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Abstract

In a Markov decision problem with hidden state variables, a posterior distribution
serves as a state variable and Bayes’ law under an approximating model gives its law of
motion. A decision maker expresses fear that his model is misspecified by surrounding
it with a set of alternatives that are nearby when measured by their expected log
likelihood ratios (entropies). Martingales represent alternative models. A decision
maker constructs a sequence of robust decision rules by pretending that a sequence
of minimizing players choose increments to a martingale and distortions to the prior
over the hidden state. A risk sensitivity operator induces robustness to perturbations
of the approximating model conditioned on the hidden state. Another risk sensitivity
operator induces robustness to the prior distribution over the hidden state. We use
these operators to extend the approach of Hansen and Sargent (1995) to problems that
contain hidden states. The worst case martingale is overdetermined, expressing an
intertemporal inconsistency of worst case beliefs about the hidden state, but not about
observables.



Non-technical summary 
 
 
This paper deals with a fundamental question of applied economics: how should decision-
makers, especially economic policy decision-makers, behave if they wish to take account of 
the fact that their knowledge of the economy is no more than incomplete. This is of key 
importance for central banks, which continually have to take monetary policy decisions that 
are necessarily based on models, ie on systematic simplifications of reality, the precise details 
of which can never be understood with complete certainty. 
 
This problem can be specifically related to the debate that has been conducted on the risk of 
deflation in the USA and Europe. In 2003, short-term nominal interest rates were at an all-
time low, as was inflation. In this context, it should be remembered that nominal interest rates 
cannot be negative and that the real interest rates which are relevant to economic planning are 
nominal interest rates less inflation. Statistical models which have been used up to now, and 
which have been used by central banks very successfully for forecasts under conditions of 
strictly positive inflation, may turn out to be unsuitable for new, more extreme conditions. For 
example, given deflation (in other words, negative inflation), if nominal interest rates are 
almost equal or equal to zero, real interest rates are, of necessity, positive. These, in turn, slow 
down the economy and may therefore further accelerate deflation. A traditional model might 
give disastrous recommendations even though it has functioned well in “normal” times. 
 
This is one of the reasons why central banks do not rely blindly on statistical models, but 
rather draw on their experience and intuition under rarer but riskier conditions. It may rightly 
be claimed that deflation in the USA has been prevented inter alia by the Fed acting in a 
forward-looking manner and attaching particular importance to worst case scenarios, even 
though traditional models make no provision for these. 
 
What position does this paper take up in this context? It develops principles on which 
economic policymakers can draw if the “true” model of the world is unknown to them. It 
thereby departs from the existing analytical methodology which studies the economic policy 
issues on the assumption that all the economic agents know the “correct” model and that 
everyone knows the same, correct model. Although conducting analyses on this assumption 
has enormous practical advantages, there is no perception of how risky the unconscious use of 
a possibly incorrect model is under extreme conditions, even if such conditions are very 
unlikely. 



Nicht technische Zusammenfassung 
 
 
Diese Arbeit beschäftigt sich mit einer fundamentalen Frage der angewandten Volkswirt-
schaftslehre: Wie sollen sich Entscheidungsträger, insbesondere in der Wirtschaftspolitik, 
verhalten, wenn sie berücksichtigen wollen, dass sie die Wirtschaft nur unvollständig kennen. 
Dies ist von zentraler Bedeutung für Zentralbanken, die kontinuierlich geldpolitische Ent-
scheidungen treffen müssen, die notwendigerweise auf Modellen beruhen, also auf systemati-
schen Vereinfachungen der Wirklichkeit, deren Zusammenhänge man notwendigerweise nie 
mit völliger Sicherheit wird verstehen können. 
 
Konkret lässt sich dieses Problem auf die Diskussion anwenden, die in Bezug auf die Gefahr 
einer Deflation in den USA und Europa geführt wurde. Kurzfristige Nominalzinsen waren 
2003 auf historisch niedrigem Niveau, ebenso die Inflation. Man bedenke dabei, dass Nomi-
nalzinsen nicht negativ sein können, und dass die für wirtschaftliche Planungen relevanten 
Realzinsen gleich Nominalzins minus Inflation sind. Bisher benutzte statistische Modelle, die 
von Zentralbanken unter Bedingungen strikt positiver Inflation sehr gut für Vorhersagen ver-
wendet werden konnten, sind möglicherweise für neue, extremere, Bedingungen nicht geeig-
net. Wenn zum Beispiel bei einer Deflation (also negativer Inflation) die nominellen Zinsen 
fast oder gleich Null sind, liegen notwendigerweise positive Realzinsen vor. Diese wiederum 
bremsen die Konjunktur und können somit eine Deflation noch beschleunigen. Ein herkömm-
liches Modell könnte unter Umständen katastrophale Empfehlungen geben, obwohl es in 
„normalen“ Zeiten gut funktioniert hat. 
 
Dies ist einer der Gründe, warum Zentralbanken nicht blind auf statistische Modelle vertrau-
en, sondern unter seltenen, aber risikoreichen Bedingungen auf ihre Erfahrung und Intuition 
zurückgreifen. Es kann mit Recht behauptet werden, dass eine Deflation in den USA auch da-
durch vermieden wurde, dass die Fed vorausschauend agiert hat, und „worst case“ Szenarien 
besonderes Gewicht verliehen hat, obwohl herkömmliche Modelle diese nicht vorsehen. 
 
Wie ordnet sich diese Arbeit in diese Diskussion ein? Sie erarbeitet Prinzipien, auf die wirt-
schaftliche Entscheidungsträger zurückgreifen können, wenn ihnen das „wahre“ Modell der 
Welt nicht bekannt ist. Damit weicht sie von der bisherigen Analysemethodik ab, die wirt-
schaftspolitische Fragestellungen unter der Annahme untersucht, dass allen Wirtschaftssub-
jekten das „richtige“ Modell bekannt ist, und dass alle das gleiche, richtige Modell kennen. 
Während es enorme praktische Vorteile hat, Analysen unter dieser Annahme vorzunehmen, 
hat man kein Gefühl dafür, wie riskant der unbewusste Gebrauch eines vielleicht falschen 
Modells unter extremen Bedingungen ist, selbst wenn diese sehr unwahrscheinlich sind. 





Recursive Robust Estimation and Control Without
Commitment ∗

1 Introduction

In problems with incomplete information, optimal decision rules depend on a decision maker’s
posterior distribution over hidden state variables, called qt(z) here, an object that summarizes
the history of observed signals. A decision maker expresses faith in his model when he uses
Bayes’ rule to deduce the transition law for qt(z).1

But how should a decision maker proceed if he doubts his model and wants a decision
rule that is robust to a set of statistically difficult to detect misspecifications of it? We begin
by assuming that, through some unspecified process, a decision maker has arrived at an

* Lars Peter Hansen, University of Chicago. Email: l-hansen@uchicago.edu;
Thomas J. Sargent, New York University and Hoover Institution. Email: ts43@nyu.edu.
We thank Ricardo Mayer and especially Tomasz Piskorski for helpful comments on earlier drafts of this
We thank In-Koo Cho for encouragement.

1For example, see Jovanovic (1979), Jovanovic and Nyarko (1995), Jovanovic and Nyarko (1996), and
Bergemann and Valimaki (1996).
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approximating model that fits historical data well. Because he fears that his approximating
model is misspecified, he surrounds it with a set of all alternative models whose expected
log likelihood ratios (i.e., whose relative entropies) are restricted or penalized. The decision
maker believes that the data will be generated by an unknown member of this set. When
relative entropies are constrained to be small, the decision maker believes that his model
is a good approximation. The decision maker wants robustness against these alternatives
because, as Anderson, Hansen, and Sargent (2003) emphasize, perturbations with small
relative entropies are statistically difficult to distinguish from the approximating model.
This paper assumes that the appropriate summary of signals continues to be the decision
maker’s posterior under the approximating model, despite the fact that he distrusts that
model. Hansen and Sargent (2005) explore the meaning of this assumption by studying a
closely related decision problem under commitment to a worst case model.

Section 2 formulates a Markov control problem in which a decision maker with a trusted
model receives signals about hidden state variables. By allowing the hidden state vector to
index submodels, this setting includes situations in which the decision maker has multiple
models or is uncertain about coefficients in those models. Subsequent sections view the
model of section 2 as an approximation, use relative entropy to define a cloud of models that
are difficult to distinguish from it statistically, and construct a sequence of decision rules that
can work well for all of those models. Section 3 uses results of Hansen and Sargent (2005)
to represent distortions of an approximating model in terms of martingales defined on the
same probability space as the approximating model. Section 4 then defines two operators, T1

and T2, respectively, that are indexed by penalty parameters (θ1, θ2). In section 5, we use
T1 to adjust continuation values for concerns about model misspecification, conditioned on
knowledge of the hidden state. We use T2 to adjust continuation values for concern about
misspecification of the distribution of the hidden state. We interpret θ1 and θ2 as penalties
on pertinent entropy terms

Section 6 discusses the special case that prevails when θ1 = θ2 and relates it to a decision
problem under commitment that we analyzed in Hansen and Sargent (2005). We discuss
the dynamic consistency of worst case beliefs about the hidden state in subsections 6.4
and 6.6. Section 7 describes the worst case distribution over signals and relates it to the
theory of asset pricing. Section 8 interprets our formulation and suggests modifications of
it in terms of the multiple priors models of Epstein and Schneider (2003a) and Epstein
and Schneider (2003b). Section 9 briefly relates our formulation to papers about reducing
compound lotteries. Section 10 specializes our section 5 recursions to compute robust decision
rules for the linear quadratic case, and appendix A reports useful computational tricks for
this case. Section 11 concludes. Hansen and Sargent (2005) contains an extensive account of
related literatures. An application to a decision problem with experimentation and learning
about multiple submodels appears in Cogley, Colacito, Hansen, and Sargent (2005).

2 A control problem without model uncertainty

For t ≥ 0, we partition a state vector as xt =

[
yt

zt

]
, where yt is observed and zt is not. A

vector of st of observable signals is correlated with the hidden state zt and is used by the
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decision maker to form beliefs about the hidden state. Let Z denote a space of admissible
unobserved states, Z a corresponding sigma algebra of subsets of states, and λ a measure
on the measurable space of hidden states (Z,Z). Let S denote the space of signals, S a
corresponding sigma algebra, and η a measure on the measurable space (S,S) of signals.

Signals and states are determined by the transition functions

yt+1 = πy(st+1, yt, at) (1)

zt+1 = πz(xt, at, wt+1) (2)

st+1 = πs(xt, at, wt+1) (3)

where {wt+1 : t ≥ 0} is an i.i.d. sequence of random variables. Knowledge of y0 and πy allows
us to construct yt recursively from signals and actions. Substituting (3) into (1) gives the
recursive evolution for the observable state in terms of next period’s shock wt+1:

yt+1 = πy[πs(xt, at, wt+1), yt, at]
.
= π̄y(xt, at, wt+1) (4)

Equations (2) and (3) determine a conditional density τ(zt+1, st+1|xt, at) relative to the prod-
uct measure λ× η.

Let {St : t ≥ 0} denote a filtration, where St is generated by y0, s1, ..., st. We can
apply Bayes’ rule to τ to deduce a density qt, relative to the measure λ, for zt conditioned
on information St. Let {Xt : t ≥ 0} be a larger filtration where Xt is generated by x0, w1,
w2, ..., wt. The smallest sigma algebra generated by all states for t ≥ 0 is X∞ .

=
∨

t≥0Xt; the
smallest sigma algebra generated by all signals for t ≥ 0 is S∞ .

=
∨

t≥0 St. Let A denote a
feasible set of actions, which we take to be a Borel set of some finite dimensional Euclidean
space, and let At be the set of A-valued random vectors that are St measurable. Given the
recursive construction of xt in equation (1) - (2) and the informational constraint on action
processes, xt is Xt measurable and yt is St measurable.

As a benchmark, consider the following decision problem under incomplete information
about the state but complete confidence in the model (1), (2), (3):

Problem 2.1.

max
at∈At:t≥0

E

[
T∑

t=0

βtU(xt, at)|S0

]
, β ∈ (0, 1)

subject to (1), (2), and (3).

To make problem 2.1 recursive, use τ to construct two densities for the signal:

κ(s∗|yt, zt, at)
.
=

∫
τ(z∗, s∗|yt, zt, at)dλ(z∗)

ς(s∗|yt, qt, at)
.
=

∫
κ(s∗|yt, z, at)qt(z)dλ(z). (5)

By Bayes’ rule, qt+1(z
∗) =

R
τ(z∗,st+1|yt,z,at)qt(z)dλ(z)

ς(st+1|yt,qt,at)
≡ πq(st+1, yt, qt, at). In particular applica-

tions, πq can be computed with methods that specialize Bayes’ rule (e.g., the Kalman filter
or a discrete time version of the Wonham (1964) filter).
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Take (yt, qt) as the state for a recursive formulation of problem 2.1. The transition law
is (1) and

qt+1 = πq(st+1, yt, qt, at). (6)

Let π =

[
πy

πq

]
. Then we can rewrite problem 2.1 in the alternative form:

Problem 2.2. Choose a sequence of decision rules for at as functions of (yt, qt) for each
t ≥ 0 that maximizes

E

[
T∑

t=0

βtU(xt, at)|S0

]

subject to (1), (6), a given density q0(z), and the density κ(st+1|yt, zt, at). The Bellman
equation for this problem is

W (y, q) = max
a∈A

∫ {
U(x, a) + β

∫
W ∗ [π(s∗, y, q, a)] κ(s∗|y, z, a)dη(s∗)

}
q(z)dλ(z). (7)

In an infinite horizon version of problem 2.2, W ∗ = W .

2.1 Examples

Examples of problem 2.2 in economics include Jovanovic (1979), Jovanovic (1982), Jovanovic
and Nyarko (1995), Jovanovic and Nyarko (1996), and Bergemann and Valimaki (1996).
Examples from outside economics appear in Elliott, Aggoun, and Moore (1995). Problems
that we are especially interested in are illustrated in the following four examples.

Example 2.3. Model Uncertainty I: two submodels. Let the hidden state z ∈ {0, 1} index a
submodel. Let

yt+1 = st+1

zt+1 = zt

st+1 = πs(yt, z, at, wt+1). (8)

The hidden state is time invariant. The decision maker has a prior probability Prob(z =
0) = q. The third equation in (8) depicts two laws of motion. Cogley, Colacito, and Sargent
(2005) and Cogley, Colacito, Hansen, and Sargent (2005) study the value of monetary policy
experimentation in a model in which a is an inflation target and πs(y, z, a, w) = π̄y(y, z, a, w)
for z ∈ {0, 1} represent two submodels of inflation-unemployment dynamics.

Example 2.4. Model Uncertainty II: a continuum of submodels. The observable state y takes
the two possible values {yL, yH}. Transition dynamics are still described by (8), but now there
is a continuum of models indexed by the hidden state z ∈ [0, 1]×[0, 1] that stands for unknown
values of two transition probabilities for an observed state variable y. Given z, we can use
the third equation of (8) to represent a two state Markov chain on the observable state y

(see Elliott, Aggoun, and Moore (1995)), P =

[
p11 1− p11

1− p22 p22

]
, where (p11, p22) = z. The

decision maker has a prior f0(p11)g0(p22) on z; f0 and g0 are beta distributions.
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Example 2.5. Model Uncertainty III: A components model of income dynamics with an
unknown fixed effect in labor income. The utility function U(at) is a concave function of
consumption at; y2t is the level of financial assets, and y1t = st is observed labor income.
The evolution equations are

y1,t+1 = st+1

y2,t+1 = R[y2,t + y1,t − at]
z1,t+1 = z1,t

z2,t+1 = ρz2,t + σ1w1,t+1

st+1 = z1,t + z2,t + σ2w2,t+1

where wt+1 ∼ N (0, I) is an i.i.d. bivariate Gaussian process, R ≤ β−1 is a gross return on
financial assets y2,t, |ρ| < 1, z1,t is an unobserved constant component of labor income, and
z2,t is an unobserved serially correlated component of labor income. A decision maker has a
prior q0 over (z1,0, z2,0).

Example 2.6. Estimation of drifting coefficients regression model. The utility function
U(xt, at) = −L(zt − at), where L is a loss function and at is a time-t estimator of the
coefficient vector zt. The evolution equation is

yt+1 = st+1

zt+1 = ρzt + σ1w1,t+1

st+1 = yt · zt + σ2w2,t+1

where wt+1 ∼ N (0, I) and there is a prior q0(z) on an initial set of coefficients.

2.2 Modified problems that distrust κ(s∗|y, z, a) and q(z)

This paper studies modifications of problem 2.2 in which the decision maker wants a decision
rule that is robust to possible misspecifications of equations (1)-(2). Bellman equation (7)
indicates that the decision maker’s concerns about misspecification of the stochastic struc-
ture can be focused on two aspects: the conditional distribution of next period’s signals
κ(s∗|y, z, a) and the distribution over this period’s value of the hidden state q(z). We pro-
pose recursive formulations of a robust control problem that allow a decision maker to focus
on either or both of these two aspects of his stochastic specification.

3 Using martingales to represent model misspecifica-

tions

Equations (1)-(2) induce a probability measure over Xt for t ≥ 0. Hansen and Sargent
(2005) use a nonnegative Xt-measurable function Mt with EMt = 1 to create a distorted
probability measure that is absolutely continuous with respect to the probability measure
over Xt generated by the model (1) - (2). The random variable Mt is a martingale under this
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baseline probability measure. Using Mt as a Radon-Nikodym derivative generates a distorted
measure under which the expectation of a bounded Xt-measurable random variable Wt is
ẼWt

.
= EMtWt. The entropy of the distortion at time t conditioned on date zero information

is E (Mt log Mt|X0) or E(Mt log Mt|S0).

3.1 Recursive representations of distortions

It is convenient to factor a density Ft for an Xt-measurable random variable Ft as Ft+1 =
Ftft+1 where ft+1 is a one-step ahead density conditioned on Xt. It is useful to factor Mt

in a similar way. Thus, to represent distortions recursively, take a nonnegative martingale
{Mt : t ≥ 0} and form

mt+1 =

{Mt+1

Mt
if Mt > 0

1 if Mt = 0.

Then Mt+1 = mt+1Mt and

Mt = M0

t∏
j=1

mj. (9)

The random variable M0 has unconditional expectation equal to unity. By construction, mt+1

has date t conditional expectation equal to unity. For a bounded random variable Wt+1

that is Xt+1-measurable, the distorted conditional expectation implied by the martingale
{Mt : t ≥ 0} is

E(Mt+1Wt+1|Xt)

E(Mt+1|Xt)
=

E(Mt+1Wt+1|Xt)

Mt

= E (mt+1Wt+1|Xt)

provided that Mt > 0. We use mt+1 to model distortions of the conditional probability
distribution for Xt+1 given Xt. For each t ≥ 0, construct the space Mt+1 of all nonnegative,
Xt+1-measurable random variables mt+1 for which E(mt+1|Xt) = 1.

The conditional (on Xt) relative entropy of a nonnegative random variable mt+1 in Mt+1

is ε1
t (mt+1)

.
= E (mt+1 log mt+1|Xt) .

3.2 Distorting likelihoods with hidden information

The random variable Mt is adapted to Xt and is a likelihood ratio for two probability distrib-
utions over Xt. The St-measurable random variable Gt = E (Mt|St) implies a likelihood ratio
for the reduced information set St; Gt assigns distorted expectations to St-measurable ran-
dom variables that agree with Mt, and {Gt : t ≥ 0} is a martingale adapted to {St : t ≥ 0}.

Define the Xt-measurable random variable ht by

ht
.
=

{ Mt

E(Mt|St)
if E (Mt|St) > 0

1 if E (Mt|St) = 0

and decompose Mt as
Mt = htGt. (10)

Decompose entropy as

E(Mt log Mt|S0) = E [E (ht log ht|St) + Gt log Gt|S0] .
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Define ε2
t (ht)

.
= E (ht log ht|St) as the conditional (on St) relative entropy.

We now have the tools to represent and measure misspecifications of the two components
κ(s∗|y, z, a) and q(z) in (7). In (10), Mt distorts the probability distribution of Xt, ht

distorts the probability of Xt conditioned on St, Gt distorts the probability of St, and mt+1

distorts the probability of Xt+1 given Xt. We use multiplication by mt+1 to distort κ and
multiplication by ht to distort q; and we use ε1

t (mt+1) to measure mt+1 and ε2
t (ht) to measure

ht.
Section 4 uses these distortions to define two pairs of operators, then section 5 applies

them to form counterparts to Bellman equation (7) that can be used to get decisions that
are robust to these misspecifications.

4 Two pairs of operators

This section introduces two pairs of operators, (R1
t , T

1) and (R2
t , T

2). In section 5, we use
the T1 and T2 operators to define recursions that induce robust decision rules.

4.1 R1
t and T1

For θ > 0, let Wt+1 be an Xt+1-measurable random variable for which E
[
exp

(
−Wt+1

θ

)
|Xt

]
<

∞. Then define

R1
t (Wt+1|θ) = min

mt+1∈Mt+1

E (mt+1Wt+1|Xt) + θε1
t (mt+1)

= −θ log E

[
exp

(
−Wt+1

θ

)
|Xt

]
. (11)

The minimizing choice of mt+1 is

m∗
t+1 =

exp
(
−Wt+1

θ

)

E
[
exp

(
−Wt+1

θ

)
|Xt

] . (12)

In the limiting case that sets the entropy penalty parameter θ = ∞, R1
t (Wt+1|∞) =

E(Wt+1|Xt). Notice that this expectation can depend on the hidden state. When θ < ∞, R1
t

adjusts E(Wt+1|Xt) by using a worst-case belief about the probability distribution of Xt+1

conditioned on Xt that is implied by the twisting factor (12). When the conditional moment

restriction E
[
exp

(
−Wt+1

θ

)
|Xt

]
< ∞ is not satisfied, we define R1

t to be −∞ on the relevant

conditioning events.
When the Xt+1-measurable random variable Wt+1 takes the special form V (yt+1, qt+1, zt+1),

the R1
t (·|θ) operator defined in (11) implies another operator:

(T1V |θ)(y, q, z, a) = −θ log

∫
exp

(
−V [π(s∗, y, q, a), z∗]

θ

)
τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗).

The transformation T1 maps a value function that depends on next period’s state (y∗, q∗, z∗)
into a risk-adjusted value function that depends on (y, q, z, a). Associated with this risk

7



adjustment is a worst-case distortion in the transition dynamics for the state and signal
process. Let φ denote a nonnegative density function defined over (z∗, s∗) satisfying

∫
φ(z∗, s∗)τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗) = 1. (13)

The corresponding entropy measure is:
∫

log[φ(z∗, s∗)]φ(z∗, s∗)τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗) = 1.

In our recursive formulation, we think of φ as a possibly infinite dimensional control vector
(a density function) and consider the minimization problem:

min
φ≥0

∫
(V [π(s∗, y, q, a), z∗] + θ1 log[φ(z∗, s∗)]) φ(z∗, s∗)τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗)

subject to (13). The associated worst-case density conditioned on Xt is φt(z
∗, s∗)τ(z∗, s∗|xt, at)

where

φt(z
∗, s∗) =

exp
(
−V [π(s∗,yt,qt,at),z∗]

θ

)

E
[
exp

(
−V [π(st+1,yt,qt,at),zt+1]

θ

)
|Xt

] . (14)

4.2 R2
t and T2

For θ > 0, let Ŵt be an Xt-measurable function for which E
[
exp

(
−Ŵt

θ

)
|St

]
< ∞. Then

define

R2
t

(
Ŵt|θ

)
= min

ht∈Ht

E
(
htŴt|St

)
+ θε2

t (ht)

= −θ log E

[
exp

(
−Ŵt

θ

)
|St

]
. (15)

The minimizing choice of ht is

h∗t =
exp

(
−Ŵt

θ

)

E
[
exp

(
−Ŵt

θ

)
|St

] .

When an Xt-measurable function has the special form Ŵt = V̂ (yt, qt, zt, at), R2
t given by

(15) implies an operator

(T2V̂ |θ)(y, q, a) = −θ log

∫
exp

[
− V̂ (y, q, z, a)

θ

]
q(z)dλ(z).

The associated minimization problem is:

min
ψ≥0

∫ [
V̂ (y, q, z, a) + θ log ψ(z)

]
ψ(z)q(z)dλ(z)
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subject to (16), where ψ(z) is a relative density that satisfies:

∫
ψ(z)q(z)dλ(z) = 1 (16)

and the entropy measure is ∫
[log ψ(z)]ψ(z)q(z)dλ(z).

The optimized density conditioned on St is ψt(z)qt(z), where

ψt(z) =
exp

(
− V̂ (yt,qt,z,at)

θ

)

E
[
exp

(
− V̂ (yt,qt,z,at)

θ

)
|St

] . (17)

5 Control problems with model uncertainty

We propose robust control problems that take qt(z) as the decision maker’s state variable for
summarizing the history of signals. The decision maker’s model includes the law of motion
(6) for q (Bayes’ law) under the approximating model (1), (2), (3). Two recursions that
generalize Bellman equation (7) express alternative views about the decision maker’s fear of
misspecification. A first recursion works with value functions that include the hidden state
z as a state variable. Let

W̌ (y, q, z) = U(x, a) + E
{
βW̌ ∗[π(s∗, y, q, a), z∗]

∣∣x, q
}

, (18)

where the action a solves:

W (y, q) = max
a

E

[
U(x, a) + E

{
βW̌ ∗[π(s∗, y, q, a), z∗]

∣∣x, q, a
}∣∣∣y, q, a

]
. (19)

The value function W̌ depends on the hidden state z, whereas the value function W in (7)
does not. A second recursion modifies the ordinary Bellman equation (7), which we can
express as:

W (y, q) = max
a

E

[
U(x, a) + E

{
βW ∗[π(s∗, y, q, a)]

∣∣x, q, a
}∣∣∣y, q, a

]
. (20)

Although they use different value functions, without concerns about model misspecifica-
tion, formulations (18)-(19) and (20) imply identical control laws. Furthermore, W (y, q)
obeys (19), by virtue of the law of iterated expectations. Because Bellman equation (20)
is computationally more convenient, the pair (18)-(19) is not used in the standard problem
without a concern for robustness. However, with a concern about robustness, a counter-
part to (18)-(19) becomes useful when the decision maker wants to explore distortions of
the joint conditional distribution τ(s∗, z∗|y, z, a).2 Distinct formulations emerge when we

2Another way to express his concerns is that in this case the decision maker fears that (2) and (3) are
both misspecified.
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replace the conditional expectation E(·|y, q, a) with T2(·|θ2) and the conditional expectation
E(·|x, q, a) with T1(·|θ1) in the above sets of recursions. When θ1 = θ2 = +∞, (18)-(19) or
(20) lead to value functions and decision rules equivalent to those from either (18)-(19) or
(20). When θ1 < +∞ and θ2 < +∞, they differ because they take different views about
which conditional distributions the malevolent player wants to distort.

5.0.1 Which conditional distributions to distort?

The approximating model (1), (2), (3) makes both tomorrow’s signal s∗ and tomorrow’s
state z∗ functions of x. When tomorrow’s value function depends on s∗ but not on z∗, the
minimizing player chooses to distort only κ(s∗|y, z, a), which amounts to being concerned
about misspecified models only for the evolution equation (3) for the signal and not (2)
for the hidden state. Such a continuation value function imparts no additional incentive to
distort the evolution equation (2) of z∗ conditioned on s∗ and x.3 A continuation value that
depends on s∗ but not on z∗ thus imparts concerns about a limited array of distortions that
ignore possible misspecification of the z∗ evolution (2). Therefore, when we want to direct
the maximizing agent’s concerns about misspecification onto the conditional distribution
κ(s∗|y, z, a), we should form a current period value that depends only on the history of the
signal and of the observed state. We do this in recursion (23) below.

In some situations, we want to extend the maximizing player’s concerns about misspec-
ification to the joint distribution τ(z∗, s∗|y, z, a) of z∗ and s∗. We can do this by making
tomorrow’s value function for the minimizing player also depend on z∗. This will prompt
the minimizing agent to distort the joint distribution τ(z∗, s∗|y, z, a) of (z∗, s∗). In recursions
(21)-(22) below, we form a continuation value function that depends on z∗ and that extends
recursions (18), (19) to incorporate concerns about misspecification of (2).

Thus, (21)-(22) below will induce the minimizing player to distort the distribution of z∗

conditional on (s∗, x, a), while the formulation in (23) will not.

5.1 Value function depends on (x, q)

By defining a value function that depends on the hidden state, we focus the decision maker’s
attention on misspecification of the joint conditional distribution τ(z∗, s∗|y, z, a) of (s∗, z∗).
We modify recursions (18)-(19) by updating a value function according to

W̌ (y, q, z) = U(x, a) + T1
[
βW̌ ∗(y∗, q∗, z∗)|θ1

]
(x, q, a) (21)

after choosing an action according to

max
a

T2
{

U(x, a) + T1
[
βW̌ ∗(y∗, q∗, z∗)|θ1

](
x, q, a

)∣∣∣θ2

}
(y, q, a), (22)

for θ1 ≥ θ1, θ2 ≥ θ2(θ1) for θ1, θ2 that make the problems well posed.4 Updating the value
function by recursion (21) makes it depend on (x, q), while using (22) to guide decisions makes

3Dependence between (s∗, z∗) conditioned on x under the approximating model means that in the process
of distorting s∗ conditioned on (x, a), the minimizing player may indirectly distort the distribution of z∗

conditioned on (x, a). But he does not distort the distribution of z∗ conditioned on (s∗, x, a)
4Limits on θ1 and θ2 are typically needed to make the outcomes of the T1 and T2 operators be finite.
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actions depend only on the observable state (y, q). Thus, continuation value W̌ depends on
unobserved states, but actions do not. To retain the dependence of the continuation value
on z, (21) refrains from using the T2 transformation when up-dating continuation values.
The fixed point of (21)-(22) is the value function for an infinite horizon problem. For the
finite horizon counterpart, we begin with a terminal value function and view the right side
of (21) as mapping next period’s value function into the current period value function.

5.2 Value function depends on (y, q)

To focus attention on misspecifications of the conditional distribution κ(s∗|y, z, a), we want
the minimizing player’s value function to depend only on the reduced information encoded
in (y, q). For this purpose, we use the following counterpart to recursion (20):

W (y, q) = max
a

T2

(
U(x, a) + T1 [βW ∗(y∗, q∗)|θ1] (x, q, a)

∣∣∣θ2

)
(y, q, a) (23)

for θ1 ≥ θ1 and θ2 ≥ θ2(θ1). Although z∗ is excluded from the value function W ∗, z
may help predict the observable state y∗ or it may enter directly into the current period
reward function, so application of the operator T1 creates a value function that depends on
(x, q, a), including the hidden state z. Since the malevolent agent observes z, he can distort
the dynamics for the observable state conditioned on z via the T1 operator. Subsequent
application of T2 gives a value function that depends on (y, q, a), but not z; T2 distorts the
hidden state distribution. The decision rule sets action a as a function of (y, q). The fixed
point of Bellman equation (23) gives the value function for an infinite horizon problem. For
finite horizon problems, we iterate on the mapping defined by the right side of (23), beginning
with a known terminal value function. Recursion (23) extends the recursive formulation of
risk-sensitivity with discounting advocated by Hansen and Sargent (1995) to situations with
a hidden state.

5.3 Advantages of our specification

We take the distribution qt(z) as a state variable and explore misspecifications of it. An
alternative way to describe a decision maker’s fears of misspecification would be to perturb
the evolution equation for the hidden state (1) directly. Doing that would complicate the
problem substantially by requiring us to solve a filtering problem for each perturbation of
(1). Our formulation avoids multiple filtering problems by solving one and only one filtering
problem under the approximating model. The transition law πq for q(z) in (6) becomes a
component of the approximating model.

When θ1 = +∞ but θ2 < +∞, the decision maker trusts the signal dynamics κ(s∗|y, z, a)
but distrusts q(z). When θ2 = +∞ but θ1 < +∞, the situation is reversed. The two-θ
formulation thus allows the decision maker to distinguish his suspicions of these two aspects
of the model. Before saying more about the two-θ formulation, the next section explores
some ramifications of the special case in which θ1 = θ2 and how it compares to the single θ
specification that prevails in versions of our decision problem under commitment.
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6 The θ1 = θ2 case

For the purpose of studying intertemporal consistency and other features of the associated
worst case models, it is interesting to compare the outcomes of recursions (21)-(22) or (23)
with the decision rule and worst case model described by Hansen and Sargent (2005) in
which at time 0 the maximizing and minimizing players in a zero-sum game commit to
a sequence of decision rules and a single worst case model, respectively. Because there is
a single robustness parameter θ in this “commitment model”, it is natural to make this
comparison for the special case in which θ1 = θ2.

6.1 A composite operator T2 ◦ T1 when θ1 = θ2

When a common value of θ appears in the two operators, the sequential application T2T1

can be replaced by a single operator:

T2 ◦ T1
[
U(x, a) + βW (y∗, q∗)

]
(y, q, a)

= −θ log

∫
exp

(
−U(x, a) + βW [π(s∗, y, q, a)]

θ

)
κ(s∗|y, z, a)q(z)dη(s∗)dλ(z).

This operator is the outcome of a portmanteau minimization problem where the minimization
is over a single relative density ϕ(s∗, z) ≥ 0 that satisfies5

∫
ϕ(s∗, z)κ(s∗|y, z, a)q(z)dη(s∗)dλ(z) = 1,

where ϕ is related to φ and ψ defined in (13) and (16) by

ϕ(s∗, z) =

∫
φ(z∗, s∗|z)ψ(z)q∗(z∗)dλ(z∗),

where this notation emphasizes that the choice of φ can depend on z. The entropy measure
for ϕ is ∫

[log ϕ(s∗, z)]ϕ(s∗, z)κ(s∗|y, z, a)q(z)dη(s∗)dλ(z),

and the minimizing composite distortion ϕ to the joint density of (s∗, z) given St is

ϕt(s
∗, z) =

exp
(
−U(yt,z,at)+βW [π(s∗,yt,qt,at)]

θ

)

E
[
exp

(
−U(yt,z,at)+βW [π(st+1,yt,qt,at)]

θ

)
|St

] . (24)

6.2 Special case U(x, a) = Û(y, a)

When U(x, a) = Û(y, a), the current period utility drops out of formula (24) for the worst-
case distortion to the distribution, and it suffices to integrate with respect to the distribution

5For comparison, recall that applying T1 and T2 separately amounts to minimizing over separate relative
densities φ and ψ.
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ς that we constructed in (5) by averaging κ over the distribution of the hidden state. Proba-
bilities of future signals compounded by the hidden state are simply averaged out using the
state density under the benchmark model, a reduction of a compound lottery that would
not be possible if different values of θ were to occur in the two operators.

To understand these claims, we deduce a useful representation of εt(mt+1, ht):

min
mt+1∈Mt,ht∈Ht

E
[
htε

1
t (mt+1)|St

]
+ ε2

t (ht)

subject to E (mt+1ht|St+1) = gt+1, where E (gt+1|St) = 1, a constraint that we impose
because our aim is to distort expectations of St+1-measurable random variables given current
information St. The minimizer is

m∗
t+1 =

{ gt+1

E(gt+1|Xt)
if E (gt+1|Xt) > 0

0 if E (gt+1|Xt) = 0

and h∗t = E (gt+1|Xt) . Therefore, m∗
t+1h

∗
t = gt+1 and the minimized value of the objective is

εt(m
∗
t+1, h

∗
t ) = E [gt+1 log(gt+1)|St] ≡ ε̃t(gt+1). (25)

Thus, in distorting continuation values that are St-measurable, it suffices to use entropy
measure ε̃t defined in (25) and to explore distortions to the conditional probability of St+1-
measurable events given St. This is precisely what the gt+1 random variable accomplishes.
The gt+1 associated with T2T1 in the special case in which U(x, a) = Û(y, a) implies a
distortion φt in equation (14) that depends on s∗ alone. The iterated operator T2T1 can be
regarded as a single risk-sensitivity operator analogous to T1:

T2T1
[
Û(y, a) + βW ∗(y∗, q∗)

]
(y, q, a) (26)

= Û(y, a)− θ log

∫
exp

(
−βW ∗(π(s∗, y, q, a))

θ

)
ς(s∗|y, q, a)dη(s∗).

In section A.4 of appendix A, we describe how to compute this operator for linear quadratic
problems.

6.3 Comparison with outcomes under commitment

Among the outcomes of iterations on the recursions (21)-(22) or (23) of section 5 are time-
invariant functions that map (yt, qt) into a pair of nonnegative random variables (mt+1, ht).
For the moment, ignore the distortion ht and focus exclusively on mt+1. Through (9), the
time-invariant rule for mt+1 can be used to a construct a martingale {Mt : t ≥ 0}. This
martingale implies a limiting probability measure on X∞ = ∨t≥0Xt via the Kolmogorov
extension theorem. The implied probability measure on X∞ will typically not be absolutely
continuous over the entire collection of limiting events in X∞. Although the martingale
converges almost surely by virtue of Doob’s martingale convergence theorem, in the absence
of this absolute continuity, the limiting random variable will not have unit expectation. This
means that concerns about robustness persist in a way that they don’t in a class of robust
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control problems under commitment that are studied, for example, by Whittle (1990) and
Hansen and Sargent (2005).6

6.3.1 A problem under commitment and absolute continuity

Let M∞ be a nonnegative random variable that is measurable with respect to X∞, with
E(M∞|S0) = 1. For a given action process {at : t ≥ 0} adapted to {Xt : t ≥ 0}, let W∞

.
=∑∞

t=0 βtU(xt, at) subject to (1)-(2). Suppose that θ > 0 is such that E
[
exp

(−1
θ
W∞

) |S0

]
<

∞. Then

R1
∞(W∞)

.
= min

M∞≥0,E(M∞|S0)=1
E(M∞W∞|S0) + θE(M∞ log M∞|S0) (28)

= −θ log E

[
exp

(
−1

θ
W∞

)
|S0

]
. (29)

This static problem has minimizer M∗
∞ =

exp(− 1
θ
W∞)

E[exp(− 1
θ
W∞)|S0]

that implies a martingale M∗
t =

E (M∗
∞|Xt) .7 Control theory interprets (29) as a risk-sensitive adjustment of the criterion

W∞ (e.g., see Whittle (1990)) and gets decisions that are robust to misspecifications by
solving

max
at∈At,t≥0

−θ log E

[
exp

(
−1

θ
W∞

) ∣∣∣S0

]
.

In a closely related setting, Whittle (1990) obtained time-varying decision rules for at that
converge to ones that ignore concerns about robustness (i.e., those computed with θ = +∞).

The dissipation of concerns about robustness in this commitment problem is attributable
to setting β ∈ (0, 1) while using the undiscounted form of entropy in the criterion function
(28). Those features lead to the existence of a well defined limiting random variable M∞
with expectation unity (conditioned on S0), which means that tail events that are assigned
probability zero under the approximating model are also assigned probability zero under the
distorted model.8

6The product decomposition (9) of Mt implies an additive decomposition of entropy:

E (Mt log Mt|S0)− E (M0 log M0|S0) =
t−1∑

j=0

E [MjE (mj+1 log mj+1|Xj) |S0] . (27)

Setting E(M0|S0) = 1 means that we distort probabilities conditioned on S0.
7See Dupuis and Ellis (1997). While robust control problems are often formulated as deterministic

problems, here we follow Petersen, James, and Dupuis (2000) by studying a stochastic version with a relative
entropy penalty.

8Because all terms on the right side of (27) are nonnegative, the sequence

t−1∑

j=0

Mj−1E (mj log mj |Xj−1)

is increasing. Therefore, it has a limit that might be +∞ with positive probability. Thus,
limt→∞E(Mt log Mt|S0) converges. Hansen and Sargent (2005) show that when this limit is finite almost
surely, the martingale sequence {Mt : t ≥ 0} converges in the sense that limt→∞E ( |Mt −M∞| |S0) = 0,
where M∞ is measurable with respect to X∞ .=

∨∞
t=0 Xt. The limiting random variable M∞ can be used to
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6.3.2 Persistence of robustness concerns without commitment

In our recursive formulations (21)-(22) and (23) of section 5, the failure of the worst-case
nonnegative martingale {Mt : t ≥ 0} to converge to a limit with expectation one (conditioned
on S0) implies that the distorted probability distribution on X∞ is not absolutely continu-
ous with respect to the probability distribution associated with the approximating model.
This feature sustains enduring concerns about robustness and permits time-invariant robust
decision rules, in contrast to the outcomes with discounting in Whittle (1990) and Hansen
and Sargent (2005), for example. For settings with a fully observed state vector, Hansen
and Sargent (1995) and Hansen, Sargent, Turmuhambetova, and Williams (2004) formulated
recursive problems that yielded time-invariant decision rules and enduring concerns about
robustness by appropriately discounting entropy. The present paper extends these recursive
formulations to problems with unobserved states.

6.4 Dynamic inconsistency of worst-case probabilities about hid-
den states

This section links robust control theory to recursive models of uncertainty aversion by ex-
ploring aspects of the worst case probability models that emerge from the recursions defined
in section 5. Except in a special case that we describe in subsection 6.6, those recursions
achieve dynamic consistency of decisions by sacrificing dynamic consistency of beliefs about
hidden state variables. We briefly explore how this happens. Until we get to the special case
analyzed in subsection 6.6, the arguments of this subsection will also apply to the general
case in which θ1 6= θ2.

Problems (11) and (15) that define R1
t and R2

t , respectively, imply worst-case probability
distributions that we express as a pair of Radon-Nikodym derivatives (m∗

t+1, h
∗
t ). The positive

random variable m∗
t+1 distorts the distribution of Xt+1 conditioned on Xt and the positive

random variable h∗t distorts the distribution of events in Xt conditioned on St. Are these
probability distortions consistent with next period’s distortion h∗t+1? Not necessarily, because
we have not imposed the pertinent consistency condition on these beliefs.

6.5 A belief consistency condition

To deduce a sufficient condition for consistency, recall that the implied {M∗
t+1 : t ≥ 0} should

be a martingale. Decompose M∗
t+1 in two ways:

M∗
t+1 = m∗

t+1h
∗
t G

∗
t = h∗t+1G

∗
t+1.

These equations involve G∗
t+1 and G∗

t , both of which we have ignored in the recursive for-
mulation of section 5. Taking expectations of m∗

t+1h
∗
t G

∗
t = ht+1G

∗
t+1 conditioned on St+1

yields
G∗

t E
(
m∗

t+1h
∗
t |St+1

)
= G∗

t+1.

Thus,
g∗t+1 = E

(
m∗

t+1h
∗
t |St+1

)

construct a probability measure on X∞ that is absolutely continuous with respect to the probability measure
associated with the approximating model. Moreover, Mt = E(M∞|Xt).
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is the implied multiplicative increment for the candidate martingale {G∗
t : t ≥ 0} adapted

to the signal filtration. Moreover,

Claim 6.1. A sufficient condition for the distorted beliefs to be consistent is that the process
{h∗t : t ≥ 0} should satisfy:

h∗t+1 =

{
m∗

t+1h∗t
E(m∗

t+1h∗t |St+1)
if E

(
m∗

t+1h
∗
t |St+1

)
> 0

1 if E
(
m∗

t+1h
∗
t |St+1

)
= 0.

(30)

This condition is necessary if G∗
t+1 > 0.9

The robust control problem under commitment analyzed by Hansen and Sargent (2005)
satisfies condition (30) by construction: at time 0 a single minimizing player chooses a pair
(m∗

t+1, h
∗
t ) that implies next period’s h∗t+1. However, in the recursive games defined in the

recursions (21)-(22) and (23) in section 5, the date t minimizing agent does not have to
respect this constraint. A specification of h∗t+1 gives one distortion of the distribution of the
hidden state (conditioned on St+1) and the pair (m∗

t+1, h
∗
t ) gives another. We do not require

that these agree, and, in particular, do not require that the probabilities of events in Xt be
distorted in the same ways by the date t determined worst-case distribution (conditioned on
St+1) and the date t + 1 worst-case distribution (conditioned on St+1).

A conflict can arise between these worst-case distributions because choosing an action is
naturally forward-looking, while estimation of z is backward looking. Dynamic inconsistency Reason

for
inconsis-
tency

of any kind is a symptom of conflicts among the interests of different decision makers, and
that is the case here. The two-player games that define the evaluation of future prospects
(T1) and estimation of the current position of the system (T2) embody different orientations
– T1 looking to the future, T2 focusing on an historical record of signals.

The inconsistency of the worst-case beliefs pertains only to the decision maker’s opinions
about the hidden state. If we ignore hidden states and focus on signals, we can assem-
ble a consistent distorted signal distribution by constructing g∗t+1 = E

(
m∗

t+1h
∗
t |St+1

)
and

noting that E
(
g∗t+1|St

)
= 1, so that g∗t+1 is the implied one-period distortion in the signal

distribution. We can construct a distorted probability distribution over events in St+1 by
using

G∗
t+1 =

t+1∏
j=1

g∗j . (31)

Under this interpretation, the pair (m∗
t+1, h

∗
t ) is only a device to construct g∗t+1. When the

objective function U does not depend directly on the hidden state vector z, as is true in many
economic problems, the consistent set of distorted probabilities defined by (31) describes the
events that directly influence decisions.

9This consistency condition arguably could be relaxed for the two player game underlying (23). Although
we allow mt+1 to depend on the signal st+1 and the hidden state zt+1, the minimizing solution associated
with recursions (23) depends only on the signal st+1. Thus we could instead constrain the minimizing agent
in his or her choice of mt+1 and introduce a random variable m̃t+1 that distorts the probability distribution
of zt+1 conditioned on st+1 and Xt. A weaker modified consistency requirement is that

h∗t+1 =
m̃t+1m

∗
t+1h

∗
t

E
(
m̃t+1m∗

t+1h
∗
t |St+1

)

for some m̃t+1 with expectation equal to one conditioned on st+1 and Xt.
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6.6 Discounting and preferences influenced by hidden states are
the source of intertemporal inconsistency

If β = 1 and if U(x, a) does not depend on the hidden state, we can show that the dis-
tortions (mt+1, ht) implied by our recursions satisfy the restriction of Claim 6.1 and so are
temporally consistent. Therefore, in this special case, the recursive games imply the same
decisions and worst case distortions as the game under commitment analyzed by Hansen
and Sargent (2005). For simplicity, suppose that we fix an action process {at : t ≥ 0} and
focus exclusively on the assignment of distorted probabilities. Let {Wt : t ≥ 0} denote the
process of continuation values determined recursively and supported by choices of worst-case
models.

Consider two operators R1
t and R2

t with a common θ. The operator R1
t implies a worst-case

distribution for Xt+1 conditioned on Xt with density proportional to:

m∗
t+1 =

exp
(
−Wt+1

θ

)

E
[
exp

(
−Wt+1

θ

)
|Xt

] .

The operator R2
t implies a worst-case model for the probability of Xt conditioned on St with

density:

h∗t =
E

[
exp

(
−Wt+1

θ

)
|Xt

]

E
[
exp

(
−Wt+1

θ

)
|St

] .

Combining the distortions gives

m∗
t+1h

∗
t =

exp
(
−Wt+1

θ

)

E
[
exp

(
−Wt+1

θ

)
|St

] .

To establish temporal consistency, from Claim 6.1 we must show that

h∗t+1 =
exp

(
−Wt+1

θ

)

E
[
exp

(
−Wt+1

θ

)
|St+1

]

where

h∗t+1
.
=

E
[
exp

(
−Wt+2

θ

)
|Xt

]

E
[
exp

(
−Wt+2

θ

)
|St

] .

This relation is true when β = 1 and U does not depend on the hidden state z. To accom-
modate β = 1, we shift from an infinite horizon problem to a finite horizon problem with a
terminal value function. From value recursion (21) and the representation of R1

t+1 in (11),

exp

(
−Wt+1

θ

)
∝ E

[
exp

(
−Wt+2

θ

)
|Xt+1

]
,
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where the proportionality factor is St+1 measurable. The consistency requirement for h∗t+1

is therefore satisfied.
The preceding argument isolates the role that discounting plays in delivering the time

inconsistency of worst case beliefs over the hidden state. Heuristically, the games defined
by the recursions (21)-(22) or (23) give intertemporal inconsistency when β < 1 because
the decision maker discounts both current period returns and current period increments
to entropy; while in the commitment problem analyzed in Hansen and Sargent (2005), the
decision maker discounts current period returns but not current period increments to entropy.

7 Implied worst case model of signal distortion

The martingale (relative to St) increment gt+1 = E (mt+1ht|St) distorts the distribution of
the date t + 1 signal given information St generated by current and past signals. For the
following three reasons, it is interesting to construct an implied g∗t+1 from the m∗

t+1 associated
with R1

t or T1 and the h∗t associated with R2
t or T2.

First, actions depend only on signal histories. Hidden states are used either to depict
the underlying uncertainty or to help represent preferences. However, agents cannot take
actions contingent on these hidden states, only on the signal histories.

Second, in decentralized economies, asset prices can be characterized by stochastic dis-
count factors that equal the intertemporal marginal rates of substitution of unconstrained
investors and that depend on the distorted probabilities that investors use to value contin-
gent claims. Since contingent claims to consumption can depend only on signal histories
(and not on hidden states), the distortion to the signal distribution is the twist to asset
pricing that is contributed by investors’ concerns about model misspecification. In partic-
ular, under the approximating model, gt+1

E[gt+1|St]
becomes a multiplicative adjustment to the

ordinary stochastic discount factor for a representative agent (e.g., see Hansen, Sargent, and
Tallarini (1999)). It follows that the temporal inconsistency of worst case beliefs discussed
in section 6.4 does not impede appealing to standard results on the recursive structure of
asset pricing in settings with complete markets.10

Third, Anderson, Hansen, and Sargent (2003) found it useful to characterize detection
probabilities using relative entropy and an alternative measure of entropy due to Chernoff
(1952). Chernoff (1952) showed how detection error probabilities for competing models give
a way to measure model discrepancy. Models are close when they are hard to distinguish
with historical data. Because signal histories contain all data that are available to a decision
maker, the measured entropy from distorting the signal distribution is pertinent for statistical
discrimination. These lead us to measure either E

(
g∗t+1 log g∗t+1|St

)
or a Chernoff counterpart

to it, as in Anderson, Hansen, and Sargent (2003).11

Our characterizations of worst case models have conditioned implicitly on the current

10See Johnsen and Donaldson (1985).
11Anderson, Hansen, and Sargent (2003) show a close connection between the market price of risk and

a bound on the error probability for a statistical test for discriminating the approximating model from the
worst case model.
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period action. The implied distortion in the signal density is:

∫
φt(z

∗, s∗)τ(z∗, s∗|yt, z, , at)ψt(z)qt(z)dλ(z∗)dλ(z)

where φt is given by formula (14) and ψt is given by (17). When a Bellman-Isaacs condition
is satisfied,12 we can substitute for the control law and construct a conditional worst case
conditional probability density for st+1 as a function of the Markov state (yt, qt). The process
{(yt+1, qt+1) : t ≥ 0} is Markov under the worst case distribution for the signal evolution.
The density qt remains a component of the state vector, even though it is not the worst case
density for zt.

8 A recursive multiple priors model

To attain a notion of dynamic consistency when the decision maker has multiple models,
Epstein and Schneider (2003a) and Epstein and Schneider (2003b) advocate a formulation
that, when translated into our setting, implies time varying values for θ1 and θ2. Epstein
and Schneider advocate sequential constraints on sets of transition probabilities for signal
distributions. To implement their proposal in our context, we can replace our fixed penalty
parameters θ1, θ2 with two sequences of constraints on relative entropy.

In particular, suppose that
ε1

t (mt+1) ≤ κ1
t (32)

where κ1
t is a positive random variable in Xt, and

ε2
t (ht) ≤ κ2

t (33)

where κ2
t is a positive random variable in St. If these constraints bind, the worst-case

probability distributions are again exponentially tilted. We can take θ1
t to be the Xt-

measurable Lagrange Multiplier on constraint (32), where m∗
t+1 ∝ exp

(
−Wt+1

θ1
t

)
and θ1

t

solves ε1
t (m

∗
t+1) = κ1

t . The counterpart to R1
t (Wt+1) is

C1
t (Wt+1)

.
=

E
[
Wt+1 exp

(
−Wt+1

θ1
t

)
|Xt

]

E
[
exp

(
−Wt+1

θ1
t

)
|Xt

] .

Similarly, let θ2
t be the St-measurable Lagrange multiplier on constraint (33), where h∗t ∝

exp
(
−Ŵt

θ2
t

)
, and θ2

t solves ε2
t (h

∗
t ) = κ2

t . The counterpart to R2
t (Ŵt) is

C2
t (Ŵt)

.
=

E
[
Ŵt exp

(
−Ŵt

θ2
t

)
|St

]

E
[
exp

(
−Ŵt

θ2
t

)
|St

] .

These constraint problems lead to natural counterparts to the operators T1 and T2.

12For example, see Hansen, Sargent, Turmuhambetova, and Williams (2004) or Hansen and Sargent (2004).
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Constraint formulations provide a justification for making θ1 and θ2 state- or time-
dependent. Values of θ1 and θ2 would coincide if the two constraints were replaced by a
single entropy constraint E [htε

1
t (mt+1)|St] + ε2

t (ht) ≤ κt, where κt is St-measurable. Lin,
Pan, and Wang (2004) and Maenhout (2004) give other reasons for making the robustness
penalty parameters state dependent.13 With such state dependence, it can still be useful to
disentangle misspecifications of the state dynamics and the distribution of the hidden state
given current information. Using separate values for θ1 and θ2 achieves that.

9 Risk sensitivity and compound lotteries

Jacobson (1973) pointed out a link between a concern about robustness, as represented in
the first line of (11), and risk sensitivity, as conveyed in the second line of (11). That link has
been exploited in the control theory literature, for example, by Whittle (1990). Our desire
to separate the concern for misspecifying state dynamics from that for misspecifying the
distribution of the state inspires two risk-sensitivity operators. Although our primary interest
is in representing ways that the decision maker can respond to model misspecification, our
two operators can also be interpreted in terms of enhanced risk aversion.14

9.1 Risk-sensitive interpretation of R1
t

The R1
t operator has an alternative interpretation as a risk-sensitive adjustment to contin-

uation values that expresses how a decision maker who has no concern about robustness
prefers to adjust continuation values for their risk. The literature on risk-sensitive control
uses adjustments of the same log E exp form that emerge from an entropy penalty and a
concern for robustness, as asserted in (11). There are risk adjustments that are more general
than those of the log E exp form associated with risk-sensitivity. In particular, we could
follow Kreps and Porteus (1978) and Epstein and Zin (1989) in relaxing the assumption that
a temporal compound lottery can be reduced to a simple lottery without regard to how the
uncertainty is resolved, which would lead us to adjust continuation values by

R̃1
t (Wt+1) = φ−1 (E [φ(Wt+1)|Xt])

for some concave increasing function φ. The risk-sensitive case is the special one in which
φ is an exponential function. We focus on the special risk-sensitivity log E exp adjustment
because it allows us to use entropy to interpret the resulting adjustment as a way of inducing
robust decision rules.

9.2 R2
t and the reduction of compound lotteries

While (17) shows that the operator R2
t assigns a worst-case probability distribution, another

interpretation along the lines of Segal (1990), Klibanoff, Marinacci, and Mukerji (2003), and

13These authors consider problems without hidden states, but their motivation for state dependence would
carry over to decision problems with hidden states.

14Using detection probabilities, Anderson, Hansen, and Sargent (2003) describe senses in which the risk-
sensitivity and robustness interpretations are and are not observationally equivalent.
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Ergin and Gul (2004) is available. This operator adjusts for state risk differently than does
the usual Bayesian approach of model averaging. Specifically, we can regard the transforma-
tion R2

t as a version of what Klibanoff, Marinacci, and Mukerji (2003) call constant ambiguity
aversion. More generally, we could use

R̃2
t (Ŵt) = ψ−1E

[
ψ(Ŵt)|St

]

for some concave increasing function ψ. Again, we use the particular ‘log E exp’ adjustment
because of its explicit link to entropy-based robustness.

10 Linear quadratic problems

For a class of problems in which U is quadratic and the transition laws (1), (3), (2) are
linear, this section describes how to use deterministic linear quadratic control problems to
compute T1, T2, and T2 ◦ T1. We consign details to appendix A. We begin with a remark
that allows us to simplify the calculations by exploiting a type of certainty equivalence.

10.1 A useful form of certainty equivalence

We display the key idea in the following pair of problems that allow us easily to compute
the T1 operator. Problem 10.1 is a deterministic one-period control problem that recovers
the objects needed to compute the T1 operator defined in problem 10.2.

Problem 10.1. Consider a quadratic value function V (x) = −1
2
x′Ωx − ω, where Ω is a

positive definite matrix. Consider the control problem

min
v

V (x∗) +
θ

2
|v|2

subject to a linear transition function x∗ = Ax + Cv. If θ is large enough that I − θ−1C ′ΩC
is positive definite, the problem is well posed and has solution

v = Kx (34)

K = [θI − C ′ΩC]−1C ′ΩA. (35)

The following problem uses (34) and (35) to compute the T1 operator:

Problem 10.2. Consider the same value function V (x) = −1
2
x′Ωx− ω as in problem 10.1,

but now let the transition law be
x∗ = Ax + Cw∗

where w∗ ∼ N (0, I). Consider the problem associated with the T1 operator:

min
m∗ E[m∗V (x∗) + θm∗ log m∗].
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The minimizer is

m∗ ∝ exp

(−V (x∗)
θ

)

= exp

[
−1

2
(w∗ − v)′Σ−1(w∗ − v) +

1

2
w∗ · w∗ − 1

2
log det Σ

]

where v is given by (34)-(35) from problem 10.1, Σ = (I − θ−1C ′ΩC)−1, and the entropy of
m∗ is

Em∗ log m∗ =
1

2

[
|v|2 + trace(Σ− I)− log det Σ

]
.

Thus, we can compute T1 by solving the deterministic problem 10.1. We can also com-
pute the T2 and T2 ◦ T1 operators by solving appropriate deterministic control problems.
In appendix A, we exploit certainty equivalence to compute these operators for the linear
quadratic problem that we describe next.

10.2 The linear quadratic problem

This section specializes the general setup of section 2 by specifying a quadratic return func-
tion and a linear transition law. The return function or one period utility function is

U(xt, at) = −1

2

[
at
′ xt

′]
[
Q P
P ′ R

] [
at

xt

]
.

The transition laws are the following specializations of (1), (2), and (3):

yt+1 = Πsst+1 + Πyyt + Πaat

zt+1 = A21yt + A22zt + B2at + C2wt+1

st+1 = D1yt + D2zt + Hat + Gwt+1 (36)

where wt+1 ∼ N (0, I) is an i.i.d. Gaussian vector process. Substituting from the evolution
equation for the signal (36), we obtain:

yt+1 = (ΠsD1 + Πy)yt + ΠsD2zt + (ΠsH + Πa)at + ΠsGwt+1,

which gives the y-rows in the following state-space system:

xt+1 = Axt + Bat + Cwt+1

st+1 = Dxt + Hat + Gwt+1, (37)

where A11
.
= ΠsD1 + Πy, A12

.
= ΠsD2, B1

.
= ΠsH + Πa and C1

.
= ΠsG.

Applying the Kalman filter to model (37) gives the following counterpart to (2), (4),
κ(s∗|y, z, a), and (6):

x∗ = Ax + Ba + Cw∗ (38)

ž∗ = A21y + A22ž + B2a + K2(∆)(s∗ − š∗) (39)

∆∗ = A22∆A22
′ −K2(∆) (A22∆D2

′ + C2G
′)′ + C2C2

′ (40)
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where w∗ is a standard normal random vector, K2(∆) is the Kalman gain

K2(∆) = (A22∆D2
′ + C2G

′)(D2∆D2
′ + GG′)−1,

the innovation s∗ − š∗ = D2(z − ž) + Gw∗, and š∗ is the expectation of s∗ conditioned
on y0 and the history of the signal. Equation (38) is the counterpart of (2), (4), while
equations (39)-(40) form the counterpart to the law of motion for (sufficient statistics for)
the posterior, q∗ = πq(s

∗, y, q, a). Under the approximating model, the hidden state z is
a normally distributed random vector with mean ž and covariance matrix ∆. Equations
(39) and describe the evolutions of the mean and covariance matrix of the hidden state,
respectively.

10.3 Differences from situation under commitment

By not imposing distortions to ž and ∆ on the right side of (39), the decision maker disregards
prior distortions to the distribution of z. By way of contrast, in the commitment problem
analyzed in Hansen and Sargent (2005), distortions to ž and ∆ are present that reflect
how past states and actions altered the worst case probability distribution for z.15 Unlike
the setting with commitment, in the present setup without commitment, (ž, ∆) from the
ordinary Kalman filter are state variables, just as in the standard linear quadratic control
problem without a concern for robustness.

10.4 Perturbed models

The decision maker explores perturbations to the conditional distributions of w∗ and z.
Letting the altered distribution of w∗ depend on the hidden state z allows for misspecification
of the hidden state dynamics. Directly perturbing the conditional distribution of z is a
convenient way to explore robustness to the filtered estimate of the hidden state associated
with the approximating model. We perturb the distribution of w∗ by applying the T1

operator and the distribution of z by applying the T2 operator. Section A.2 of appendix A
exploits the certainty equivalence ideas conveyed in problem 10.1 to compute the T2 ◦T1 and
T1 operators for the recursions (21)-(22). Section A.3 describes how to compute the T2 ◦T1

operator of section 4 for formulating the game defined by the recursions (23) of section 5.
The games in sections A.2 and A.3 allow θ1 6= θ2. Section A.4 describes how to compute the
composite operator (26) of section 6.2. The associated game requires that θ1 = θ2.

11 Concluding remarks

For a finite θ1, the operator T1 captures the decision maker’s fear that the state and signal
dynamics conditioned on both observed and hidden components of the state are misspecified.
For a finite θ2, the operator T2 captures the decision maker’s fear that the distribution of the
hidden state conditioned on the history of signals is misspecified. Using different values of θ1

and θ2 in the operators T1 and T2 gives us the freedom to focus distrust on different aspects

15Hansen and Sargent (2005) also analyze a linear quadratic problem under commitment.
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of the decision maker’s model. That will be especially useful extensions of our framework to
continuous time settings.

Specifications with θ1 = θ2 emerge when we follow Hansen and Sargent (2005) by adopting
a timing protocol that requires the malevolent agent to commit to a worst case model {Mt+1}
once and for all at time 0. Hansen and Sargent (2005) give a recursive representation for the
solution of the commitment problem in terms of R1

t and R2
t operators with a common but

time-varying multiplier equal to θ
βt . The presence of βt causes the decision maker’s concerns

about misspecification to vanish for tail events. Only for the undiscounted case does the
zero-sum two player game with commitment in Hansen and Sargent (2005) give identical
outcomes to the recursive games in this paper. As noted in section 6.6, when β < 1, the gap
between the outcomes with and without commitment is the source of time-inconsistency of
the worst case beliefs about the hidden state.

Much of the control theory literature (e.g., Whittle (1990) and Basar and Bernhard
(1995)) uses the commitment timing protocol. Hansen and Sargent (2005) show how to
represent parts of that literature in terms of our formulation of model perturbations as
martingales.
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A Computations for LQ problems

A.1 Three games

We use the certainty equivalence insight from subsection 10.1 to solve three games. The key
step in each is to formulate an appropriate linear quadratic discounted dynamic programming
problem. Game I enables us to compute the T2 ◦ T1 and the T1 operators required by
recursions (21)-(22). Game II formulates a linear regulator that we use to compute the
recursions in formulation (23). Game III formulates a recursion for the operator (26) that
is pertinent when θ1 = θ2.

A.2 Game I

This subsection shows how to apply the certainty equivalent insight from section 10.1 to com-
pute the recursions (21)-(22) (i.e., “maximize after applying T2 ◦T1, but update by applying
T1”) for the linear quadratic case. In game I, a decision maker chooses a after first applying
T2 ◦T1 to the sum of the current return function and a discounted continuation value. This
makes a depend on y and the estimate of the hidden state ž, but not on z. However, by
updating the value function using T1 only, we make the continuation value function depend
on the hidden state z. We adopt the convention that we discount the continuation value
function and then add to it the current return function and the undiscounted penalties on
the two entropies.

Rewrite evolution equation (38) - (39) as




y∗

z∗

ž∗


 =




A11 A12 0
A21 A22 0
A21 K2(∆)D2 A22 −K2(∆)D2







y
z
ž


 +




B1

B2

B2


 a +




C1

C2

K2(∆)G


 w∗

=




A11 A12

A21 A22

A21 A22




[
y
ž

]
+




B1 A12

B2 A22

B2 K2(∆)D2




[
a

z − ž

]
+




C1

C2

K2(∆)G


 w∗. (41)

Under the approximating model, w∗ is a multivariate standard normal random vector and
z − ž is distributed as a normal random vector with mean zero and covariance matrix ∆.

A.2.1 Computing T1 ◦ T2

The logic expressed in (11) and (15) that define R1
t and R2

t shows that application of T2◦T1 to
a function amounts to minimizing another function with respect to the distributions of z and
w∗. We shall exploit this logic and calculate T2 ◦T1 by solving the corresponding minimiza-
tion problem. In the present linear-quadratic-Gaussian case, we can exploit the certainty
equivalence property from section 10.1 and minimize first over the conditional means of
these two distributions, then construct the minimizing conditional covariances later, thereby
exploiting the idea in problem 10.2. Because a Bellman-Isaacs condition is satisfied, the
linear-quadratic-Gaussian structure allows us simultaneously to perform the maximization
over a and the minimization over the distorted means of z and w∗ associated with the T2◦T1

operator. We do this by forming a zero-sum two-player game that simultaneously chooses
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the decision a, a distortion u to the mean of z − ž, and a distortion ṽ to a conditional mean
of w∗, all as functions of y, ž. Here ṽ can be interpreted as the mean of v conditioned on y, ž.
(In section A.2.2, we shall compute a vector v that is the distorted mean of w∗ conditioned
on y, ž, z.)16

Thus, we consider the transition equation:



y∗

z∗

ž∗


 =




A11 A12

A21 A22

A21 A22




[
y
ž

]
+




B1 A12

B2 A22

B2 K2(∆)D2




[
a
u

]
+




C1

C2

K2(∆)G


 ṽ

Write the single period objective as:

−1

2

[
a′ y′ z′

]



Q P1 P2

P1
′ R11 R12

P2
′ R21 R22







a
y
z


 +

θ1

2
|ṽ|2 +

θ2

2
u′∆−1u = −1

2

[
a′ u′ ṽ′ y′ ž′

]
Π(∆)




a
u
ṽ
y
ž




where

Π(∆) =




Q P2 0 P1 P2

P2
′ R22 − θ2∆

−1 0 R21 R22

0 0 −θ1I 0 0
P1

′ R12 0 R11 R12

P2
′ R22 0 R21 R22




. (42)

Construct a composite action vector:

ã =




a
u
ṽ


 (43)

and composite state vector

x̃ =

[
y
ž

]
. (44)

Express (41) as 


y∗

z∗

ž∗


 = Ãx̃ + B̃(∆)ã,

and the single period objective as

−1

2

[
ã′ x̃′

] [
Π11(∆) Π12

Π21 Π22

] [
ã
x̃

]
,

and write the discounted next period value function as

βV ∗(y∗, z∗, ž∗, ∆∗) = −β

2

[
y∗′ z∗′ ž∗′

]
Ω∗(∆∗)




y∗

z∗

ž∗


− βω(∆∗).

16Note that T1 makes v depend on y, z, ž, and that application of T2 then conditions down to y, ž, in effect
recovering the mean of v conditional on (y, ž).
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Then pose the problem17

max
a

min
u,ṽ

{
−1

2

[
ã′ x̃′

] [
Π11(∆) Π12

Π21 Π22

] [
ã
x̃

]
+ βV ∗(y∗, z∗, ž∗, ∆∗)

}
. (45)

The composite decision rule is

ã = −
[
Π11(∆) + βB̃(∆)′Ω∗(∆∗)B̃(∆)

]−1 [
Π12 + βB̃(∆)′Ω∗(∆∗)Ã

]
x̃.

Using the law of motion from the Kalman filter

∆∗ = A22∆A22
′ −K(∆) (A22∆D2

′ + C2G
′)′ + C2C2

′

to express ∆∗ in terms of ∆, the composite decision rule can be expressed as




a
u
ṽ


 .

= −F̃ (∆)




y
z
ž


 = −




F̃11(∆) 0 F̃13(∆)

F̃21(∆) 0 F̃23(∆)

F̃31(∆) 0 F̃33(∆)







y
z
ž


 , (46)

which looks like the decision rule for an optimal linear regulator problem. The robust
control law for the action is given by the first block in (46). In the second line, we have
added z, which at this stage is a superfluous component of the state vector, so that the
corresponding columns of F̃ (∆) are identically zero; ã is by construction a function of (y, ž).
This superfluous state variable will be useful in section A.2.2 when we compute a continuation
value function that depends on (y, z, ž).

To make the extremization in (45) well posed, we require that θ1, θ2 be large enough to
satisfy the ‘no-breakdown’ condition that

[
θ2∆

−1 −R22 0
0 θ1I

]
− β

[
A12

′ A22
′ D2

′K2(∆)′

C1
′ C2

′ G′K2(∆)′

]
Ω∗(∆∗)




A12 C1

A22 C2

K2(∆)D2 K2(∆)G




is positive definite. Otherwise, the parameter pair (θ1, θ2) is not admissible. This is a
bivariate counterpart to a check for a no-breakdown condition that occurs in robust control
theory. When the no-breakdown condition is violated, the minimizing agent can make the
objective equal to −∞.

A.2.2 T1 and the worst case E[w∗|y, z, ž]

It remains for us to compute the distortion to the mean of w∗ conditional on y, z, ž that
emerges from applying the T1 operator to a continuation value. The T1 operator allows a
minimizing agent to exploit his information advantage over the maximizing agent by let-
ting the mean distortion in w∗ depend on z, the part of the state that is hidden from the
maximizing agent.

17Note here how we discount the continuation value function, then add the current return and the penalized
entropies.
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Taking the control law for a computed in (46) as given, we can compute the mean v of
the worst case w∗ conditional on y, z, ž by using the evolution equation (41):




y∗

z∗

ž∗


 =




A11 A12 0
A21 A22 0
A21 K2(∆)D2 A22 −K2(∆)D2







y
z
ž


−




B1

B2

B2


 F̃1(∆)




y
z
ž


 +




C1

C2

K2(∆)G


 v

= Ā(∆)




y
z
ž


 + C̄(∆)v.

After substituting the decision rule for a from (46), we can write the objective as

−1

2

[
a′ y′ z′

]



Q P1 P2

P1
′ R11 R12

P2
′ R21 R22







a
y
z


 +

θ1

2
|v|2 = −1

2

[
y′ z′ ž′

]
Π̄(∆)




y
z
ž


 +

θ1

2
|v|2

where

Π̄(∆)
.
=




−F̃1(∆)
I 0 0
0 I 0
0 0 I




′ 


Q P1 P2 0
P1

′ R11 R12 0
P2

′ R21 R22 0
0 0 0 0







−F̃1(∆)
I 0 0
0 I 0
0 0 I


 .

Provided that
θ1I − βC̄(∆)′Ω∗(∆∗)C̄(∆) (47)

is positive definite, the control law for v is18

v = β
[
θ1I − βC̄(∆)′Ω∗(∆∗)C̄(∆)

]−1
C̄(∆)′Ω∗(∆∗)Ā




y
z
ž


 , (48)

which, by using (40) to express ∆∗ as a function of ∆, we can express as

v = F̄ (∆)




y
z
ž


 .

The updated value function is

Ω(∆) = Π̄(∆) + βĀ′Ω∗(∆∗)Ā
+β2Ā′Ω∗(∆∗)C̄(∆)

[
θ1I − βC̄(∆)′Ω∗(∆∗)C̄(∆)

]−1
C̄(∆)′Ω∗(∆∗)Ā. (49)

At first sight, these recursions seem difficult because they call for updating the matrix
valued functions Ω for all hypothetical values of the definite matrix ∆. Fortunately, it
suffices to perform these calculations only for a sequence of ∆’s calculated over the horizon
of interest, which is easy. Given a sequence of ∆’s starting from an initial condition, the
Ω’s for the value functions can be computed starting from a terminal value using backward
induction. In particular, we can first compute a sequence of matrices ∆ using forward
induction on (40), then compute a corresponding Ω(∆) sequence using backward induction
on (49). Both forward and backward recursions are Riccati equations.

18If the matrix defined in (47) is not positive definite, then θ1 is below the break-down point.
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A.2.3 Worst case shock distribution

The worst case distribution for w∗ conditioned on (y, z, ž) is normal with mean v given by
(48) and covariance

Σ(∆)
.
=

[
I − β

θ1

C̄ ′Ω∗(∆∗)C̄
]−1

.

A.2.4 Worst case hidden state distribution

The worst case mean of z conditional on (y, ž) is

u = −F̃2(∆)




y
z
ž


 ,

(recall that F̃2 contains zeros in the columns that multiply z), and its covariance matrix is:

Γ(∆)
.
=


∆−1 − 1

θ 2
R22 − 1

θ2

[
0 I 0

]
Ω(∆)




0
I
0






−1

,

provided that this matrix is positive definite. Otherwise, θ2 is below its breakdown point.

A.2.5 Consistency check

The third row of (46) computes the mean ṽ of w∗, conditional on the information set available
to the maximizing agent, namely, (y, ž), but not z. In formula (48), we computed the mean
v of w∗ conditional on the information set of the minimizing agent, namely, (y, z, ž). A
certainty equivalence result asserts that ṽ is the expectation of v conditioned on (y, ž). This
gives us the following consistency check.

One formula for ṽ is computed by using the control law of v and substituting for the
distorted expectation for z:

ṽ = F̄ (∆)




y

ž − F̃21(∆)y − F̃23(∆)ž
ž


 = F̄ (∆)




I 0

−F̃21(∆) I − F̃23(∆)
0 I




[
y
ž

]
.

Using certainty equivalence, we computed ṽ = −F̃3

[
y
ẑ

]
. Taken together, we have the re-

striction

− [
F̃31(∆) F̃33(∆)

]
= F̄ (∆)




I 0

−F̃21(∆) I − F̃23(∆)
0 I


 .
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A.2.6 Worst case signal distribution

In this section, we recursively construct the distribution of signals under the distorted prob-
ability distribution. Recall the signal evolution:

s∗ = Dx + Ha + Gw.

Under the approximating model, the signal next period is normal with mean

š∗ = D1y + D2ž + Ha

and covariance matrix
Υ̌ = D2∆D2

′ + GG′.

The distorted mean of the signal conditioned on the signal history is:

s̄∗ = D1y + D2ž + (D2u + Gṽ) + Ha

which by virtue of the second and third blocks of rows of (46) can be written

s̄∗ = D̄1(∆)y + D̄2(∆)ž + Ha (50)

where

D̄1(∆)
.
= D1 −D2F̃21(∆)−GF̃31(∆)

D̄2(∆)
.
= D2 −D2F̃23(∆)−GF̃33(∆).

The distorted covariance matrix is:

Ῡ = D2Γ(∆)D2
′ + GΣ(∆)G′.

The relative entropy of this distortion conditioned on the reduced information set of the
signal history is

1

2

[
(s̄∗ − š∗)′Υ̌−1(s̄∗ − š∗) + trace(Υ̌−1Ῡ− I)− logdetῩ + logdetΥ̌

]
. (51)

To construct the distorted dynamics for y∗, start from the formula for y∗ from the first
block in (36), namely, y∗ = Πss

∗ + Πyy + Πaa. Substituting for the robust decision rule for
a from the first block of row of (46) and replacing s∗ with with s̄∗+(s∗− s̄∗) from (50) gives

y∗ = [Πyy+ΠsD̄1(∆)−(ΠsH +Πa)F̃11(∆)]y+[ΠsD̄2(∆)−(ΠsH +Πa)F̃13(∆)]ž+Πs(s
∗− s̄∗).

(52)
To complete a recursive representation for y∗ under the worst case distribution, we need

a formula for updating ž∗ under the worst case distribution. Recall the formula for ž∗ under
the approximating model from the Kalman filter (39) or (41):

ž∗ = [A21 −B2F̃11(∆)]y + [A22 −B2F̃13(∆)]ž + K2(∆)(s∗ −D1y −D2ž −Ha)

or
ž∗ = [A21 −B2F̃11(∆)]y + [A22 −B2F̃13(∆)]ž + K2(∆)(s∗ − š∗).
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Using the identity

s∗ − š∗ = (s∗ − s̄∗) + (s̄∗ − š∗)
= (s∗ − s̄∗) +

(
[D̄1(∆)−D1]y + [D̄2(∆)−D2]ž

)

in the above equation gives:

ž∗ =
(
A21 −B2F̃11(∆) + K2(∆)[D̄1(∆)−D1]

)
y

+
(
A22 −B2F̃13(∆) + K2(∆)[D̄2(∆)−D2]

)
ž + K2(∆)(s∗ − s̄∗). (53)

Taken together, (52) and (53) show how to construct ž∗ from the signal history under the
distorted law of motion. The innovation s∗ − s̄∗ under the distorted model is normal with
mean zero and covariance matrix Ῡ.

A.3 Game II

We now turn to the linear quadratic version of a game associated with the recursion (23)
described in section 5.2, in which we update the value function using T2 ◦ T1. We exploit
our certainty equivalence insights from section 10.1. Like Game I, this game allows θ1 6= θ2.
Here we do not need to keep track of the evolution of z∗. Instead it suffices to focus only on
the two equation system:

[
y∗

ž∗

]
=

[
A11 A12

A21 A22

] [
y
ž

]
+

[
A12

K2(∆)D2

]
(z − ž) +

[
B1

B2

]
a +

[
C1

K2(∆)G

]
w∗ (54)

As in Game I, we need to choose the mean distortion u for z − ž, and the mean distortion
v for w, where both means distortions are conditioned on (y, ž).

A.3.1 Computing a, u, and ṽ

We apply the same argument as for Game I, but to a smaller state vector. Thus, we work
with the evolution equation

[
y∗

ž∗

]
=

[
A11 A12

A21 A22

] [
y
ž

]
+

[
A12

K2(∆)D2

]
u +

[
B1

B2

]
a +

[
C1

K2(∆)G2

]
ṽ

or
x̃∗ = Ãx + B̃(∆)ã,

where x̃ and ã are defined in (43) and (44) and x̃∗ is the next period’s value of x̃. The
matrices A and B̃ differ from those in Game I because z∗ is not included in x̃∗.

Partition blocks of the matrix Π(∆) defined in (42) as

[
Π11 Π12

Π21 Π22

]
conformably with ã, x̃,

so that the (1, 1) block pertains to ã, the (2, 2) block to x̃, and so on. Write the discounted
next period value function as

βV (x̃∗) = −β

2
(x̃∗)′Ω∗(∆∗)x̃∗ − βω∗(∆∗).
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Then the composite robust control is:

ã = −
[
Π11(∆) + βB̃(∆)′Ω∗(∆∗)B̃(∆)

]−1 [
Π12 + βB̃(∆)′Ω∗(∆∗)Ã

]
x̃

.
= −




F̃1(∆)

F̃2(∆)

F̃3(∆)


 x̃ (55)

where −F̃1(∆)x̃ is the control law for a, −F̃2(∆)x̃ is the control law for the mean u of the
distorted distribution for z − ž, and −F̃3(∆)x̃ is the control law for ṽ, the mean of the
distorted distribution for w∗ conditional on (y, ž).

For the extremization problem to be well posed, we require that (θ1, θ2) be large enough
that [

θ2∆
−1 −R22 0

0 θ1I

]
− β

[
A12

′ D2
′K2(∆)′

C1
′ G′K2(∆)′

]
Ω(∆∗)

[
A12 C1

K2(∆)D2 K2(∆)G

]
(56)

is positive definite.
The value function recursion is the Riccati equation:

Ω(∆) = Π22 + βÃ(∆)′Ω∗(∆∗)Ã(∆)−
[
Π12 + βB̃(∆)′Ω∗(∆∗)Ã

]′
[
Π11(∆) + βB̃(∆)′Ω∗(∆∗)B̃(∆)

]−1 [
Π12 + βB̃(∆)′Ω∗(∆∗)Ã

]
.

This recursion computes a matrix in the quadratic form that emerges from applying the
composite T2 ◦ T1 operator.

A.3.2 Worst case distribution for w∗ conditional on (y, ž, z)

We now compute the mean v of the distorted distribution for w∗ that emerges from applying
the T1 operator alone to the continuation value. The mean distortion v depends on the
hidden state z, as well as on (y, ž). To prepare the minimization problem that we use to
compute T1, first impose the control law for a in evolution equation (54):

[
y∗

ž∗

]
= Ã

[
y
ž

]
−

[
B1

B2

]
F̃1(∆)

[
y
ž

]
+

[
A12

K2(∆)D2

]
(z − ž) +

[
C1

K2(∆)G

]
w∗

= Ā(∆)

[
y
ž

]
+ H̄(∆)(z − ž) + C̄(∆)w∗. (57)

The following certainty-equivalent problem recovers the feedback law for v associated
with T1:

min
v
−β

2

[
y∗′ ž′

]
Ω∗(∆∗)

[
y∗

ž∗

]
+

θ1

2
v′v

where the minimization is subject to (57) with v replacing w∗. The minimizing v, which is
the worst case mean of w∗ conditional on (y, ž, z), is

v = β
[
θ1I − βC̄(∆)′Ω∗(∆∗)C̄(∆)

]−1
C̄(∆)′Ω∗(∆∗)

[
Ā

[
y
ž

]
+ H̄(∆)(z − ž)

]
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= −F̄1(∆)(z − ž)− F̄2(∆)

[
y
ž

]

= −F̄ (∆)




z − ž
y
ž


 .

Conditional on (y, ž, z), the covariance matrix of the worst case w∗ is

Σ(∆) =

[
I − β

θ1

C̄(∆)′Ω∗(∆∗)C̄(∆)

]−1

, (58)

which is positive definite whenever the breakdown condition (56) is met.
Next, we want to compute the matrix Ω̄(∆) in the quadratic form in

[
(z − ž)′ y′ ž′

]
that emerges from applying the T1 operator. First, adjust the objective for the choice of v by
constructing a matrix Π̄(∆), with row and column dimension both equal to the dimension
of

[
(z − ž)′ y′ ž′

]
, that we now redefine as:19

Π̄(∆) =




0 −F̃1(∆)
I 0 0
0 I 0
0 0 I




′ 


Q P2 P1 P2

P2
′ R22 − θ2∆

−1 R21 R22

P1
′ R21 R11 R12

P2
′ R22 R21 R22







0 −F̃1(∆)
I 0 0
0 I 0
0 0 I


 .

The matrix in the quadratic form in
[
(z − ž)′ y′ ž′

]
for the minimized objective function

that emerges from applying the T1 operator is:

Ω̄(∆) = Π̄(∆) + β

[
H̄(∆)′

Ā(∆)′

]
Ω∗(∆∗)

[
H̄(∆) Ā(∆)

]
+

β2

[
H̄(∆)′

Ā(∆)′

]
Ω∗(∆∗)C̄(∆)

[
θ1I − βC̄(Ω)′Ω∗(∆∗)C̄(∆)

]−1
C̄(∆)′Ω∗(∆∗)

[
H̄(∆) Ā(∆)

]
.

A.3.3 Worst case distribution for z − ž: N (u, Γ(∆))

Knowing Ω̄(∆) allows us to deduce the worst case distribution for z− ž conditional on (y, ž)
in another way, thereby establishing a useful cross check on formula (55). Use the partition:

Ω̄(∆) =

[
Ω̄11(∆) Ω̄12(∆)
Ω̄21(∆) Ω̄22(∆)

]

where Ω̄11(∆) has the same dimension as z − ž and Ω̄22(∆) has the same dimension as

[
y
ž

]
.

The covariance matrix of z − ž is

Γ(∆) = −
[
1

θ 2
Ω̄11(∆)

]−1

, (59)

19Note that we are recycling and changing notation from section A.2.
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which is positive definite when (θ1, θ2) satisfies the no-breakdown restriction (56). The mean
of the distorted distribution of z − ž is

u = − [
Ω̄11(∆)

]−1
Ω̄12(∆)

[
y
ž

]
.

Computing u at this stage serves as a consistency check because it was already computed;
it must be true that

F̃2(∆) =
[
Ω̄11(∆)

]−1
Ω̄12(∆).

Given this choice of u, a second consistency check compares the formula for ṽ to the formulas
for v and u; ṽ is a distorted expectation of v conditioned on y and ž. Thus,

F̃3(∆) = F̄ (∆)

[−F̃2(∆)
I

]
.

A.3.4 Worst case signal distribution

The mean of the distorted signal distribution given the signal history for Game II is

s̄∗ =
[
D −D2F̃2(∆)−GF̃3(∆)

]
x̃,

and the distorted covariance matrix is:

Ῡ = D2Γ(∆)D2
′ + GΣ(∆)G′

with the Game II versions of Σ(∆) and Γ(∆) given by (58) and (59), respectively. The
reduced information measure of entropy is given again by formula (51). The worst case
evolution for y∗ and ž∗ expressed in terms of s∗− s̄∗ is constructed as in Game I in formulas
(52) and (53), but using the Game II control law F̃1 for a.

A.4 Game III

Game III applies our certainty equivalence insight from section 10.1 to compute iterations
on (26). This game assumes that θ1 = θ2, presumes that the period objective function does
not depend on the hidden state, and works entirely with the reduced information set y, ž.

The evolution of the baseline model is:
[
y∗

ž∗

]
=

[
A11 A12

A21 A22

] [
y
ž

]
+

[
B1

B2

]
a +

[
C1

K2(∆)G

]
w∗ +

[
A12

K2(∆)D2

]
(z − ž).

Under the benchmark model, the composite shock
[

C1

K2(∆)G

]
w∗ +

[
A12

K2(∆)D2

]
(z − ž) (60)

is a normally distributed random vector with mean zero and covariance matrix

Ξ(∆)
.
=

[
C1 A12

K2(∆)G K2(∆)D2

] [
I 0
0 ∆

] [
C1

′ G′K2(∆)′

A12
′ D2

′K2(∆)′

]
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which can be factored as
Ξ(∆) = C̃(∆)C̃(∆)′

where C̃(∆) has the same number of columns as the rank of Ξ(∆). This factorization can
be accomplished by first computing a spectral decomposition:

Ξ(∆) = U(∆)V (∆)U(∆)′

where U(∆) is an orthonormal matrix and V (∆) is a diagonal matrix with nonnegative
entries on the diagonal. Partition V (∆) by filling out its upper diagonal block with zeros:

V (∆) =

[
0 0
0 V2(∆)

]
.

The diagonal entries of V2(∆) are presumed to be strictly positive, implying that V2(∆) has
the same dimension as the rank of Ξ(∆). Partition U(∆) conformably:

U(∆) =
[
U1(∆) U2(∆)

]
.

The matrix C̃(∆) is then

C̃(∆) = U2(∆) [V2(∆)]1/2 .

Finally, let

C̃(∆) =

[
C̃1(∆)

C̃2(∆)

]

where C̃1(∆) has as many rows as there are entries in y and C̃2(∆) has as many entries as ž.
We solve this game by simultaneously distorting the distribution of the composite shock

defined in (60) instead of separately distorting the distributions of the components w∗ and
(z − ž) of the composite shock. With this modification, we can solve the robust control
problem as if there were no hidden Markov states. Let C̃(∆)ũ denote the mean of the
aggregate shock defined in (60). Write the single period objective as:

−1

2

[
a′ y′

] [
Q P
P ′ R

] [
a
y

]
+

θ

2
ũ′ũ = −1

2

[
a′ ũ′ y′ ž′

]
Π(∆)




a
ũ
y
ž




where

Π(∆) =




Q 0 P 0
0 −θI 0 0
P ′ 0 R 0
0 0 0 0


 .

Form an augmented control:

ã =

[
a
ũ

]

and an augmented state:

x̃ =

[
y
ž

]
.
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Write the state evolution as:
x̃∗ = Ãx̃ + B̃(∆)ã

where

B̃(∆)
.
=

[
B1 C̃1(∆)

B2 C̃2(∆)

]
.

Write the discounted next period value function as

βV (x̃∗) = −β

2
(x̃∗)′Ω∗(∆∗)x̃∗ − βω∗(∆∗).

Then the composite robust control is:

ã = −
[
Π11(∆) + βB̃(∆)′Ω∗(∆∗)B̃(∆)

]−1 [
Π12 + βB̃(∆)′Ω∗(∆∗)Ã

]
x̃

.
= −

[
F̃1(∆)

F̃2(∆)

]
x̃

where −F̃1(∆)x̃ is the control law for a and −F̃2(∆)x̃ is the control law for u.
For the minimization part of the problem to be well posed, we require that θ be large

enough that
θI − βC̃(∆)′Ω(∆∗)C̃(∆)

is positive definite. The value function recursion is the Riccati equation:

Ω(∆) = Π̃22 + βÃ(∆)′Ω∗(∆∗)Ã(∆)

−
[
Π12 + βB̃(∆)′Ω∗(∆∗)Ã

]′ [
Π11(∆) + βB̃(∆)′Ω∗(∆∗)B̃(∆)

]−1 [
Π12 + βB̃(∆)′Ω∗(∆∗)Ã

]
.

The worst case covariance matrix for the composite shock is

C̃(∆)

[
I − β

θ
C̃(∆)′Ω(∆∗)C̃(∆)

]−1

C̃(∆)′,

which is typically singular but larger than Ξ(∆).
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