being in the different modes. Smoothed (full-sample) infer-

ence is shown with solid lines, while filtered (one-sided) inference is shown with dashed lines.

re-occur in the model, they would tend to be balanced with longer periods of more tranquility.

We let the period loss function be
Ly = 77 + i +vliy —ip1)?. (4.2)

Hence, the vector of target variables is Y; = (7, yt, i — i¢—1)" and the weight matrix A is a diagonal
matrix with the diagonal (1, A, ). We set the weights to A = 1 and v = 0.2. We set the discount

factor in the intertemporal loss function to § = 1. We then solve for the optimal policy function,
it = Eij (] = 17273)7

where Xy = (mq, Tp—1, Tt—2, Tt—3, Yt, Yt—1, bt—1, i1—2, 11—3), using the methods described above.

The optimal policy functions are given in table 4.2. In figure 4.2, we plot the distribution of the
impulse responses of inflation, the output gap, and the instrument rate to the two shocks in the
model. In particular, for 10,000 simulation runs, we first draw an initial mode of the Markov chain
from its stationary distribution, then simulate the chain for 50 periods forward, tracing out the

impulse responses. The figure plots the mean response at each date, along with 30% quantiles of
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the empirical distribution. More precisely, the dark, medium, and light grey band show 30%, 60%,
and 90% probability bands, respectively, with 5% of the distribution above the light gray band and
5% below. Also shown for comparison are the responses under the optimal policy for the estimated

constant-coefficient model given above.?

Mode ux; Ti—1 T¢—2 Tt—3 Yt Yt—1 11 142 (I

Constant 0.9921 0.3465 0.4273 0.1381 1.7974 —0.4639 0.3713 —0.0899 —0.0456

Mode 1 1.4796 1.3130 1.0760 —0.2853 1.9834 —-0.4890 —0.1723 —-0.3271 —0.1834
Mode 2 | —0.1510 —0.1739 —0.2132 —-0.2077 —1.0595 —0.2824 0.3311 —0.0840 —0.0326
Mode 3 1.1526 0.0988 0.5878 0.0309 4.6475 —4.6851 —0.0205 —0.2364 —0.1245

Table 4.2: Optimal policy functions for the constant-coefficient and three-mode Rudebusch-

Svensson model.

Both the table and the figure illustrate that the model uncertainty leads to a change in the
nature of policy. Compared to the constant-coefficient model, most of the mass of the distribution
of the impulse responses lies closer to zero. This is particularly the case for the instrument-rate
responses. Thus our results here are in accord with the common intuition based on Brainard [6], that
model uncertainty should lead to less aggressive (that is, smaller in magnitude) policy responses.'’
Interestingly, the probability distributions of responses are asymmetric, with the mean impulse
responses different from the median responses (the latter lie inside the dark gray bands). In many
cases, the tails of the distributions appear relatively wide. This is perhaps most noticeable in the
responses of inflation to the two shocks. Here again the bulk of the distribution lies below the
constant-coefficient model responses, but there is a significant right tail showing relatively large
and persistent effects of the initial shock. These results illustrate that with model uncertainty
policy makers must go beyond forecasting the means of target variables and consider the entire

forecast distributions, and our approach makes this process quite manageable.

4.2 An estimated forward-looking model

We now consider the effects of uncertainty in a model with both forward- and backward-looking

variables. The structural model is a mode-dependent simplification of the model of the US economy

 The shocks are e,0 = 1 and £,0 = 1, respectively, for the two different columns in the figure. Thus the shocks
to inflation and the output gap in period 0 are mode dependent and equal to ¢x; and cy; (j = 1,2,3), respectively.
We initialize by drawing from the stationary distribution, so the distribution of modes in each period remains the
stationary distribution.

10 Of course, this is only a loose parallel, as the Brainard result need not apply for the type of uncertainty considered
here, especially since the policy is here allowed to be mode-dependent.
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Figure 4.2: Unconditional impulse responses to shocks under the optimal policy for the mode-
dependent Rudebusch-Svensson model. Solid lines: Mean responses. Dark/medium/light gray
bands: 30/60/90% probability bands. Dashed lines: Optimal responses for the constant-coefficient

model.
of Lindé [24] and is given by

T = wribime + (1 —wp)me-1 + 9,9t + Crjent, (4.3)
yr = BB+ (1= Bp) [Byye1 + (1= Byj)ye—2] — By (it — Eymera) + cyjey,

it = (1= p1j— poj) (VajTt +Yys9e) + prjie—1+ pajic—2 + cijeir,

where an instrument rule is added to the Phillips curve and the aggregate-demand relation.!! Again,
J € {1,2,3} indexes the mode, and the shocks e, €y, and ¢;; are independent standard normal
random variables. We use the same data set as above, and again estimate a three-mode MJLQ
model along with a constant-coefficient model using Bayesian methods. Once again, we explicitly
state our prior settings in appendix F. We use the same prior for the structural coefficients in the

constant-coefficient and MJLQ cases, and the priors for the Markov chain coefficients are the same

11 Because of the forward-looking expectations in the model, estimation of the model requires that a policy rule
be specified.
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as in the RS model.

Parameter | Constant | Mode 1 Mode 2  Mode 3
wy 0.4908 0.4644 0.3380 0.3198
v 0.0081 0.0112 0.0786 0.0312
By 0.4408 0.0889 0.2356 0.3911
B, 0.0048 0.0396 0.1395 0.0000
By 1.1778 1.1119 1.1570 1.2312
P1 0.9557 1.1486 0.8525 0.7967
P9 —0.0673 | —0.2340 —0.1172 0.0516
Y 1.3474 1.2439 —0.0643 2.3427
Yy 0.7948 0.5799 0.9717 -0.3101
Cr 0.5923 0.4861 0.7232 0.9801
Cy 0.4162 0.4744 0.5083 0.6720
C; 0.9918 0.2995 0.3930 1.2341

Table 4.3: Estimates of the constant-coefficient and three-mode Lindé model.

Table 4.3 reports our estimates, with the estimates from the constant-coefficient version of
the model for comparison. Our constant-coefficient estimates are similar to those in Lindé [24],
with the main difference that we find much smaller estimates of v and f3,. At least some of the
difference may be due to our different data series and sample period. We again see that many
of the key structural coefficients change substantially across modes, particularly the instrument-
rule coefficients and shock standard deviations. For example, mode 3 has the largest shocks to all
variables, while mode 1 has the smallest. The instrument-rule coefficients v, and 7, in mode 1 are
relatively close to those of the constant-coefficient model, while in mode 3 the response to inflation,
Yx, 1S actually negative.

The estimated transition matrix P and its implied stationary distribution p are given by

0.9403 0.0340 0.0257
0.0625 0.8924 0.0451 |,
0.0695 0.0576 0.8729

Thus mode 1 is the most persistent and has the largest mass in the invariant distribution. This is

P = p=1[05229 0.2741 0.2030 |.

consistent with our estimation of the modes as shown in figure 4.3. Again, the plots show both the
smoothed and filtered estimates. We see that mode 1 was experienced the most throughout much
of the sample, holding for most of the sample until 1970 and then most of time after 1985. The
volatile mode 3 held for much of the early 1970s and early 1980s, alternating with the intermediate
mode 2.

We again solve for the optimal policy function,
i = Fi; Xy,
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Figure 4.3: Estimated probabilities of being the different modes. Smoothed (full-sample) inference

is shown with solid lines, while filtered (one-sided) inference is shown with dashed lines.

Mode T—1 Y1 Yt—2 11 Ext Eyt  Spp-1  Syi-1
Constant | 0.3552 1.0714 —0.2231 0.7853 0.6975 2.2437 0.0024 0.0182
Mode 1 | 0.8915 2.0766 —0.2338 0.5962 1.6644 2.2929 0.0037 0.0066
Mode 2 | 1.4625 1.6985 —0.2666 0.3271 2.2092 2.2216 0.0090 0.0393
Mode 3 | 0.8348 0.7955 —0.2085 0.8016 1.2273 1.4812 0.0006 0.0021

Table 4.4: Optimal policy functions of the constant-coefficient and three-mode Lindé model.

where X; = (Tt—15 Yt—1, Yt—2, %t —1, Ext, Eyt, Sxt—1, Zyt—1) , using the methods described above. We
use the same loss function as for the backward-looking model. The optimal policy functions are
given in table 4.4. In figure 4.4, we plot the distribution of the impulse responses of inflation, the
output gap, and the instrument rate to the two structural shocks in the model. Again we consider
10,000 simulations of 50 periods, and plot the mean responses along with 30% probability bands
and the corresponding optimal responses for the constant-coefficient model.'?

Again, the model uncertainty leads to a change in the nature of policy. Compared to the

constant-coefficient case, most of the mass of the distribution of impulse responses is consistent

2 Again, the shocks are er0 = 1 and €40 = 1, respectively, so the shocks to the inflation and output-gap equations
in period 0 are mode-dependent and equal to c¢r; and ¢y; (j = 1,2,3), respectively. The distribution of modes in
period 0 (and thereby all periods) is again the stationary distribution.
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Figure 4.4: Unconditional impulse responses to shocks under the optimal policy for the mode-
dependent Lindé model. Solid lines: Mean responses. Dark/medium/light grey bands: 30/60/90%

probability bands. Dashed lines: Optimal responses for the constant-coefficient model.

with earlier peak effects of the shocks which more rapidly return to zero. This is particularly the
case for the instrument-rate responses, although the relative magnitudes differ somewhat with the
type of the shock. For shocks to the output gap, most of the mass of the instrument-rate response
distribution under model uncertainty lies below the response for the constant-coefficient model. For
shocks to inflation, most of the distribution is consistent with larger and more prompt instrument-
rate responses than for the constant-coefficient model. Once again, the distribution of the impulse
responses is asymmetric, with the mean responses different from the median responses (the latter
lie inside the dark gray bands), and again the tails of the distributions appear relatively wide.
As in the RS model above, this is perhaps most noticeable for the inflation responses, where the
center of the distribution lies below the constant-coefficient case but there is a relatively large right
tail showing more significant and persistent responses. However in the Lindé model, the long-run
behavior is better anchored as the distributions of responses in all cases collapse tightly around

zero after roughly thirty quarters.
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5 Arbitrary time-varying instrument rules and instrument paths

In this section we derive the dynamics of the system, including the distribution of forecasts of
relevant future variables, for arbitrary time-varying instrument rules. This includes time-varying
instrument paths such as a constant instrument rate for arbitrary (but finitely many) periods,
analogous to the constant-rate forecasts of the some central banks. We also specify the optimization
problem for instrument rules in a given class. Furthermore, as we shall note, although we explicitly
only deal with instrument rules, our method generalizes to arbitrary policy rules, including targeting

rules (Svensson and Woodford [39]).

5.1 Setup

Consider implementing an arbitrary time-varying instrument rule during period ¢t = 0,1,...,7 — 1
and implementing the optimal policy function from period T on. Let the arbitrary instrument rule

be conditionally linear but otherwise of the rather general form

it = Fy, Xi + Fajore (0<t<T 1), (5.1)

1=

where X; denotes the ng x 1 vector (X{,5; ), Fyg,;, and Fyj, are (n; x ng) and (n; X ng)
matrices, respectively, which depend on both the period ¢ and the mode j;. For added generality,
we also allow a possible response to the forward-looking variables, x;. Indeed, we could consider

any arbitrary policy rule, including targeting rules, of the form
EiH3 141,00 Ter1 = Asirj, Xt + Az, xe + Bagj, it (0<t<T-1), (5.2)

where Hsyj, Asij, Asarj, and Bsy; are potentially time-varying and mode-dependent matrices of the
appropriate dimension (in particular, having n; rows and giving rise to n; independent equations,
which is required to determine the instruments in each period).

If Fpyj, =0, (5.1) is an explicit instrument rule; that is, the instrument responds to predeter-
mined variables only.!® If Fy;;, # 0 (Fyj, # 0 for some mode j; with positive probability), it is
an implicit instrument rule; that is, the instrument depends also on forward-looking variables. In
the latter case, there is a simultaneity problem, in that the instrument and the forward-looking
variables are simultaneously determined. Thus, an implicit instrument rule can be interpreted
as an equilibrium condition. As discussed in Svensson [36] and Svensson and Woodford [39], the

implementation of an implicit instrument rule is problematic, since in practice a central bank can

13 Note that policy functions and explicit instrument rules are the same.
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literally only respond to predetermined variables.'* We disregard these problems here, and consider
(5.1) as just another equilibrium condition added to equations (2.1) and (2.2).

We can write (5.1) in the more general form

0= Fg,;, Xt + Fujie  (0<t<T—1), (5.3)

where
Fij, = [F:ctjt —In, Onixnx]v (54)
where & = (z},4;,7;) as in (2.9). Assume that the policy function shifts permanently to the

optimal policy function (2.13) in period 7.1 This is a reasonably general formulation. Since one of
the elements of X; may be unity, (5.3) includes the case of an exogenous time-varying and mode-
dependent instrument level for the first T periods, including the case of a constant instrument
level.

It follows from section 2 that there exists ‘7] and @; (j = 1,...,n) such that, for ¢ > T, the

intertemporal loss for the dual saddlepoint problem satisfies

X’;f/jt)z} + ﬁ)ﬁ = max min {Et + 5Et(X£+1‘7jt+1Xt+l + iz)jH_l)} (t > T)

Ve o (wg,it)
subject to

X1 = A5, X+ B, i+ Cjypeen (5.5)
and X, given (Xy, Ly, it, Aj, 1, Bj.., and Cj,,, are defined as in (2.11) and (2.12)). Recall that

this dual intertemporal loss is associated with the dual loss function, not the original loss function.
The recursive saddlepoint method of Marcet and Marimon [26] provides a simple and compact
way to incorporate the fact that the equilibrium forward-looking variables x; and the Lagrange
multiplier Z;_; will be affected by the constraint (5.1). Working backward, fort =T7—-1,7-2,...,0,
we define Vijt and 10y, recursively from the saddlepoint problems:
o (- By K )
X[ Vi, Xt +10t;, = max min { A 7 thtN (0<t<T-1), (5.6)
(Y1) (t5it) + (5Et (X£+1 W+1,jz+1 Xt—l—l + wt+1,jt+1)
subject to (5.3) and (5.5), where Vzj, = Vj, and w@rj, = wj,. Here, ¢, can be interpreted as an

n; X 1 vector of Lagrange multipliers for the n; equations (5.3). Formally, (5.3) is added to the

4 Tn practice, because of a complex and systematic decision process (Brash [7], Sims [31], Svensson [34]), the
information modern central banks respond to is at least a few days old, and most of the information is one or several
months old.

15 Alternatively, the policy rule could shift to an arbitrary time-invariant policy rule for which a unique solution
exists.
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equations (2.2) and the Lagrange multiplier v, is augmented to (v}, ¢})’. Normally, the recursive
saddlepoint method would then involve augmenting the Lagrange multiplier =;_1 to (Z}_;, ®}_,)’,
with the added dynamic equation

D = ;.

However, the augmented period loss is here
-Z;t = Et + QDQ (Zt — Ff(ttht — Fxtjtxt> . (57)

Since the analogue of E;Hy 112441, the left side of (5.3), is zero, there is no term including ®;_; aug-
mented to the period loss. Hence, we do not need to consider ®;_; as an additional predetermined
variable here.'0

The solution determines the time- and mode-dependent optimal policy function ﬁ}jt,

Tt o Fog |
w=| i | =F;Xe= | Fay, | Xe (0S0<T-1),
Vi Fj,

where of course i; in 7 satisfies (5.1). The interesting part of the solution is

xp = Fryj, X4, (5.8)
and Fmtjt and Fitjtwill satisfy
Fitjt = Ftht + Fa:tjtﬁ’a:tjt-
There is also a solution for ¢,, ¢, = Fg,tjt)?t, but that solution is not needed for the intertemporal

loss and the dynamics. It follows that the dynamics of X; satisfies

Xey1 = My Xe+Cjpen (0<t<T—1),
XH-I = thjt+1Xt + éjz+1€t+1 (t=1)
where
Mtjtjt+1 = Ajt+1 =+ Bjt+1F;fjt (0 <t<T- 1)7
thjt+1 = Ajt+1 + Bjt+1th (t > T)'

The intertemporal loss in period 0 for the dual period loss function (5.7) will be given by

X VijoXo + tiojo-

' If we were considering the more general policy rule (5.2), the term E;Hs11,5,,,2: would require us to also
consider ®;_; as an additional predetermined variable.
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However, this is not the intertemporal loss in period 0 for the original period loss function, (2.4).
In order to find that, note that the intertemporal loss for the optimal policy for ¢ > T" will be given
by

Xé‘/]t Xt + Wiy s
where the matrix V; will satisfy the Lyapunov function (2.17) and the scalar w; will satisfy (2.18).

Fort=T—-1,T —2,...,0, we can define V;; and wy; recursively from the equations

!/

I 0 I 0
Wij= | Fuy | Wi | Fayy
Fi; Fi;

Vig = Wi+ PicMj Vs oM,
k

Wej, =0 Z Pi[tr(Vie1 kCrCy) + wit1.x),
%

where Vr; =V, and wr; = wj.17

Then, the intertemporal loss in period 0 for the original period loss function (5.7) is
XoVojoXo + woj,-

This corresponds to the loss under commitment in a timeless perspective when the instrument is
restricted to fulfill (5.1) and shifts to the optimal policy in period T'. That is, when the restriction
(5.1) is removed in period T and optimal policy is feasible, the commitment is not from scratch
in period T (in which case Z7_1 would equal zero) but takes into account the previous Lagrange
multiplier =Zp_1. In principle, this formulation also allows us to consider nonzero =_1 in period 0.

The method described above also works for the backward-looking case, in which case
Z—/t = Lt

and there are no variables v, ¢, and Z;_; (equivalently, they are identically equal to zero). Then
the intertemporal loss for the saddlepoint problem is equal to the intertemporal loss for the original
problem.

Details about the computation of tht and ‘N/tjt are provided in appendix G.

7 Note that we could also determine V;j;, and wy;, relying on the analogue of the identity (2.19) for this case.
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5.2 Optimization

Let Fy = {Fy,, Fotji}},—q for 0 < ¢ < T —1, and let F' = {F}) denote the time- and mode-

tje’
dependent policy functions for 0 <t < T — 1. We may assume that there is a feasible set F of
such policy functions, so F' € F. Then we can, in principle, consider choosing the policy functions

optimally according to

min {XVojo (F) Xo + woso ()}, (5.9)

where the notation emphasizes that Vp;, and wg;, will depend on F. With the policy problem
formulated this way, the optimal F would depend on Xg (including =_1) and jo as well as the
covariance matrix C~’kC~',’€ of the shocks ék5t+1 to Xt+1 in mode jiy1 = k (k = 1,...,n). That is,
certainty equivalence does not necessarily hold for restricted classes of policy functions. If the class
of time- and mode-dependent policy functions is sufficiently big, it would include the optimal policy
function (2.13). If we were to add %E_lH jo®o to the period loss function in period 0, the optimal
policy function would then be a solution to (5.9).

Note that, if F is such that Fy;, # 0, the optimal F is generally not unique. The reason is that
for (5.8), if
Xt + Frj,

1t = Ftht

is a solution, so is
Xi 4 Futje + (0 — Fujy Xo) = (Fiyy, — CFoj) Xo 4 (Fatj, + ¢t

1t = Ftht

for any n, x 1 vector (.

6 Arbitrary time-invariant instrument rules and optimal restricted

instrument rules

In this section we derive the dynamics of the system, including the distribution of forecasts of
relevant future variables, for arbitrary time-invariant instrument rules. We also specify the opti-
mization problem for time-invariant instrument rules in a given class. While this is a special case of

the previous section, it is important in its own right and, in particular, allows a simpler algorithm.
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6.1 Setup

Consider an arbitrary time-invariant instrument rule,
i = Fg;, Xo+ Fjre (je = 1,..,m), (6.1)

combined with (2.1) and (2.2). We can consider this as a special case of the time-varying instrument
rules in section 5, if we let F'g, S Fg ” and Fjyj, = F,;, and apply the algorithm of that section
by iterating from ¢t = T > to to t = tp but instead of stopping at ty = 0 letting {9 — —oo. In
practice, the iteration would stop when tht and f/tjt have converged to th and f/jt. Partitioning

th conformably with x¢, i, and v,, we have

xy = Fp, X,

i = FthXt+F$jtFItht = Fij, Xy,

Xt—&—l = thjt+1Xt + éjt+18t+1 (]t =1, ,n)

This gives rise to a probability distribution of X'HT, Ziyr, and i, (7 > 0) conditional on f(t

and j;. This solution will be associated with a value function for the original period loss function,
Xt, Vjt Xt + wy, .

6.2 Optimization

For a given restricted class F of instrument rules, we can consider the optimal restricted (time-
invariant) instrument rule F, which minimizes an intertemporal loss function. This intertemporal

loss function could be the conditional loss in a given period, say period 0,

A

= arg 11;1612{)26‘/]0 (F)XO + wj, (£},

where the notation takes into account that Vj,(F) and wj,(F') depend on F' € F. This would
make the optimal restricted time-invariant instrument rule depend on X, Jo, and the covariance
matrices C’jé’j’ of the shocks C’jst+1 to Xt+1 in mode j = 1,...,n. Alternatively, the intertemporal

loss function could be the unconditional mean of the period loss function:

F= in E[Lq].
arg min B[L,]

Note that
E[L] = (1 - §)E[X}V}, (F) X, + wj, (F)].
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Furthermore, the unconditional and conditional intertemporal loss are approximately the same

when the intertemporal loss is scaled by 1 — ¢ and ¢ is close to one,

i B 3 (1 = 903" Lusr = ElLe] = i (1 6)Bfug] = Bfn(V;, 0 O3] = ;wvj@é;),

where we recall that p = (p1, ..., pn) is the stationary distribution of modes.

6.3 Optimal Taylor-type instrument rules in a forward-looking model

We now apply the methods outlined above to derive optimal Taylor-type instrument rules in the
estimated forward-looking model from section 4.2 above. In particular, we consider simple implicit

instrument rules of the general form (disregarding the implementation problems mentioned above):

it = fijilt—1 + frjme + fys e (6.2)

This is a Taylor rule with interest-rate smoothing, whose coefficients may depend on the mode 7j;
in period t. As special cases, we consider mode-independent Taylor rules, where the coefficients are
constrained to be the same in all modes, and original Taylor rules without the smoothing coefficient
fi- We use the unconditional mean of the period loss, E[L;], as the intertemporal loss function.
Note that, compared to (6.1), (6.2) implies a response to the predetermined variables X; rather
than to X; = (X/,Z,_,)". That is, we need not consider the Lagrange multiplier Z;_;. Then the

equilibrium solution will be of the simpler form

Ty = Gtht,
i = (Fth+FIthjt)Xt = F’tht‘

Xiv1 = (Ao + A12j,, G + BiFj) Xe + Cjy e = Mg, Xe + Cjy €41,

and not involve =;_;. This allows us to use a somewhat simpler algorithm than that discussed
above. In appendix H, we discuss in more detail this simpler algorithm for the calculations of the
optimal time-invariant instrument rules and the associated losses.

The results are summarized in table 6.1, where we report the optimal response coefficients
of the different forms of the instrument rules for the constant-coefficient and MJLQ versions of
the model. Interestingly, we find that the optimal Taylor-type rules that are constrained to have
the same responses in all modes are more aggressive in the MJLQ model than in the constant-
coefficient model. This contrasts with the impulse responses for the optimal policy shown in table

4.4 above, where we found that the optimal policy in the MJLQ model had on average a slightly

25



Mode |z't_1 e im | Loss

Constant-coefficient model

Optimal policy function 11.10
- - 2.93 1.69 | 15.13
- 0.89 0.80 0.83 | 11.67

MJLQ model
Optimal policy function 14.62
All modes - 3.97 2.07 | 20.96
Mode 1 - 3.01 3.10
Mode 2 - 6.39 2.85 | 18.09
Mode 3 1.94 0.86

All modes | 0.73 1.60 1.49 | 16.18
Mode 1 | 0.69 1.27 1.78
Mode 2 | 0.87 3.06 2.40 | 15.32
Mode 3 | 0.81 1.16 0.83

Table 6.1: Optimal Taylor-type instrument rules for the estimated three-mode Lindé model.

more aggressive inflation response but a more attenuated output-gap response than in the constant-
coefficient model. Similar conclusions apply for both the original and smoothed Taylor rules. This
increased aggressiveness is further illustrated in figure 6.1. The figure shows the loss in the constant-
coefficient and MJLQ models for mode-independent original and smoothed Taylor rules. For both
smoothed and original Taylor rules, the loss function is more sensitive to variations in the inflation
response coefficient of the policy rule. For both kinds of rules, performance in the MJLQ model is
enhanced by more aggressive responses.

These results suggest that constraining the rules to react in the same way in all modes may push
the optimal simple rules towards more aggressive responses. Moreover, as table 6.1 shows, the mode-
independent original Taylor rules are suboptimal by a fairly sizeable margin. This stands in contrast
to the constant-coefficient model, where the smoothed Taylor rule has a loss only slightly higher
loss than the fully optimal policy. Thus we also consider mode-dependent original and smoothed
Taylor rules, which are reported in the table. There we see that there is significant variation in
the responses across modes, with mode 3 having the weakest responses (particularly for the output
gap), while mode 2 has the strongest (particularly for the smoothed Taylor rules). In at least two
of the three modes, the rules are again more aggressive than in the constant-coefficient model.
Above we saw that the effects of uncertainty on policy, captured by comparison of the constant
coefficient model to the MJLQ model, had ambiguous effects on optimal policy. In contrast, when

the instrument rule is constrained to respond to fewer variables and not be history-dependent (that
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Figure 6.1: Contours of the loss function for the Lindé model under mode-independent Taylor-type
instrument rules. Left column: Constant-coefficient model. Right column: MJLQ model. Top row:

Original Taylor rules. Bottom row: Smoothed Taylor rules with f; = 0.8.

is, not respond to Z;_1), uncertainty leads to more aggressive responses.

7 Unobservable modes

In this section we consider the case when the modes are not observable, showing how the optimal
policy and value functions can be expressed as a function of the probability distribution of modes.
Then we apply the results in our two estimated examples. As noted in the introduction, we do
not consider the case where policymakers update their subjective distribution over modes based on
observations. While this case is important, the learning which it implies introduces nonlinearities
which destroy the tractability of the MJLQ framework. Instead, we assume here that the subjective

distribution simply evolves according to the exogenous transition probabilities.
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7.1 Optimal policy

Assume that central bank cannot observe the actual mode in period ¢ and but believes that the
distribution of modes in period t is p; = (pi¢, ..., Pnt). Conditional on p; in period ¢, the distribution

of the modes in period ¢ + 7 is given by
Pirr = Pt PT (t>0). (7.1)
With forward-looking variables, the dual model can be written
Xey1 = A, Xo + Bjyying, + Cj, 61,

where
Ltjy
itjt = it
Vi
Note that 4; will only depend on p; and be independent of j;, since the instrument must reflect the
central bank’s information, whereas z; and ~, will depend on both p; and j;. Appendix I shows

that the optimal policy function can be written

Lijy Fa?(pt)jt B B
i, = | i | = | Filp) | Xe=F(pe)jXe
Vi FV(pt)jt

The dynamics of the predetermined variables will follow

Xt-‘rl = M(pt)jthlet + éjt+1€t+17
where
M (pe)jx = Ay, + BeF ().
The value function for the original problem can be written
X[V (pe) X + w(py).-

Appendix I shows how the functions F(p¢);, V(pt), and w(p;) can be computed by modifying
the iterations specified in appendix B. Computing the functions F'(p;); and V(p;) for all feasible
values of p; requires standard function-approximation methods. However, as shown in appendix B,

computing the functions for a particular value p; = p; is straightforward.'®

'8 Consider the degenerate distributions, p; = e; where e; is the distribution where p; = 1, p, = 0 (k # j). That
is, p+ = e; corresponds to the case when the mode j is observed in period ¢. Note that V(e;) # V; and F(e;); #
F;, where V; and Fj (j = 1,...,n) denote the value function and optimal policy function matrices for the case when
the modes are observed in each period. The reason is that even if p; = e; and the mode is observed in this period,
the distribution of the modes in the next period will be piy1 = e; P = (Pj1, Pja, ..., Pj»n) and the modes will not be
observed in the next period. In contrast, V; and Fj are derived under the assumption that the modes are observed
in this period as well as every future period.
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Consider now the optimal decision of a central bank in a given period ¢, with a given realization
of the predetermined variables, Xt, and a given probability distribution of the modes, p;. The
probability distribution of the modes 7 periods ahead is then given by (7.1). It follows that the

optimal policy function for period ¢ + 7 (7 > 0) is time-varying and can be written
Utyr = Fi,t+TXt+T (7— > 0)7

where

Fitir = Fi(p:PT).

Hence, this situation is a special case of that discussed in section 5, where the policy function is time-
varying but independent of the mode. That is, the instrument rule in (5.1) satisfies Fig, s =
=0.

-Fi,t—l—T and Fx7t+77jt+f

7.2 Examples

In this section we reconsider the two examples from section 4 above, now under the assumption
that the modes are unobservable. We suppose that the central bank has an initial distribution over
the modes which is equal to the stationary distribution p. From equation (7.1), we see that the
stationary distribution is also the central bank’s distribution of the future modes. We then apply
the algorithms described in appendix I to find the optimal policies. As in the observable-mode
case, we represent the solutions via impulse responses from 10,000 simulations, drawing the initial
mode from the stationary distribution and tracing out the distribution as the modes vary (now in

an unobservable manner) over time.

Case Tt T¢—1 T—2 T3 Yt Yt—1 (] (T 143
Constant 0.9921 0.3465 0.4273 0.1381 1.7974 —0.4639 0.3713 —0.0899 —0.0456
Unobserved | 1.1828 0.3610 0.7304 0.1861 1.9103 —-1.0563 0.1538 —0.1573 —0.0758

Table 7.1: Optimal policy functions for the constant-coefficient and unobserved-mode versions of

the Rudebusch-Svensson model.

In table 7.1 we show the optimal policy functions for the constant-coefficient and unobservable-
mode versions of the RS model from section 4.1 above. In figure 7.1 we plot the impulse responses.
The distributions of the impulse responses are again asymmetric, with the mean impulse responses
different from the median ones. Compared to the observable-mode case in figure 4.2 above, we see
that the mean policy responses are longer lasting, if not noticeably more aggressive at the start.

However most of the center of the distribution is consistent with smaller responses, with the mean
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Figure 7.1: Unconditional impulse responses to shocks under the optimal policy for the unobserved-
mode version of the Rudebusch-Svensson model. Solid lines: Mean responses. Dark/medium/light
grey bands: 30/60/90% probability bands. Dashed lines: Optimal responses for constant coeffi-

cients.

reflecting the very wide tails. Further, although the impulse-response distributions become rela-
tively concentrated around zero over time, the tails remain quite wide after the full 50 quarters
shown. Since the coefficients of the mode-dependent optimal policy functions change dramati-
cally across modes, being restricted to mode-independent (although distribution-dependent) policy

functions limits the possibility to stabilize the economy and generates wider distributions.

Case 1 Yt—1 Yt—2 It—1 Ert Eyt  Srt-1  Zyt-1
Constant 0.3552 1.0714 —0.2231 0.7853 0.6975 2.2437 0.0024 0.0182
Unobserved | 1.0987 1.7439 —0.2497 0.4788 1.7987 2.1787 0.0059 0.0194

Table 7.2: Optimal policy functions of the constant-coefficient and unobserved-mode versions the

Lindé model.

In table 7.2 we show the optimal policy functions for constant-coefficient and the unobservable-

mode versions of the Lindé model from section 4.2 above. In figure 7.2 we plot the impulse responses.
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Figure 7.2: Unconditional impulse responses to shocks under the optimal policy for the unobserved-
mode version of the Lindé model. Solid lines: Mean responses. Dark/medium/light grey bands:

30/60/90% probability bands. Dashed lines: Optimal responses for constant coefficients.

As for the backward-looking model above, unobservability of the modes has some effects on the
distribution of impulse responses in this forward-looking model. Comparing to figure 4.4 above, we
see that, although the mean and median policy responses are similar in the two cases, the tails are
wider for responses to inflation shocks, whereas they are tighter for output-gap shocks. As we have
seen above, the optimal policy in the observable-mode case reacts more strongly in some of the
modes (particularly in mode 2) and hence the different distributions in the observable-mode case
reflects the variation in the policy across modes. In the unobservable-mode case, the optimal policy
averages across modes. This averaging leads to slower convergence of the distributions over time,
although not to the same sustained dynamics as in the backward-looking model. Apart from the
other differences across the forward and backward-looking models, it seems, also when the modes

cannot be observed, that expectations play a key role in stabilizing the economy.
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8 Conclusions

This paper demonstrates that the Markov jump-linear-quadratic (MJLQ) framework is a very flexi-
ble and powerful tool for the analysis and determination of optimal policy under model uncertainty.
It provides a very tractable way of handling the absence of certainty equivalence that is an impor-
tant aspect of model uncertainty. Our approach builds on the control-theory literature, for instance,
Costa, Fragoso, and Marques [11], which has explored many properties of the MJLQ framework.
That literature uses recursive methods and does not consider forward-looking variables. However
the forward-looking variables characteristic of rational expectations make the models nonrecursive.
We show that the recursive saddlepoint method of Marcet and Marimon [26] can be applied to this
problem which allows us to use recursive methods, and hence to solve relatively general models.

We show that our framework can incorporate a large variety of different configurations of un-
certainty. We provide algorithms to derive the optimal policy and value functions. We apply the
framework to two examples: regime-switching variants of two empirical models of the US econ-
omy, the backward-looking model of Rudebusch and Svensson [30] and the forward-looking New
Keynesian model of Lindé [24]. We also show how the dynamics of the model can be specified
for arbitrary time-varying or time-invariant policy functions, including exogenous instrument paths
such as a constant instrument rate, and we discuss how to optimize over restricted instrument
rules. Finally, we show how the framework an be adapted to a situation with unobservable modes,
arguably the most realistic situation for policy. In the examples we study, we find some substantial
deviations from certainty equivalence. In some cases, we find support for the common intuition
that uncertainty should make policy more cautious, but this is not a general result. Overall, our
results illustrate the importance of considering the entire distribution of future outcomes.

The MJLQ framework makes it possible to provide advice on optimal monetary policy for a
large variety of different configurations of model uncertainty. The framework also makes it possible
to incorporate different kinds of central-bank judgment—information, knowledge, and views outside
the scope of a particular model—about the kind and degree of model uncertainty. Furthermore, the
framework can incorporate the kind of central-bank judgment about additive future deviations—
add factors—that is discussed in Svensson [36] and Svensson and Tetlow [38].

While the particular examples we study in this paper are informative, they are only a small
sample of the applications which can be analyzed with our approach. In addition to the further

examples outlined above and sketched in the paper, some natural applications would embed the
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different specifications of fully specified dynamic stochastic general equilibrium models as modes
in the MJLQ setting. We could thus incorporate uncertainty about the structure of the economy;,
such as different forms of price or wage setting (as discussed in Levin, Onatski, Williams, and
Williams [23]). Alternative specifications could also capture uncertainty about the low-frequency
behavior of the key driving processes, which could describe potential productivity slowdowns (as
in, for example, Kahn and Rich [20]) or moderations in overall volatility (as in McConnell and
Perez-Quiros [27] and Stock and Watson [33]). This would help address a drawback of our results
so far, that the different modes are not readily interpretable in terms of fundamentals. Instead,
by having the modes represent different structural models there will be natural restrictions on the
parameters and how they co-move. This would allow us to study monetary policy with unknown
and potentially time-varying structural models.

Overall, our results point to some important changes from approaches considering additive
uncertainty. In the “mean forecast targeting” applications in Svensson [36] and Svensson and
Tetlow [38], certainty equivalence is preserved, since the uncertainty is restricted to additive future
stochastic deviations in the model’s equations. With certainty equivalence, only the means of
future variables matter for policy, and optimal policy can be derived as if there were no uncertainty
about those means. Furthermore, the optimal mean projection of future target variables and
the instrument can be calculated in one step, and those projections—including the optimal mean
instrument path— are the natural objects for policy discussion. There is no need to use recursive
methods, and there is no need to specify the optimal policy function for the policy makers (the
explicit policy function is also a high-dimensional vector that is not easy to interpret). Instead, the
policy discussion can be conducted with the help of computer-generated graphs of projections of the
target variables and the instrument under alternative assumptions, weights in the monetary-policy
loss function, and central-bank judgments.

In the absence of certainty equivalence, mean forecast targeting is in principle no longer suf-
ficient. The whole distribution of future target variables matters for policy, and the optimal in-
strument decision should in principle take this into account. The optimal policy plan should be
chosen such that the whole distribution, rather than the mean, of the future target variables “looks
good.” The central bank should engage in “distribution forecast targeting” rather than mean fore-
cast targeting. The application of the MJLQ framework in this paper to model uncertainty and
certainty non-equivalence indicates that recursive methods and the explicit policy function are rela-

tively more useful for the derivation of the optimal policy than under certainty equivalence, perhaps
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even necessary. Still, the resulting distributions of future target variables and instruments under
alternative assumptions can conveniently be illustrated and presented to policy makers in the form

of graphs, although graphs of distributions rather than of means.
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Appendix

A Incorporating central-bank judgment
In order to incorporate (additive) central-bank judgment as in Svensson [36], consider the model

Xiv1 = A Xe + Ao 1w + Brgr1is + Crp1241, (A1)

EiHip1xip1 = A1 Xy + Ao + Ba iy, (A.2)

where z;, the (additive) deviation, is a an exogenous n, X 1 vector stochastic process. Assume that

z; satisfies
T

Zty1 = €441 + Z5t+1,t+1fj
j=1
for given T' > 0, where (e},¢"")' = (¢}, €141 €1y p,) 15 @ zero-mean iid. random (T + 1)n, x 1
vector realized in the beginning of period ¢ and called the innovation in period ¢t. For T' = 0,
Zt+1 = €441 18 a simple i.i.d. disturbance. For T' > 0, the deviation is a version of a moving-average
process.

The dynamics of the deviation can be written

Zt4+-1 Z Et+1
|:;til:|:AZ[zi}+[€iilj|a

where ' = (E¢z; 1, B2 9, ..., Etzer)’ can be interpreted as the central bank’s (additive) judgment

in period ¢t and the (T + 1)n, x (T + 1)n, matrix A, is defined as

Onzxnz Inz Oan(Tfl)nz 0 Ao
Az = O(Tfl)nzxnz O(Tfl)nzxnz I(Tfl)nz = |: 0 Az22 :| ;
On. xn. O, xn. Oan(T—l)nz -

in the second identity A, is partitioned conformably with z; and zf. Hence 2! is the central bank’s
mean projection of future deviations, and €’ can be interpreted as the new information the central
bank receives in period t about those future deviations.'”

It follows that the model can be written in the state-space form (2.1) and (2.2) as

X1 Xt

1 ; S [
Zt4+1 = At | 2 | + Arzgrixe + Bigaie + Ciga { 41 } ;
t+1 t €

z 2z

Xy

EiHi1zep1 = Aoie | 2 | + Aogpxe + Bayiy,
t
2z

"9 The graphs in Svensson [36] can be seen as impulse responses to €°.
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where

R At1i11 0 Cip1Aso R Aot 11
Ap1441 = 0 0 A1 , Ao = 0 ;
0 0 A9 0
R Bl,t-‘rl N 0 Ct—l—l
Biiy1 = 0 v Cpi=|1,, 0 ;
0 0 I

and the new predetermined variables are (X7, z;, 2!)’.

B An algorithm for the value function and optimal policy function

Consider the dual saddlepoint problem of (2.6) in period t, subject to (2.7), (2.8), and X; given.
Let us use the notation Z; = Zj, for any matrix Z that is a function of the mode j;, and let the

matrix Wt = I/T/jt be partitioned conformably with Xt and 7; as

| Q@ M
Tl

We use that the value function for the dual problem will be quadratic and can be written
X\ ViXy + by,
where V; is a matrix and @ a scalar. It will satisfy the Bellman equation

Xé‘ZgXt + 'lI)t = max IIllIl {X{QtXt + QXéNtit + Z&Rtit + (SEt(XéJrlf/t_t,_lXH_l + u~)t+1)} y

Ve o (wg,it)

where Xt+1 is given by (2.8) and E; refers to the expectations conditional on Xt and 7j;.

The first-order condition with respect to ; is
X[N; + 1Ry + 0 X[E A} 1 Vi1 Ber + 01 E By 1 Vi1 Bea = 0,

which can be written

Jiiy + K1 Xt = 0,

where
Jo = Ri+ 0B 1 Vit1 B, (B.1)
Ki = N, +0EB,  Vit1Ar1. (B.2)
This leads to the optimal policy function
W= F Xy, (B.3)
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where

F=-J 'K, (B.4)
Furthermore, the value function satisfies
XV Xy = X{Qu Xy + 2X{N,F, Xy + X{F{R F, Xy + 6X[E (A}, + F/Bj 1 )Vira (A1 + Bra )] Xy
This implies
Vi = Qi + N, Fy + F/N/ + F/R,F; + 6Ey[(A} 1 + F{Bi 1)Vip1(Arr1 + B F)),
which can be simplified to the Riccati equation

Vi = Q1+ 0B A\ Vip1 Ay — KT K. (B.5)

Equations (B.1), (B.2), and (B.5) show how Vi, 1 =V,

iess fOr jep1 = 1,...,n is mapped into V, = ‘7]
for j: =1,...,n.

Iteration backwards of (B.4) and (B.5) from any constant positive semidefinite matrix V should
converge to stationary matrices functions Fj and ‘7] (j = 1,...,n), where ‘7] satisfies the Riccati
equation (B.5) with (B.1) and (B.2).

Taking account of the finite number of modes, we have

Fj = —ijlKj
n ~ ~ ~
Jj = R]+5ZP]kBllngBk
k=1
K; = N;+5ZijB§ngz‘~lk7
k=1
~ n ~ ~ ~
vV, = Qj+5ZijA§€VkAk—KJ’~J]71Kj (j=1,...,n), (B.6)
k=1

where Pjj, is the transition probability from j; = j to ji11 = k.

The scalars w; solve the equations
wj = 5Zij[tr(Vkékéllg) + ﬁ)k].
k

Thus determining the optimal policy function (B.3) reduces to solving a system of coupled
algebraic Riccati equations (B.6). In order to solve this system numerically, we adapt the algorithm
of do Val, Geromel, and Costa [14]. In a very similar problem, they show how the coupled Riccati

equations can be uncoupled for numerical solution.?’

20 Tn their problem, the matrices A and B next period are known in the current period, so the averaging in the
Riccati equation is only over the V; matrices.
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The algorithm consists of the following steps:
1. Define /lj = ,/ijflj, Bj = \/ijng and initialize f/jo =0,7=1,...,n.

2. Then at each iteration [ =0, 1,..., for each j define:

Qi = Qi+6) PAiVi4,
kZj

Rj = Rj+38) PuBViB
kA

Nj = N;+ 5Zﬂkz‘1;€‘7]§l§k
kA

Then for each j solve the standard Riccati equation for the problem with matrices (flj, Bj, Qj,

Rj, N]) Note that these are uncoupled since f/kl is known. Call the solution f/jHl.
3. Check >0, Hf/jl'H - WH If this is lower then a tolerance, stop. Otherwise, return to step 2.

do Val, Geromel, and Costa [14] show that the sequence of matrices f/jl converges to the solution
of (B.6) as | — oo. In order to understand the algorithm, recall that, in the standard linear-
quadratic regulator (LQR) problem (Anderson, Hansen, McGrattan, and Sargent [1] and Ljungqvist

and Sargent [25]), we have

—J'K

R+ 6B'VB

N’ + 6BV A,

< =N o
[

= Q+6AVA-KJ'K.

If we can redefine the matrices so the equations conform to the standard case, we can use the

standard algorithm for the LQR problem to find F; and V;. The above definitions allow us to write

by = _Jj_lKj’

J;j = Rj+5B§~‘~/jB]~,

Kj = Nj+0BjV;A;,

U= Qe oATA K =)

so we can indeed use the standard algorithm.
Note that the above algorithm is easily modified to solve the Lyapunov equation (2.17) for the

matrix V; for the true value function of the original problem.
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C A unit discount factor

The expected discounted losses (2.3) and (2.6) are normally bounded only for § < 1. More precisely,
wj (j =1,...,n) in (2.15) is normally bounded only for 6 < 1. The case § = 1 can be handled by
scaling the intertemporal loss function by 1 —4 for § < 1 and then consider the limit when § — 1, as
mentioned in footnote 5. That is, we can replace the intertemporal loss function in (2.3) and (2.6)
by E(1—9) fo 0" Liyr and Ei (1 —0) io 8" Ly+r, respectively. In particular, we can write (2.15) as
T= =

00
(1= &) X{Vj, X¢ + 6w; = minEy(1 — 6) > 6" Lir. (C.1)

=0

Then, V; (j =1, ...,n) still satisfies (2.17), whereas w; now satisfies
Z el (1 — )t [Vi(0)CrCr] + 0w (8)}  (=1,...,n), (C.2)

where our notation emphasizes that w; and V; depend on 4.

From (C.1), we see that

61_1)1({1_ min E,(1 — 6) ;)5 Litr =wj(1) (j=1,..,n).

Furthermore, from (C.2), we see that
1) => Pprwp(l)  (G=1,..,n),
k

so the vector [wi(1), ..., w,(1)]’ is an eigenvector for the eigenvalue 1 of the transition matrix P. By
our assumptions on the Markov chain in footnote 6, the Markov chain is fully regular, so the only
such eigenvector is (1,...,1) (and scalar multiples thereof) (Gantmacher [16]). Therefore, w;(1) is

independent of j:

for some scalar w.

For ¢ < 1, we multiply (C.2) by p; and sum over j. This gives
> pwi(8) = > > 9 P (1=0) e [Vi (8) CrCrl 46wy} = (1-0) Y pitr[Vi(§)ChCrl+6 Y prwi (6)
J ik k k
Letting w(0) = >_; pjw;(d), we see that

= Zﬁktr[Vk (6)CrCy.
k
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We conclude that in the limit, when § — 1, the expected minimum loss is given by
wi(1) = (1) = 3 gtV ()CRChl (G =1,.m)
k
and is independent of X; and j;. Intuitively, for § — 1, current losses become insignificant relative
to expected losses far into the future, and then the stationary distribution p applies. Therefore,
the expected discounted loss becomes independent of both the current predetermined variables and
the current mode, even though the optimal policy function depends on the current mode (when the
modes are observable) or the distribution of the current modes (when the modes are unobservable,

as in section 7 and appendix I).

D Mean square stability

Costa, Fragoso, and Marques [11, chapter 3] (CFM) provide a discussion of stability for MJLQ
systems. An appropriate concept of stability for our purpose is mean square stability, which is
defined as follows:

Consider the system

X1 =T, Xy,

for t =0,1,..., where X; € R"X, 6, € © = {1,..., N} is a Markov process with transition probabil-
ities Pjp = Pr{6i41 = k|6, = j} (j,k € ©), transition matrix P = [Pj;], and I'p is an nx X nx
matrix that depends on 6 € O, and Xy € R™¥ and 6y € © are given. The system is mean square
stable (MSS) if, for any initial Xo € R"X and 6y € O, there exist a vector p € R"X and an nx X nx
matrix ) independent of zp and 6y such that ||E[X:] — u|| — 0 and ||E[X:X]] — Q|| — 0 when
t — o0.

CFM [11, theorem 3.9] provide six equivalent necessary and sufficient conditions for mean square
stability. The following necessary and sufficient condition is appropriate for our purpose:

Define the matrices C and N by

CEPI(X)Inz,
X
I'noly 0 0
. T r :
N = diag(Ty @ Ty) = O 2@ 12
: . 0
0 0 Ty

The system above is MSS if and only if the spectral radius (the supremum of the modulus of the

eigenvalues) of the matrix CN is less than unity.
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Applying CFM’s definition of and conditions for mean square stability requires a simple redef-

inition of the modes in our framework. Start from the system

Xir1 = M, Xt

tJt+1

where t = 0,1,..., Xy € R™, j; € {1,...,n}, P = [Pj], Pjr = Pr{jiq1 = k|j: = j}, and X and

Jo are given. This system differs from CFM’s system in that the matrix M; depends on the

tJt+1
realization of the modes in both period ¢ and period ¢ + 1.

Define the new composite mode 6; = (j¢, ji+1), which can take N = n? values, and consider a
Markov chain for §; with transition probabilities Py, = Pr{0;41 =k = (k,1) |0, =0 = (j,k)}. We
note that the transition probability from 6; = (j, k) to 0;41 = (k,l) does not depend on j but only

on k and [. Furthermore, it is simply P, so
Pk, (k) = Pt (4,k,l=1,...,m).
Thus, we can consider the new system
X1 = My, X,

where 6; is a Markov chain that can take n? different values and has a transition matrix P with the
transition probabilities Py,g,, defined above. Then the results of CEFM on MSS apply directly, and
we only need to define I'y, P, C, and N using the n?>-mode composite Markov chain for ; = (jy, ji11)

instead of just the n-mode chain for j;.

E Alternative models with different predetermined and forward-

looking variables

Our MJLQ framework allows us to consider situations when the modes j = 1,...,n correspond to
alternative structural models, including not only when some coefficients are zero or nonzero but
also when a variable is predetermined in one model and forward-looking in another. This allows
us include optimal policy when it is known what structural model is true in the current period but

there is uncertainty about the true structural model in the future.?!

21 Tf the current model is not observed, we would have to include Bayesian learning of the subjective probabil-
ity distribution over models and encounter problems of experimentation versus “adaptive” loss minimization [give
reference(s)].
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In order to see this, consider a particular simple example, when there are two modes, 7 =1, 2,
with transition matrix P = [Pj;], j,k = 1,2. Let j = 1 corresponds to a model with an acceleration

Phillips curve (the AP model),

M1 = Tt + QY + €1¢+41,

and let j = 2 corresponds to a New Keynesian Phillips curve (the NK model),
Eimir1 = me — Kyr — €24,

where €1; and €9, are i.i.d. with zero means. Thus, inflation, 741 is predetermined in AP model and
forward-looking in the NK model. Regard the output gap, v, as the control variable, for simplicity.

Let 7 denote actual inflation in period ¢, and introduce the two variables m1; and w9, where 71,
is predetermined and denotes inflation in the AP model (AP inflation) and 7y, is forward-looking

and denotes inflation in the NK model (NK inflation). Actual actual inflation then satisfies
T = Opmae + (1 — 0¢)mar,
where 6; = 1 in mode 1 and 6; = 0 in mode 2. We thus have

Mg+l = T+ QY+ €141,

Eimip1r = mo — Kyt — €2, (E.1)

where we assume that, in the AP model, current actual inflation affects future AP inflation and,
in the NK model, the expected future actual inflation affects current NK inflation.

We want to write this model as (2.1) and (2.2) by suitable definitions of Xy, x, i, and &;, and
the matrices. The trick is to treat actual inflation, 7, as a non-predetermined variable even though
this is not the case when the AP model is true. This works, because an additional predetermined
variable identical to an existing predetermined variable can always be introduced as a trivial non-
predetermined variable by adding an equation in the block of equations for the forward-looking
variables. Suppose that the new variable, 1, is identical to an existing predetermined variable,

X1¢, say. Then we can just add the equation
0=Xu—w,

to that block, where the left side has zero instead of a linear combination of expected future forward-

looking variables. Generally, a new variable that is a linear combination of current predetermined
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and forward-looking variables can always be introduced as a new forward-looking variable in this
way.

Observe that

B = Bl + (1= 0p1)m2,041]

= Eibi1(me + oyp) + Ee(1 — Op1)m2 641

and use this to substitute for E;myyq in (E.1). Let X; = (m1g,e2), 2 = (721, ), and iy = y;.

Then we can write the model in the form (2.1) and (2.2) as

(10 0 0 a | . €1,6+1
Xt+1—|:0 O}X’H—[O 0:|wt+|:0:|lt+|:€2,t+1:|

1-— 9t+1 0 . 0 -1 0 1-— Etet—i—l — K — OéEth_A,_l .
By [ 0 0 Tyl = 0, 0 Xi+ 1-0, 1 Ty + 0 ¢

F Details of the estimation

Here we lay out the details of the priors we use in our Bayesian estimation.

For the RS model in section 4.1, we base our prior for the MJLQ case on our OLS estimates.
The priors are identical across modes. In particular, the priors for the vectors of coefficients [ay]
and [;] are each multivariate normal distributions, with mean given by the OLS point estimates
and a covariance matrix given by the covariance matrix of the estimates scaled up by a factor of
4. For the parameters of the transition matrix P of the Markov chain, we take independent beta
distributions (subject to the constraint that the rows sum to one). We let the diagonal elements
have mean 0.9 and standard deviation 0.08, while the off-diagonals have means 0.05 and standard
deviations 0.05. For the variances of the shocks, we assume an inverse gamma prior distribution
with two degrees of freedom.

For the Lindé model in section 4.2, we take independent priors for the different structural
coefficients, again with the priors being identical across modes. For the coefficients wy and Sy,
we assume a beta distribution with mean 0.5 and standard deviation 0.25. The other structural
coefficients have normal distributions, with v ~ N(0.1,0.05), 8, ~ N(0.15,0.075), 3, ~ N(1.5,0.5),
p1 ~ N(0.9,0.2), py ~ N(0.2,0.2), v, ~ N(1.5,0.5), and vy, ~ N(0.5,0.5). Again for the variances
of the shocks, we assume an inverse gamma prior distribution with two degrees of freedom. The

prior over the Markov chain transition matrix is the same as in the RS model.
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G Details for arbitrary time-varying instrument rules

For t =0,...,T — 1, introduce the new (n; + n;) X 1 vector of instruments,
R [ it }
= )
Pt

X1 = Ajt+1Xt + Bjt+1zt + Cjt+15t+la

and write the model

where the new n¢ X (n; + n;) matrix Bj, , satisfies

Jt+1

B,y = [ Bjrer Ongxn; |-
Partition the (ng +n7) x (ng + n7) matrix W;, conformably with X; and 7 as

~ Qi N,
el 2]

Jt

Furthermore, write the augmented period loss as
R . -
L:[Xﬁ Qe Nij, [&}
i | | N Ry || w0
where the new n g x (n; +n,) and (n; +ng) X (n7 + n;) matrices th and Rjt satisfy, respectively,

gt

S . / A R, —F! /2
tht - |: N] _Ftht/Q ] 5 Rtjt — |: _Fvi:]t/Q 0n~><n~ .

Then, the first-order condition for an optimum of the Bellman equation will, in the standard
way, result in a time- and mode-dependent optimal policy function
iv=FyXe  (0<t<T—1,0<j <n),
which is defined in a compact way as
Fyy, = = Ji; Kij,,
where Ji;, and Kyj, are defined recursively from ‘Zt-kl,jt as
Jij. = Ry +0EiB), Vit1jon Bivy = Bij +6 > Pk BiVis1.xBr,
k

Jt+1

Ktjt = Nt/jt + (5EtB/- ‘775+17jt+1“4jt+1 = Nl{jz + (5 Z Pjtkéfg‘zﬂ,kﬁk.
k
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Substitution of this optimal policy function in the Bellman equation results in the recursive equation

for Vi,

‘N/tjt = th + 6EtA;'t+1‘~/t+1,jt+1Ajt+1 — KlgjtJt;thtjt = th + 52%,51@;12;‘25—&-1,1@;% — Klgjt‘]t;thtjt‘
k

Finally, the optimal policy function tht fort =0,...,T—1 can be identified by partitioning tht

conformably with 7; and ¢,

H Details for arbitrary time-invariant instrument rules
Consider the case when the time-invariant instrument rule can be written
it :FthXt“‘ijt-'Et (]t = 1,...,%), (Hl)

and the instrument rate hence does not respond to =;_1. In that case, we can use a simpler
algorithm than letting ¢ — — oo in the algorithm described in appendix G. If there is a unique
solution associated with a specified instrument rule, it will determine the forward-looking variables

as a linear function of the predetermined variables,
Tt = Gtht.

Given a quadratic intertemporal loss function, this will also determine a value of the loss function
of the form

XtIVtht + wy, .

In order to specify an algorithm for finding G, Vj, and wj;, suppose the instrument rule can be

written as (H.1). Consider period ¢t + 1, and assume that Gg:ﬁ) in
t+1 .
Li+1 = G§t+1 )Xt+1 (]tJrl =1,.., n)v

is known in period ¢. This will imply

. - A (t+1)
EtHJt+1{IJt+1 = EtHJt+1Gjt+1 Xt_|_1

= Z ijHkG;(fH)[(Ank + BipFx ;) Xt + (Arog + BirFyj)x)
%

= (Aglj + B2jFXj)Xt + (A22j + B2jFa:j)xt~
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We can then solve for z; in period t,

Tt — Gg-t)Xt,

where
-1
G ©) =

J

Aooj + BojFyj — Z ijHkG,(:H)(Auk + BipFyj)
k

ZP Hy, G Allk + BipFx;) — (A215 + Ba2jFx;)

It follows that, starting with a guess G?, the iteration for [ = 0,1, ..., according to

“1
Gé-“ = |Agj+ ByjFy; — Z P HyGY.(Arar, + B1xFyj)

k

Z i HyGY (Av1r, + BixFxj) — (A21j + BajFx;)

I

will hopefully make Gé converge to the correct Gj,
Tt = Gth. (H2)
This then implies
Xir1 = Mp Xy + Créetga,

where

Mji, = Ak + AionGj + By (Fxj + FijGj).

Clearly, G = {G;} and M = {M;;;} will be functions of F' = {(Fx;, Fyj)}.

Let the period loss function be

e | L] /[féﬁ] M (13)
1 (27

Given (H.1), (H.2), and (H.3), we can define the matrix

I ' I
Wi = {GJ []@Z] [Gj] :
Fxj+ Fi;Gj Fxj+ FujGj
in which case the period loss satisfies

Li = X;W;X;.
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It follows that the value function corresponding to the intertemporal loss function

o
Eq Z 0" Liyr
T7=0

will satisfy
XéVJXt +w; = XéWth +4 Z ij[XéMj{kaMijt + tr(VkaC,'c) + wk].
k

Hence, the matrix V; will satisfy the Lyapunov equation
Vi =W;+6> PpMjViMy, — (j=1,..,n),
k

and w; will satisfy
w;j zézﬂk[tr(VkaC,'c)erk] (j=1,...,n).
k

Note that we can, for each j, define

3
Il

Wj+6Y  PiMjy Vi My
k#j
Mjj = /OPjiMj;,
and then solve the more standard Lyapunov equation

Vj = Wj +M]{j‘/}ij (] = 1,...,77,).

Clearly, V = {V;} will be a function of F' and §, and w = {w;} will be a function of F, § and X.
Let p; (j = 1,...,n) denote the stationary distribution of the states, and let V= Zj pjV; and

W=y ;pjwj denote the unconditional means of Vj and w;. We note that
w = L Zﬁktr(VkaC,)
1-04 e
Suppose that the intertemporal loss function is 1 — § times the one above,

B> (1-06)0"Liyr,

7=0

and suppose that we consider the limit when § — 1,

lim E, ;}(1 — )07 Lyyr = E[Ly).
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In that case, the intertemporal loss function is just the unconditional mean of the period loss
function, E[L;]. Furthermore, the unconditional mean of 1 — § times the value function above will
be

(1= S{ELX]V}, X,] + @} = (1 = OE[XViX)] + 3 prtr(ViCiCh).
k

We see that, when 6 — 1, the first term on the right side goes to zero, and we conclude that, in
the limit,

B[Li] =) prtr[Vi(F, 1)CrCy,
k

where we also explicitly note that V}, depends on F and §.

Suppose the instrument rule is restricted to a given class F of instrument rules
FekF.

The optimal instrument rule in this class, F, can now be defined as
F= i prtr[Vi (F, 1)CrLCy ).
argbrpelg;pk r[Vi,(F, 1)C,Cy]

It will obviously depend on CyCj, the covariance matrix of the shock Cieiq1. Hence, certainty

equivalence does generally not hold for optimal restricted instrument rules.

I Details with unobservable modes

1.1 Unobservable modes and forward-looking variables

Consider the dual saddlepoint problem with X; given, unobservable modes, and the distribution p;
of modes in period . For notational convenience, it is practical to change the order of variables in
the dual instrument vector, put the instrument first, and denote it by #;,
it
it]’ = Tty
Vtj

We note that i; will only depend on p; and be independent of j, whereas z;; and 7,; will depend
on both p; and j. Instead of the dual matrix Wj, we then define the dual matrix VVJ accordingly

and partition it conformably with X; and it as




The value function for the dual problem will be quadratic in X; and can be written

X{V (p1) X1 + 0(pr),
where V(p;) is a symmetric positive semidefinite matrix and @(p;) is a scalar. It will satisfy the
Bellman equation

X[V (pe) Xy + d(py) = mln Zptﬂ max min

Yej Tty
j J

{ XIQ; X, + 2XtN inj + 1) Ry }
+63 05 Pik[ Xy, YV (0eP) X1k +0(pP)] [
where

Xt+1,k = A X; + Bkitj + Creri
and the matrix Bk is used instead of By and has columns ordered according to ;.

The first-order conditions with respect to i; and t; = (zy;,7;;)" are, respectively,

> o | X{NGj +it R + 0> Pie(X{ A} + i BV (piP)Bag | =0,
k

J

X;N-@wkﬁéz ik (X{AL + i BV (pP) Bk =0 (j=1,..,m),

where Nj, f%j and Bk are partitioned conformably with i; and Z;; as

2

) ) . B P A .
Ny=[ Ny Nal,  Ri=[ Ry R.j]z[R;Z R;Z]’ Bi=[Ba Bal.

We can rewrite the first-order conditions as

Zj Dtj N./int + Riijiy + RizjTj + 0 Z ijB.likV(ptP)(AkXt + Bayis + B.zk@tj)] =0,
%

N.’;;;th + Ea’cijit + ffﬂj@j + 52 ijB./;sz(ptP)(AkXt + Byt + B:Ekftj) =0 (j=1,...,n).
k

It is then apparent that the first-order conditions can be written compactly as

1t
Tl -
J(pt) : + K(pt) Xy = 0, (L1)
jtn
where
Jm(pt) Jil(pt) Jzn(pt)
Jii(pe)  Ju(pe) 0 0
J(pt = . ’
: 0 0
Jni (pt) 0 0 Jnn(pt)



Ju(pt) = Zptj 1] + 52 P]szkV(ptP)sz
Jij(pe) = pij |Rizj+ 6 PiuBlyV(peP)Ba (j=1,..,n),
k
k
Jij(pe) = Razj+6Y PuByV(pP)Bax  (j=1,..,n),
k
Z pt] |:sz + 6Zk JkB/kV(ptP)Ak]
K(pt) = ~1 + 5Zk‘ PlkB ka(ptP)Ak
Nl +635 Pnkéffkf/(ptp);lk
This leads to the optimal policy function
[ Fi(pt) ]
it Fy(pe)1
T4 § - F,(p)1 | -
. Fp) X U X
i‘tn Fx(pt)n
| Ey(pt)n |
where
F(p) =—J(p)” K(pt)
Hence, we can write
U Fi(pt) - . .
= |z | = | Falp); | Xe=Fp)iXe  (G=1,....,n)
Vij F’Y(pt)j

Furthermore, the value function for the dual saddlepoint problem satisfies

pt Xt Zpt XéQth +2X£{Vjp(pt) Xy t+ :ép(pt);ﬁjﬁ(?t)ixt ~
T+ P Xi AL + F(p); BV (peP)[Ax, + BeF (pe) ]
This implies the following Riccati equation for V (p;):

:Zp' Qy‘*‘NF(pt) —I—F( )N/j‘p(pt)gﬁjﬁ(pt)j
P\ IS Pl Ay + F o) BV (0 P) A + ‘

In terms of our standard dual instrument vector, 7;;, the policy function is

Tij Fo(pe); | X
th = it = Fi(pt) Xt = F(pt)th. (12)
Vt5 Fv(pt)j
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The value function for the original problem with X, given is
X,V (pe) X + w(py),

where the matrix function V(p;) and the scalar function w(p;) are determined in the following way:

Note that we have

X, 1o 1
iv | = Filp) | Xy,
y Fi(pe);

Xit1 = M (o)1 Xt + Crerra,
M(p)jk = Ag + BeF(py);.

It follows that we can write the period loss as

Li = X[W (pe); Xz,

where ,
) I0 R I0
Wip);=| Filpr) | W | Filpe) |- (I.3)
Fy (Pt)j Fy (pt)j

The matrix function V(p;) will then satisfy the Lyapunov function
Vi) =D o |[Wpe)j+38 Y PiaM(p)isV (0eP)M (o) | (1.4)
J k

and the function w(p;) will satisfy the equation??

w(pe) =6Y > pePikltr(V(peP)CrCy) + w(pe P)). (L5)
ik

1.2 An algorithm for the model with forward-looking variables

Consider an algorithm for determining F'(p;); and V(p;) in (I.2) and (1.4), respectively, for a given
distribution of the modes in period ¢, p;. In order to get a starting point for the iteration, we
assume that the modes become observable T'+ 1 periods ahead, that is, in period t+ 71 + 1. Hence,
from that period on, the relevant solution is given by the matrices F; and f/j, where Fj is the
optimal policy function and f/j is the value-function matrix for the dual saddlepoint problem with
observable modes determined by the algorithm in appendix B. We consider these matrices and the

horizon T" as known, and we will consider an iteration for 7 = 7,7 —1,...,0 that determines F'(p;);

22 Note that C'ké,; is the covariance matrix of the shocks C‘ksH_l to XH—I when jiy1 =k (k=1,...,n).
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and thereby V' (p;) as a function of 7". The horizon T" will then be increased until F'(p;); and V(ps)
converges.?

Let prirs for 7 =0,...,T and given p; be determined by (7.1), and let V7! denote the mode-
dependent matrices V, (k = 1,...,n) (or any arbitrary symmetric positive semidefinite matrix).

Then, for 7 =T,T —1,...,0, let the mode-dependent matrix F] and the mode-independent matrix

V7 be determined recursively by

Ji = ZPHW‘ Riz‘j‘i‘(sZijB.,ikVTJrlB.ik ,
J k
Ji; = Drirj Riij + (5ZP]-1§B,IMVTHB.M (j=1,...,m),
k

J]Ti = Rg“m'j + (5ZijB(jk‘7T+IB.ik (j =1, ...,n),

k
}%5353] + 6ZijB/jva+léfk (.7 = 17 ceey n)a
k

Jj; =
i Jho Ik
. JooJn 000
0 0|
w00 0 Joy
> pear | Vi 032, ijéfikf/”lflk]
KT = Nz + 63y, PuBly VT Ay
N./:;m +9 Zk PnkB{jva+1Ak
- pr ]
1
= ?’1 _ (J’T)—].KT,
Fr,
L Fwn J
‘FiT
B =| F (G=1,..,n),
ij
- Q; + NjFT + ET'N' + FT'R; T
VT = L I A I | 1 o )
2y { 5 Paly 1 BBV 4 By

23 Tt is obviously not necessary to assume that the modes become observable in some future period. We could
instead let the iteration start far in the future with an arbitrary symmetric positive definite matrix instead of V;.

52



For 7 =0,...,T, let

!/

10 I0
Wi=| F[ | W;| F[ |,
Fy; Fy;

]Tk = zzlk + Bkﬁ’;—
Let VT denote the mode-dependent value-function matrix V; for the original problem with

forward-looking variables and observable modes. For 7 = T,T—1, ..., 0 define the mode-independent

matrix V7 recursively as
VT = priry |W] +0> PuMZVTH M7, |
J k

This procedure will give F ]Q and VY as functions of 7. We let T increase until FJQ and V? have

converged. Then, the optimal policy function F(p;); and the matrix V(p;) are given by

F:c (pt)j F:g

Fpoj=| Fp) | =1 F |,
Fy(pt); Ff?j
V(pt) = V0.

1.3 Unobservable modes without forward-looking variables

When the model is backward-looking, the Bellman equation is,

XiQ(pe) Xy + 2X[N (pe)ie + 1, R(pe )i }

X[V (p) X, + w(py) = mi
VPt XA wipy) Hgn{ 0325 2k PP [Xi 1 1V (peP) X1 e + w(peP))

where
_ Q(pt) N(pt) _ _ Q; N
W= | 2 S = e =S | YR | (L6)
J J
Xt+1,k = A X; + Brig + Ckgt—&-l'

The first-order condition with respect to 4 is

X{N(pr) + i1 R(pe) +6 Y Y pij P X[ ALV (peP) By + i, BLV (pi P) By = 0
7 k

and can be written

J(pe)ic + K (p) Xe = 0, (1.7)

where

J(pe) = R(pe) + 6 > pij P BV (piP) By,
ik
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K(pt) = N(pt)' + 52 Zptjpjk:Bl,gV(ptP)Ak]-
ik

This leads to the optimal policy function
it = F(p) X,

where
F(pt) = — J(ps) " K (pr)-

This implies the following Riccati equation for V(p;):

Vip) = Q(pt) + N(pe)F(pt) + F(pe) N(pt) + F(pe) R(pe) F (i)

+03 ) i Pirl Ay + F(pr) BIV (p:P)[Ax + BiF (pr)]
7k

= Qpr)+96 Z ZptjpjkA;gV(ptP)Ak - K(ptyJ(Pt)flK(Pt)'

J k

The scalar w(p;) solves the equation:

w(p) =0 Z Zptjpjk[tr<v(ptp)ckcllg) + w(pP)).
ik

1.4 An algorithm for the backward-looking model

For the backward-looking model, the algorithm can be written

JT Zpt+T7j Rj + (52 ijB]ICVkBk ,
J

k

KT

Zpt+T,j N]l + 52 PJkB];VkAk ,
J

k
vh = ZPHT,J'
J

Given this, consider the iteration for 7 =T —1,...,0,

Y Prer |Ri+0Y PuBLV By
j I ;

JT

)

> b |Nj+6) ijB;v‘“Ak] :
J

L k
Vl = Z Dt4-r,5
J

Kl

Qj+90 ZijAz‘/’“Ak] — (KY(JH K
k

o4

Q] + 5ZPjI€A;ngAk - (KTfl)/(JTfl>flKTfl.
k

(L11)

(L.12)

(1.13)



Then, T should be increased until V° converges. Then?*

V(pt) = V07

F(p) = —(J°)7'K"

J Optimization under discretion

Here we also specify the equilibrium under discretionary optimization, that is, when the central
bank cannot commit but reoptimizes each period. Oudiz and Sachs [29] derive an algorithm for
the solution of this problem when there is no model uncertainty (and with H = I). This algorithm
is further discussed in Backus and Driffill [3], Currie and Levin [12], Séderlind [32], and Svensson
[37]. The algorithm is here adapted to the MJLQ framework. Blake and Zampolli [4] also provide
an algorithm for the discretion equilibrium in the MJLQ framework.

Consider the central bank’s decision problem to choose #; in period ¢ to minimize the intertem-
poral loss function (2.3) under discretion, that is, subject to (2.1), (2.2), and X; and j; given.?’
Furthermore, the central bank anticipates that it will reoptimize in period ¢ + 1. That reoptimiza-

tion will result in the instruments and the forward-looking variables in period t + 1 being functions

of the predetermined variables and the mode in period ¢ 4+ 1 according to

41 = Ft+17jt+1Xt+1 (jt+1 :17---771), (J~1)

Tr1 = G5 Xe1 (jt+1=1,..,n). (J.2)

The reoptimization will also result in value of the problem in period t + 1,

/ .
Xi1Virtjm X H wegenr G =1,.,n).

For any t, we here let F} = {th};-‘zl, G = {th}?:p and V; = {V}, %_1 denote the set of matrices
Fi(j=1,..,n),Gy (j=1,..,n), and V}; (j =1,...,n), respectively. We assume that the set of
matrices Fiy1, Gi41, and Vi1 in period t+4 1 are known by the central bank in period t. We will see
that optimization in period ¢ will then determine the set of matrices F;, G, and V; in period t as a

function of the set of matrices Gyy1 and Viy1. This specifies a mapping of (Gy41, Vit1) to (G, Vi).

21 A related paper is do Val and Bagar [13], who consider the problem of “receding horizon control.” They introduce
a terminal payoff, and at each date ¢ they solve a finite-horizon optimization problem looking ahead T' periods given
the current probability distribution. The action taken at the current date is then the first optimal choice in the
solution of the finite horizon problem. Then the distribution is updated and the problem repeats.

25 That is, we assume that the modes are observable. The algorithm is easily modified to the case when the modes
are unobservable.

95



We are looking for a fixed point of this mapping. We denote the fixed point by G = {G; }?:1 and

V= {‘/]};L:l
First, by (J.2) and (2.1) we have,

EiHi12i41 = EiHi1Groi X

= EiHi11Gr (A1 Xt + Ara 112 + Biggaie)

where E;H; 1 1Gy11X;41 denotes > 7 P, HyGy11 1 X¢41.4 conditional on a given j; = 1,
k=1 Jt + ) + )

Xi41 refers to the realization of X;y; when ji11 = k). Combining this with (2.2) gives
EtHi11Grp1 (A1 X + Aro 112 + Birgyaie) = A1 Xt + Ao px + Ba yis.

Solving for x; gives

Ty = Attht + Btjtit (]t = 1, ...,TL),

where

Ay = (Asgj — EtHi1GriaAioiin) N (EeHi1Grir At — A214),

By = (Asgj — EtHi1Gria o) (EeHi1Gri1 B — Bay)

(we assume that Agoy — E4Hy11Gri1A12,041 is invertible). Using (J.3) in (2.1) then gives
Xip1 = A1 Xy + Bigai + Crgagry,

where

Appr = Anprr + Ao Ay,

Bis1 = Big + Az B
Third, using (J.3) in (2.4) gives
o[ X[ N[X
K it N/ Ry i |’
where

Qi = Wxxi+ WxaetAr + AW, + AiWan i Ay,
Ny = WxaptBi + AiWap 1B+ Wit + AiWais,

Ry = Wiy + BiWii By + BiWei s + W, By,
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and W, is partitioned conformably with X;, x;, and i,

Wxxt Wxazr Wxig
Wt = WxX,t me,t Wxi,t
Wixt Wizt Wiz

Fourth, the value of the problem in period t is associated with the symmetric positive semidef-

inite matrix V; and the scalar wy, and it satisfies the Bellman equation
XiVijXi +wiy = rrl;in {Ltj + 0E[X{ | Vi1 Xpw1 4+ weg | e = 4]} (j=1,..,n), (J.13)
t

subject to (J.6) and (J.9). Indeed, the problem has been transformed to a MJLQ problem without
forward-looking variables, albeit with time-varying coefficients. The first-order condition is, by

(J.9) and (J.13),

0 = X{Nyj+1i;Re; + 0E[X] 1 Viea Braa | je = ]

= X{Ny +iiRyj + 6E[(X, Al + Bl )WV B e =3] (G =1,...,n).

The first-order condition can be solved for the policy function,

’th :thtXt (]t = 1,...,7’L), (J14)
where
Fyj=—J; Ky, (J.15)
Jij = Rij+6E[B 1 Vir1 B | je = jl,

Kij = Njj+0E[Bi Vis1 A ] = ]
(we assume that J;; is invertible). Using (J.14) in (J.3) gives
Tt = thtXt (]t = 1, ...,n),

where

th = Atj + Bthtj. (J16)

Furthermore, using (J.14) in (J.13) and identifying terms result in

Vij = Quj+ NijFyj + FpNi + FljRij Fyj + 0E[(Ap1 + Biya ) Viga (Arpa + Beyt Fy) | e = ]

= Qi+ 0B[AL Vi1 A |Ge = 41 — K[ Ky (G=1,..,n). (J.17)
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Thus, the above equations (J.4), (J.5), (J.7), (J.8), (J.10)—(J.12), (J.15), (J.16), and (J.17))
define a mapping from the set of matrices (Giy1,Viy1) to the set of matrices (Gy,Vy). This
mapping also determines the set of matrices F;. The discretion equilibrium is a fixed point
(G, V) = {Gj,V;}7_; of the mapping and a corresponding F' = {F};}7_;. The fixed point can
be obtained as the limit of (G¢, Vi) when t — — oc.

The details of this algorithm can be completed in the same way as for our other algorithms.

The algorithm is easily generalized to the case when the modes are not observable.

58



References

1]

[11]

Anderson, Evan W., Lars Peter Hansen, Ellen R. McGrattan, and Thomas J. Sargent (1995),
“Mechanics of Forming and Estimating Dynamic Linear Economies,” working paper, home-

pages.nyu.edu/ " ts43/.
Aoki, Masanao (1967), Optimization of Stochastic Systems, Academic Press, New York.

Backus, David, and John Driffill (1986), “The Consistency of Optimal Policy in Stochastic
Rational Expectations Models,” CEPR Discussion Paper No. 124.

Blake, Andrew P., and Fabrizio Zampolli (2005), “Time Consistent Policy in Markov Switching

Models,” working paper, Bank of England.

Blinder, Alan S., and Ricardo Reis (2005), “Understanding the Greenspan Standard,” in The
Greenspan Era: Lessons for the Future, a symposium sponsored by the Federal Reserve Bank

of Kansas City, forthcoming, www.federalreserve.gov.

Brainard, W. (1967), “Uncertainty and the Effectiveness of Policy,” American Economic Re-
view 57, 411-425.

Brash, Donald T. (2000), “Making Monetary Policy: A Look Behind the Curtains,” speech in

Christchurch, January 26, 2000, Reserve Bank of New Zealand, www.rbnz.govt.nz.

Chow, Gregory C. (1973) “Effect of Uncertainty on Optimal Control Policies,” International
Economic Review 14, 632-45.

Cogley, Timothy, Riccardo Colacito and Thomas J. Sargent (2005) “The Benefits from U.S.
Monetary Policy Experimentation in the Days of Samuelson and Solow and Lucas,” working

paper, NYU.

Costa, Oswaldo L.V., and Marcelo D. Fragoso (1995), “Discrete-Time LQ-Optimal Control
Problems for Infinite Markov Jump Parameter Systems,” IEEE Transactions on Automatic

Control 40, 2076—2088.

Costa, Oswaldo L.V., Marecelo D. Fragoso, and Ricardo P. Marques (2005), Discrete-Time

Markov Jump Linear Systems, Springer, London.

59



[12]

[13]

[14]

[16]

[17]

[21]

[22]

[23]

Currie, David, and Paul Levine (1993), Rules, Reputation and Macroeconomic Policy Coordi-

nation, Cambridge University Press, Cambridge.

do Val, Joao B.R., and Tamer Bagar (1999), “Receding Horizon Control of Jump Linear
Systems and a Macroeconomic Policy Problem,” Journal of Economic Dynamics and Control

23, 1099-1131.

do Val, Joao B.R, José C. Geromel, and Oswaldo L.V. Costa (1998), “Uncoupled Riccati
Iterations for the Linear Quadratic Control Problem of Discrete-Time Markov Jump Linear

Systems,” IEEE Transactions on Automatic Control 43, 1727-1733.

Feldstein, Martin (2004), “Innovations and Issues in Monetary Policy: Panel Discussion,”

American Economic Review 94 (May) 41-43.

Gantmacher, Felix R. (1959), The Theory of Matrices, Volume II, Chelsea Publishing Company,
New York.

Greenspan, Alan (2004), “Risk and Uncertainty in Monetary Policy,” American Economic

Review 94 (May) 33-40.

Greenspan, Alan (2005), “Reflections on Central Banking,” in The Greenspan Era: Lessons for
the Future, a symposium sponsored by the Federal Reserve Bank of Kansas City, forthcoming,

www.federalreserve.gov.
Hamilton, James D. (1994), Time Series Analysis, Princeton University Press.

Kahn, James A. and Robert W. Rich (2004) “Tracking the New Economy: Using Growth
Theory to Detect Changes in Trend Productivity,” working paper, Federal Reserve Bank of
New York.

Karlin, Samuel, and Howard M. Taylor (1975), A First Course in Stochastic Processes, 2nd

edition, Academic Press, San Diego, CA.

Kim, Chang-Jin and Charles R. Nelson (1999), State-Space Models with Regime Switching,
MIT Press, Cambridge, MA.

Levin, Andrew T., Alexei Onatski, John C. Williams, and Noah Williams (2005), “Monetary
Policy Under Uncertainty in Micro-Founded Macroeconometric Models,” working paper for

the 2005 NBER Macroeconomics Annual.

60



[24]

[30]

[31]

[34]

[35]

Lindé, Jesper (2002), “Estimating New-Keynesian Phillips Curves: A Full Informa-
tion Maximum Likelihood Approach,” Sveriges Riksbank Working Paper Series No. 129,

www.riksbank.se.

Ljungqvist, Lars, and Thomas J. Sargent (2005), Recursive Macroeconomic Theory, 2nd edi-
tion, MIT Press, Cambridge, MA.

Marcet, Albert, and Ramon Marimon (1998), “Recursive Contracts,” working paper,

www.econ.upf.edu.

McConnell, Margaret M. and Gabriel Perez-Quiros (2000) “Output Fluctuations in the United
States: What Has Changed since the Early 1980’s?”, American Economic Review 90, 1464-76.

Onatski, Alexei, and Noah Williams (2003), “Modeling Model Uncertainty,” Journal of the
European Economic Association 1, 1087-1022.

Oudiz, Gilles, and Jeffrey Sachs (1985), “International Policy Coordination in Dynamic Macro-
economic Models,” in William H. Buiter and Richard C. Marston, eds., International Economic

Policy Coordination, Cambridge University Press, Cambridge.

Rudebusch, Glenn D., and Lars E.O. Svensson (1999), “Policy Rules for Inflation Targeting,”

in John B. Taylor (ed.), Monetary Policy Rules, University of Chicago Press.

Sims, Christopher A. (2002), “The Role of Models and Probabilities in the Monetary Policy

Process,” Brookings Papers on Economic Activity 2:2002, 1-62.

Soderlind, Paul (1999), “Solution and Estimation of RE Macromodels with Optimal Policy,”

European Economic Review 43, 813—-823.

Stock, James H. and Mark W. Watson (2002) “Has the Business Cycle Changed and Why?”
in Mark Gertler and Ken Rogoff, eds., NBER Macroeconomics Annual 2002, MIT Press,
Cambridge.

Svensson, Lars E.O. (2001a), Independent Review of the Operation of Monetary Policy in New

Zealand: Report to the Minister of Finance, www.princeton.edu/~svensson.

Svensson, Lars E.O. (2001b), “Price Stability as a Target for Monetary Policy: Defining

and Maintaining Price Stability,” in Deutsche Bundesbank, ed., The Monetary Transmis-

61



[36]

[37]

ston Process: Recent Developments and Lessons for Europe, Palgrave, New York, 60-102,

www.princeton.edu/~svensson.

Svensson, Lars E.O. (2005a), “Monetary Policy with Judgment: Forecast Targeting,” Inter-

national Journal of Central Banking 1, 1-54, www.ijcb.org.

Svensson, Lars E.O. (2005b), “Optimization under Commitment and Discretion, the Re-
cursive Saddlepoint Method, and Targeting Rules and Instrument Rules: Lecture Notes,”

www.princeton.edu/~svensson.

Svensson, Lars E.O., and Robert J. Tetlow (2005), “Optimal Policy Projections,” International

Journal of Central Banking, forthoming, www.princeton.edu/~svensson.

Svensson, Lars E.O., and Michael Woodford (2005), “Implementing Optimal Policy through
Inflation-Forecast Targeting,” in Bernanke, Ben S., and Michael Woodford, eds., Inflation

Targeting, University of Chicago Press, www.princeton.edu/~svensson.

Woodford, Michael (2003), Interest and Prices: Foundations of a Theory of Monetary Policy,

Princeton University Press.

Zampolli, Fabrizio (2005), “Optimal Monetary Policy in a Regime-Switching Economy: The
Response to Abrupt Shifts in Exchange-Rate Dynamics,” working paper, Bank of England.

62



The following Discussion Papers have been published since 2004:

10

11

2004

2004

2004

2004

2004

2004

2004

2004

2004

2004

2004

Series 1: Economic Studies

Foreign Bank Entry into Emerging Economies:
An Empirical Assessment of the Determinants
and Risks Predicated on German FDI Data Torsten Wezel

Does Co-Financing by Multilateral Development

Banks Increase “Risky” Direct Investment in

Emerging Markets? —

Evidence for German Banking FDI Torsten Wezel

Policy Instrument Choice and Non-Coordinated Giovanni Lombardo

Monetary Policy in Interdependent Economies Alan Sutherland

Inflation Targeting Rules and Welfare

in an Asymmetric Currency Area Giovanni Lombardo
FDI versus cross-border financial services: Claudia M. Buch
The globalisation of German banks Alexander Lipponer
Clustering or competition? The foreign Claudia M. Buch
investment behaviour of German banks Alexander Lipponer
PPP: a Disaggregated View Christoph Fischer

A rental-equivalence index for owner-occupied Claudia Kurz

housing in West Germany 1985 to 1998 Johannes Hoffmann

The Inventory Cycle of the German Economy Thomas A. Knetsch

Evaluating the German Inventory Cycle

Using Data from the Ifo Business Survey Thomas A. Knetsch

Real-time data and business cycle analysis

in Germany Jorg Dopke

63



12

13

14

15

16

17

18

19

20

21

2004

2004

2004

2004

2004

2004

2004

2004

2004

2004

Business Cycle Transmission from the US

to Germany — a Structural Factor Approach

Consumption Smoothing Across States and Time:

International Insurance vs. Foreign Loans

Real-Time Estimation of the Output Gap
in Japan and its Usefulness for

Inflation Forecasting and Policymaking

Welfare Implications of the Design of a
Currency Union in Case of Member Countries

of Different Sizes and Output Persistence

On the decision to go public:

Evidence from privately-held firms

Who do you trust while bubbles grow and blow?
A comparative analysis of the explanatory power
of accounting and patent information for the

market values of German firms

The Economic Impact of Venture Capital

The Determinants of Venture Capital:

Additional Evidence

Financial constraints for investors and the

speed of adaption: Are innovators special?
How effective are automatic stabilisers?

Theory and results for Germany and other
OECD countries

64

Sandra Eickmeier

George M.

von Furstenberg

Koichiro Kamada

Rainer Frey

Ekkehart Boehmer
Alexander Ljungqvist

Fred Ramb
Markus Reitzig

Astrid Romain, Bruno

van Pottelsberghe

Astrid Romain, Bruno

van Pottelsberghe

Ulf von Kalckreuth

Michael Scharnagl
Karl-Heinz Todter



22

23

24

25

26

27

28

29

30

31

2004

2004

2004

2004

2004

2004

2004

2004

2004

2004

Asset Prices in Taylor Rules: Specification,
Estimation, and Policy Implications for the
ECB

Financial Liberalization and Business
Cycles: The Experience of Countries in

the Baltics and Central Eastern Europe

Towards a Joint Characterization of
Monetary Policy and the Dynamics of

the Term Structure of Interest Rates

How the Bundesbank really conducted
monetary policy: An analysis based on

real-time data

Real-time Data for Norway:

Challenges for Monetary Policy

Do Consumer Confidence Indexes Help

Forecast Consumer Spending in Real Time?

The use of real time information in

Phillips curve relationships for the euro area

The reliability of Canadian output

gap estimates

Forecast quality and simple instrument rules -

a real-time data approach
Measurement errors in GDP and

forward-looking monetary policy:

The Swiss case

65

Pierre L. Siklos
Thomas Werner
Martin T. Bohl

Lucio Vinhas

de Souza

Ralf Fendel

Christina Gerberding
Andreas Worms

Franz Seitz

T. Bernhardsen, ©. Eitrheim,

A.S. Jore, @. Raisland

Dean Croushore

Maritta Paloviita

David Mayes

Jean-Philippe Cayen

Simon van Norden

Heinz Gliick
Stefan P. Schleicher

Peter Kugler
Thomas J. Jordan
Carlos Lenz

Marcel R. Savioz



32

33

34

35

36

37

38

39

40

41

2004

2004

2004

2004

2004

2004

2004

2004

2004

2004

2005

Estimating Equilibrium Real Interest Rates

in Real Time

Interest rate reaction functions for the euro area

Evidence from panel data analysis

The Contribution of Rapid Financial
Development to Asymmetric Growth of
Manufacturing Industries:

Common Claims vs. Evidence for Poland

Fiscal rules and monetary policy in a dynamic

stochastic general equilibrium model

Inflation and core money growth in the

€uro arca

Taylor rules for the euro area: the issue

of real-time data
What do deficits tell us about debt?
Empirical evidence on creative accounting

with fiscal rules in the EU

Optimal lender of last resort policy

in different financial systems

Expected budget deficits and interest rate swap

Todd E. Clark

Sharon Kozicki

Karsten Ruth

George M.

von Furstenberg

Jana Kremer

Manfred J.M. Neumann
Claus Greiber

Dieter Gerdesmeier
Barbara Roffia
Jirgen von Hagen

Guntram B. Wolff

Falko Fecht
Marcel Tyrell

Kirsten Heppke-Falk

spreads - Evidence for France, Germany and Italy Felix Hiifner

Testing for business cycle asymmetries
based on autoregressions with a

Markov-switching intercept
Financial constraints and capacity adjustment
in the United Kingdom — Evidence from a

large panel of survey data

66

Malte Kniippel

Ulf von Kalckreuth
Emma Murphy



10

11

12

2005

2005

2005

2005

2005

2005

2005

2005

2005

2005

2005

Common stationary and non-stationary
factors in the euro area analyzed in a

large-scale factor model

Financial intermediaries, markets,

and growth

The New Keynesian Phillips Curve

in Europe: does it fit or does it fail?

Taxes and the financial structure

of German inward FDI

International diversification at home

and abroad

Multinational enterprises, international trade,
and productivity growth: Firm-level evidence
from the United States

Location choice and employment
decisions: a comparison of German

and Swedish multinationals

Business cycles and FDI:

evidence from German sectoral data

Multinational firms, exclusivity,

and the degree of backward linkages

Firm-level evidence on international

stock market comovement

The determinants of intra-firm trade: in search

for export-import magnification effects

67

Sandra Eickmeier

F. Fecht, K. Huang,
A. Martin

Peter Tillmann

Fred Ramb
A. J. Weichenrieder

Fang Cai

Francis E. Warnock

Wolfgang Keller
Steven R. Yeaple

S. O. Becker,
K. Ekholm, R. Jackle,
M.-A. Muendler

Claudia M. Buch

Alexander Lipponer

Ping Lin
Kamal Saggi

Robin Brooks
Marco Del Negro

Peter Egger
Michael Pfaffermayr



13

14

15

16

17

18

19

20

21

22

23

2005

2005

2005

2005

2005

2005

2005

2005

2005

2005

2005

Foreign direct investment, spillovers and
absorptive capacity: evidence from quantile

regressions

Learning on the quick and cheap: gains

from trade through imported expertise

Discriminatory auctions with seller discretion:

evidence from German treasury auctions

Consumption, wealth and business cycles:

why is Germany different?

Tax incentives and the location of FDI:

evidence from a panel of German multinationals

Monetary Disequilibria and the
Euro/Dollar Exchange Rate

Berechnung trendbereinigter Indikatoren fiir

Deutschland mit Hilfe von Filterverfahren

How synchronized are central and east
European economies with the euro area?

Evidence from a structural factor model

Asymptotic distribution of linear unbiased
estimators in the presence of heavy-tailed

stochastic regressors and residuals

The Role of Contracting Schemes for the
Welfare Costs of Nominal Rigidities over
the Business Cycle

The cross-sectional dynamics of German

business cycles: a bird’s eye view

68

Sourafel Girma

Holger Gorg

James R. Markusen

Thomas F. Rutherford

Jorg Rocholl

B. Hamburg,
M. Hoffmann, J. Keller

Thiess Buettner
Martin Ruf

Dieter Nautz

Karsten Ruth

Stefan Stamfort

Sandra Eickmeier

Jorg Breitung

J.-R. Kurz-Kim

S.T. Rachev
G. Samorodnitsky

Matthias Pastian

J. Dopke, M. Funke
S. Holly, S. Weber



24

25

26

27

28

29

30

31

32

33

34

2005

2005

2005

2005

2005

2005

2005

2005

2005

2005

2005

Forecasting German GDP using alternative

factor models based on large datasets

Time-dependent or state-dependent price
setting? — micro-evidence from German

metal-working industries —

Money demand and macroeconomic

uncertainty

In search of distress risk

Recursive robust estimation and control

without commitment

Asset pricing implications of Pareto optimality

with private information

Ultra high frequency volatility estimation

with dependent microstructure noise

Umstellung der deutschen VGR auf Vorjahres-
preisbasis — Konzept und Konsequenzen fiir die
aktuelle Wirtschaftsanalyse sowie die 6kono-

metrische Modellierung

Determinants of current account developments
in the central and east European EU member
states — consequences for the enlargement of

the euro erea

An estimated DSGE model for the German

economy within the euro area

Rational inattention: a research agenda

69

Christian Schumacher

Harald Stahl

Claus Greiber
Wolfgang Lemke

J. Y. Campbell,
J. Hilscher, J. Szilagyi

Lars Peter Hansen

Thomas J. Sargent

N. R. Kocherlakota

Luigi Pistaferri

Y. Ait-Sahalia,

P. A. Mykland, L. Zhang

Karl-Heinz Todter

Sabine Herrmann

Axel Jochem

Ernest Pytlarczyk

Christopher A. Sims



35 2005 Monetary policy with model uncertainty: Lars E.O. Svensson

distribution forecast targeting Noah Williams

70



Series 2: Banking and Financial Studies

1

2004

2004

2004

2004

2004

2004

2005

2005

2005

2005

Forecasting Credit Portfolio Risk

Systematic Risk in Recovery Rates —
An Empirical Analysis of US Corporate

Credit Exposures

Does capital regulation matter for bank
behaviour? Evidence for German savings
banks

German bank lending during
emerging market crises:

A bank level analysis
How will Basel II affect bank lending to
emerging markets? An analysis based on

German bank level data

Estimating probabilities of default for

German savings banks and credit cooperatives

Measurement matters — Input price proxies

and bank efficiency in Germany

The supervisor’s portfolio: the market price

risk of German banks from 2001 to 2003 —

Analysis and models for risk aggregation
Do banks diversify loan portfolios?
A tentative answer based on individual

bank loan portfolios

Banks, markets, and efficiency

71

A. Hamerle,
T. Liebig, H. Scheule

Klaus Diillmann

Monika Trapp

Frank Heid
Daniel Porath
Stéphanie Stolz

F. Heid, T. Nestmann,
B. Weder di Mauro,

N. von Westernhagen
T. Liebig, D. Porath,

B. Weder di Mauro,
M. Wedow

Daniel Porath

Michael Koetter

Christoph Memmel
Carsten Wehn

Andreas Kamp
Andreas Pfingsten

Daniel Porath

F. Fecht, A. Martin



10

11

2005

2005

2005

2005

2005

2005

2005

The forecast ability of risk-neutral densities

of foreign exchange

Cyclical implications of minimum capital

requirements

Banks’ regulatory capital buffer and the
business cycle: evidence for German
savings and cooperative banks

German bank lending to industrial and non-
industrial countries: driven by fundamentals
or different treatment?

Accounting for distress in bank mergers
The eurosystem money market auctions:

a banking perspective

Financial integration and systemic

risk

72

Ben Craig

Joachim Keller

Frank Heid

Stéphanie Stolz
Michael Wedow

Thorsten Nestmann

M. Koetter, J. Bos, F. Heid
C. Kool, J. Kolari, D. Porath

Nikolaus Bartzsch
Ben Craig, Falko Fecht

Falko Fecht

Hans Peter Griiner



Visiting researcher at the Deutsche Bundesbank

The Deutsche Bundesbank in Frankfurt is looking for a visiting researcher. Visitors should
prepare a research project during their stay at the Bundesbank. Candidates must hold a
Ph D and be engaged in the field of either macroeconomics and monetary economics,
financial markets or international economics. Proposed research projects should be from
these fields. The visiting term will be from 3 to 6 months. Salary is commensurate with

experience.
Applicants are requested to send a CV, copies of recent papers, letters of reference and a

proposal for a research project to:

Deutsche Bundesbank
Personalabteilung
Wilhelm-Epstein-Str. 14

D - 60431 Frankfurt
GERMANY

73












