
Exact tests and confidence sets for the tail
coefficient of a-stable distributions

Jean-Marie Dufour
(Universit� de Montreal)

Jeong-Ryeol Kurz-Kim
(Deutsche Bundesbank)

Discussion Paper
Series 1: Studies of the Economic Research Centre
No 16/2003

Discussion Papers represent the authors’ personal opinions and do not necessarily reflect the views of the
Deutsche Bundesbank or its staff.



Editorial Board: Heinz Herrmann
Thilo Liebig
Karl-Heinz Tödter

Deutsche Bundesbank, Wilhelm-Epstein-Strasse 14, 60431 Frankfurt am Main,
Postfach 10 06 02, 60006 Frankfurt am Main

Tel +49 69 9566-1
Telex within Germany  41227, telex from abroad  414431, fax  +49 69 5601071

Please address all orders in writing to: Deutsche Bundesbank,
Press and Public Relations Division, at the above address or via fax No +49 69 9566-3077

Reproduction permitted only if source is stated.

ISBN  3–935821–72–7



Abstract

In this paper, using the Monte Carlo (MC) method we propose an estimation

and (at the same time) a test procedure for the stability parameter of α-stable

distributions. One powerful advantage of the MC method is that it provides an

exact significance level for finite samples, whose distribution can be far different from

that of asymptotic samples on which the level of confidence interval for estimates

is usually based. Statistical theory for the MC method is given. A simulation

study compares the efficiency of our estimate with the Hill estimate (Hill, 1975).

Construction of significance level based on the MC method is exploited and the

corresponding power function is also studied. An empirical application demonstrates

an easy implementation of our estimation and test procedure. It turns out that our

estimate can improve the efficiency of any estimator for α in terms of mean square

error.



Zusammenfassung

In der vorliegenden Arbeit wird ein auf der Monte-Carlo-Methode basierendes

Schätz- und Testverfahren für den Stabilitätsparameter von α-stabilen Verteilun-

gen vorgeschlagen. Ein entscheidender Vorteil dieses Verfahrens liegt darin, dass es

genauere Konfidenzintervalle für endliche Stichprobenumfänge angibt, die häufig von

denen aus asymptotisch ermittelten Verteilungen abweichen. Die statistische The-

orie für die Monte-Carlo-Methode wird abgeleitet. Anhand einer Simulationsunter-

suchung wird die Effizienz von unserem Verfahren und dem Schätzverfahren von Hill

(1975) verglichen. Es wird gezeigt, wie sich die Konfidenzintervalle durch die Monte-

Carlo-Methode konstruieren lassen. Zudem werden die zugehörigen Gütefunktionen

berechnet. Weiterhin zeigt ein empirisches Beispiel die Einfachheit der empirischen

Implementierung unseres Verfahrens. Es wird deutlich, dass unser Verfahren die

Effizienz beliebiger Schätzer für α im Sinne vom mittleren quadratischen Fehler

verbessern kann.
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Exact tests and confidence sets for the tail
coefficient of α-stable distributions1

1 Introduction

Since the influential works of Mandelbrot (1963), stable Paretian (for short, α-stable)

distributions have often been considered to be a more realistic distribution for asset

returns than the normal distribution, because asset returns are typically heavy–

tailed and excessively peaked around zero — phenomena that can be captured by

α-stable distributions with α < 2.

For the empirical application of the α-stable distributional assumption, the most

important task is to estimate the stability parameter, α, precisely because the statis-

tical inference for estimations and hypothesis tests under the α-stable distributional

assumption depends crucially on α. Many estimates for α have been proposed in

the literature: Hill estimator (Hill, 1975), Pickands (Pickands, 1975) and Dekkers

et al. (1989) are the mostly widely used. For a rough check, the quantile estimation

of McCulloch (1986) may be also used. Some modifications are also considered by

many authors: Mittnik et al. (1998) modify the Pickands estimator using high order

approximations and Huisman et al. (2001) propose a weighted Hill estimator tak-

ing into account the trade-off of bias and variance of Hill estimator. The common

drawback of all these estimators is that their performance suffers severely when the

sample size is small and/or the true α approaches 2. Moreover, the standard devia-

tion of the estimates can be given only based on the asymptotic distribution of the

corresponding estimators, which can be far different from that for finite samples.

The poor performance of the available estimators for α, especially for finite samples,

is the one of the most important reasons why — despite its statistically promising

properties — the use of the α-stable distribution as a distributional assumption for

fairly heavy-tailed financial data is rather limited.

In this paper, using the Monte Carlo (MC) method we propose an estimation2

and, at the same time, an exact test for the stability parameter of α-stable dis-

tributions. This is because it is possible construct an exact confidence interval in

the estimation procedures. The advantages of our method are summarized in the

following two points: with our method, the efficiency of any estimator for α can

1The views expressed in this paper are those of the author and not necessarily those of the
Deutsche Bundesbank. Research support from the Alexander-von-Humboldt Foundation is grate-
fully acknowledged by the two authors. Jean-Marie Dufour, C.R.D.E. and Départment de Sciences
Economique, Université de Montréal, Montréal, Québec H3C 3J7, Canada Jeong-Ryeol Kurz-Kim,
Deutsche Bundesbank, Wilhelm-Epstein-Straße 14, 60431 Frankfurt am Main, Germany

2An estimation procedure which is based on the MC method is termed Hodges-Lehmann esti-
mation in the literature.
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be improved3 and the MC method provides an exact confidence interval for finite

samples.

The rest of the paper is organized as follows. Section 2 gives a brief summary

of the statistical theory for the MC method and the α-stable distributions. The

procedures for the estimation and the test are also described. In Section 3, the

statistical property of the estimator and the power of the test are studied. Based on

simulation study, a comparison with Hill estimator is also given. An empirical appli-

cation is presented in Section 4. The empirical application clearly demonstrates the

advantage of the estimation and test based on the MC tests. Section 5 summarizes

the paper and contain some concluding remarks.

2 Estimation and test for the stability parameter

2.1 Theory of the Monte Carlo method

The technique of the MC method, originally proposed by Dwass (1957) for im-

plementing permutation tests and later extended by Barnard (1963) and recently

reconsidered by Dufour (2002), provides an attractive method of building exact tests

from statistics whose finite sample distribution is intractable but can be simulated.

The most promising advantage of the MC method is that, in contrast to bootstrap

techniques and other conventional test methods which have only asymptotic justifi-

cation, an exact finite-sample inference can be obtained. Consequently, the validity

of this MC method based an exact randomized test does not depend on the number

of replications made. For more details on the MC method, see Birnbaum (1974),

and Dufour and Kiviet (1998). In line with the results in Dufour (2002), we sum-

marize the MC method based test when the null distribution of a test statistic does

not involve nuisance parameters.

Let S1, ... , SN be random samples with independent and identically distributed

(i.i.d.) real random variables (r.v.s) with the same distribution S. It is assumed that

S1, ... , SN are also independent. Suppose that the distribution of S under H0 may

not be easy to compute analytically but can be simulated. However, it turns out

that the exchangeability of S1, ... , SN is sufficient for most of the results presented

below.4 The methodology of Monte Carlo tests provides a simple way of allowing

the theoretical distribution F (x) to be replaced by its sample analogue based on

S1, ... , SN as

F̂N [x; S (N)] =
1

N

N∑
i=1

I[0,∞) (x− Si) (1)

3For the demonstration, we shall employ the Hill estimator as examples because of its popularity.
4The elements of a random vector (S1, S2, . . . , SN )

′ are exchangeable if (Sr1 , Sr2 , . . . , SrN
)′ ∼

(S1, S2, . . . , SN )
′ for any permutation (r1, r2, . . . , rN ) of the integers (1, 2, . . . , N) .
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where S (N) = (S1, ... , SN)
′ , and IA (x) is the usual indicator function associated

with the set A, i.e. IA(x) = 1, when x ∈ A and 0, otherwise. Furthermore, let

ĜN [x; S (N)] =
1

N

N∑
i=1

I[0,∞) (Si − x) . (2)

be the corresponding sample function of the tail area. The sample distribution

function is related to the ranks R1, ... , RN of the variables S1, ... , SN (when placed

in ascending order) by the expression:

Rj = NF̂N [Sj; S (N)] =
N∑

i=1

s (Sj − Si) , j = 1, ... , N . (3)

The main idea behind the MCmethod is that critical values and/or compute p-values

can be obtained by replacing the “theoretical” null distribution F (x) through its

simulation-based “estimate” F̂N(x) in a way that will preserve the level of the test in

finite samples, irrespective of the number N of replications used as follows. Let S0 be

an empirical sample of interest, (S1, ... , SN)
′ a simulated (N×1)-, and consequently

(S0, S1, ... , SN)
′ a ((N+1)×1)-random vector of exchangeable real r.v.s.5 Moreover,

let F̂N (x) ≡ F̂N [x;S (N)] , ĜN (x) = ĜN [x;S (N)] and F̂−1
N (x) be defined as in (1)

- (2), and set

p̂N (x) =
NĜN (x) + 1

N + 1
. (4)

Then

P
[
ĜN (S0) ≤ α1

]
= P

[
F̂N (S0) ≥ 1− α1

]
=

I [α1N ] + 1

N + 1
, for 0 ≤ α1 ≤ 1 , (5)

P
[
S0 ≥ F̂−1

N (1− α1)
]
=

I [α1N ] + 1

N + 1
, for 0 < α1 < 1 , (6)

and

P
[
p̂N (S0) ≤ α

]
=

I [α (N + 1)]

N + 1
, for 0 ≤ α ≤ 1 . (7)

For practical purposes, α1 and N will be chosen as

α =
I [α1N ] + 1

N + 1
, (8)

which is the desired significance level. Provided N is reasonably large, α1 will be

very close to α; in particular, if α (N + 1) is an integer, we can take

α1 = α− (1− α)

N
,

5The zero probability of ties is assumed, but the results are still valid for a positive probability
of ties.
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in which case we see easily that the critical region ĜN (S0) ≤ α1 is equivalent to

ĜN (S0) < α. For 0 < α < 1, the randomized critical region S0 ≥ F̂−1
N (1− α1)

has the same level (α) as the non-randomized critical region S0 ≥ F−1 (1− α) or,

equivalently, the critical regions p̂N (S0) ≤ α and ĜN (S0) ≤ α1 have the same level

as the critical region G (S0) ≡ 1−F (S0) ≤ α . The validity of the p-values calculated

for continuous distributions is proved in Lemma 2.1.1 in Dufour (2002).

2.2 Summary on α-stable distributions

An r.v. X is said to be stable if for any positive numbers A and B, there is a positive

number C and a real number D so that AX1+BX2
d
= CX+D, where X1 and X2 are

independent r.v.s with Xi
d
= X, i = 1, 2; and “

d
= ” denotes equality in distribution.

Moreover, C = (Aα + Bα)1/α for some α ∈ (0, 2], where the exponent α is called

the index of stability. When 0 < α < 2, the tails of the distribution are thicker

than those of the normal distribution. The tails become thicker as α decreases

so that moments of order α or higher do not exist. A stable r.v., X, with index

α is called α-stable. The α-stable distributions are described by four parameters

denoted by S(α, β, µ, σ). Although the α-stable laws are absolutely continuous, their

densities can be expressed only by a complex special function except in some special

cases.6 Therefore, the logarithm of the characteristic function, φ(t), of the α-stable

distribution is the best way of characterizing all members of this family and given

that

lnφ(t)=ln

∫ ∞

−∞
eistdP(S < s)=

{
−σα|t|α[1− iβ sign(t)tanπα

2
] + iµt, for α 	= 1,

−σ|t|[1 + iβ π
2
sign(t) ln |t|] + iµt, for α = 1,

The shape of the α-stable distribution is determined by the stability parameter

α. For α = 2 the α-stable distribution reduces to the normal distribution, (i.e.

S(2, 0, σ, µ) ≡ N(µ, 2σ2)), the only member of the α-stable family with finite vari-

ance. If α < 2, moments of order α or higher do not exist and the tails of the

distribution become thicker, i.e. the magnitude and frequency of outliers (from

the viewpoint of the Gaussian) increase as α decreases. Skewness is governed by

β ∈ [−1, 1]. When β = 0, the distribution is symmetric. The location and scale of

the α-stable distributions are denoted by µ and σ. The standardized version of the

α-stable distribution is given by S((x− µ)/σ;α, β, 1, 0).

Assume that random sequence {Xi}∞i=1 is in the domain of attraction7 (DA) of

an α-stable law with index α ∈ (0, 2). This is equivalent to saying that X1, X2, · · ·
6The Gaussian (α = 2), the symmetric Cauchy (α = 1, β = 0) and the Lévy distribution

(α = 0.5, β = 1) are the special cases whose densities are expressible via elementary functions.
7See Samorodnitsky and Taqqu, 1994, p. 5 for a definition of domain of attraction.
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are i.i.d. r.v.s and that constants an > 0 and bn ∈ R exist, such that

b−1
n (Sn − an)

d−→ S(α), (9)

where Sn = X1 + · · ·+Xn; S(α) is an α-stable r.v.; and “
d−→ ” denotes convergence

in distribution. If the Xi’s are α-stable, then (9) holds with bn = n
1
α , and

an =

{
µ(n1− 1

α − 1), for α 	= 1,
2
π
σ lnn, for α = 1,

(10)

and b−1
n (Sn − an)

d
= X1. The assumption that the Xi’s are in the DA of an α-stable

law is more general than assuming that they are α-stable distributed, because the

former requires only conditions on the tails of the distribution. DA condition (9) is

equivalent to

P(|X1| > x) = x−αL(x), x > 0, (11)

where L(x) is a slowly varying function.8

A strong argument in favor of the α-stable distribution for a distributional

assumption for heavy-tailed empirical data is that only the α-stable distribution

can serve as limiting distribution of sums of i.i.d. r.v.s as proved in Zolotarev

(1986). For more details on the α-stable distributions and discussions of the role of

the α-stable distribution in financial market and macroeconometric modeling, see

Zolotarev (1986), Samorodnitsky and Taqqu (1994), McCulloch (1997), Rachev et

al. (1999) and Rachev and Mittnik (2000).

2.3 Test statistic and test procedure

In this section, we introduce the test statistic and test procedure based on the MC

method. For our random sample, some assumptions are needed and summarized as

follows.

Assumption 1 X is an i.i.d. symmetric α-stable distributed r.v. about µ with

α ∈ (0, 2], i.e. X1, X2, . . . , Xn ∼ S(α, 0, µ, σ), denoted as SαS.

Note that X is not strictly α-stable r.v. Assumption 1 is something of generalization

of the usual assumption of standard symmetric α-stable r.v. (i.e., c = 1, µ = 0)

because the centering parameter is also an important issue from the viewpoint of

8L(x) is a slowly varying function as x → ∞, if for every constant c > 0, limx→∞
L(cx)
L(x) exists

and is equal to 1. See Ibragimov and Linnik (1971, p. 394) for more details on slowly varying
functions.
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empirical relevance. On the other hand, Assumption (1) is rather restrictive from

the empirical viewpoint because densities of many empirical data are asymmetric.9

Now, we test our random sample, S0, for

H0 : α = α0. (12)

To perform this test, we need a test statistic which is free from nuisance parameters

under the null hypothesis. A possible statistic may be given as

ST = α̂− α0, (13)

where α̂ may be any consistent estimator for α. The most popular estimation for α is

the Hill estimator (Hill, 1975), which is a simple nonparametric estimator based on

an order statistic. Owing to its simplicity and popularity, we use the Hill estimator

for constructing our test statistic in (13). The Hill estimator is given as

α̂H =

[(
k−1

k∑
j=1

lnXn+1−j:n

)
− lnXn−k:n

]−1

, (14)

where k is a truncation parameter to be optimally chosen depending on the sample

size, n, and tail–thickness, α, as k = k(n, α), and Xj:n denotes the j-order statistic of

the sample size n. The asymptotic properties of the Hill estimator have been studied

by many authors and are now well developed: Mason (1982) and Hsing (1992)

consider weak consistency of the Hill estimator for independent and dependent cases,

respectively. The strong consistency is proved by Deheuvels et al. (1988). Goldie

and Smith (1987) provide asymptotic normality of the Hill estimator.

Owing to the bias-variance trade-off of the Hill estimator, for a comparison

with other competing estimators in terms of asymptotic mean square error, the

asymptotic bias caused by the second-order behavior of the slowly varying function

must be also taken into account. According to Theorem 1 in de Haan and Peng

(1998), the distribution of the Hill estimator is given as when k = k(n) → ∞,

k/n → 0 as n → ∞
√

k

[
1

α̂H

− 1

α

]
−→k→∞ N

(
α3λ

ρ− α
, α−2

)
,

where λ ∈ IR equals limn→∞
√

kα2aF (1− n
k
) mit a a measurable function of constant

sign and the constant ρ ∈ (−∞, 0] is the second-order parameter governing the rate

9Nevertheless, it makes sense to consider estimating α under symmetric assumption from two
reasons: for some empirical fields such as analysis of value-at-risk the possible asymmetry is irrele-
vant because we are only interested in one-side (lower) tail. The second reason is that for the range
of α of empirical relevance, say, α > 1.5, the neglection of possible asymmetry in the estimation
of α is relatively non-severe.
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of convergence. Because of the interdependency of n and α or, in other words, the

bias-variance trade-off for the Hill estimator, the asymptotic mean square error —

despite of the consistency of the Hill estimator — is not equal to the asymptotic

variance and is given as

MSE(α̂H) = k−1

(
α2 +

α6λ2

(ρ− α)2

)
, (15)

For estimating the tail–thickness parameter via the Hill estimator, two practical

problems should be solved. The first is how to choose the truncation parameter, k,

and the other is how to choose the centering parameter from the empirical data.10

Note that the Hill estimator is not location invariant. This means that X has to

be centered properly in the beginning of the estimation. The theoretical relation

between k and α may be also driven from the second-order property of the slowly

varying function for symmetric case as

k = n
α− 1

Γ(2− a) sin(π ∗ a/2)
.

The obvious problem in using this relation is that k is again a function of α which

has to be estimated.

The theoretical centering for variables in the DA of an α-stable law is as given

in (10). Nevertheless, this again contains the unknown α. Usually, median or

truncated mean is chosen for the centering parameter. Despite the existence of the

first moment, the mean does not serve as a centering parameter because of its high

fluctuation, especially, if α is small — say, smaller than 1.2. Based on the property of

DA of an α-stable law, one theoretical appealing choice is surely lnXk:n.
11 However,

this depends again on the choice of k. We take median as a suitable centering.

To improve the efficiency of the Hill estimator, both sides of tail also have to be

included in the estimation. Using the median as a centering parameter and taking

both sides of tail into account, the Hill estimator in 14 may be re-written as

α̂HM =

[(
k−1

k∑
j=1

ln |X̃n+1−j:n|
)

− ln |X̃n−k:n|
]−1

, (16)

where X̃j:n stands for the j-th order statistic of the sample size n re-located by

median. Consequently, the test statistic below is

ST = α̂HM − α0. (17)

To estimate the stability parameter using our Monte Carlo-based method, the test

statistic in (13) should be nuisance-free. Because the estimator in (16) is location

and scale-invariant, the test statistic (17) is pivotal as proved in the following lemma.

10Owing to the invariance of the Hill estimator with respect to scale, there is no need for any
concern about re-scaling of empirical data, i.e. it may be an arbitrary one.

11When lnXk:n < 1 the proper dealing will be ln(1 +Xk:n).
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Proposition 1 Let X1, X2, . . . , Xn be i.i.d. random variables which follow a

S(α, β, µ, σ) distribution, and let

α̂ = a(X1, X2, . . . , Xn) (18)

be an estimator of α. If the estimator α̂ is scale invariant, i.e.

α̂ = a(cX1, . . . , cXn) = a(X1, X2, . . . , Xn), for all c > 0 , (19)

then the estimator α̂ has a distribution which only depends on α, β and µ/σ. If

furthermore, α̂ is location-scale-invariant, i.e.

α̂ = a(cX1+d, . . . , cXn+d) = a(X1, X2, . . . , Xn) , for all c > 0 and d ∈ R, (20)

then the estimator α̂ has a distribution which only depends on β.

Proof 1 To obtain the first result, we observe that

Xi/σ ∼ S(α, β, µ/σ, 1) , i = 1, . . . , n . (21)

Then, using the scale-invariance property (19) with c = 1/σ, we may write:

α̂ = a(X1/σ, . . . , Xn/σ) , (22)

from which we see that the distribution of α̂ only depends on α, β and µ/σ. Similarly,

under the location-scale invariance condition (20), the result follows on observing

that

(Xi − µ)/σ ∼ S(α, β, 0, 1) , i = 1, . . . , n , (23)

hence, taking c = 1/σ and d = −d/σ,

α̂ = a(X∗
1 , . . . , X

∗
n) , (24)

where X∗
i = (Xi − µ)/σ, i = 1, . . . , n.

If we consider symmetric stable distributions (β = 0), the distribution of the

scale-invariant estimator only depends on µ/σ. If, furthermore, the median is zero

(µ = 0), the distribution of α̂ only depends on α. Of course, the same remarks also

apply to any function of g(α̂, α) of α̂ and α, such as α̂ − α. Similarly, if β = 0, the

distribution of α̂ (or, more generally, of g(α̂, α)) only depends on α, irrespective of

the unknown values of µ and σ. Therefore, g(α̂, α) is a pivotal function.
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2.4 Statistical property of the MC based estimator

In this section we discuss some statistical properties of the MC-based estimator and

compare the performance of the estimator with the Hill estimator. The idea of the

MC based estimator goes back to the work of Hodges and Lehmann (1963). The

MC based estimation procedure is as follows:

1 Determine the set of possible α under null hypothesis. From the viewpoint of

empirical relevance it will be reasonably α0 ∈ (1 2].

2 Calculate test statistics (α̂ − α0) for every α0, where the step length of two

neighborhoods of α0 may be 0.01, for example.

3 Generate typically 99 or 999 samples for every element of the set by a stable

random variable generator and calculate test statistics.

4 Compute p-values under every possible null hypothesis.

5 Take the α̂ as the estimate for α at which the p-value has its minimum.

To compare the performances of the MC-based estimator with the (median-

centered) Hill estimator, we perform simulations by drawing from symmetric α-

stable pseudo-random variables. Specifically, we consider α-values of 1.2, 1.5 and

1.8 and a sample size of n= 250, 1,000 and 5,000. For each of the resulting 12

(α, n)-combinations we generated 1,000 replications of the corresponding random

samples.

For the Hill estimator, we use the optimal k by assuming α is to be known and

take k from Table in Mittnik et al. (1998) as before.12 Table 1 shows the simulation

results.

Table 1. RMSE (
√

BIAS, SDa) of Hill and MC estimator

sample size 250 1000 5000

α estimator

1.2 Hill 0.1626 (0.0986, 0.1293) 0.0874 (0.0548, 0.0680) 0.0342 (0.0212, 0.0269)

MC 0.1369 (0.0836, 0.1084) 0.0735 (0.0457, 0.0575) 0.0279 (0.0166, 0.0224)

1.5 Hill 0.1744 (0.1112, 0.1344) 0.1003 (0.0632, 0.0778) 0.0440 (0.0276, 0.0343)

MC 0.1357 (0.0857, 0.1052) 0.0761 (0.0477, 0.0593) 0.0327 (0.0201, 0.0258)

1.8 Hill 0.1944 (0.1241, 0.1497) 0.0865 (0.0528, 0.0685) 0.0525 (0.0338, 0.0402)

MC 0.1645 (0.1031, 0.1282) 0.0744 (0.0454, 0.0589) 0.0435 (0.0278, 0.0335)

aStandard deviation.

12This is an ideal pre-condition which is never given in empirical works and, hence, the Hill
estimate is expected to show its best efficiency.
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As is expected, the MC-method based estimator shows a smaller MSE than that

of the Hill estimator for all considered α and sample size. The efficiency improve-

ment, i.e. the ratio between the MSE of the Hill estimator and the MSE of the MC

method based estimator, is approximately 75%–85%.

2.5 Power function of the Monte Carlo method based test

The theoretical size and power of the MC-method-based test is considered in Dufour

(2002). Although the discrepancy of the correct size and the superior power of the

MC method based test over the conventional test goes to zero as sample size goes

to infinity, the behavior of the power function for the finite sample is usually of

interest.

To check the power of our MC-method-based test, we perform a simulation

study by drawing from symmetric α-stable pseudo-r.v.s13 re-located by the median.

As pseudo-empirical data, we take the same α-stable random sample as generated

above, and test H0 : α = α0, where α0 is assumed to be values from 1.0 to 2.0 in

steps of 0.1. For sample size n = 100, 250, 500, 1,000, 2,000, 5,000 and 10,000 are

selected and the number of replication is 10,000. For calculating the test statistic

in (13) containing the Hill estimator, we use as optimal k the numbers tabulated

in Mittnik et al. (1998). To demonstrate the power function, we select a usual

significance level of 95%. Figures 1 shows the power functions for the selected α, n

and percentage points as described above.

As is expected, the power converges to the corresponding ideal value for each

given significance level, as the sample size grows. A sample size of 2,000 gives a

rather satisfactory power. A large loss of power can be observed in extremely small

sample sizes.

3 An empirical application

To illustrate the use of the Monte Carlo test, we employ some empirical data. They

are a daily return of S$P500 (7,421 observations, July 2, 1962–Dec. 28, 1992), Ger-

man Stock Index (8,922 observations, Jan. 4, 1960–Sep. 9, 1995), exchange rates of

the Japanese yen against US$ (5,159 observations, Jan. 8, 1973–July 28, 1994) and

exchange rates of Deutsche Mark against US$ (5,159 observations, Jan. 8, 1973–July

28, 1994). Figure 2 shows the empirical densities of the four time series (thick solid

line) compared with the normal density (thin solid line).

13The pseudo α-stable r.v.s were generated with the algorithm of Chambers et al. (1976) im-
proved by Weron (1996), as implemented in Matlab Windows V. 5.3.
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Figure 1: Power functions for 95% significance level
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Figure 2: Empirical densities

Each of the empirical densities show excessive peaks around the mean and, at the

same time, thicker tails than those of the normal density. We estimate the four times

series by means of our MC-method-based test procedure. Table 2 shows the results

of the estimation and the Hodge-Lehmann-type estimates and the corresponding

confidence interval is graphically demonstrated in Figure 3, where the solid line gives

p-values at given α of the empirical data and the three dotted lines give simulated

quantiles of 90%, 95% and 99%. The estimates by means of the Hill estimation are

1.67, 1.80, 1.55 and 1.56 for S&P500, DAX, JY/US$ and DM/US$, respectively.

Table 2. Estimated tail-thickness parameter and confidence level from the MC test

Data Estimates and corresponding confidence intervala

S&P500 [1.59 1.61 1.61 1.65 1.67 1.68 1.69]

DAX [1.76 1.77 1.78 1.81 1.85 1.85 1.87]

JY/US$ [1.48 1.50 1.51 1.54 1.58 1.58 1.60]

DM/US$ [1.55 1.57 1.58 1.62 1.66 1.67 1.69]

aEstimates are determined as the α-value at which the p-value is the smallest (thick) and 90%-,

95%- and 99% confidence intervals.
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Figure 3: Hodge-Lehmann-type estimates and confidence interval

4 Concluding Remarks

In this paper, we considered estimation and test of stability parameter of α-stable

distributions using an MC test. It turns out that our estimate is more efficient in the

sense of mean square error than the Hill estimator even by assuming known k. The

main result of the paper is that the MC test provides an exact confidence interval for

finite samples, as demonstrated in table 2 and Figure 3. For an estimation and test

for the symmetric parameter of α-stable distributions, β, based on the maximized

MC method proposed by Dufour (2002) are being studied by the authors.
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