

Taylor rules for the euro area: the issue of real-time data

Dieter Gerdesmeier (European Central Bank)

Barbara Roffia (European Central Bank)

Discussion Paper Series 1: Studies of the Economic Research Centre No 37/2004

Discussion Papers represent the authors' personal opinions and do not necessarily reflect the views of the Deutsche Bundesbank or its staff.

Editorial Board:

Heinz Herrmann Thilo Liebig Karl-Heinz Tödter

Deutsche Bundesbank, Wilhelm-Epstein-Strasse 14, 60431 Frankfurt am Main, Postfach 10 06 02, 60006 Frankfurt am Main

Tel +49 69 9566-1 Telex within Germany 41227, telex from abroad 414431, fax +49 69 5601071

Please address all orders in writing to: Deutsche Bundesbank, Press and Public Relations Division, at the above address or via fax No +49 69 9566-3077

Reproduction permitted only if source is stated.

ISBN 3-86558-031-9

Abstract:

Recently, a number of studies have made an attempt to deal with the key issue of the incompleteness of information available to the central bank when taking its monetary policy decisions. This study adds to this literature by tackling the problem with regard to the euro area. The analysis is based on the simplistic assumption of the central bank following a simple monetary policy rule à-la-Taylor. Along the lines of work suggested by Orphanides, the study tries to assess whether estimates of reaction functions which are carried out using revised data for the euro area can convey a misleading message in terms of policy recommendations.

Keywords:

Taylor Rules, Reaction Functions, Monetary Policy, Euro Area, Real Time Data

JEL-Classification: E58, F41

Non Technical Summary

This paper tackles the key issue of the incompleteness of information available to the central bank when taking its monetary policy decisions. It focuses on euro area data and is based on the simplistic assumption of the central bank following a simple monetary policy rule à-la-Taylor. Along the lines of the work by Orphanides (2001), the aim of the analysis is to assess whether estimates of reaction functions which are carried out using revised data for the euro area can convey a misleading message in terms of policy recommendations. In essence, the analysis carried out for the euro area yields indications which are consistent with the findings by Orphanides for the United States. First of all, the results suggest that it would be preferable for a central bank not to attach too much weight on output gap measures in policy analysis, given that such measures are subject to large revisions over time. Second, the coefficients of a simple Taylor rule estimated in real time (i.e. using only the information available at each point in time) differ quite considerably from those related to the same rule estimated on the basis of ex post revised data. More precisely, a coefficient for inflation larger than one (which is often referred to as the "Taylor principle") in real time is found only in case a forwardlooking specification (based on the data from the Survey of Professional Forecasters) is used. On the contrary, when using *revised* data, the same result is obtained if the Taylor rule includes the current inflation rate. This shows that a misleading inference can easily occur when the appropriate available data are not taken into account.

Nicht technische Zusammenfassung

Die vorliegende Studie befasst sich mit dem Kernproblem unvollkommener Information; einem Problem, mit dem sich de facto alle Zentralbanken konfrontiert sehen, wenn sie ihre geldpolitischen Entscheidungen treffen müssen. Basierend auf der vereinfachenden Annahme, die Zentralbank folge einer einfachen geldpolitischen Regel à-la-Taylor und vor dem Hintergrund der grundlegenden Arbeit von Orphanides (2001) untersucht die vorliegende Arbeit anhand von Daten zum Euro-Gebiet, ob Schätzungen von Reaktionsfunktionen, die auf der Basis von ex-post revidierten Daten ausgeführt werden, zu irreführenden Ergebnissen gelangen können. In der Tat ergeben sich Resultate, die durchaus mit jenen vergleichbar sind, die Orphanides für die USA nachgewiesen hat. Eine Reihe von Implikationen verdienen gesonderte Erwähnung. Zum einen scheint es für eine Zentralbank empfehlenswert, im Rahmen ihrer Politikanalyse der Outputlücke nicht allzu großes Gewicht beizumessen, da deren Messungen im Zeitablauf teilweise beachtlichen Revisionen unterliegen. Zudem weichen die Koeffizienten einer Taylor-Regel, die sich auf Basis der zum Zeitpunkt der Entscheidung vorliegenden Datenbasis ermitteln lassen, teilweise beträchtlich von denjenigen ab, die sich auf Basis derselben Regel, aber unter Verwendung ex-post revidierter Daten ergeben. Die Ergebnisse illustrieren damit, dass eine unzureichende Berücksichtigung der zum entsprechenden Zeitpunkt verfügbaren Datenbasis irreführende Ergebnisse zur Folge haben kann

Contents

1	Introduction			
2	Specifications of monetary policy rules			
3	Estin	nation of reaction functions using ex post revised data	4	
4	The u	use of real-time data: a comparison with the ex post revised data	8	
	4.1	The construction of the real-time data bases	9	
	4.2	Latest available data	10	
	4.3 Forward-looking specifications in real-time using SPF inflation			
forecast series				
	4.4 Summary statistics on differences in real-time versus ex post data			
5	Estin	nation of reaction functions using real-time data	15	
	5.1	Using the latest available data	15	
	5.2	Using the forward-looking specification based on the SPF	17	
		inflation forecast series		
6	Conc	elusions	20	
Re	References		21	
Aı	Annex A			

Lists of Tables and Figures

Table 1	Estimates of Taylor rule using ex post revised data	6
Table 2	Summary statistics	15
Table 3	Estimates of Taylor rules in the euro area – real-time latest available data	15
Table 4	Estimates of Taylor rules in the euro area – real-time SPF forecasts for inflation	18
Figure 1	Range of uncertainty regarding policy recommendations - ex post revised data	8
Figure 2	Comparison of real time versus ex post revised data – non-seasonally adjusted inflation rate (Eurostat source)	11
Figure 3	Comparison of real time versus ex post revised data – seasonally adjusted inflation rate (ECB source)	12
Figure 4	Comparison of real time versus ex post revised data for the output gap	13
Figure 5	Actual versus forecast inflation rates from the SPF at different horizons	14
Figure 6	Range of uncertainty regarding policy recommendations – real time last available data	16
Figure 7	Range of uncertainty regarding policy recommendations using SPF forecasts for 12 months ahead	19
Figure 8	Target interest rates for the euro area	20

Taylor rules for the euro area: the issue of real-time data¹

1. Introduction

In the economic literature, increasing attention has been recently devoted to modelling the monetary policy decision-making process under the form of simple monetary policy rules. These simple rules, which commonly resemble rules à-la-Taylor, express the setting of the key interest rate by the monetary authority as the response to a few key variables in the economy, which are usually related to price developments and the real economy situation. Such a feedback reaction function, therefore, establishes a direct link between a number of selected information variables — deemed to be good indicators of risks to price stability — and the monetary policy instrument.

In the empirical literature, this type of rules has been widely regarded as useful in providing a rough benchmark against which developments in the monetary policy instrument of a central bank could be compared. The latter is due to the fact that the Taylor rule, while being very simple, seems to be able to capture some of the important elements of the past behaviour of central banks. In particular, such rules can provide a basis for tracking past changes in the central bank's policy instrument, namely the short-term interest rate.²

It should be noted, however, that investigations are usually based on revised data which do not take into account the information available in real time. However, it is also true that when estimating reaction functions in *real time*, a number of problems need to be faced. As an example, data releases differ across series, thus making some series more incomplete with respect to others – which are more timely available – at each point in time. Moreover, some series are subject to a low degree of accuracy because they are subject to substantial revisions over time. Therefore, *real-time* and *ex post* estimates might differ substantially. Related to this issue, the important problem that the output gap and the equilibrium real interest rate are non-observable variables should also be noted.

¹ This paper represents the authors personal opinions and does not necessarily reflect the views of the ECB, the Bundesbank or its staff.

² Despite their advantages, such rules are, of course, subject to many caveats. For a detailed description of them, see ECB (2001). Among them, the degree of uncertainty around the parameter estimates as well as around the measurement and the set of the variables included in the rule and the sample period considered for the estimation, or the lack of information encapsulated in the few variables usually included in the rule, should be mentioned.

With regard to the specification, two issues are worth mentioning. The first issue relates to the fact that sometimes forecasts-based variants of Taylor rules are considered, so that the inclusion of the output gap in addition to the inflation forecast may reflect an explicit output smoothing objective besides price stability. The second issue refers to the fact that a lagged term of the interest rate is usually included in the Taylor rule. This degree of inertia or smoothing in the policy interest rate generally turns out to be quite high and significant, which might reflect a mis-specification of the model (pointing, for instance, to omitted variables which are autocorrelated or to serially correlated shocks).

Furthermore, depending on the estimation methods, the resulting Taylor interest rates may vary over a wide range and thus not provide clear signals.

To sum up, using the words of Orphanides "...[*The*] historical analysis suggests that the Taylor rule appears to serve as a useful organising device for interpreting past policy decisions and mistakes, but adoption of the Taylor-rule framework for policy analysis is not insurance that past policy mistakes would not have occurred."³

Against this general background, we are interested in addressing the issue of using *real-time* versus *ex-post* revised data along the lines of the work presented by Orphanides (2001). He finds that *real-time* policy recommendations may differ considerably from those obtained using *ex post* revised data. Furthermore, he shows that estimated policy reaction functions based on *ex post* revised data yield misleading descriptions of historical policy, in the sense that different specifications of the rules are suitable to describe US monetary policy over the years 1987-1993. Along these lines, we are interested in analysing how information problems as discussed by Orphanides might also affect the euro area. The study of the magnitude of the informational problems is tackled within the framework of simple monetary policy rules à-la-Taylor.⁴

One obvious shortcoming of our present analysis applied to euro area data is that the span of data available is quite short. In the literature, this problem is sometimes overcome by carrying out the estimations for the period dating earlier than 1999. However, the results would then only refer to the conduct of a fictitious central bank, given that the ECB was only officially responsible for the conduct of monetary policy in the euro area since the start of Stage Three of EMU. Moreover, it should also be noted that the sample of our data does not differ too much in size with respect to the span of data used by Orphanides.

³ Orphanides (2003), p. 984.

⁴ A number of studies also take additional information from various sources into account, e.g. the information conveyed by monetary aggregates. See e.g. Coenen, Levin and Wieland (2001) and Gerdesmeier and Roffia (2003) on this issue. This topic is left for future analytical work.

Our study is structured as follows. The following section briefly recalls the basic specification of the monetary policy rules which are used throughout this study. Section 3 reports the estimation results based on *ex post* revised data while in Section 4 we describe the procedures followed to compile the real-time data set and present both a comparison between the *ex post* series and those available in real time and some results obtained using the latter data. Section 5 reports the results based on real-time data, while section 6 concludes.

2. Specifications of the monetary policy rules

In the present study we start by considering a Taylor rule with interest rate smoothing, which can be expressed as follows:

(1)
$$i_t = (1-\rho)\alpha + (1-\rho)\beta\pi_t + (1-\rho)\gamma(y_t - \overline{y}) + \rho i_{t-1} + \varepsilon_t,$$

where i_t represents the policy rate of the central bank, π_t is the inflation rate and $(y_t - \overline{y})$ represents the output gap.⁵ This specification of the Taylor rule also contains an interest rate smoothing term. Its inclusion can be justified on the basis that central banks appear to adjust interest rates in a gradual fashion, being adverse to large interest rate movements, thus slowly bringing the interest rate towards its desired setting or "target" level. This smoothing of the interest rate is based on the hypothesis that the current interest rate is determined by weighting the interest rate target of the Taylor rule and the lagged interest rate according to the following:

(2)
$$i_t = \rho i_{t-1} + (1-\rho) i_t^* + \xi_t$$

where the target interest rate is derived from the standard Taylor rule:

(3)
$$i_t^* = \alpha + \beta \pi_t + \gamma (y_t - \overline{y}),$$

and ρ represents the smoothing parameter. Replacing this expression for i_t^* in eq.(2), eq.(1) can be easily obtained. It should be noted that, with an inflation parameter β larger than unity, the Taylor rule indicates that the real interest rate would be increased whenever inflation rises, thus exerting a stabilising effect on inflation (this also referred to in the literature as "Taylor principle").

The use of this simple specification allows for a direct comparability of our results with those presented by Orphanides, who considered a specification which did not take into

⁵ More detailed information regarding the derivation of this type of rule starting from a simple Taylor rule can be found in Peersman and Smets (1998) and Gerdesmeier and Roffia (2003).

account the possibility that the central bank might have reacted to other additional economic variables not contained in the original specification proposed by Taylor. Along the same lines, in order to check for the robustness of the results obtained with the specification in eq.(1), we also consider some slightly modified alternative specifications. On the basis that central banks can only affect inflation with some lags, a forward-looking specification of the following form is also estimated:⁶

(4)
$$i_t = (1-\rho)\alpha + (1-\rho)\beta E_t \pi_{t+n} + (1-\rho)\gamma(y_t - \overline{y}) + \rho i_{t-1} + \varepsilon_t,$$

where π_{t+n} represents the inflation rate forecast (*E* denotes the expected value) at time (t+n) given the available information at current time t.⁷ Moreover, the simple rule without interest rate smoothing as originally advocated by Taylor is also used:⁸

(5)
$$i_t = \alpha + \beta \pi_t + \gamma (y_t - \overline{y}) + \mu_t$$

3. Estimation of reaction functions using *ex post* revised data

As a first step, this section presents and discusses the results of the estimations of the reaction functions just discussed based *on ex post revised data*. The choice of the data seems worth being discussed in more detail. Inflation is measured as the annual rate of change in the Harmonised Consumer Price Index (HICP)⁹. With regard to the output gap, no official or "unique" series exists, and all which are available can be easily subject to many criticisms. In the literature, different measures have been used: for

⁶ During the last 5-6 years forecasts are argued to have played a powerful role in shaping the response of monetary policy in a way which is not reflected in the simple standard Taylor rule. Therefore, policy rules which do not incorporate such information while historically analysing policy decisions might prove inadequate.

⁷ With regard to forward-looking types of reaction functions, other specifications are also possible. For instance, different leads for inflation and the output gap can be employed, or leading inflation and lagging output gap can be inserted in the equation. However, these kinds of forecast-based rules are sometimes criticised because of the inclusion of the output gap in addition to an inflation forecast. In this case, such a rule might appear to reflect two distinct objectives, which stands somewhat in contrast with the fact that the primary objective of monetary policy in most industrialised countries rests on the achievement of price stability.

⁸ However, there is no consensus about the most appropriate specification of the reaction function. There exist alternative specifications which differ either due to the inclusion of the interest rate smoothing, or because they exhibit a backward/forward-looking specification with different lags and different measures of inflation and the output gap. For example, Gerdesmeier and Roffia (2003) investigate whether simple Taylor rules can be improved by considering additional economic variables which were not contained in the original specification proposed by Taylor. However, this type of analysis based on real-time data is left for future research.

⁹ The ECB has explicitly announced that, in order to maintain price stability, it aims to maintain the year-on-year increase in the HICP below, but close to, 2% over the medium term. The inflation rate and the output gap are expressed in percentage points.

example, based on some statistical methods such as fitting a linear or a quadratic trend or applying the Hodrick-Prescott (HP) filter. The main International Organisations also report some measures of the output gap in real time. In this context, it seems worth noting that the output gaps compiled by the OECD and the IMF are based on a production function method, while the European Commission applies the HP filtering approach. Against this background, in our study we make use of an average of the main output gap measures, namely the linear and quadratic trend measures, the HP Filter and the output gaps provided by the OECD and the European Commission.^{10,11}

Consistent with the literature which focuses on the euro area after the start of Stage Three of EMU, the estimations are carried out using the Euro Overnight Index Average (EONIA).^{12,13}

With regard to the estimation technique and the diagnostic tests, in line with the literature the Generalised Method of Moments (GMM) is used. This technique nests many common estimators and is chosen in order to avoid a possible correlation between the right-hand variables and the residuals (so-called simultaneity bias). This is done by making use of appropriate instruments. Generally speaking, the set of instruments should contain variables known to the central bank at the time it sets the interest rate that are orthogonal to the residual term. In this context, lagged values of the explanatory variables appear to be the natural candidates. The set of instruments used is specified at the end of each table. Following Gerdesmeier and Roffia (2003), the weighting matrix is chosen using the method suggested by Newey and West (1987), who have proposed a general covariance estimator that is consistent in the presence of both heteroskedasticity

¹⁰ Given that the data set is monthly, the real GDP and the output gap have been interpolated using a cubic spline.

¹¹ This – of course – raises the question whether the measures mentioned above have been summed up using an equal weighting. In this study we assume that this is the case but must admit that this does not necessarily have to hold. However, preliminary results show that, when using other measures of the output gap (e.g. single measures or different averages), the qualitative results generally hold. These cross-check results are available from the authors upon request.

¹² In the literature the Euro Overnight Index Average (EONIA) is used for the estimations because it is the market rate which is more closely influenced by the monetary policy of the ECB. Moreover, this rate is also close to the Federal Funds rate which is commonly used for the United States.

¹³ In this respect, the choice of the rate on main refinancing operations was seen as unsatisfactory due to estimation problems related to its step-like behaviour. Moreover, the choice of the 3-month money market interest rate has also been thought as being not convincing as it could be argued that, in some cases, the three-month money market interest rate might reflect market's anticipations of the future moves of policy rates in reaction to currently available data.

and autocorrelation of unknown form (so-called *HAC Covariances*).¹⁴ It should be noted that GMM requires no information about the exact distribution of the error term which implies that the normality assumption – being a crucial precondition for many other estimation procedures – is not required. All that is required is that the orthogonality conditions hold. We also checked the *J-statistic* which is used to test the validity of overidentifying restrictions (i.e. when the number of instruments is greater than the number of parameters to be estimated).¹⁵ The results of this test are consistent throughout all the specifications and indicate that the overidentifying restrictions are satisfied. Finally, all the estimates, unless differently specified, are carried out using data spanning the sample period 1999:01 – 2003:06¹⁶, with the starting date being the start of Stage Three of EMU when the ECB took over the conduction of the single monetary policy in the euro area.

	Simple Smoothin	ΓR without ng ⁽¹⁾	Simple	e TR ⁽¹⁾	Forward TR (t-	d-looking ⊦12) ⁽²⁾
α	1.93	0.04	1.22	(0.04)	1.74	(0.35)
ρ	(-)	(-)	0.84	(0.01)	0.86	(0.01)
β	0.80	(0.02)	1.08	(0.02)	0.61	(0.16)
γ	0.72	(0.01)	0.70	(0.02)	2.41	(0.08)
\overline{R}^2	0.82		0.	95	0.	96

Table 1: Estimates of Taylor rules using ex-post revised data

Notes

a. TR denotes Taylor Rule.

b. Sample period 1999:01-2003:03.

c. Instrument list of the equations in the table:

⁽¹⁾ 1-6,9 and 12 lags of the inflation rate, output gap, unemployment rate and annual changes in the DJ EuroStoxx and in the euro/US \$ exchange rate.

⁽²⁾ 1-6,9 and 12 lags of the inflation rate, output gap and annual changes in oil prices.

d. In the third equation in the table above perfect foresight is assumed.

e. Standard errors in parenthesis.

¹⁴ See Gerdesmeier and Roffia (2003) for a discussion on the adoption of the GMM instead of the OLS methodology, as well as of the choice related to the instruments and the use of the Newey-West HAC consistent covariance.

¹⁵ Under the null hypothesis that the overidentifying restrictions are satisfied, the J-statistic times the number of regression observations is asymptotically χ^2 distributed with degrees of freedom equal to the number of overidentifying restrictions. For further detail, see Johnston and DiNardo (1997) p. 337 *ff.*

¹⁶ *ff.* In some cases, the end of sample may differ according to the availability of some series.

Looking at the figures reported in the table above, the following results are worth mentioning.

First, in case a simple Taylor rule specification is used, the ECB seems to have reacted to inflation with a coefficient higher than one which, in the literature, is generally interpreted as denoting a stabilising behaviour.¹⁷ The opposite seems to hold in the case of a forward-looking specification. Moreover, the weight placed on the output gap has a considerably smaller size for a contemporaneous specification of the rule while being quite large for a forward-looking rule.

Second, estimating the original specification by Taylor (i.e. without an interest rate smoothing) seems to lead to a deterioration of the fit of the equation.

Third, in the specifications containing the smoothing parameter, the degree of inertia appears to be quite high. This phenomenon has been discussed extensively in the literature and seems to be a common result for central bank reaction functions.

In Figure 1 below we report – as a shaded area – the lower and the upper bound for the policy recommendation related to the estimated simple Taylor rule with smoothing. These uncertainty bands represent a measure of the parameter uncertainty (in this specific case of inflation and the output gap coefficients) and are calculated as follows.¹⁸ The first one is derived using the coefficient on inflation and the one of the output gap which are, respectively, at the higher and at the lower bound of the confidence band of two standard errors while the other one in which these coefficients are, respectively, at the lower and at the higher bounds. The thick black line represents the target interest rate which is calculated applying eq.(3) in the text using the estimated coefficients, while the dotted line represents the actual EONIA. The uncertainty bands turn out to be rather narrow, and at the end of the sample the target and the actual interest rates almost coincide.

¹⁷ On the contrary, Ullrich (2003) observes a structural break between pre-1999 and post-1999 monetary policy in the euro area and finds that the ECB does not comply with the Taylor principle. A similar result is obtained by Sauer and Sturm (2003) when using *ex post* data who apply the HP filter to industrial production in order to calculate the output gap.

¹⁸ Therefore, our method of calculating the uncertainty bands neglects the uncertainty surrounding the real equilibrium interest rate.

Figure 1:

Range of uncertainty regarding policy recommendations - ex post revised data

4. The use of the real-time data: a comparison with the *ex post* revised data

This section presents an investigation of Taylor rules for the euro area estimated in real time. We first provide a description of the method employed to construct these series and then we examine the magnitude of the revisions in the data over time and the main implications for the key variables resulting from the different methodologies employed to reconstruct the data. In the next sub-section we then present the estimates obtained with the real-time data and compare the outcomes with those derived using revised data. The final sub-section summarises the main conclusions of the exercise.¹⁹

¹⁹ A detailed description of the series used is contained in Annex A.

4.1 The construction of the real-time database

As explained in more detail in Orphanides (2001), specifying a contemporaneous Taylor-like rule implies accurate and timely time series for inflation and the output gap. However, it is well known that this assumption is not fulfilled in practice due to the following facts:

- Variables (in particular the series for output) are only available with some lags. This reflects the well-known problem of the end-of-sample mismatch, where some data usually become available with some periods lags.
- □ In many cases, variables are not only available with some lags but even with different delays, so that the update differs across the series.²⁰ Consequently, at a certain point in time the data set available to the policy maker can still be incomplete because of the different timing of the data releases.
- Data are subject to revisions and it may take some quarters before accurate data are available for some series.²¹

Therefore, relying on *ex post* revised data, more knowledge is assumed about the state of the economy which the central bank did not have when taking its decisions.

Against this background, in this study we consider a real time data set. Initially, we rely on a monthly real-time database which has been updated using the information on each series as they were made available in the ECB Monthly Bulletin since 1999. These data may be considered as a partial sample of the information available to the ECB in real time for the first meeting of the Governing Council in each month (these data will be denoted as RT 1 henceforth).²²

The assumption of the decision-making body of the ECB reacting only to a small subset of variables reflecting the current conditions is, however, clearly unrealistic. In this

²⁰ This is usually denoted as "unbalanced" set of data, where series ends in different periods.

²¹ Coenen and Wieland (2001) analyse the timing and magnitude of the revisions in the euro area main economic variables. They argue that the magnitude of the revisions is quite big, which suggests a significant degree of data uncertainty, which persisted for some time over the years since 1999.

²² See, for instance, Coenen, Levin and Wieland (2001), p. 11.

respect, the advantage of using forecasts of inflation is that they summarise more information than the actual available series (as the forecast reflects additional information/variables and the effects on inflation). Therefore, to distinguish from the previous exercise, we make use of a modified real-time data set which includes inflation forecasts related to the Survey of Professional Forecasters (SPF). We will denote this data set as RT_2 henceforth. In the following sub-sections we illustrate the real-time data sets which have been compiled on the basis of different criteria which are discussed below.²³

4.2 Latest available data

One way to overcome the problem of availability of data with some lags is to assume that the policy maker reacts to the latest available "current" information. According to this, we consider real-time data which are compiled by considering, at each point in time, the latest available information which was at disposal of the ECB for each of the key variables. Of course, given that the timeliness of the series differs across the variables, their values considered at time *t* do refer to a past time.²⁴

Figure 2 below shows a comparison of this type of real-time data for inflation with the corresponding revised series. In order to facilitate the interpretation, the chart includes three time series. The first series shows the inflation rate which was available in June 2003 (i.e. the *ex post* revised data).²⁵ The second series represents the latest inflation rate data available in real time. In order to make it comparable to the previous series, we have shifted it backwards by two months given that – on average – the real-time inflation values are available with a period of two-month's lags.²⁶ The third series is the latest inflation rate data available in real time which includes Eurostat's flash estimate (and, following the same approach applied to the previous series, it is only lagged by one month).²⁷

²³ The cut-off date for this exercise is end of June 2003.

²⁴ As an example, while at the beginning of June the observation for inflation is likely to refer to the April observation, the one for real GDP are likely refer to the first quarter of the year.

²⁵ Coenen and Wieland (2001) show that both monthly and quarterly data yield remarkably similar conclusions regarding real-time data uncertainty in the euro area, thus suggesting that the frequency is not a major issue when assessing the size of the revisions in the data.

This is based on considering the beginning of the month as the cut-off date. 12^{26}

²⁷ This series is, however, only available from November 2001 onwards.

Figure 2:

The figure allows drawing a number of interesting conclusions. First, the real-time inflation rate lies above the revised series (apart from some few observations). Second, in some periods, considerable differences in the series can be detected, part of which could also be due to the recent revisions which occurred in January and March 2003.²⁸ Third, at the actual end, these differences seem to have disappeared, thus possibly denoting a higher precision in the first release of the data. Figure 3 below provides a similar comparison using seasonally adjusted data as they have been compiled by the ECB since January 2001.²⁹ Also in this case, some revisions in the data can be noticed which tend to disappear towards the end of the sample considered.³⁰

²⁸ These revisions were mainly due to revisions to the German HICP as a result of the introduction of the new base year 2000, but also due to some methodological changes. In addition to this, also the country and product weights in the euro area HICP have been updated.

²⁹ In this case, the series based on the flash estimates is missing.

³⁰ Coenen and Wieland (2001) argue that "...the consumer price data are typically not revised at all; the only exceptions are apparently due to corrections of reporting errors...", p. 13.

Figure 3:

Comparison of *real time* versus *ex post* revised data – seasonally adjusted inflation rate (ECB source)

In the figure below instead we report a comparison for the output gap. For this variable, real-time estimates tend to under-predict the realised output gap since 1999.³¹

³¹ Consistently with our results, Coenen and Wieland (2001) report that real GDP is subject to fairly large revisions, although these revisions are likely to become smaller as the implementation process to ESA95 is completed in most countries. On the contrary, revisions of the GDP deflator appear to be much smaller.

Figure 4:

Comparison of *real time* versus *ex post* revised data for the output gap

4.3 Forward-looking specifications in real time using SPF inflation forecasts series

In order to estimate eq.(4), we have constructed a data set which include, for inflation, forecasts either referring to the next calendar year or two years ahead – which were available at each point in time. For the forecasts of inflation we used the information taken from the Survey of Professional Forecasters (i.e. SPF), which is a survey of expectations for the rates of inflation, real GDP growth and unemployment in the euro area for several horizons which is done on a quarterly frequency (see Annex A for additional details). With regard to the output gap, we use the data described in the Section before. The resulting specification of the reaction function is, therefore, forward-looking over the forecast horizons of n = 12 and n = 24 (see eq.(4) above).

The figure below reports the *ex post* revised inflation rates versus the inflation rates which had been forecast 12 and 24 months earlier using the SPF. The time patterns show that the inflation forecasts always underestimated realised inflation.

Figure 5:

Actual versus forecast inflation rates from the SPF at different horizons

4.4 Summary statistics on differences in real-time versus ex post data

The table below illustrates a summary of some statistics which allow comparing the revised data with the real-time series described in Sections 4.2 and 4.3 above. From these statistics it can be inferred that, with regard to inflation, the mean, the median and the standard deviation tend to be lower when using inflation forecasts (with the former two being lower at the t+12 forecast horizon).³² Moreover, for the same series the range of possible values is much narrower. The opposite result holds instead when using the *ex-post* revised series which tends to exhibit a much higher mean and standard deviation and a larger range of values. The same results hold when looking at the output gap: the fact that the mean in real time is lower would denote an underestimation – on average – of the series. Furthermore, the figures indicate that the revisions in this series are also very large and persistent.³³Also the standard deviation turns out to be lower in real time.

³² For the revised data, perfect foresight is assumed.

³³ This finding is very similar to the one in Orphanides (2001), whose results also suggested a lack of reliability in the real-time estimates of the output gap.

Table 2:

Summary statistics

				St.		
	Mean	MA	Median	dev.	Min.	Max.
Inflation available in June 2003	1.95	1.95	2.07	0.54	0.76	2.98
Inflation available in real time	2.05	2.05	2.15	0.66	0.80	3.40
Inflation available with (t+12) SPF forecasts	1.66	1.66	1.70	0.17	1.20	1.90
Inflation available with (t+24) SPF forecasts	1.76	1.76	1.80	0.09	1.50	1.90
Output gap available in June 2003	0.09	0.65	0.00	0.75	-1.48	1.17
Output gap available in real time	-0.24	0.51	-0.39	0.52	-1.19	0.65

<u>Note</u>

MA denotes the mean of absolute values.

5 Estimation of reaction functions using real-time data

This section focuses on the estimates of reaction functions for the euro area using the real-time data sets. The analysis is focused on estimating simple Taylor rules with and without smoothing.

5.1 Using the latest available data

Table 3:

Estimates of Taylor rules in the euro area - real time latest available data (RT_1)				
	Simple T	Simple TR without		le TR
	smoo	othing		
α	3.15	0.06	3.40	0.09
ρ	(-)	(-)	0.63	0.03
β	0.25	0.03	0.39	0.05
γ	1.20	0.03	2.05	0.08
\overline{R}^2	0.	81	0.8	88

Notes

a. TR denotes Taylor Rule.

b. Sample period 1999:01-2003:06.

c. Instrument list of the equations in the table: 1-6, 9 and 12 lags of annual changes in the DJ EuroStoxx,

in the oil prices and in the euro/US \$ exchange rate.

d. Standard errors in parenthesis.

While some of the results seem to be broadly comparable, some striking differences emerge. First, using a contemporaneous simple Taylor rule in real time can obviously result in an inflation coefficient lower than one. However, a possible intuitive explanation might be that the central bank chose not to over-react to the sequence of one-off shocks which occurred to euro area inflation. This notwithstanding, this result is in contrast with the outcome using revised data according to which the inflation coefficients are higher, thus leading to more imprecise estimates. The fit does not seem to be much very affected when using real-time data, although being slightly lower.

In Figure 6 below we report the lower and the upper boundaries for the policy recommendations related to the estimated simple Taylor rule with smoothing in real time as we did in Figure 1 above. In contrast with the equivalent graph based on revised data, it can be noticed that, in real time, the uncertainty bands are slightly larger and, therefore, more ambiguity lies in the monetary policy assessment.

³⁴ Sauer and Sturm (2003) carry out a similar exercise and they find that the use of real-time industrial production worsens the ability to describe ECB's monetary policy with a Taylor rule. Moreover, the inflation parameter remains below one.

Figure 6:

5.2 Using the forward-looking specification based on the SPF inflation forecasts series

In order to take into account that a central bank faces long (and variable) lags characterising the transmission process and uses a broader range of information, the estimates in the table below are based on a forward-looking specification of the Taylor rule, where the inflation forecasts are modelled via the SPF inflation forecasts for one and two years ahead. The real GDP data are those used in the section above.³⁵

³⁵ Inflation and real GDP are not included among the set of Instrumental Variables because of the method used to construct the series, i.e. spline of annual data into monthly data.

Table 4:

	Simple T	⁻ R (t+12)	Simple T	R (t+24)
α	1.87	0.46	- 0.84	0.43
ρ	0.71	0.04	0.67	0.03
β	1.31	0.27	2.91	0.24
γ	1.95	0.13	2.02	0.07
\overline{R}^2	0.	93	0.9	90

Estimates of Taylor rules in the euro area – real time SPF forecasts for inflation (RT 2 data)

Notes

a. TR denotes Taylor Rule.

b. Sample period 1999:01-2003:06.

c. Instrument list of the equations in the table: 1-6, 9 and 12 lags of annual changes in the DJ EuroStoxx, in the euro/US \$ exchange rate and in the oil prices.

d. Standard errors in parenthesis.

From this table a number of interesting results emerge. In comparison with the results obtained using real-time data in a contemporaneous (at time *t*) specification and presented in Table 2, a Taylor rule using a forward-looking specification (and smoothing) yields values for β higher than one, thus denoting a stabilising policy in real time.³⁶

Furthermore, when comparing the latter results with the forward-looking specification based on *ex post* revised data, the most notable difference consists in the fact that the response to the output gap in real time seems to have been lower than the one estimated using revised data. The opposite result instead holds for inflation.

As it was done for the *ex post* and the first real-time data set considered above, we also provide the uncertainty range of the policy recommendations based on the 12-months ahead forward-looking specification based on the SPF inflation forecasts. The uncertainty bands turn out to be quite wide

³⁶ Sauer and Sturm (2003) obtain a similar result using inflation forecasts published by The Economist but only when policy inertia is not taken into account in the estimations.

Figure 7:

Range of uncertainty regarding policy recommendations using SPF forecasts for 12 months ahead

In the table below we show the different target interest rates which are calculated using the best specifications of the Taylor rule with smoothing. These target rates refer to the different type of data set considered in the analysis in previous sections. More precisely, they include the rate based on the revised data and with a contemporaneous specification and the ones derived from the forward-looking specification based on the SPF forecasts for inflation.

Figure 8:

6. Conclusions

This paper has investigated whether relying on *ex post* revised data when estimating reaction functions for the euro area can lead to different conclusions from those which would have been advocated using data available in real time. The analysis has yielded the following results.

First, when using revised data and a contemporaneous specification of the rule, the inflation coefficient turns out to be higher than one, thus denoting a stabilising policy, while the coefficient on the output gap is somewhat lower. On the contrary, when Taylor rules based on the contemporaneous values for inflation and the output gap are estimated in real time, the outcome is that the Taylor principle is not satisfied. A possible explanation of this outcome might be that the response of the central bank has appropriately taken into account the sequence of one-off shocks characterising inflation in the euro area over the last years.

Second, in real time forward-looking specifications of the Taylor rule using the SPF forecasts provide a better description of the actual behaviour of the central bank and also denote a stabilising behaviour. This results supports the argument which were put

forward by Orphanides who had found for the United States that a forward-looking specification would have tracked better the interest rate in real time while a contemporaneous one would work better for the revised data.

Third, the uncertainty bands surrounding the target interest rate calculated in real time are somewhat wider than those referring to *ex post* data.

Of course, many interesting aspects have remained untouched in the analysis which could be worth pursuing. Among them, the analysis of the impact of the estimation error in the output gap on the Taylor rule interest rate, a more detailed spefication taking into account the sources and the nature of shocks and the investigation whether the incorporation of additional variables in the feed-back list may help to track better the monetary policy decision-making process.

References

- Alesina, A.F., O.J. Blanchard, J. Galí, F. Giavazzi and H. Uhlig 2001, Defining a macroeconomic framework for the euro area No. 3. *CEPR*, London.
- Bernanke, B. and I. Mihov 1995, Measuring monetary policy. *NBER Working Paper*, No. 5145.
- Brand, C., D. Gerdesmeier and B. Roffia 2002, Estimating the M3 income velocity underlying the reference value for monetary growth. *ECB Occasional Paper*, No. 3.
- Brown, R.L., J. Durbin and J.M. Evans 1975, Techniques for testing the constancy of regression relationships over time. *Journal of the Royal Statistical Society*, Series B, Vol. 37, pp. 149-192.
- Chow, G. and A. Lin 1971, Best linear unbiased interpolation, distribution and extrapolation of time series by related series. *The Review of Economic and Statistics*, Vol. 53, No.4, pp. 372-375.
- Clarida, R., J. Galí and M. Gertler 1998, Monetary policy rules in practice. Some international evidence. *European Economic Review*, Vol. 42, pp. 1033-1067.
- Coenen, G., A. Levin and V. Wieland 2001, Data uncertainty and the role of money as an information variable for monetary policy. *ECB Working Paper*, No. 84, forthcoming in the *European Economic Review*.
- Deutsche Bundesbank 1999, Taylor interest rate and Monetary Conditions Index, Monthly Report April.
- European Central Bank 2001, Issues related to monetary policy rules, *Monthly Bulletin*, October.
- Faust, J, J.H. Rogers and J.H. Wright 2001, An empirical comparison of Bundesbank and ECB monetary policy rules. *Board of Governors of the Federal Reserve System, International Finance Discussion Papers*, No. 705.

Favero, C. A. 2001, Applied Macroeconometrics. Oxford University Press.

- Galí, J. 2001, Monetary policy in the early years of EMU. *Pompeu Fabra University*, mimeo.
- Gerdesmeier, D. and B. Roffia 2003, Empirical estimates of reaction functions for the euro area. *ECB Working Paper*, No. 206.
- Gerlach, S. and G. Schnabel 1999, The Taylor rule and interest rates in the EMU area: a note. *BIS Working Paper*, No. 73.
- Gerlach, S and L.E.O. Svensson 2001, Money and inflation in the euro area: a case for monetary indicators?. Bank for International Settlement Working Paper, No. 98, also published in the Journal of Monetary Economics, Vol. 50 (2003), pp. 1649-1672.
- Granger, C.W.J. 1986, Developments in the study of cointegrated economic variables. Oxford Bulletin of Economics and Statistics, Vol. 48, pp. 213-228.
- Hamilton, J.D. 1994, Time series analysis. Princeton University Press.
- Hansen, L. 1982, Large sample properties of generalised method of moments estimators. *Econometrica*, Vol. 50, pp. 1029-1054.
- Harvey, A. 1990, Forecasting, structural time series models and the Kalman filter. Cambridge University Press.
- Johnston, J. and J. DiNardo 1997, Econometric methods. McGraw-Hill, 4th ed..
- Judd, J.P. and G.D. Rudebusch 1998, Taylor's rule and the Fed: 1970-1997. *Federal Reserve Bank of San Francisco Economic Review*, No. 3, pp. 3-16.
- Newey, W. and K. West 1987, A simple, positive definite, heteroskedasticity and autocorrelation consistent covariance matrix. *Econometrica*, Vol. 55, No. 3, pp. 703-708.
- Orphanides, A., 1998, Monetary Policy Evaluation with Noisy Information. *Finance and Economics Discussion Series Working Paper*, No. 1998-50, Board of Governors of the Federal Reserve System.
- Orphanides, A. 2001, Monetary policy rules based on real-time data. *The American Economic Review*, Vol. 91, No. 4, pp. 964-985.
- Orphanides, A. 2003, Historical monetary policy analysis and the Taylor rule. *Journal* of Monetary Economics, Vol. 50, pp. 983-1022.
- Orphanides, A. and van Norden, S. 2001, The unreliability of output gap estimates in real time. *CIRANO Working Papers*.
- Peersman, G. and F. Smets 1998, Uncertainty and the Taylor rule in a simple model of the euro area economy. Mimeo.
- Rudebusch, G. 2002, Term structure evidence on interest-rate smoothing and monetary policy inertia. Journal of Monetary Economics, Vol. 49, pp. 1161-1187.
- Sauer, S. and J.-E. Sturm 2003, ECB monetary policy: how well does the Taylor rule describe it?. Mimeo.

- Taylor, J.B. 1993, Discretion versus policy rules in practice. *Carnegie-Rochester Conference Series on Public Policy*, Vol. 39, pp. 195-214.
- Ullrich, K. 2003, A comparison between the Fed and the ECB: Taylor rules. ZEW Discussion Paper, No. 03-19.
- Woodford, M. 1999, Optimal Monetary Policy Inertia. NBER Working Paper, No. 7261.
- Woodford, M. 2003, Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton University Press.

Annex A. Description of the data

The historical series used in the estimation of the reaction functions refer to the euro area (i.e. the euro area-11 for months up to December 2000, and the euro area-12 from January 2001 onwards). Whenever applicable (e.g. interest rate, exchange rate, DJ Euro Stoxx), monthly data are calculated as average of daily data.

A.1 Revised data

Interest rate: the overnight interest rate is the EONIA (Euro Overnight Index Average) for the euro area, which is calculated as a weighted rate for the overnight maturity by collecting data on unsecured overnight lending in the euro area provided by banks belonging to the EONIA panel.

Inflation rate: Inflation is calculated as the year-on-year change in the Harmonised Index of Consumer Prices (HICP) for the euro area. The latter is the seasonally adjusted index based on consumption expenditure weights at irrevocable fixed exchange rates of 31 December 1998. Data before January 1995 are compiled from monthly rates of change of national CPIs excluding owner occupied housing (except for Spain). The seasonal adjustment methodology is described in the Technical Notes contained in the "Euro area Statistics" section of the ECB Monthly Bulletin.

<u>*Real GDP*</u>: the seasonally adjusted real GDP series (at market prices, constant prices taken 1995 as the base year), on a quarterly frequency, is constructed by following these steps: a) by aggregating national GDP data using the irrevocable fixed exchange rates of 31 December 1998 for the period 1980 Q1-1998 Q4; b) by re-scaling the series obtained so that it is consistent with the nominal GDP series in 1995³⁷; c) by compiling an

³⁷ The seasonally adjusted nominal GDP series – on a quarterly frequency – is constructed as follows: a) by aggregating national GDP data using the irrevocable fixed exchange rates of 31 December 1998 for the period 1980 Q1-1998 Q4; b) using, from 1999 Q1 onwards, the official Eurostat series (the series in point (a) is re-scaled to match the Eurostat series in 1999 Q1); c) by compiling an "artificial" series which, from 2000 Q4 onwards, covers the euro-12 series, whereas the observations from 2000 Q4 backwards are extrapolations based on growth rates calculated from the series compiled in points (a) and (b) above.

"artificial" series which, from 2000 Q4 onwards, covers the euro-12 series³⁸, whereas the observations from 2000 Q4 backwards are extrapolations based on growth rates calculated from the series compiled in points (a) and (b) above.

<u>Unemployment</u>: seasonally adjusted series of the standardised unemployment rate for the euro area (all ages), total (male and female), percentage of civilian workforce, provided by Eurostat.

<u>Commodity prices</u>: they are represented by the world market prices of raw materials (total index) converted into euro. The weighting scheme is based on commodity imports of OECD countries, 1989-1991, excluding EU-internal trade.

Exchange rate: the nominal US dollar/euro (i.e. US \$/euro) exchange rate is taken from the BIS and represents the exchange rate US dollar/1EUR(ECU), spot at 2.15 PM (CET), monthly average of daily data.

<u>M3</u>: it is constructed using the data on seasonally adjusted month-end stocks and flows. The series is constructed as follows. The seasonally adjusted index of adjusted stocks is re-based to be equal to 100 in January 2001 and then multiplied by the seasonally adjusted stock in January 2001. The percentage change between any two dates (after October 1997) corresponds to the change in the stock excluding the effect of reclassifications, other revaluations and exchange rate variations (and from January 2001 excluding the effect of the enlargement).

<u>DJ Euro Stoxx</u>: the Dow Jones (i.e. DJ) Euro Stoxx 325 Blue Chip Index is a capitalisation-weighted index of 325 European stocks from those countries participating in the EMU. The series is on euro basis (historical values of indices are calculated with historical daily exchange rates).

Oil prices: world-market prices, energy raw material, crude oil from the BIS database.

³⁸ For compiling the euro-12 series, the irrevocable fixed exchange rate for Greece determined on 19 June 2000 is used.

A.2 Real-time data

a) Latest available data

These data have been collected from the ECB Monthly Bulletins. The series have been constructed using the latest available data.

Inflation rate: the latest available data for inflation (Eurostat source) at each point in time.

<u>*Real GDP*</u>: the quarter-on-quarter changes have been used to re-calculated the quarterly real-time GDP series. Monthly series of the real GDP have been obtained by applying a cubic spline.

<u>Industrial Production</u>: the monthly growth rates calculated from the index (total industry excluding construction) published in the Bulletin has been applied to the January 1999 index for industrial production to re-calculate the corresponding real-time index.

b) SPF forecasts-based series

These data have been collected from the Survey of Professional Forecasters (SPF).

Inflation rate: inflation forecasts for next calendar year available at each point in time. *Real GDP*: see point a) above.

The following Discussion Papers have been published since 2003:

Series 1: Studies of the Economic Research Centre

January	2003	Testing mean-variance efficiency in CAPM with possibly non-gaussian errors: an exact simulation-based approach	Marie-Claude Beaul Jean-Marie Dufour Lynda Khalaf
January	2003	Finite-sample distributions of self-normalized sums	Jeong-Ryeol Kim
		sen normanzed suns	Jeong Ryeor Rim
January	2003	The stock return-inflation puzzle and	
		the asymmetric causality in stock returns,	
		inflation and real activity	Jeong-Ryeol Kim
February	2003	Multiple equilibrium overnight rates	
		in a dynamic interbank market game	Jens Tapking
February	2003	A comparison of dynamic panel data	
		estimators: Monte Carlo evidence and	
		an application to the investment function	Andreas Behr
March	2003	A Vectorautoregressive Investment	
		Model (VIM) And Monetary Policy	Joerg Breitung
		Transmission: Panel Evidence From	Robert S. Chirinko
		German Firms	Ulf von Kalckreuth
March	2003	The international integration of money	
		markets in the central and east European	
		accession countries: deviations from covered	a. 1. • • • •
		interest parity, capital controls and inefficien-	Sabine Herrmann
		cies in the financial sector	Axel Jochem
March	2003	The international integration of	
		foreign exchange markets in the central	
		and east European accession countries:	0.1° H
		speculative efficiency, transaction costs	Sabine Herrmann
		and exchange rate premiums	Axel Jochem

March	n 2003	Determinants of German FDI:	Claudia Buch
		New Evidence from	Jörn Kleinert
		Micro-Data	Farid Toubal
March	n 2003	On the Stability of	
		Different Financial Systems	Falko Fecht
April	2003	Determinants of German Foreign	
		Direct Investment in Latin American and	
		Asian Emerging Markets in the 1990s	Torsten Wezel
June	2003	Active monetary policy, passive fiscal	
		policy and the value of public debt:	
		some further monetarist arithmetic	Leopold von Thadden
June	2003	Bidder Behavior in Repo Auctions	Tobias Linzert
		without Minimum Bid Rate:	Dieter Nautz
		Evidence from the Bundesbank	Jörg Breitung
June	2003	Did the Bundesbank React to	Martin T. Bohl
		Stock Price Movements?	Pierre L. Siklos
			Thomas Werner
15	2003	Money in a New-Keynesian model	Jana Kremer
		estimated with German data	Giovanni Lombardo
			Thomas Werner
16	2003	Exact tests and confidence sets for the	Jean-Marie Dufour
		tail coefficient of α -stable distributions	Jeong-Ryeol Kurz-Kim
17	2003	The Forecasting Performance of	B R Craig, E Glatzer,
		German Stock Option Densities	J Keller, M Scheicher
18	2003	How wacky is the DAX? The changing	Jelena Stapf
		structure of German stock market volatility	Thomas Werner

1	2004	Foreign Bank Entry into Emerging Economies:	
		An Empirical Assessment of the Determinants and Risks Predicated on German FDI Data	Torsten Wezel
2	2004	Does Co-Financing by Multilateral Developmer Banks Increase "Risky" Direct Investment in Emerging Markets? –	ıt
		Evidence for German Banking FDI	Torsten Wezel
3	2004	Policy Instrument Choice and Non-Coordinated Monetary Policy in Interdependent Economies	Giovanni Lombardo Alan Sutherland
4	2004	Inflation Targeting Rules and Welfare in an Asymmetric Currency Area	Giovanni Lombardo
5	2004	FDI versus cross-border financial services: The globalisation of German banks	Claudia M. Buch Alexander Lipponer
6	2004	Clustering or competition? The foreign investment behaviour of German banks	Claudia M. Buch Alexander Lipponer
7	2004	PPP: a Disaggregated View	Christoph Fischer
8	2004	A rental-equivalence index for owner-occupied housing in West Germany 1985 to 1998	Claudia Kurz Johannes Hoffmann
9	2004	The Inventory Cycle of the German Economy	Thomas A. Knetsch
10	2004	Evaluating the German Inventory Cycle Using Data from the Ifo Business Survey	Thomas A. Knetsch
11	2004	Real-time data and business cycle analysis in Germany	Jörg Döpke
12	2004	Business Cycle Transmission from the US to Germany – a Structural Factor Approach	Sandra Eickmeier

13	2004	Consumption Smoothing Across States and Time: International Insurance vs. Foreign Loans	George M. von Furstenberg
14	2004	Real-Time Estimation of the Output Gap in Japan and its Usefulness for Inflation Forecasting and Policymaking	Koichiro Kamada
15	2004	Welfare Implications of the Design of a Currency Union in Case of Member Countries of Different Sizes and Output Persistence	Rainer Frey
16	2004	On the decision to go public: Evidence from privately-held firms	Ekkehart Boehmer Alexander Ljungqvist
17	2004	Who do you trust while bubbles grow and blow? A comparative analysis of the explanatory power of accounting and patent information for the market values of German firms	Fred Ramb Markus Reitzig
18	2004	The Economic Impact of Venture Capital	Astrid Romain, Bruno van Pottelsberghe
19	2004	The Determinants of Venture Capital: Additional Evidence	Astrid Romain, Bruno van Pottelsberghe
20	2004	Financial constraints for investors and the speed of adaption: Are innovators special?	Ulf von Kalckreuth
21	2004	How effective are automatic stabilisers? Theory and results for Germany and other OECD countries	Michael Scharnagl Karl-Heinz Tödter
22	2004	Asset Prices in Taylor Rules: Specification, Estimation, and Policy Implications for the ECB	Pierre L. Siklos Thomas Werner Martin T. Bohl

23	2004	Financial Liberalization and Business Cycles: The Experience of Countries in the Baltics and Central Eastern Europe	Lúcio Vinhas de Souza
24	2004	Towards a Joint Characterization of Monetary Policy and the Dynamics of the Term Structure of Interest Rates	Ralf Fendel
25	2004	How the Bundesbank really conducted monetary policy: An analysis based on real-time data	Christina Gerberding Andreas Worms Franz Seitz
26	2004	Real-time Data for Norway: Challenges for Monetary Policy	T. Bernhardsen, Ø. Eitrheim, A.S. Jore, Ø. Røisland
27	2004	Do Consumer Confidence Indexes Help Forecast Consumer Spending in Real Time?	Dean Croushore
28	2004	The use of real time information in Phillips curve relationships for the euro area	Maritta Paloviita David Mayes
29	2004	The reliability of Canadian output gap estimates	Jean-Philippe Cayen Simon van Norden
30	2004	Forecast quality and simple instrument rules - a real-time data approach	Heinz Glück Stefan P. Schleicher
31	2004	Measurement errors in GDP and forward-looking monetary policy: The Swiss case	Peter Kugler Thomas J. Jordan Carlos Lenz Marcel R. Savioz
32	2004	Estimating Equilibrium Real Interest Rates in Real Time	Todd E. Clark Sharon Kozicki
33	2004	Interest rate reaction functions for the euro area Evidence from panel data analysis	Karsten Ruth

34	2004	The Contribution of Rapid Financial	
		Development to Asymmetric Growth of	
		Manufacturing Industries:	George M.
		Common Claims vs. Evidence for Poland	von Furstenberg
35	2004	Fiscal rules and monetary policy in a dynamic	
		stochastic general equilibrium model	Jana Kremer
36	2004	Inflation and core money growth in the	Manfred J.M. Neumann
		euro area	Claus Greiber
37	2004	Taylor rules for the euro area: the issue	Dieter Gerdesmeier
		of real-time data	Barbara Roffia

Series 2: Banking and Financial Supervision

1	2003	Measuring the Discriminative Power of Rating Systems	B. Engelmann,E. Hayden, D. Tasche
2	2003	Credit Risk Factor Modeling and the Basel II IRB Approach	A. Hamerle, T. Liebig, D. Rösch
1	2004	Forecasting Credit Portfolio Risk	A. Hamerle, T. Liebig, H. Scheule
2	2004	Systematic Risk in Recovery Rates – An Empirical Analysis of US Corporate Credit Exposures	Klaus Düllmann Monika Trapp
3	2004	Does capital regulation matter for bank behaviour? Evidence for German savings banks	Frank Heid Daniel Porath Stéphanie Stolz
4	2004	German bank lending during emerging market crises: A bank level analysis	F. Heid, T. Nestmann, B. Weder di Mauro, N. von Westernhagen
5	2004	How will Basel II affect bank lending to emerging markets? An analysis based on German bank level data	T. Liebig, D. Porath, B. Weder di Mauro, M. Wedow

Visiting researcher at the Deutsche Bundesbank

The Deutsche Bundesbank in Frankfurt is looking for a visiting researcher. Visitors should prepare a research project during their stay at the Bundesbank. Candidates must hold a Ph D and be engaged in the field of either macroeconomics and monetary economics, financial markets or international economics. Proposed research projects should be from these fields. The visiting term will be from 3 to 6 months. Salary is commensurate with experience.

Applicants are requested to send a CV, copies of recent papers, letters of reference and a proposal for a research project to:

Deutsche Bundesbank Personalabteilung Wilhelm-Epstein-Str. 14

D - 60431 Frankfurt GERMANY