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Abstract:

The paper develops an empirical no-arbitrage Gaussian affine term structure model to
explain the dynamics of the German term structure of interest rates from 1979 through
1998. In contrast to most affine term structure models two risk factors that drive the
dynamics are linked to observable macroeconomics factors: output and inflation. The
results obtained by a Kalman-filter-based maximum likelihood procedure indicate that
the dynamics of the German term structure of interest rates can be sufficiently explained
by expected variations in those macroeconomic factors plus an additional unobservable
factor. Furthermore, we are able to extract a monetary policy reaction function within
this no-arbitrage model of the term structure that closely resembles the empirical
reaction functions that are based on the dynamics of the short rate only.

Keywords: affine term structure models, monetary policy rules,
Kalman filter
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Non Technical Summary

In this paper, the dynamics of the German term structure of interest rates between 1979

and 1998 are investigated. This is done on the basis of an empirical model from the

class of affine term structure models, which are based on the assumption of the absence

of arbitrage opportunities in financial markets and which have become very popular in

the finance literature. They model the dynamics of the term structure of interest rate on

the basis of stochastic risk factors. Interest rates of different maturities are expressed as

time-to-maturity-specific linear functions of that risk factors. However, in most cases

these factors are left unobserved and, thus, have no explicit economic content. This

paper, in contrast, provides an explicit link between the risk factors and two

macroeconomic variables: the expected inflation gap and the expected output gap.

The explicit link results from the fact that within the affine term structure models the

short-term interest rate is expressed as function of a constant plus the sum of risk factors

each multiplied with an associated coefficient. This functional form equals the

functional form of monetary policy rules which also gained popularity in

macroeconomic research. They express the short-term interest rate (policy rate) as the

sum of its equilibrium level and the reaction upon macroeconomic variables indicated

by the reaction coefficient times the respective macroeconomic variable. From this

formulation it follows that the latent risk factors of the affine term structure models

could be matched with the macroeconomic variables that enter the monetary policy

rules.

The paper connects the finance and the macroeconomic approaches and estimates an

affine term structure model in which two factors are explicitly identified as the expected

inflation gap and the expected output gap both of which have been proven to be

significant in a monetary policy rule for the Bundesbank based on the short-rate only.

The model is estimated with a Kalman filter technique based on interest rates whose

maturities range from 1 month to 10 years. The results of two-factor as well as three-

factor affine term structure models are presented. Especially the three-factor model with

two factors being identified and the third factor being unobserved is able to describe the

dynamics of the German term structure of interest rate quite well. The reaction



coefficients with respect to the expected inflation gap and the expected output gap that

are obtained are nearly identical to the ones that result from the traditional estimation of

the monetary policy rule.

The results that are obtained by combining the two lines of research can be interpreted

from two directions. From the view of the affine term structure literature it is shown that

the risk factors have an explicit economic content. This results in a better understanding

of the dynamics of the term structure. From the perspective of the macroeconomic

literature on monetary policy rules we can draw the conclusion that the estimated

monetary policy reaction coefficients that are extracted from the affine term structure

model have the feature to be consistent with the absence of arbitrage in financial

markets.



Nicht technische Zusammenfassung

In diesem Diskussionspapier erfolgt eine Untersuchung der Bestimmungsgründe der

Dynamik der deutschen Zinsstruktur für den Zeitraum von 1979 bis 1998. Zur

Erklärung der Zinsstrukturdynamik wird auf ein Modell aus der Klasse der so

genannten Affinen Zinsstruktur-Modelle zurückgegriffen, welche sich in der

finanzwirtschaftlichen Literatur großer Beliebtheit erfreuen. Diese Modelle basieren auf

der expliziten Annahme der Arbitragefreiheit auf den Finanzmärkten und erklären die

Dynamik der Zinsstruktur auf der Basis von so genannten stochastischen

Risikofaktoren. Die Zinsen verschiedener Restlaufzeiten lassen sich dabei als

restlaufzeitspezifische lineare Funktionen dieser Faktoren darstellen. In der Regel

bleiben diese Faktoren jedoch unbeobachtet und haben keinen expliziten ökonomischen

Gehalt. Im vorliegenden Diskussionspapier erfolgt allerdings eine explizite

Identifikation bzw. Verbindung dieser Risikofaktoren mit makroökonomischen

Variablen: der erwarteten Inflationslücke und der erwarteten Produktionslücke.

Die Möglichkeit zur Verbindung beider Ansätze ergibt sich aus dem Umstand, dass der

kurzfristige Zins sich im Rahmen der Affinen Zinsstruktur-Modelle als Funktion einer

Konstanten sowie der Summe aus den Risikofaktoren, welche jeweils multiplikativ mit

einem Koeffizienten verknüpft sind, darstellen läßt. Diese funktionale Form entspricht

der Form von geldpolitischen Reaktionsfunktionen, welche oftmals in der

makroökonomischen Literatur zur Charakterisierung der Geldpolitik Verwendung

finden. Hierbei wird die Dynamik des kurzfristigen Zinses, welcher von der Zentralbank

gesetzt wird, erklärt durch dessen Gleichgewichtsniveau sowie der geldpolitischen

Reaktion auf makroökonomische Variablen ausgedrückt durch die zu schätzenden

Reaktionskoeffizienten in Bezug auf makroökonomische Variablen. Aus der

Formulierung geldpolitischer Regeln folgt, dass es sich bei den latenten Risikofaktoren

der Affinen Zinsstruktur-Modelle um jene makroökonomischen Variablen handeln

sollte, die auch Eingang in die empirischen Reaktionsfunktionen finden.

Im Diskussionspapier erfolgt eine Schätzung der Dynamik der deutschen Zinsstruktur

im Rahmen eines Affinen Zinsstruktur-Modells mit expliziter Identifikation zweier

Risikofaktoren. Diese sind die erwartete Inflationslücke und die erwartete



Produktionslücke. Beide erweisen sich in einer vorgelagerten traditionellen Schätzung

der Reaktionsfunktion der Deutschen Bundesbank als signifikant. Die Schätzung der

Zinsstrukturdynamik erfolgt auf der Basis eines Kalman-Filter-Ansatzes unter Einbezug

der Zinsen für die Restlaufzeiten eines Monats bis zu 10 Jahren. Dabei werden sowohl

Zwei-Faktoren-Modelle als auch Drei-Faktoren-Modelle geschätzt. Vor allem das Drei-

Faktoren-Modell, in welchem zwei der Faktoren explizit als erwartete Inflations- und

Produktionslücke aufgenommen werden und der dritte Faktor unbeobachtet bleibt,

erweist sich als geeignet, die Zinsstrukturdynamik zu erklären. Dabei ergeben sich

nahezu die identischen Reaktionskoeffizienten wie in der traditionellen Schätzungen auf

Basis des kurzfristigen Zinses.

Das Ergebnis, welches sich aus der Verbindung der beiden Ansätze ergibt, läßt sich aus

zweierlei Sichtweise interpretieren. Aus Sicht der Affinen Zinsstruktur-Modelle erfolgt

eine explizite ökonomische Fundierung der Risikofaktoren. Dies trägt zum besseren

Verständnis der Zinsstrukturdynamik bei. Aus der makroökonomischen Sicht der

Literatur zu geldpolitischen Regeln läßt sich schlußfolgern, dass die geschätzten

geldpolitischen Reaktionskoeffizienten konsistent mit der Abwesenheit von

Arbitragemöglichkeiten auf den Finanzmärkten sind.
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Towards A Joint Characterization of Monetary Policy
and the Dynamics of the Term Structure of Interest Rates*)

1 Introduction

The characterization of monetary policy by empirical reaction functions that

describe the short-term interest rate setting of central banks in response to the dynamics

of a small set of macroeconomic variables, e.g. the inflation gap and the output gap, has

become very popular in the macroeconomic literature in recent years. Such Taylor-type

rules, however, only care about the dynamics of the short-term interest rate. They

normally do not take into account the associated dynamics of longer-term interest rates,

i.e. the term structure of interest rates. These dynamics are well described by a popular

strand of the finance literature, that has also been growing rapidly in recent years. These

are no-arbitrage models of the term structure of interest rates. The so-called affine term

structure models (ATSM) are the most popular ones within this literature. They explain

the dynamics of the term structure of interest rates by (mostly) unobserved stochastic

(risk) factors, while yields of different maturities are connected by the absence of

arbitrage opportunities.

Although a vast variety of affine term structure models exists due to the number

of latent factors and the explicit formulation of their stochastic processes, they all share

a common feature: in the single-factor case the only risk factor equals the short rate,

whereas in multi-factor cases the short rate is a (additive) combination of multiple risk

factors. Monetary policy rules share the same (functional) structure, once the risk

factors are interpreted as macroeconomic variables. Therefore, the short-term interest

rate is a critical point of intersection between the two lines of research. Together, the

two perspectives suggest that understanding the manner in which central banks move

the short rate (respectively, the policy rate) in response to fundamental macroeconomic

                                                
*) WHU, Otto Beisheim Graduate School of Management, Burgplatz 2, 56179 Vallendar, Germany,

email: Ralf.Fendel@whu.edu. This paper was written while the author was visiting researcher with the
Deutsche Bundesbank. I would like to thank the members of the research department of the
Bundesbank for the kind hospitality. In particular, I am indebted to Heinz Herrmann and the
participants of the research seminar at the Bundesbank for helpful comments and support.
Furthermore, I am also indebted to Sandra Eickmeier, Karsten Ruth, Günter Schmidt and Michael
Frenkel. All remaining errors are mine.
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variables should explain movements in the short end of the yield curve. With the

consistency between long and short rates enforced by the no-arbitrage assumption,

(expected) macroeconomic variations should amount for movements farther out of the

yield curve as well. Combining the two lines of research could sharpen our

understanding of the dynamics of the term structure of interest rates, respectively, the

yield curve.

Understanding what moves the bond yields is important for at least four reasons.

A first one is forecasting. When adjusted for risk, yields of long-maturity bonds

represent expected values of average future short-term yields. Therefore, the yield curve

contains information about the expected future path of the economy. A second reason is

closely connected to monetary policy. Central banks are only able to move the short end

of the yield curve via their interest rate decisions. However, what matters more for

aggregate demand, and thus, for targeting inflation are the longer-term yields. A model

of the dynamics of the yield curve helps to understand how movements at the short end

translate into changes of longer-term yields. This knowledge helps central banks to

conduct monetary policy. Debt policy is a third reason. When issuing new debt,

governments need to decide about the maturity of the new bonds. Thus, they need an

idea how the term structure of interest rates develops over time. A fourth reason is

derivative pricing and hedging. Prices of complex securities, such as swaps, caps and

floors, options on interest rates, and futures can be computed from a given model of the

yield curve. Furthermore, banks need to manage the risk of paying short-term interest

rates on deposits while receiving long-term interest rates on loans. Hedging strategies

involve contracts that are contingent on future short rates, such as swap contracts. To

compute appropriate strategies, banks need to know how the price of derivative

securities depends on the state of the economy.

This paper combines the above mentioned two popular strands of the literature.

We propose a model that is able to capture the dynamics of the German term structure

of interest rates very well and additionally generates reaction coefficients in the short

rate equation that are very close to the magnitudes that are observed in empirical models

that abstract from arbitrage-free dynamics of the term structure of interest rates.

However, in the formulation of the model we face a trade-off: we want to sufficiently

characterize the dynamics of the term structure of interest rates but keep the model as
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tractable as possible, i.e., keeping the number of parameters as low as possible. For this

reason we restrict the analysis to the class of constant volatility models with time-

invariant term premia.

Several other papers have recently also combined the two lines of research. Ang

and Piazessi (2003) estimate the dynamics of the US yield curve also based on

macroeconomic factors as well as unobservable factors. They show that macroeconomic

factors primarily explain movements at the short end and the middle of the yield curve

while unobservable factors account mostly for movements at the long end. However,

they do not jointly estimate the coefficients of the macroeconomic factors and the latent

factors. They first estimate the coefficients of the monetary policy rule and estimate the

remaining parameters in a second step holding the pre-estimated parameters constant.

Rudebusch and Wu (2003) estimate a two-factor Gaussian term structure model for the

U.S. Based on a subsequent OLS analysis they show that the extracted factors are

correlated with factors that typically enter a monetary policy rule.

We depart from those ‘two step analyses’ by estimating an empirical model that

jointly incorporates observable as well as unobservable factors. We also take into

account the term structure dynamics up to a maturity of 10 years, while those studies

take 6 years as the longest maturity. Our analysis draws on the study of Cassola and

Luis (2003) who show that the dynamics of the German term structure from 1972

through 1998 can be well explained by a two-factor Gaussian model with time-invariant

risk premia. We add explicit economic content to their model. Hördahl et al. (2003) also

construct a joint model of German macroeconomic factors and the yield curve.

However, they estimate the macroeconomic and the yield curve dynamics within the

framework of the new neo-classical synthesis. Our approach lacks such a structural

model but has the advantage to link macroeconomic and latent term structure factors

more explicitly.

The paper is structured as follows. The subsequent section briefly characterizes

the class of affine term structure models as well as the concept of the absence of

arbitrage and its consequences for the pricing of bonds. Section 3 introduces the general

multi-factor affine term structure model in discrete time (the Duffie Kan model) which

nests most of the known affine term structure models. In section 4, this general model is
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tailored to a particular Gaussian version that serves as our empirical model. Section 5

relates the literature of monetary policy rules to the model sketched out before and

relates the parameters to each other. The estimation procedure based on a Kalman filter

and the results are presented in section 6. Finally, section 7 concludes.

2 An Arbitrage-Free Perspective of the Term Structure
of Interest Rates

2.1 A Non-technical Characterization of Affine Term Structure Models

The term structure of interest rates can be characterized by affine term structure

models.1 These models are based on an explicit no-arbitrage condition in financial

markets. The assumption of the absence of arbitrage opportunities seems quite natural

for bond yields. Most bond markets are extremely liquid, and arbitrage opportunities are

traded away immediately. Tractability is the main advantage of affine models: they

assume bond yields to be affine (i.e., constant-plus-linear) functions of some state

vector (the risk factors), so that models can easily be solved either in closed form or

numerically using standard procedures.2 The models of Vasicek (1977) and Cox,

Ingersoll and Ross (or CIR, 1985) are the pioneers of the class of affine term structure

models. Both focus on closed form solutions and show how the term structure of

interest rates at a moment in time reflects regularities of interest rate movements over

time. In the simplest versions of such models, the so-called one-factor models, the

short-term interest rate is the single factor that drives the movements of the term

structure.

The underlying diffusion process of the short rate is modeled as a Markov

process, which means that its history contains no information about its future value that

cannot be extracted from its current value. The Markov property is consistent with the

so-called weak form of market efficiency, which generally says that extraordinary

returns cannot be achieved by the use of the precise historical evolution in the price of a

particular asset. The Markov process makes it possible that prices of zero coupon bonds

of any maturity can also be written as a function of the short rate and their time to

                                                
1 See Maes (2004) and Piazessi (2003) for excellent overviews.



5

maturity. In this sense, the zero coupon bonds are derivative securities, i.e. securities

deriving their value from the underlying short rate dynamics. Bond pricing can, thus, be

performed along the well-known logic of derivative pricing including the Black and

Scholes (1973) model of stock option pricing.

If the short rate follows a particular diffusion process and bond prices are a

function of the short rate, then, by Ito’s Lemma, the latter will also follow a diffusion

process whose drift and variance can be characterized by the drift and variance of the

short rate diffusion process.3 Given a set of risky bonds, it is possible to design a risk-

free self-financing portfolio that has to yield the instantaneously risk-free (short) rate

within the interval dt in order to be consistent with the absence of arbitrage. This

riskless portfolio is fully characterized in terms of the portfolio weights that have to be

attached to the single assets. It turns out that the excess return per unit of risk for each

asset has to be identical. This defines the market price of risk. In a setting with more

than one risk factor, one market price of risk is associated with each factor. Formally,

the existence of a unique (vector of the) market price(s) of risk requires the absence of

arbitrage.

The market price of risk relates the expected return of a particular bond to its

volatility, both of which can be expressed in terms of the drift and the volatility of the

underlying short rate process (by Ito’s Lemma). Expressing the market price of risk in

terms of the latter derives the fundamental partial differential equation that each interest

rate derivative has to satisfy in the absence of arbitrage: the so-called  term structure

partial differential equation. However, a unique solution for this term structure partial

differential equation does not always exist. But it can be shown that an affine structure

of bond prices guarantees a solution. This feature makes the class of affine term

structure models particularly attractive.4

The logic that single-factor affine term structure models are based on the

dynamics of the short rate indicates that the formulation of the nature of the diffusion

                                                                                                                                              
2 A function )(⋅f is defined to be affine if it is constant-plus-linear in its arguments (strictly speaking,

linear would suffice). A univariate example would be: bxaxf +=)( , for all real parameters a and b.
3 Ito’s Lemma requires additionally that the bond pricing functions have to be twice differentiable. See

Bolder (2001) for an in-depth illustration of the particular steps involved in the solution of ATSM.
4 In particular, the affine structure decomposes  the term structure equation into two separate differential

equations that together form a so-called Ricatti problem that is quite easy to handle.
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process for the short rate is crucial for any term structure model. The Vasicek (1977)

model assumes that the short rate’s volatility is constant, whereas in the CIR (1985)

model the short rate’s volatility is to be proportional to the square root of the short rate

itself. This has the advantage of ruling out negative values of the interest rate because

short rate volatility declines to zero when the short rate is zero. Thus, its future value is

only determined by its drift which is positive. Both models have in common that the

short rate exhibits mean reversion. A stochastic process that shows such dynamics is

known as an Ornstein-Uhlenbeck process. Chan et al. (1992) provide empirical

evidence that interest rates do indeed have the feature of mean reversion.

However, one-factor models have some unrealistic properties. First, they are not

able to generate all the shapes of the yield curve that are observed in practice. For

example, the one-factor Vasicek and CIR models can only produce increasing yield

curves, decreasing yield curves and yield curves with a small hump (i.e, ∩-shaped).

Typically, yield curves have one of these shapes. However, they can occasionally differ

from these, e.g. the yield curve is sometimes decreasing for short maturities and then

increasing for longer maturities. Such an inverse hump (i.e., ∪-shaped) or any other

yield curve cannot be generated by one-factor models. Second, one-factor models do not

allow for the twist of the term structure of interest rates, i.e. yield curve changes where

short-maturity yields move in the opposite direction of long-maturity yields. This is

because all yields are driven by a single factor, meaning that they have to be highly

correlated. Intuitively, multi-factor models are much more flexible and are able to

generate additional yield curve shapes and yield curve dynamics.5

In multi-factor models several, say k, observed or unobserved (risk) factors

govern the movement of the term structure. The univariate diffusion process of the short

rate is substituted by a multivariate diffusion process. Duffie and Kan (hereafter DK,

1996) establish the conditions that have to be fulfilled to still produce affine yield

expressions to preserve the tractability of the models in the multidimensional case. The

DK-framework has the advantage that it nests most of the existing term structure

models. Among them are multi-factor versions of Vasicek (1977) and CIR (1985), as

                                                
5 Empirical evidence strongly points towards multi-factor extensions of the model. See Dewachter and

Maes (2000) and Dai and Singleton (2000) for a comparison of one-factor versus two- and three-factor
model fits.
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well as Longstaff and Schwartz (1992), Langetieg (1980) and Balduzzi et al. (1996 and

1998).6 As in the one-factor case these models specify the stochastic process of the

factors and derive the bond prices (or yields) as affine functions of the factors and the

time to maturity. Since zero coupon bond prices and zero coupon yields are

unambiguously tied together, yields (and thus the short rate) are also affine functions of

the factors. Their dynamics are driven by the dynamics of the underlying risk factors.

The main (statistical) idea of affine term structure models, i.e., to explain the

dynamics of the term structure of interest rates on the basis of few factors, is equal to

the modus operandi of (purely statistical) factor models, such as the principal

component analysis of yield changes that describe the covariance matrix of yield

changes in terms of few factors that describe their common movement. For example, on

the basis of a factor analysis Bühler and Zimmermann (1996) show that the dynamics of

the German interest rate could well be described, i.e. about 90 percent of the variation,

by three factors. Litterman and Scheinkman (1991) established the same result for the

U.S. term structure within a principal component analysis.7 The latter authors proposed

the interpretation of this components in terms of ‘level’, ‘slope’ and ‘curvature’. The

major drawback of these analyses is that they are purely statistical and do not have any

economic content. Affine term structure models start from the strong assumption of the

absence of arbitrage and, thus, have an explicit economic content that puts restrictions

on the cross-section and time series behavior of bond prices, respectively interest rates.

2.2 The Implications of the Absence of Arbitrage

The absence of arbitrage has crucial implications for the dynamics of any asset

and, thus, for the term structure of interest rates. Harrison and Kreps (1979) and

Harrison and Pliska (1981) prove that the assumption of the absence of arbitrage

opportunities within a particular market is equivalent to the existence of a so-called

pricing kernel (or stochastic discount factor). They also prove that the absence of

arbitrage guarantees the existence of a risk-neutral probability measure, such that the

price of any asset in time t that pays no dividend in time t+1 equals its time-t-expected

                                                
6 See Dai and Singleton (2000) for a categorization of affine term structure models. These authors also

extensively discuss the restrictions that have to be fulfilled in the parameterization of the models in
order be theoretically admissible and econometrically identified.

7 Canabarro (1995) reports similar results for the US.
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discounted value in t+1, where the discount factor is the risk-free rate and the

expectations are formed under the risk-neutral measure. The risk-free probability can be

converted to the data-generating measure (or physical measure) by the Radon-Nikodym

derivative. The dynamics of the Radon-Nikodym derivative are driven by the dynamics

of the market price of risk characterized above. The two concepts of the pricing kernel

and the risk-neutral probability measure are mathematically equivalent and are jointly

referred to as the “Fundamental Theorem of Asset Pricing”.8

Our discrete-time model relies on the pricing kernel formulation. This essentially

means that in the absence of arbitrage the price of any financial asset corresponds to the

present value of its expected future cash flow with the present value being obtained by

applying the positive stochastic discount factor (the pricing kernel). In the case of zero

coupon bonds whose future cash flows only correspond to their price in the next period,

we can establish the following pricing equation:

[ ]1,11, +−+= tntttn PMEP , (2.1)

where the expectations are taken under the physical probability measure. P

represents the price of the zero coupon bond with n denoting its time to maturity. M is

the stochastic discount factor which is also known as the price generator, since prices

grow from it. In any arbitrage-free environment, there exists a unique positive random

variable that satisfies expression (2.1).9 Arbitrage opportunities are ruled out by

applying the same discount factor to all bonds. An arbitrage opportunity is any zero-net-

investment strategy that guarantees a positive payoff in some future state of the world

with no possibility of a negative payoff in all other future states of the world.10 Solving

                                                
8 See Maes (2004, p. 11 ff) on the exact nature of this equivalence in continuous-time models and

Backus et al. (1998a) for the discrete-time models.
9 See Harrison and Kreps (1979) and Harrison and Pliska (1981) for this fundamental result.
10 Intuitively, the equivalence of the existence of a unique positive pricing kernel and the absence of

arbitrage opportunities can be explained as follows. An arbitrage project would be a trading strategy

that satisfies the following condition: 0<ψ
tV  and 01 ≥+

ψ
tV , with ψ being a vector representing the

units held of each asset in a portfolio between time t and t+1. This relation basically means that the
portfolio has a negative initial value (so that the investor receives money when initiating the strategy in
time t), while its value (payoff) in time t+1 is non-negative no matter how the world evolves between
the two dates. Any rational investor would want to invest in this strategy. Applying (2.1) to this

portfolio yields: [ ]ψψ
11 ++= tttt VMEV . If the pricing kernel is positive and ψ

1+tV  is strictly positive, it
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forward the basic pricing equation (2.1) by the law of iterated expectations and noting

that the bond pays exactly one unit at maturity (P0,t+n=1) yields:

[ ] 







== ∏

=
+++

n

i
ittnttttn MEMMEP

1
1, K , (2.2)

so that a model of bond prices could also be expressed as a model of the evolution

of the pricing kernel. It follows that we can model Pn,t (and, thus, associated bond

yields) by modeling the stochastic process of Mt+i. The bond prices (and, thus, bond

yields) are a function of those state variables that are relevant for forecasting the process

of the pricing kernel.

In consumption-based equilibrium models, the pricing kernel represents the

marginal rate of substitution between present and next period’s consumption, i.e. the

discounted ratio of marginal utilities of consumption, of a particular representative agent

valued at her optimal consumption rate.11 Since the purpose of financial assets is to

allow agents to shift consumption across time and different states, it should come at no

surprise that a measure for the market-wide pricing information can be captured by the

marginal rate of substitution in consumption. Furthermore, the pricing kernel is unique

in the case financial markets are complete. A market is complete if all relevant risks can

be hedged by forming portfolios of the traded financial assets.12

Arbitrage free models can also be considered as equilibrium models, i.e. only

equilibrium prices of financial assets are determined. A market is said to be in an

equilibrium if it clears in the sense that demand equals supply, and every investor has

picked a trading strategy in the financial asset under consideration that serves his

                                                                                                                                              
must be that ψ

tV has to be strictly positive, too. Consequently, if a positive pricing kernel exist,

arbitrage as defined above is ruled out.
11 This can be shown by considering the intertemporal choice of an investor who maximizes the

expectation of a time-separable utility function: 











Γ= ∑

∞

=
+

0

)(
j

jt
j

tt cuEU , which leads to the optimal

consumption plan:  [ ] ( )[ ])()()1()( 1,1,11 ++−+ ′⋅⋅Γ=′⋅+⋅Γ=′ ttntnttttt cuPPEcuiEcu , where it is the

return of an asset that the investor can freely trade and the second equality comes from our bond
considered above, since we have as its gross return: (Pn-1,t+1 /Pn,t) = (1+it). Comparing this to (2.1) it
follows that the pricing kernel is )(/)( 11 ttt cucuM ′′⋅Γ= ++ . Note that this also means that the pricing
kernel is always positive since marginal utilities are always positive.

12 This essentially means, for example, that options can be artificially created by a suitable buy and sell
strategy in the underlying asset.
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preferences and budget constraint. An arbitrage is a trading strategy that generates a

riskless profit. If an investor has the opportunity to invest in an arbitrage project, he will

surely do so, and hence will change his original trading strategy. In other words, a

market that allows for arbitrage is not in an equilibrium. For our purpose this means,

when searching for equilibrium prices we can exploit no-arbitrage conditions.

We can also employ the fundamental pricing equation (2.1) to characterize the

compensation for risk that an investor demands for holding a risky bond. If we denote

the nominal gross return of an asset (Pn-1,t+1 /Pn,t) as (1+it) we can rewrite (2.1) and get:13

[ ] [ ] [ ] [ ]1111
,

1,1 ,)1()1(1 ++++
+− ++=+=












= ttttttttttt

tn

tn
t MiCovMEiEMiEM

P

P
E . (2.3)

It follows that:

[ ] [ ] [ ]( )1
1

,1
1

)1( +
+

−=+ ttt
tt

tt MiCov
ME

iE . (2.4)

Since the covariance term has to be zero for a risk-free asset, its rate of return has to

satisfy

[ ]1

1
1

+

=+
tt

f
t ME

i . (2.5)

The risk free rate is often referred to as the short rate. However, this means that it is

only ‘instantaneously riskless’ because future levels are not known. The short rate is

strictly speaking a zero maturity interest rate, i.e. the interest rate of a bond that matures

in the next instant. Since the shortest maturity we will consider in our empirical exercise

is one month, we will think of the one-month rate as the risk-free short rate. Combining

(2.4) and (2.5) we get an expression for the excess return of any risky asset over the

risk-free rate, in other words, its risk premium:

[ ] [ ]1,)1( ++−=− ttt
f

t
f

ttt MiCoviiiE . (2.6)

                                                
13 See Campbell et al. (1997, p. 294).
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The previous equation basically demonstrates that risk premia originate from the

co-variation of its return with the pricing kernel. When the return dynamics of an asset

covary negatively with the pricing kernel dynamics, the risk premium is positive, and

vice versa. The minus sign in (2.6) means that investors are willing to accept an

expected rate of return below the risk free rate on such securities that tend to have high

payoffs when the pricing kernel is higher. This is best understood if we rely on the

interpretation of the pricing kernel as the ratio of marginal utilities of consumption. An

investor will demand a higher compensation for an asset that behaves cyclically than for

an asset that behaves countercyclically, since the former bears higher risk in terms of

consumption variability, whereas the latter can be considered as an insurance against

consumption risk.14

3 A General Affine Term Structure Model in Discrete Time

As already mentioned, Duffie and Kan (1996) present a framework that formally

preserves the affine property of term structure models. Most existing models can thus be

interpreted as a particular parameterization of this framework. Originally the DK-

framework was formulated in continuous time. This way of formulation has proven to

be very elegant by using well-known results of differential stochastic calculus.

However, affine term structure models can also be formulated in discrete time.15 Since

we focus on econometric testing of the model and its empirical implications, we also

rely on a model in discrete time. This might be less elegant but avoids the pitfalls of

estimating a continuous-time model with discrete-time data.16

The DK model has been reformulated by Backus et al. (1998a/b) into discrete

time and is based on the fundamental result of the existence of a unique pricing kernel

characterized above. Equation (2.1) demonstrates that in an arbitrage-free environment a

model that is intended to explain the development of asset prices consists of a

description of the development of the pricing kernel which, in turn, is driven by the

                                                
14 When consumption growth is high the marginal utility of consumption (and thus the pricing kernel) is

low. If returns are negatively correlated with the pricing kernel, high returns are associated with states
of high consumption. A risk premium has to be paid for such assets because they provide more wealth
when it is less needed, respectively they provide less wealth when it is most needed.

15 See Backus et al. (1998a) for an extensive exposition. Sun (1992) explores the relation between
discrete-time and continuous-time models more generally.
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process of the underlying risk factors. In particular, the k-dimensional vector of risk

factors, Z, satisfies the following stochastic process:17

( ) 1
21

1 )( ++ +⋅Φ+⋅Φ−= tttt ZVZIZ εθ (3.1)

where I  is an identity matrix and the matrix Φ  has positive diagonal elements between

zero and one in order to ensure that the factors are stationary. θ  is the long-run mean of

the risk factors. Thus, the risk factors are governed by a discrete-time Ornstein-

Uhlenbeck process. The independent shock term is normally distributed with

),0(~ INtε . Finally, )( tZV  is the variance-covariance matrix of the random shocks

and is defined as a diagonal matrix with the elements tjjtj ZZv βα ′+=)( , where jβ

has nonnegative elements.18 Thus, the factors have an affine volatility structure, which

is a generalization of the square-root structure of the CIR model. Moreover, the factors

are allowed to be correlated. The square-root process of the risk factor requires that the

volatility function )(Zv j  has to be positive, which places particular restrictions on the

parameters.19

To derive an affine yield model, the distribution of the stochastic discount factor

is assumed to be conditionally log-normal. In addition to providing model tractability,

this assumption keeps the discount factor positive and unique. Following Backus et al.

(1998a), the negative of the log of the pricing kernel ( [ ]11 log ++ ≡ tt Mm ) takes the form:

11 ++ +⋅′+=− ttt Zm ξγδ , 

where δ  is a constant and γ  is a parameter vector. The innovations to the risk factors

and the pricing kernel may be correlated. To capture this we write:

                                                                                                                                              
16 See A?t-Sahalia (1996). He points out that the approximation of a continuous time process by

discretization methods is hard to justify even for daily data.
17 The following model is covered in greater detail in Cassola and Luis (2003), who also take the DK-

framework as the benchmark for their model.
18 In the subsequent notation the subscripts j generally indicate a particular element within the respective

matrix which has no subscript attached. Throughout the paper the subscript j = 1 ... k  indicates the
number of risk factors, and thus, determines the size of the matrices and vectors.

19 In a continuous-time framework the dynamics of the risk factors are generally expressed as an Ito
diffusion process. Expression (3.4) is its counterpart in discrete time. Formally, (3.4) can be derived
via a Euler discretization  (see Bolder, 2001, p. 51).
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11
21

1 )( +++ +⋅′= tttt ZV ηελξ .

The presence of an uncorrelated shock 1+tη  will only affect the average level of the term

structure and not its average slope nor its time-series behavior. In order to simplify

notation it is common to drop it (Campbell et al. 1997), so that we have:

1
21

1 )( ++ ⋅′+⋅′+=− tttt ZVZm ελγδ , (3.2)

where λ  is the vector that governs the correlation between innovations in the risk

factors (state variables) and the pricing kernel: risk, in other words.

According to the affine formulation of bond prices it is assumed that bond prices

are exponential affine functions of the risk factors:20

( )tnntn ZBAP ⋅′−−= exp, , (3.3)

where, again, the second subscript n denotes the time to maturity at time t. The

parameter nA  and the vector of parameters nB  are to be estimated in order to determine

bond prices. Both are ‘time to maturity-related’ constants. The latter is commonly

referred to as the vector of factor loadings because it measures the impact of a shock to

the risk factors on the bond prices. In case of zero coupon bonds the values 0A  and 0B

have to be equal to zero, because at the time of their maturity (n = 0) they pay by

definition exactly the face value of one unit. Thus, the log of the price of a maturing

bond (denoted by a lower case p) has to be zero. The general form of the relation is:

., tnntn ZBAp ⋅′+=− (3.4)

Since nominal yields and prices of zero coupon bonds are unambiguously linked,

nominal yields of zero coupon bonds can be easily computed as

t
nntn

tn Z
n
B

n
A

n

p
i

′
+=−= ,

, . (3.5)

                                                
20 This particular formulation ensures the property that log bond prices, and hence bond yields, are linear

(affine) in the state variables. This ensures the desired joint log-normality of bond prices with the
stochastic discount factor.
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Equation (3.5) states that we can model the dynamics of the whole term structure if we

are able to estimate the parameters An and the vector Bn for all values of n. In order to

solve for their dynamics, we need to employ a well-known statistical result for the

distribution of a log value of any variable X. This result states that if

),(~log 2σµNX then 
2

)(log
2σ

µ +=XE .

Applying this to the fundamental pricing relation in (2.1) expressed in logs

together with eqs. (3.1), (3.2), (3.4), the known (zero) values 0A  and 0B , and the

assumption of the independence of shocks the values of An and Bn will follow the

subsequent recursive restrictions:21

( ) j

k

j
njjnnn BIBAA αλθδ ∑

=
+ ⋅+−Φ−′++=

1

2
,1 2

1
)( (3.6)

( ) ( ) j

k

j
njjnn BBB βλγ ′⋅+−Φ′+′=′ ∑

=
+

1

2
,1 2

1
, (3.7)

where k is the number of risk factors that are modeled.

From (3.5) through (3.7) we can obtain the following expression for the one-

period interest rate (short rate):

,)(
2
1

2
1

2
1

1

2

1

2
,1

λλγδ

βλγαλδ

tt

t

k

j
jj

k

j
jjt

ZVZ

Zi

′−⋅′+=

⋅







′⋅−′+⋅−= ∑∑

==

(3.8)

where the second equality stems from the fact that the variance-covariance matrix is

defined as a diagonal matrix. 22

                                                
21 See Appendix A.1 for the detailed derivation as well as Campbell, Lo and MacKinlay (1997, ch. 11)

for the solution technique.
22 This expression for the short rate is entirely consistent with the fundamental relationship between the

risk-free rate and the pricing kernel in (2.5), once we take the one-period interest rate as the risk-free
rate. Expressing (2.5) in logs and employing the usual approximation for the logarithmic form of the
gross rate, ii ≅+ )1log( , we have: [ ] ttt iME ,11log −=+ . Given the above stated statistical result of the
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We can also calculate the term premia as the difference between the ‘holding

period return’ and the one-period interest rate (see Appendix A.2):

.
22 1

2
,

,
1

2
,

,

,1,11,,

tj

k

j

nj
njjj

k

j

nj
njj

ttntnttn

Z
B

B
B

B

ippE

⋅′⋅









+−⋅










+−=

−−=Λ

∑∑
==

++

βλαλ

Given the structure of the variance-covariance matrix this is equivalent to:

2
)(

)(,
ntn

nttn

BZVB
BZV

⋅⋅′
−⋅⋅′−=Λ λ . (3.9)

This relation basically says that the expected excess log return is the sum of a risk

premium term and a Jensen’s Inequality term in the own variance because we are

working in logs. The term premium is governed by the vector λ . A negative (positive)

sign leads to a positive (negative) bond risk premium. This can be reasoned as follows.

Consider a positive shock 1+tε  which increases the state variable. According to (3.4) this

lowers all bond prices and drives down bond returns. When λ  is positive, the shock

also drives down the log value of the pricing kernel, which means that bond returns are

positively correlated with the pricing kernel. As explained above, this correlation has a

hedge value, so that risk premia on bonds are negative. The same reason applies to the

case when λ  has negative sign, which leads to positive risk premia. λ  is usually known

as the vector of market prices of risk. In order to facilitate a normally (i.e., positively)

sloped yield curve, at least one parameter in the vector λ  has to be sufficiently

negative.

4 A Gaussian Model for the German Term Structure of
Interest Rates

This section proposes a particular parameterization of the general model sketched

out above. The parameter choice is driven by the following trade-off. On the one hand,

                                                                                                                                              
log-value of an expectation of a log-normal distributed variable, the assumption of the determination
of the pricing kernel in (3.2) together with (3.8) yields the above stated expression for the log of the
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the model has to be sufficiently flexible to be able to characterize the dynamics of the

German term structure of interest rates. This might call for a fully fledged model with a

high number of parameters to be estimated. On the other hand, our interest lies in

keeping the number of parameters as low as possible, in order to keep the model

empirically tractable and also to assign specific economic interpretation to the estimated

parameters. In order to resolve this trade-off, we draw on the study of Cassola and Luis

(2003). These authors recently demonstrated that the dynamics of the German term

structure of interest rates can be well explained within a constant volatility (or

Gaussian) two-factor affine term structure model. Close to their parameterization our

choice of parameters is:

.
2
1

0

)(

0

1

22

2

1

∑
=

+=

=

=

=Φ

=

k

j
jj

j

jj

k

j

diag

σλδδ

β

σα

ϕϕ

θ

K

(4.1)

The long-run mean of the risk factors is set equal to zero because of our particular

identification assumption of the risk factors that follows below. 23 The matrix of the

mean reversion parameters is assumed to be diagonal so that the dynamics of a

particular risk factor only depend on its own current value relative to its long-run mean.

The third and fourth definition in (4.1) constitute a Gaussian model with constant

volatility of the risk factors.24 The last definition in (4.1) is intended to yield a particular

                                                                                                                                              
expectation of the pricing kernel, meaning that the general formulation of the model is consistent with
the basic pricing relation in an arbitrage free environment discussed in section 2.

23 There is another technical justification for this as well. Backus et al. (1998a) show for the single-factor
case of the constant volatility model the parameters δ and θ cannot be identified separately, so that
one of them could effectively be dropped. Setting either δ or θ  to zero implies identical asset prices.
However, in the general setup of the model this is not the case.

24 Note that the constant volatility implies that the term premia in (3.9) only depend on the time to
maturity but not on time anymore. Due to the constant volatility formulation Backus et al. (1998a, p.
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formulation for the short-rate equation. 25 In contrast to Cassola and Luis (2003) we limit

the number of restrictions put on the parameters and admit the parameter vector γ  to be

determined by the data.

The parameterization yields the following equation for the dynamics of the

pricing kernel:

.
2

2
1

1
1,,

2
2

11

∑
=

+

++











+++=

′+⋅′+′′+=−

k

j
tjjjtjjj

j

ttt

z

Zm

εσλγσ
λ

δ

εσλγλσσλδ

(4.2)

The vector of risk factors follows a first-order autoregressive process:

11 ++ +⋅Φ= ttt ZZ εσ ,

or for individual risk factors j :

1,,1, ++ += tjjtjjtj zz εσϕ . (4.3)

Our particular parameterization yields the following recursive restrictions for the factor

loadings (see again Appendix A.1 for the derivation):

( )[ ]∑
=

+ +−++=
k

j
jnjjjjjnn BAA

1

2

,
22

1 2
1

σσλσλδ
(4.4)

( )jnjjnj BB ϕγ ,1, +=+ . (4.5)

                                                                                                                                              
23) redefine the market prices of risk as jjj σλλ ≡

~
. This is in line with Duffie and Kan (1996) who

also generally assume that the market prices of risk for factor j is proportional to its standard
deviation. In equation (3.2) we would than substitute: 2/1)(

~
tZVλλ ′≡′ . Rather than following this

approach we do not make this redefinition. This has the advantage to estimate both parameters and
their standard errors independently. Cassola and Luis (2003) also do not redefine the prices of risk in
writing down their model, but only provide estimates of jjσλ , which they interpret as the market

prices of risk. However, following this would not change our results, since we can also calculate the
value jjσλ  from our independent estimates.
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From the recursive restrictions (4.4) and (4.5) together with (3.5), and the fact that

000 == BA , we can get an expression for the one-period interest rate:

∑
=

+=
k

j
tjjt zi

1
,,1 γδ

. (4.6)

The one-period (or short-term) interest rate is determined by a constant and the

sum of time-varying risk factors multiplied by related (constant) coefficients.

Examining (4.6) and interpreting the one-period interest rate as the policy rate of a

central bank, one immediately realizes its equivalence to the popular class of empirical

monetary policy rules, in which the risk factors and their associated coefficients would

have very specific economic meanings. In particular, the constant would be the

equilibrium level of the nominal short-term interest rate, the jγ ’s would resemble the

reaction coefficients of the central bank and the risk factors would display

macroeconomic variables upon which the central bank reacts. From an empirical point

of view equation (4.6) potentially allows us to jointly estimate a monetary policy

reaction function together with the arbitrage-free dynamics of the term structure of

interest rates. However, the crucial point for this exercise is the (empirical)

identification of the risk factors.26 This is the aim of the subsequent section 5.

5 The Monetary Policy View of the Short Rate Dynamics

Since the influential paper by Taylor (1993), it has become common practice to

model monetary policy as a simple feedback or instrument rule. These rules link the

short term policy rate to measures of the output gap and the inflation gap:

)(*)(,1 ttyttt yyri −+−++= γππγπ π , (5.1)

where i1 is the policy rate, π  is inflation with the (*) indicating its target value.

The equilibrium real interest rate is r  and y  is an output measure with the upper bar

                                                                                                                                              
25 In particular, this variance term only arises because we are working in logs (Jensen’s Inequality). The

normalization lets us get rid of this term.
26 Cassola and Luis (2003) parameterize the model such that the one-period rate is just the sum of risk

factors. In the two-factor case they notice that this equals the Fisher equation , where the nominal
interest rate is the sum of the real interest rate plus expected inflation.
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indicating its equilibrium level. The coefficients πγ and yγ  measure the strength of the

reaction to the inflation gap, respectively, the output gap. A comparison of (5.1) and

(4.6) reveals the same expression once the sum of the equilibrium real rate and the

actual inflation rate reflect the δ  and the (two) risk factors are interpreted as the

inflation and the output gap.

Clarida et al. (1998) generalize the formulation in (5.1) to a class of explicitly

forward-looking instrument rules. They further allow for the effect that central banks

smooth their changes in the policy rate, so that the actual rate adjusts only partially to its

target rate.27 The empirical representation of the reaction function becomes:

( ) tttltltytqtqttqtt iIyyEIEIEri νργππγπρ π +⋅+−+−++−= −+++++ 1,1
**

,1 )()()()1( ,(5.2)

where ρ  represents the smoothing parameter, E is the (conditional) expectation operator

given the information set tI , q and l are the horizons of the forward-looking behavior,

and ν  is a composite error term that comprises exogenous shocks to the policy rate.

Comparing (5.2) and (4.6) would then relate two risk factors with the expected inflation

gap, the expected output gap as well as a third risk factor that comprises the effect of

interest rate smoothing behavior and other (stochastic) shocks to the interest rate.

In order to explicitly combine the forward-looking monetary policy rule

representation with the arbitrage-free model of the term structure, we need to

characterize the dynamics of the inflation and the output process. In particular, we

assume that the inflation gap and the output gap both follow an AR(1) process:

11
~~

++ +⋅= ttt uπχπ π , (5.3)

11
~~

++ +⋅= ttyt yy υχ , (5.4)

                                                
27 However, the statistical significance of a lagged policy rate can have alternative interpretations, e.g. a

serial correlation of shocks. See Rudebusch (2002) for a critical discussion.
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where the x~ -notation reflects the gap of the respective variable.28 Forward iteration of

(5.3) yields:

it

q

i

iq
t

q
qt u +

=

−
+ ∑+⋅=

1

~~ χπχπ π

. (5.5)

If we match one of the risk factors in time t with the expected inflation gap t+q periods

ahead

[ ] t
q

qtt Ez πχπ ππ
~~

, ⋅== + , (5.6)

the law of motion of this (inflation) risk factor becomes

[ ] ( ) 

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+⋅=⋅== +

=
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1
11,

~~~ χχπχχπχπ πππππ

. (5.7)

Combining (5.6) and (5.7) with the law of motion for the risk factors from the affine

term structure model in (4.3) it follows for the identification of parameters that:

.
1

1 it

q

i

iq
t u +

=

−
+ ∑⋅=

=

πππ

ππ

χχεσ

χϕ

(5.8)

From (5.6) it follows that the actual inflation gap and the actual (inflation) risk factor

are connected as follows:

tqt z ,)(
1~

π
πϕ

π ⋅=
. (5.9)

By the same token the relationship between the actual output gap and the (output) risk

factor is:

                                                
28 This processes might seem too simplistic, but we refer the reader to the empirical part, where this

assumption turns out to produce quite reasonable results. In addition, since we link the risk factors
whose dynamics are modeled through equation (4.3) to the macroeconomic factors, consistency
requires that we assume the same autoregressive process.
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tyl
y

t zy ,)(
1~ ⋅=

ϕ
. (5.10)

Equations (5.9) and (5.10) follow from the generalized monetary policy rule in (5.2) and

display the general identification of two risk factors with observable macroeconomic

variables given the assumption of an AR(1) behavior of the latter.29 Equations (5.9) and

(5.10) when combined with (3.5) provide us with the possibility to jointly estimate the

yields and the two macroeconomic factors as functions of the risk factors.

6 Estimation Procedure and Results

6.1 The Data

We focus on German data. The data are monthly and cover the period from

1:1979 to 12:1998, This period represents what we might call the ‘Bundesbank regime’.

The sample starts in 1979 because this represents the starting of the European Exchange

Rate Mechanism and ends in 1998, when the European Central Bank took over

responsibility for monetary policy in the euro area. The estimates of the German yield

curve are based on the parameters of the Svensson (1994) smoothing technique as made

available by the Bundesbank. The data set comprises monthly averages of nine daily

spot rates for the following maturities (in month): 1, 3, 12, 24, 36, 48, 60, 84 and 120.

Because of the somewhat erratic behavior we substitute the ‘Svensson estimates’ of the

one month and three months interest rates by the observed German interbank rates.30

Figure 1 presents the time series properties of the yields (in panel (a)) and the average

yield curve over the sample period (panel (b)), while Table 1 presents the summary

statistics.

                                                
29 The Taylor rule in (5.1) is the special case with q = l = 0, so that: tt z ,

~
ππ =   and  .~

,tyt zy =  In this

particular case the risk factors and the two observable macroeconomic variables match on a one to one
basis and we need no explicit assumption about the dynamics of the macroeconomic variables.

30 We consider the money market rates as a good proxy, because the default risk on loans in the German
money market can be considered to be quite low. In general, money market rates apply for unsecured
loans between financial institutions and hence reflect a default risk which lead money market rates to
be higher than similar bond market rates.
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Figure 1: Term Structure Dynamics 1979-1998
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Table 1: Statistical Properties of German Government Bond Yields 1979 – 1998

Maturity 1 3 12 24 36 48 60 84 120

Mean 6.321 6.343 6.376 6.569 6.762 6.921 7.048 7.226 7.376

St.Dev 2.499 2.539 2.30 2.078 1.899 1.746 1.616 1.416 1.215

Skewness 0.604 0.599 0.544 0.379 0.316 0.287 0.259 0.167 0.031

Kurtosis 2.487 2.537 2.636 2.408 2.398 2.472 2.571 2.755 2.955

Autocorr. 0.982 0.984 0.982 0.980 0.978 0.976 0.973 0.968 0.960

Correlation
Matrix

1 1.0000 0.9967 0.9724 0.9399 0.9132 0.8914 0.8715 0.8319 0.7678

3 1.0000 0.9826 0.9543 0.9294 0.9084 0.8890 0.8500 0.7870

12 1.0000 0.9902 0.9755 0.9606 0.9453 0.9119 0.8552

24 1.0000 0.9959 0.9872 0.9760 0.9489 0.9009

36 1.0000 0.9974 0.9909 0.9708 0.9307

48 1.0000 0.9980 0.9850 0.9525

60 1.0000 0.9938 0.9689

84 1.0000 0.9899

120 1.0000

Table 1 reveals that yields are highly persistent with monthly autocorrelations

above 0.96 for all maturities. The volatility drops with increasing maturity. Also yields

are highly correlated along the yield curve but the correlations are not equal to one. This

suggests that non-parallel shifts of the yield curve are an important feature. Indeed, the

yield curve frequently changed its slope, shape and curvature and even periods of

inverse yield curves can be identified. Therefore, a one-factor model is insufficient for

explaining the dynamics of the German term structure of interest rates.

The data on the inflation gap is constructed using the difference of the consumer

price index and the so-called price norm that has been announced by the Bundesbank on

a yearly basis. This could be interpreted as a kind of an inflation target, although the

Bundesbank did not explicitly target inflation but the money growth rate. Nevertheless,

the inflation values were used as inputs into the derivation of the money growth target

and price stability was the final target of the Bundesbank. Whenever the Bundesbank

announced ranges instead of values of the price norm we opt for the middle of the

range.31

                                                
31 Until 1984, the price norm, or price assumption, reflected the Bundesbank’s view of the “unavoidable”

level of inflation, while from 1985 onwards, it was defined as the maximum rate of inflation to be
tolerated over the medium term. Conceptually, the price norm should refer to the GNP/GDP deflator
rather the CPI, since it was related to the price term in the quantity equation. However, we believe it is
a good approximation for the implicit target of the consumer price inflation.
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The output gap is based on the monthly index of industrial production. Although

being aware that industrial output is more volatile than, say, GDP, we follow the usual

practice and opt for this variable in order to obtain monthly figures. The output gap is

constructed on the basis of a linear trend. In order to avoid starting point and end point

problems we computed the trend between the longer period from 1970 through 2003.32

6.2 Estimation of Monetary Policy Rules

We first present the results of standard regressions of monetary policy reaction

function on the basis of our data sample, where the short-term interest rate is the

German overnight money market rate.33 Table 2 shows the results of two regressions.

The first is based on equation (5.1). This standard Taylor rule provides a quite good fit

for our sample period. The coefficients of the output gap and the inflation gap are

significant, and the latter fulfills what is known as the Taylor-principle. The coefficient

of the output gap is rather low but significant.

Table 2: Monetary Policy Rule Estimates

Taylor Rule CGG (q=12, l=3)

Constant 5.85

(0.105)

4.06

(0.34)

πγ 1.19

(0.071)

1.68

(0.132)

yγ 0.17

(0.024)

0.089

(0.041)
ρ _ 0.89

(0.017)

R2 0.62 0.98

Standard errors in parentheses

                                                
32 We also used a HP filter and the reported results were robust against this change. Furthermore, it

turned out that a quadratic trend did not change our measure of the output gap, since the quadratic term
turned out to be insignificant. Thus, we opted for the linear trend.

33 In the term structure estimation the one month rate is the shortest maturity and we will interpret this as
the policy rate. However, the correlation between the overnight money market rate and one month rate
in our data set is 0.9951. The results in Table 2 are robust against a change in the dependent variable.
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In order to estimate the forward-looking monetary policy rule in equation (5.2),

we follow the usual procedure and implement a GMM estimation. 34 We depart from

Clarida, Gali and Gertler (1998) and set q = 12 and l = 3, which yields a better fit

compared to the specification without a forward-looking output gap. In the regression,

we use the following set of instruments: a constant as well as lagged values of the

output gap, the inflation gap, the IMF commodity price index and the short-term interest

rate.35 The results are presented in Table 2. In the forward-looking specification, the

coefficient of the inflation gap is again significant and of a higher value compared to the

plain Taylor rule specification. The coefficient of the output gap is of comparable size.

The smoothing parameter is quite high but is in the expected range. In the next section

we will use these results as a benchmark for the joint estimation of the monetary policy

rule coefficients and the term structure dynamics.

6.3 A Joint Estimation of Monetary Policy Rule Coefficients and the Term
Structure Dynamics

The estimation relies on a Kalman-filter-based maximum likelihood estimator.36

This approach allows us to estimate the parameters of the model without directly

observing the risk factors. However, we suspect that two of the factors are connected to

an inflation and an output measure through eqs. (5.9) and (5.10). In order to apply a

Kalman filter we first have to write the model in the linear state-space form, with the

measurement equation resulting from the recursive restrictions and the identification of

the factors, and the transition equation resulting from the assumed dynamics of the risk

factors.

In particular, in the ‘3-factor partly-identified’ case, where two factors are linked

to the inflation gap and the output gap, and the third factor is unobservable, the

measurement equation is:

                                                
34 We correct for heteroscedasticity and autocorrelation of unknown form with a lag truncation parameter

of 12. In addition, we chose Bartlett weights to ensure positive definiteness of our estimated variance-
covariance matrix.

35 More specifically, we use the first six, the ninth and the twelfth lag of the output gap, inflation gap and
the IMF commodity price index as well as the first, sixth, ninth and twelfth lag of the short term
interest rate. This is close to the instruments suggested by Clarida, Gali and Gertler (1998).

36 The Kalman filter approach has gained popularity in the affine term structure literature. See, for
example, Duan and Simonato (1995), Lund (1997), Gong and Remolona (1997), Geyer und Pichler
(1998), Babbs and Nowman (1999), De Jong (2000), Bolder (2001) and Cassola and Luis (2003).



26



























+
















⋅



























+



























=



























ty

t

t

t

t

t

ty

t

l
y

q

t

t

t

t

t

z
z

z

bbb

bbb
bbb

a

a
a

y

i

i

i

,

,

,120

,3

,1

,3

,

,

3,1202,1201,120

3,32,31,3

3,12,11,1

120

3

1

,120

,3

,1

0)(10
00)(1

0
0

~
~

ν
ν
ν

ν
ν

ϕ
ϕπ π

π

π

MMMMMM
, (6.1)

with iAa ii /=  and iBb jiji /,, = , where the index i represents the number of months to

maturity (i = 1, 3, 12, 24, 36, 48, 60, 84, 120) and j the index of the (up to three) risk

factors. Expression (6.1) shows that we estimate a system of equations, i.e. a panel for

different yields to maturity, with the additional interpretation that the first equation is

the monetary policy reaction function of the central bank. Or, from a different angle, we

can interpret our exercise as estimating a monetary policy rule with the additional

restriction of the absence of arbitrage in financial markets. In shorter notation we might

write the measurement system as:

ttt vZBAY +⋅+= . (6.2)

The corresponding transition equation is represented by:

















⋅















+

















⋅















=

















+

+

+

+

+

+

1,3

1,

1,

3,3

,

,

31,3

1,

1,

00
00
00

00
00
00

t

ty

t

y

t

ty

t

y

t

ty

t

z
z
z

z
z
z

ε
ε
ε

σ
σ

σ

ϕ
ϕ

ϕ πππππ

(6.3)

or, in short:

11 ++ +⋅= ttt uZFZ . (6.4)

In standard linear state-space models, no restrictions link the measurement and the

transition equation. In this particular setup, however, the measurement equation comes

from the transition equation and the no-arbitrage condition, that together yield the

recursive restrictions on the factor loadings. Together with our identification of two risk

factors the latter constitutes the measurement equation.
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In the ‘2-factor identified’ case, the state-space system is written without the third

factor leaving the identification for the two remaining factors unchanged. Additionally,

we estimate a ‘2-factor non-identified’ case that resembles a traditional affine term

structure model with only unobserved factors. The exact Kalman filter algorithm used in

the paper is described in Appendix B. 37

Table 3 presents the results of the three specifications. The first specification is

the ‘2-factor non-identified’ case. The second is the 2-factor model with both factors

being identified with the expected inflation and output gap respectively (‘2-factor

identified’). Since the ‘2-factor identified’ specification might be very restrictive, we

also estimated the ‘3-factor partly-identified’ specification in which two factors are

identified as in the previous case and the third factor being unobserved. In both

identified specifications we set q = 12 and l = 3 as we did in the benchmark estimation

of the forward-looking specification of the monetary policy rule.38

Especially in the ‘3-factor partly-identified’ specification, the reaction coefficients

are close to the levels that we obtained in the estimation of the forward-looking

monetary policy rule before. This indicates that the estimated policy rule is consistent

with the absence of arbitrage opportunities in financial markets. The reaction

coefficient, the volatility and the coefficient of mean reversion of the third unobserved

factor are also significant but its associated market price of risk is not.39 This suggests

that the risk premia in the German term structure of interest rates mainly stems from the

inflation and the output risk. Note that only the inflation risk price is negative while the

output risk price is positive.

                                                
37 The algorithm was performed by numerical optimization using Matlab codes. The starting values that

are needed for the optimization were obtained by minimizing the sum of squared residuals between the
estimated mean yields and the mean observed yields setting the value of the factors to zero (which also
reflects their long-run mean by definition).

38 We also estimated versions with no forward looking behavior (i.e. q = l = 0), but the fit was not as
good as for the forward-looking specifications.

39 If the third factor includes the smoothing behavior, this result seems quite natural because there is little
risk associated with this factor.
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Table 3: Parameter Estimates of the Gaussian Term Structure Model

2F_non_ident 2F_ident 3F_ident

)(1 yϕϕ 0.87

(0.0025)

0.82

(0.0047)

0.98

(0.001)

)(2 πϕϕ 0.99

(0.0004)

0.98

(0.0003)

0.99

(0.002)

3ϕ _ _ 0.89

(0.0058)

)(1 yσσ 0.006

(0.0001)

0.0158

(0.0002)

0.00406

(0.0001)

)(2 πσσ 0.0016

(0.0001)

0.0007

(0.00001)

0.00045

(0.0001)

3σ _ _ 0.00286

(0.0001)

)(1 yλλ -1.364

(0.2456)

7.19

(0.2317)

1.743

(1.55)

)(2 πλλ -52.16

(0.6664)

-113.89

(0.8467)

- 139.39

(4.69)

3λ _ _ -3.688

(4.81)

δ 0.0038

(0.0001)

0.0043

(0.0001)

0.0043

(0.0001)

)(1 yγγ 1.363

(0.0287)

0.092

(0.0027)

0.088

(0.0153)

)(2 πγγ 0.934

(0.0240)

2.374

(0.0369)

1.764

(0.0469)

3γ _ _ 2.566

(0.116)

Standard errors in parentheses

The mean-reversion coefficients of inflation and output are quite high but close to

the coefficients we obtained in a pure AR(1) regression of both. These values for the

sample are 0.97 (0.91) for the inflation gap (output gap) with a R2 of 0.93 (0.93). This

suggests that our identification based on a simple AR(1) process is not too far from

reality and seems consistent with the data.

Figure 2 shows the estimated dynamics of the term structure for the preferred ‘3-

factor partly-identified’ case. It reveals that the model captures the overall movement in

the term structure that is shown in Figure 1(a) very well.
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Figure 2: Estimated Term Structure Dynamics

Figure 3 shows the estimated and observed yields for three particular maturities

that represent the short end, the middle range and the long end of the yield curve. It

shows that the model especially has a good fit at the middle range and the short end.

This might not surprise since we model time-constant (i.e. only maturity dependent) risk

premia.

Figure 4 answers the question whether the model is able to capture the periods of

an inverse term structure of interest rates. It shows the observed and the estimated

spread defined as the yield of 10-year bonds minus the yield of one-month bonds. Again

the overall fit is good.

Figure 5 presents the loadings that are associated with each factor in the ‘3-factor

partly-identified’ case. It shows that the ‘inflation factor’ has a nearly equal impact on

all maturities. In a standard interpretation we would consider this as the ‘level factor’.

This interpretation seems quite reasonable given the high persistence of this factor as

well as the fact that it incorporates the inflation target of the central bank, and thus the
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long-run expectations of inflation. Through the Fisher relation, this results in a long-run

level of interest rates. The impact of the ‘output factor’ declines stronger along the yield

curve. This is consistent with the interpretation as the ‘curvature factor’. The third

unobserved factor has its major impact on the short end of the yield curve. This is in

line with the third ‘smoothing factor’ in monetary policy rules that incorporate interest

rate smoothing behavior which has its mean impact on the short end of the yield curve.

Independent of its precise interpretation, the third factor can be considered as the ‘slope

factor’.40

                                                
40 We could also interpret this factor as capturing the forecast error that emerges in the error term of the

forward looking specification of the rule.
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Figure 3. Observed and Estimated Yields for Particular Maturities
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Figure 4: Observed and Estimated Spread (10y – 1m)

Figure 5: The Factor Loadings

From (4.5) we see that the monetary policy reaction coefficients also influence the

factor loadings. However, they do not influence the relative impact of a shock to the

particular risk factor along the yield curve as indicated in Figure 5. The strength of the

policy reaction to a given shock rather determines the absolute impact of a shock on the

yield curve. For instance, a stronger output response ceteris paribus leads to greater

importance of the ‘curvature factor’ relative to the other factors, meaning that it is more

-4

-3

-2

-1

0

1

2

3

4
Ja

n 
79

Ja
n 

81

Ja
n 

83

Ja
n 

85

Ja
n 

87

Ja
n 

89

Ja
n 

91

Ja
n 

93

Ja
n 

95

Ja
n 

97

Spread obs Spread est

Observed Spread

Estimated Spread

0

0,2

0,4

0,6

0,8

1

1,2

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

Time to maturity

re
la

tiv
e 

to
 m

ax
im

um
 v

al
ue Inflation Factor

Output Factor

Unobserved Factor



33

likely that the yield curve changes its curvature. In this sense, monetary policy reaction

determines to what extent given shocks alter the yield curve. Figure 6 shows the change

in interest rates along the yield curve due to a shock to the output factor of the size of

one standard deviation. The stronger the policy reaction to this given shock is, the

greater is the absolute difference between the short rate and the long rate change, thus,

the higher the effect on the curvature of the yield curve.
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Figure 6: The Influence of the Policy Reaction

7 Conclusions

The paper constructed a Gaussian affine term structure model with a clear

economic underpinning of the factors that drive the dynamics of the German term

structure of interest rates. It shows that matching two out of three factors with the
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empirical results are consistent with the results obtained from a forward-looking

monetary policy reaction function that only cares about the dynamics of the short-term

interest rate, or the policy rate. However, the monetary policy reaction function that is
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modeled by defining the risk premia as a linear function of the risk factors.41 Second, an

improvement of the identification of the risk factors is preferable, since the AR(1)

process for the inflation and the output gap, though being a good first approximation,

seems too restrictive. Third, other macroeconomic factors such as foreign interest rates,

monetary aggregates or the exchange rate might as well influence the dynamics of the

term structure of interest rates. Future research should aim to account for these

additional influences.

                                                
41 Another possibility is to specify the risk premia as a multiple of the volatility of the underlying shocks,

as this is the case in the general DK-framework (see equation (3.9)). However, the alternative
specification for the compensation of interest rate risk to vary independently of such volatility has
proved useful especially in forecasting future bond yields (see Duffee, 2002).
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Appendix A.1: Recursive Restrictions

The derivation starts with writing the expression (2.1) in logs (for convenience we

let the bond in time t mature in n+1 periods):

[ ]( )1,1,1 log +++ = tnttn PMEp . (A.1)

With the assumption of joint log-normality of bond prices and the nominal pricing

kernel and using the statistical principle that if ),(~log 2σµNX then

2
)(log

2σ
µ +=XE , it follows that:

[ ] [ ]1,11,1,1 2
1

+++++ +++= tntttntttn pmVarpmEp
. (A.2)

From (3.2) and (3.4) we get

( ) 11
21

1,1 )( ++++ ′−−+′+−=+ tnnttttnt ZBAZVZpm ελγδ . (A.3)

We can substitute for 1+tZ  from equation (3.1) and after sorting terms we arrive at the

following expression:

( ) ( )

( ) ,)(

)1(

1
21

1,1

+

++

⋅′+′−

⋅Φ′+′−⋅Φ−′++−=+

ttn

tnnntnt

ZVB

ZBBApm

ελ

γθδ

(A.4)

so that

[ ] ( ) ( ) tnnntntt ZBBApmE ⋅Φ′+′−⋅Φ−′++−=+ ++ γθδ )1(1,1 , (A.5)

[ ] ( ) )(2
1,1 tntntt ZVBpmVar ⋅′+′=+ ++ λ . (A.6)

Substituting these moments into (A.2) and recognizing the typical diagonal elements in

the variance-covariance matrix we have after sorting the terms:
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(A.7)

Matching the variables in order to verify that

tnntn ZBAp ⋅′+=− +++ 11,1 (A.8)

it must be that

( ) j

k

j
njjnnn BIBAA αλθδ ∑
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1

2
,1 2

1
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(A.9)

( ) ( ) j

k

j
njjnn BBB βλγ ′⋅+−Φ′+′=′ ∑

=
+

1

2
,1 2

1

. (A.10)

The last two expressions correspond to the recursive restrictions stated in the text. The

recursive restrictions of the Gaussian version in section 4 of the paper follow by the

same steps, or can be directly obtained by substituting the parameter restrictions (4.1)

into the just derived general restrictions.

Appendix A.2: Derivation of the Term Premia

The term premia is defined as the difference between the ‘holding period return’

and the one-period interest rate:

ttntnttn ippE ,1,11,, −−=Λ ++ . (A.11)

The individual elements of (A.11) are:

[ ] tnnnttnntnt ZBIBAZEBApE ⋅Φ′−⋅Φ−′−−=⋅′−−= ++ θ)(11, (A.12)

tnntn ZBAp ⋅′+=− +++ 11,1  and (A.13)
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Substituting the recursive restrictions (3.6) and (3.7) into (A.13) and combining the

elements according to the definition (A.11) yields after sorting the terms we get:
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Solving the binomials and sorting terms leads to the expression of the term premia in

the text:
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which is equivalent to (3.9) in the text given the particular structure of the variance-

covariance matrix.

Appendix B: The Kalman Filter

The Kalman Filter recursively computes the optimal estimate of a state variable at

the moment t based on the information available up to period t-1. Unknown parameters

are usually estimated by a maximum likelihood procedure. This appendix describes how

the Kalman Filter is used in the paper.42 In order to perform the Kalman Filter the model

has to be written in state space form, as in equations (6.2) and (6.4). The first equation

that builds on the recursive restrictions is the observation or measurement equation that

has the following general form:

ttt vZBAY +⋅+= (B.1)

where ),0(~ RNv t .

The state or transition equation has the following form:

                                                
42 The Kalman Filter and the maximum likelihood estimations were carried out using Matlab codes.

Details on the Kalman Filter can be found in Hamilton (1994, ch. 13).
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11 ++ +⋅+= ttt uZFCZ (B.2)

where ),0(~1 QNu t+ .

The Kalman Filter procedure generally consists of five steps, that are described

next:

1. Initializing the state vector

The first step of the Kalman Filter is the initializing of the state vector Zt at t=1 to

start the recursion. 0Ẑ  can be seen as a guess concerning the value of Z using all

information up to t=0. 0P  is the uncertainty about the prior guess. Using 0Ẑ  and 0P  in

(B.2), the optimal estimator for 1Z  is given by:

001
ˆˆ ZFCZ ⋅+= . (B.3)

The associated mean squared error (MSE) matrix is

[ ]
.

)ˆ)(ˆ(

01

01101101

QFFP

ZZZZEP

+′=

′−−≡
(B.4)

If the eigenvalues of F are all inside the unit circle, the process for Zt in (B.2) is

covariance-stationary. In this case the Kalman Filter iteration can be started with 01Ẑ =

0 and 01P  whose elements expressed as a column vector are (Hamilton, 1994, p. 378):

[ ] )()()( 1
01 2 QvecFFIPvec

k
⋅⊗−= − ,

with k being the number of unobservable factors.

2. Forecasting the measurement vector Yt

Given the starting values 01Ẑ and 01P  the next step is to calculate the respective

values for the following dates. Generalizing the equations (B.3) and (B.4), we have the

following prediction equations:
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11
ˆˆ

−− ⋅+= ttt ZFCZ  and (B.5)

.11 QFFPP tttt +′= −− (B.6)

The forecast of Yt can, thus, directly be obtained from (B.1):

11
ˆˆ

−− ⋅+= tttt ZBAY (B.7)

with the following forecast MSE:

[ ] RBBPYYYYE tttttttt +′=′−− −−− 111 )ˆ)(ˆ( . (B.8)

3. Updating the inference about the state vector

Since Zt and Yt are related by the measurement equation, the knowledge of the

value Yt can be used to update 1
ˆ

−ttZ . In order to perform this, we need to characterize

the joint distribution of the observation and the state vector. Therefore, we need to

compute the conditional covariance between the two forecast errors:

[ ] 111 )ˆ)(ˆ( −−− =′−− tttttttt BPZZYYE . (B.9)

Using equations (B.7), (B.8) and (B.9), the conditional distribution of the vector (Yt, Zt)

given the information It-1 is:
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From (B. 10) we obtain the following updating equations:43

                                                
43 We made use of the following general rule: if two variables X1 and X2 have a joint normal conditional

distribution given by 
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[ ])ˆ()(ˆˆ
1

1
111 −
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−−− +−+′′+= ttttttttttt ZBAYRBBPBPZZ  and (B.11)

1
1

111 )( −
−

−−− +′′−= tttttttttt BPRBBPBPPP . (B.12)

4. Forecasting the state vector

After estimating ttẐ  and ttP , we can proceed with the estimation of 1
ˆ

+ttZ  and

1+ttP . Using equations (B.5) and (B.6), we get:

tttt ZFCZ ˆˆ
1 +=+     and (B.13)

.1 QFFPP tttt +′=+ (B.14)

5. Maximum likelihood estimation of parameters

The log-likelihood function is built up recursively

)(log)
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1

−
=

∑= t
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tT IYfYL , (B.15)
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where n is here the dimension of the vector Y. The parameters of the measurement and

the state equations can then be obtained by a numerical maximization of the likelihood

function. 44 Finally, the standard errors can be numerically computed on estimates of the

inverse of the Hessian matrix at the convergence point. See Judd (1998) for the so-

called ‘finite difference method’.

                                                
44 In the Matlab program we depart from (B.15) and compute the negative of the log-likelihood function.

The optimization procedure is then performed as a minimization problem instead. Furthermore we
abstracted from the constant in the likelihood function because it only has a scaling function.
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