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Bootstrapping Autoregressions with Conditional
Heteroskedasticity of Unknown Form*

Abstract

Conditional heteroskedasticity is an important feature of many macroeconomic and
financial time series. Standard residual-based bootstrap procedures for dynamic regression
models treat the regression error as i.i.d. These procedures are invalid in the presence of
conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-
implement alternative bootstrap proposals for stationary autoregressive processes with
m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These
proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the
pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in
small samples than the conventional large-sample approximation based on robust standard
errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors
may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many
empirical applications the proposed robust bootstrap procedures should routinely replace
conventional bootstrap procedures based on the i.i.d. error assumption.

Zusammenfassung
Bedingte Heteroskedastizität ist eine wichtige Eigenschaft von vielen Daten über
Finanzmärkte und die Makroökonomie. Standard bootstrap Verfahren für dynamische
Regressionsmodelle behandeln die Residuen der Regression als i. i. d. Bei bedingter
Heteroskedastizität sind diese Prozeduren nicht angemessen. Wir zeigen die asymptotische
Gültigkeit von 3 alternativen bootstrap Methoden für stationäre autoregressive Prozesse
mit m. d. s. Fehler, die eine bedingte Heteroskedastizität unbekannter Form aufweisen. Es
geht dabei um ein fixed-design wild bootstrap, den recursive-design wild bootstrap und den
paarweisen bootstrap. In einer Simulationsstudie erscheinen alle 3 Prozeduren in kleinen
Stichproben angewandt genauer als die konventionellen Approximationen, die auf robusten
Standardfehlern basieren. Diese letztgenannten Methoden können dagegen sehr ungenau
sein, wenn die i. i. d. Annahme nicht gilt. Wir schließen daraus, dass bei vielen
empirischen Anwendungen die robusten bootstrap Verfahren, die hier vorgestellt werden
und leicht zu implementieren sind, die üblichen bootstrap Verfahren ersetzen sollten.

JEL: C15, C22, C52
Keywords: wild bootstrap; pairwise bootstrap; robust inference;
Garch: stochastic volatility.
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1. Introduction

It is well known that there is evidence of conditional heteroskedasticity in the residuals of many estimated

dynamic regression models in Þnance and in macroeconomics. This evidence is particularly strong for

regressions involving monthly, weekly and daily data. Standard residual-based bootstrap methods of

inference for autoregressions treat the error term as independent and identically distributed (i.i.d.) and

are invalidated by conditional heteroskedasticity. In this paper, we analyze two main proposals for

dealing with conditional heteroskedasticity of unknown form in autoregressions.

The Þrst proposal is very easy to implement and involves an application of the wild bootstrap

(WB) to the residuals of the dynamic regression model. The WB method allows for regression errors

that follow martingale difference sequences (m.d.s.) with possible conditional heteroskedasticity. We

investigate both the Þxed-design and the recursive-design implementation of the WB for autoregressions.

We prove their Þrst-order asymptotic validity for the autoregressive parameters (and smooth functions

thereof) under fairly general conditions including, for example, many stationary ARCH, GARCH and

stochastic volatility error processes.

There are several fundamental differences between this paper and earlier work on the WB in re-

gression models. First, existing theoretical work has largely focused on the classical linear regression

model (see Davidson and Flachaire 2000). Second, Davidson and Flachaire (2000) establish the validity

of the WB in the presence of unconditional heteroskedasticity in cross-sections, whereas we focus on

conditional heteroskedasticity in time series. Third, much of the earlier work has focused on boot-

strapping models restricted under the null hypothesis of a test, whereas we focus on the construction of

bootstrap conÞdence intervals from unrestricted regression models (see Davidson and Flachaire 2000,

Godfrey and Orme 2001).

The work most closely related to ours is Kreiss (1997). Kreiss established the asymptotic validity

of a Þxed-design WB for stationary autoregressions with known Þnite lag order when the error term

exhibits a speciÞc form of conditional heteroskedasticity. We provide a generalization of this result to

m.d.s. errors with possible conditional heteroskedasticity of unknown form. Our results cover as special

cases the N-GARCH, t-GARCH and asymmetric GARCHmodels, as well as stochastic volatility models.
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Kreiss (1997) also proposed a recursive-design WB, under the name of �modiÞed wild bootstrap�, but he

did not establish the consistency of this bootstrap proposal for autoregressive processes with conditional

heteroskedasticity. We prove the Þrst-order asymptotic validity of the recursive-design WB for Þnite-

order autoregressions with m.d.s. errors subject to possible conditional heteroskedasticity of unknown

form. The proof holds under slightly stronger assumptions than the proof for the Þxed-design WB.

Tentative simulation evidence shows that the recursive-design WB scheme works well in small sam-

ples for a wide range of models of conditional heteroskedasticity. In contrast, conventional residual-

based resampling schemes based on the i.i.d. assumption may be very inaccurate in the presence of

conditional heteroskedasticity. Moreover, the recursive-design WB method works equally well in the

i.i.d. error case. The recursive-design WB method is typically more accurate in small samples than

the Þxed-design WB method. It also tends to be more accurate than the Gaussian large-sample

approximation based on robust standard errors.

The second proposal for dealing with conditional heteroskedasticity of unknown form involves the

pairwise resampling of the observations. This method was originally suggested by Freedman (1981) for

cross-sectional models. We establish the asymptotic validity of this method in the autoregressive context

and compare its performance to that of the Þxed-design and of the recursive-design WB. The pairwise

bootstrap is less efficient than the residual-based WB, but - like the Þxed-design WB - it remains valid

for a broader range of GARCH processes than the recursive-design WB, including EGARCH, AGARCH

and GJR-GARCH processes, which have been proposed speciÞcally to capture asymmetric responses

to shocks in asset returns (see, e.g., Engle and Ng (1993) for a review). We Þnd in Monte Carlo

simulations that the pairwise bootstrap is typically more accurate than the Þxed-design WB method,

but in small samples tends to be somewhat less accurate than the recursive-design WB when the data

are persistent. For large samples these differences vanish, and the pairwise bootstrap is as accurate as

the recursive-design WB.

The theoretical and simulation results in this paper suggest that no single method of dealing with

conditional heteroskedasticity of unknown form will be optimal in all cases. We conclude that the

recursive-design WB should replace conventional recursive-design i.i.d. bootstrap methods in many
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standard applications in empirical macroeconomics. This method performs equally well, whether the

error term is i.i.d. or conditionally heteroskedastic, but it lacks a theoretical justiÞcation for some forms

of GARCH that have Þgured prominently in the literature on high-frequency returns. When sample

sizes are at least moderately large and the possibility of asymmetric forms of GARCH is a practical

concern, the pairwise bootstrap provides a suitable alternative.

A third proposal for dealing with conditional heteroskedasticity of unknown form is the resampling of

blocks of autoregressive residuals (see, e.g., Berkowitz, Birgean and Kilian 2000). No formal theoretical

results exist that would justify such a bootstrap proposal. We do not consider this proposal for two

reasons. First, in the context of a well-speciÞed parametric model this proposal involves a loss of

efficiency relative to the WB because it allows for serial correlation in the error term in addition to

conditional heteroskedasticity. Second, the residual-based block bootstrap requires the choice of an

additional tuning parameter in the form of the block size. In practice, results may be sensitive to the

choice of block size. Although there are data-dependent rules for block size selection, these procedures

are very computationally intensive and little is known about their accuracy in small samples. In

contrast, the methods we propose are no more computationally burdensome than the standard residual-

based algorithm and very easy to implement.

The paper is organized as follows. In section 2 we provide some empirical and theoretical motivation

for the use of the m.d.s. assumption in resampling and highlight the limitations of existing bootstrap

and asymptotic methods of inference for dynamic regression models such as autoregressions. In section

3 we describe the bootstrap algorithms and state our main theoretical results. Details of the proofs

are relegated to the appendix. In section 4, we provide some tentative simulation evidence for the

small-sample performance of alternative bootstrap proposals. We conclude in section 5.

2. Evidence Against the Assumption of i.i.d. Errors

Standard residual-based bootstrap methods of inference for dynamic regression models treat the error

term as i.i.d. The i.i.d. assumption does not follow naturally from economic models. Nevertheless, in

many cases it has proved convenient for theoretical purposes to treat the error term of dynamic regression

models as i.i.d. This would be of little concern if actual data were well represented by models with
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i.i.d. errors. Unfortunately, this is not the case in many empirical studies. Two illustrative examples

are asset return regressions in empirical Þnance and autoregressions in empirical macroeconomics.

Dating back to work by Fama and French (1988), there has been great interest in testing the null

hypothesis of uncorrelated stock returns. It is common to use nonparametric bootstrap tests of this

hypothesis that impose the much stronger assumption of i.i.d. returns (see, e.g., Goetzmann and Jorion

1993). Figure 1a shows clear evidence of volatility clustering in monthly value-weighted CRSP returns

for 1927.1-2000.12 that invalidates that assumption. This conclusion is also supported by a formal LM

test of the null of conditional homoskedasticity in Table 1 (see Engle 1982). A related problem arises

in the international Þnance literature. The random walk hypothesis due to Meese and Rogoff (1983)

implies that changes in exchange rates should be unpredictable. It is standard to employ bootstrap

tests of this hypothesis. In actuality, however, these tests impose the much more stringent assumption

of i.i.d. returns (see Mark 1995, Kilian 1999). The evidence in Figure 1b and Table 1 (based on the

DM-U.S. dollar exchange rate for 1973.1-2001.10) suggests that this assumption is highly questionable,

at least for exchange returns at monthly or higher frequency.

An alternative approach in empirical Þnance involves the use of Þnite-sample critical values based

on Þtted VAR models for returns and a set of additional predictors. This approach may be interpreted

as a parametric bootstrap approach. Often, however, these VAR models ignore evidence of conditional

heteroskedasticity in the VAR errors (see e.g., Goetzmann and Jorion 1995). In principle, we may

modify the bootstrap approach by postulating a parametric model of conditional heteroskedasticity.

For example, Hodrick (1992) and Bekaert and Hodrick (2001) postulate a VAR model with condition-

ally Gaussian GARCH(1,1) errors. Similarly, Lamoureux and Lastrapes (1990) augment the return

regression by a parametric GARCH(1,1) model. This approach is unlikely to solve the problem. Even

in the unlikely case that we could agree that the class of GARCH models is appropriate for a given

data set, in practice the precise form of the GARCH model will be unknown and different speciÞcations

may yield different results (see Wolf 2000). The same holds for the class of stochastic volatility models.

This fact points to the need for a nonparametric treatment of conditional heteroskedasticity in dynamic

regression models.
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This need is reinforced by the fact that it is exceedingly difficult to obtain reliable numerical estimates

of multivariate GARCH models. In practice, researchers often impose additional ad hoc restrictions on

the covariance structure of the model (see, e.g., Bollerslev, Engle and Wooldridge 1988, Bollerslev 1990,

Bekaert et. al. 1997). These restrictions have no theoretical justiÞcation (also see Ledoit, Santa-Clara

and Wolf 2001). Finally, we note that even with such restrictions it seems next to impossible to model

conditional heteroskedasticity in high-dimensional VAR models unless the sample size is very large.

This problem is most apparent in macroeconomic applications with many variables.

Whereas the failure of the i.i.d. assumption is well-documented in empirical Þnance, it is less well

known that many monthly macroeconomic variables also exhibit strong conditional heteroskedasticity.

The workhorse model of empirical macroeconomics is the linear autoregression. Figure 2 plots the

squared residuals of six univariate monthly autoregressive models (for the growth rate of industrial

output, M1 growth, CPI inßation, the real 3-month T-Bill rate, the nominal Federal Funds rate and the

percent change in the price of oil). The data source is FRED, the sample period 1959.1-2001.8, and the

lag orders of the AR models have been selected by the AIC. Figure 2 shows strong evidence of departures

from conditional homoskedasticity. Formal LM tests of the null hypothesis of no ARCH in Table 1 also

provide overwhelming evidence against the i.i.d. assumption. The evidence in Table 1 is important

because many methods of inference developed for smooth functions of autoregressive parameters (such

as impulse responses) do not allow for conditional heteroskedasticity. For example, standard residual-

based bootstrap methods for autoregressions rely on the i.i.d. error assumption and are invalid in the

presence of conditional heteroskedasticity, as we will show in the next section. Similarly, the grid

bootstrap of Hansen (1999) is based on the assumption of an autoregression with i.i.d. errors.

It may seem that standard asymptotic methods would be less restrictive, but this is not necessarily

the case. For example, the closed-form solutions for the asymptotic normal approximation proposed by

Lütkepohl (1990) also rely on the assumption of conditional homoskedasticity. They are based on least-

squares estimates of the variance of the estimator that are inconsistent in the presence of conditional

heteroskedasticity. Similarly, Wright�s (2000) local-to-unity intervals for AR(p) impulse responses rely

on the assumption of i.i.d. innovations. Although these methods could presumably be modiÞed to allow
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for conditional heteroskedasticity, current implementations of these methods are invalid in the presence

of conditional heteroskedasticity. Other papers make the even stronger assumption of Gaussian i.i.d.

errors, including Wright (2001), Andrews (1993) and Andrews and Chen (1994). Although the latter

two papers provide some simulation evidence that their method is fairly robust to non-Gaussian i.i.d.

innovations, they do not consider conditionally heteroskedastic errors. Finally, although this paper

does not cover the Bayesian approach, it should be noted that the popular Bayesian Monte Carlo

integration method for forming Bayesian error bands for VAR impulse responses also assumes that the

VAR innovations are i.i.d. (see Doan 1990, Sims and Zha 1999).

In this paper we study several easy-to-implement bootstrap methods that allow inference in autore-

gressions with possible conditional heteroskedasticity of unknown form. Unlike the standard residual-

based bootstrap for models with i.i.d. innovations these bootstrap methods remain valid under the

much weaker assumption of m.d.s. innovations, and they do not require the researcher to take a stand

on the existence or speciÞc form of conditional heteroskedasticity. For expository purposes we focus on

univariate autoregressive models. Analogous results for the multivariate case are possible at the cost

of additional notation.

3. Theory

Let (Ω,F , P ) be a probability space and {Ft} a sequence of increasing σ-Þelds of F . The sequence of
martingale differences {εt, t ∈ Z} is deÞned on (Ω,F , P ), where each εt is assumed to be measurable
with respect to Ft. We observe a sample of data {y−p+1, . . . , y0, y1, . . . , yn} from the following data

generating process for the time series yt,

φ (L) yt = εt, (3.1)

where φ (L) = 1−φ1L−φ2L2− . . .−φpLp, φp 6= 0, is assumed to have all roots outside the unit circle.
φ =

¡
φ1, . . . ,φp

¢0 is the parameter of interest, which we estimate by ordinary least squares (OLS) using
observations 1 through n:

�φn =

Ã
n−1

nX
t=1

Yt−1Y 0t−1

!−1
n−1

nX
t=1

Yt−1yt,
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where Yt−1 = (yt−1, . . . , yt−p)0. In this paper we focus on bootstrap conÞdence intervals for φ that are

robust to the presence of conditional heteroskedasticity of unknown form in the innovations {εt}. More
speciÞcally, we assume the following condition:

Assumption A

(i) E (εt|Ft−1) = 0, almost surely, whereFt−1 = σ (εt−1, εt−2, . . .) is the σ-Þeld generated by {εt−1, εt−2, . . .} .

(ii) E
¡
ε2t
¢
= σ2 <∞.

(iii) limn→∞ n−1
Pn
t=1E

¡
ε2t |Ft−1

¢
= σ2 > 0 in probability.

(iv) E
¡
ε2t εt−rεt−s

¢
= σ4τ r,s is uniformly bounded for all t, r ≥ 1, s ≥ 1; τ r,r >α for some α> 0 for all

r.

(v) limn→∞ n−1
Pn
t=1 εt−rεt−sE

¡
ε2t |Ft−1

¢
= σ4τ r,s in probability for any r ≥ 1, s ≥ 1.

(vi) E |εt|4r is uniformly bounded, for some r > 1.

Assumption A replaces the usual i.i.d. assumption on the errors {εt} by the broader martingale
difference sequence assumption. In particular, Assumption A does not impose conditional homoskedas-

ticity on the sequence {εt}, which need not be strictly stationary (although it is covariance station-
ary). Assumption A covers a variety of conditionally heteroskedastic models such as ARCH, GARCH,

EGARCH and stochastic volatility models (see, e.g. Deo (2000), who shows that a stronger version

of Assumption A is satisÞed for stochastic volatility and GARCH models). Assumptions (iv) and (v)

restrict the fourth order cumulants of εt.

The following theorem gives the asymptotic distribution of the OLS estimator �φn for the parameter

vector φ under the martingale difference sequence Assumption A. This result could be obtained as a

special case of Kuersteiner�s (2001) Theorem 3.4, which gives the asymptotic distribution of efficient

instrumental variables estimators in the context of ARMA models with martingale difference sequence

errors. In particular, in addition to the martingale difference sequence assumption, his Assumption

A1 assumes {εt} to be stationary ergodic, and it imposes a summability condition on the fourth order
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cumulants. Here, we use Assumption A, which relaxes the stationarity and ergodicity assumptions

and the summability condition. We use Kuersteiner�s (2001) notation to characterize the asymptotic

covariance matrix of �φn. Using φ
−1 (L) =

P∞
j=0 ψjL

j , we let bj =
¡
ψj−1, . . . ,ψj−p

¢0 with ψ0 = 1 and
ψj = 0 for j < 0. The coefficients ψj satisfy the recursion ψs−φ1ψs−1− . . .−φpψs−p = 0 for all s > 0
and ψ0 = 1. We let ⇒ denote convergence in distribution throughout.

Theorem 3.1. Under Assumption A,
√
n
³
�φn − φ

´
⇒ N (0, C), where

C = A−1BA−1,

A = σ2
∞X
j=1

bjb
0
j = σ

2

 ∞X
j=0

ψjψj+|k−l|


k,l=1,...,p

B = σ4
∞X
i=1

∞X
j=1

bib
0
jτ i,j = σ

4

 ∞X
i=0

∞X
j=0

ψiψjτ l+i,k+j


k,l=1,...,p

.

The asymptotic covariance of �φn is of the traditional �sandwich� form, where

A = E
¡
n−1

Pn
t=1 Yt−1Y

0
t−1
¢
and B = V ar

¡
n−1/2

Pn
t=1 Yt−1εt

¢
. Under conditional homoskedastic-

ity, we obtain simpliÞed expressions for A and B. In particular, by application of the law of iterated

expectations, we have that τ i,i ≡ σ−4E
¡
ε2t ε

2
t−i
¢
= σ−4E

¡
ε2t−iE

¡
ε2t |Ft−1

¢¢
= σ−4E

¡
ε2t−iσ2

¢
= 1 for all

i = 1, 2, . . . . Similarly, we can show that τ i,j = 0 for all i 6= j. Thus, for instance in the AR(1) case,
the asymptotic variance of �φn = �φ1n simpliÞes to C =

¡
σ2
P∞
i=0 ψ

2
i

¢−2 ¡
σ4
P∞
i=0 ψ

2
i

¢
= 1− φ21.

The validity of any bootstrap method in the context of autoregressions with conditional het-

eroskedasticity depends crucially on the ability of the bootstrap to estimate consistently the asymptotic

covariance matrix C. The standard residual-based bootstrap method fails to do so by not correctly

mimicking the behavior of the fourth order cumulants of εt in the conditionally heteroskedastic case,

as we now show. Let �ε∗t be resampled with replacement from the centered residuals. The standard

residual-based bootstrap builds y∗t recursively from �ε∗t according to

y∗t = Y
∗0
t−1�φn + �ε

∗
t , t = 1, . . . , n,

where Y ∗t−1 =
¡
y∗t−1, . . . , y∗t−p

¢0, given some initial conditions. The bootstrap analogues of A and B are
A∗n = n−1

Pn
t=1E

∗ ¡Y ∗t−1Y ∗0t−1¢ and B∗n = V ar∗
¡
n−1/2

Pn
t=1 Y

∗
t−1�ε

∗
t

¢
, respectively. Because �ε∗t is i.i.d.

9



¡
0, �σ2

¢
, where �σ2 = n−1

Pn
t=1

¡
�εt − �ε

¢2
, �ε∗t and Y ∗t−1 are (conditionally) independent, and

B∗n = n−1
nX
t=1

E∗
¡
Y ∗t−1Y

∗0
t−1�ε

∗2
t

¢
= n−1

nX
t=1

E∗
¡
Y ∗t−1Y

∗0
t−1
¢
E∗
¡
�ε∗2t
¢

= �σ2A∗n.

Thus, the bootstrap analogue of C, C∗n ≡ A∗−1n B∗nA∗−1n = �σ2A∗−1n , converges in probability to σ2A−1,

implying that the limiting distribution of the recursive i.i.d. bootstrap is N
¡
0,σ2A−1

¢
. As Theorem 3.1

above shows, σ2A−1 is not the correct asymptotic covariance matrix of �φn without further conditions,

e.g., that εt is conditionally homoskedastic. In the general conditionally heteroskedastic case, B depends

on σ4τ i,j . The recursive i.i.d. bootstrap implies E∗
¡
�ε∗t−i�ε

∗
t−j�ε

∗2
t

¢
= �σ4 when i = j and zero otherwise,

and thus implicitly sets τ i,j = 1 for i = j and 0 for i 6= j.

Given the failure of the standard-residual based bootstrap, we are interested in establishing the

Þrst-order asymptotic validity of three alternative bootstrap methods in this environment. Two of

the bootstrap methods we study rely on an application of the wild bootstrap (WB). The WB has

been originally developed by Wu (1986), Liu (1988) and Mammen (1993) in the context of static linear

regression models with (unconditionally) heteroskedastic errors. We consider both a recursive-design

and a Þxed-design version of the WB. The third method is a natural generalization of the pairwise

bootstrap for linear regression Þrst suggested by Freedman (1981) for cross sectional data.

As we will see next, the recursive-design WB requires a strengthening of Assumption A in order to

ensure convergence towards the correct asymptotic covariance matrix C. In contrast, the Þxed-design

WB and the pairwise bootstrap are valid under the more general Assumption A.

Recursive-design wild bootstrap

The recursive-design WB is a simple modiÞcation of the usual recursive-design bootstrap method

for autoregressions (see e.g. Bose, 1988) which consists of replacing Efron�s i.i.d. bootstrap by the wild

bootstrap when bootstrapping the errors of the AR model. More speciÞcally, the recursive-design WB

bootstrap generates a pseudo time series {y∗t } according to the autoregressive process:

y∗t = �φ1ny
∗
t−1 + �φ2ny

∗
t−2 + . . .+ �φpny

∗
t−p + �ε

∗
t , t = 1, . . . , n,
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where �ε∗t = �εtηt, with �εt = �φn (L) yt, and where ηt is an i.i.d. sequence with mean zero and variance one

such that E∗ |ηt|4 ≤ ∆ <∞. We let y∗t = 0 for all t ≤ 0. Kreiss (1997) suggested this method in the
context of autoregressive models with i.i.d. errors, but did not investigate its theoretical justiÞcation

in more general models. Here, we will provide conditions for the asymptotic validity of the recursive-

design WB proposal for Þnite-order autoregressive processes with possibly conditionally heteroskedastic

errors. To show this result we need to strengthen Assumption A as follows:

Assumption A0

(iv0) E
¡
ε2t εt−rεt−s

¢
= 0 for all r 6= s, for all t, r ≥ 1, s ≥ 1.

(vi0) E |εt|4r is uniformly bounded for some r ≥ 2 and for all t.

Assumption A0 restricts the class of conditionally heteroskedastic autoregressive models in two di-

mensions. First, Assumption A0 (iv0) requires the product moments of {εt} up to order four to behave as
those of an independent series. Milhøj (1985) shows that this assumption is satisÞed for the ARCH(p)

model with innovations having a symmetric distribution. Bollerslev(1986) and He and Teräsvirta (1999)

extend the argument to the GARCH(p, q) case. In addition, Deo (2000) shows that this assumption

is satisÞed by certain stochastic volatility models. Nevertheless, Assumption A0 (iv0) excludes some

non-symmetric parametric models such as asymmetric EGARCH. Second, we now require the existence

of at least eight moments for the martingale difference sequence {εt} as opposed to only 4r moments, for
some r > 1, as in Assumption A. A similar moment condition was used by Kreiss (1997) in his Theorem

4.3, which shows the validity of the recursive-design WB for possibly inÞnite-order AR processes with

i.i.d. innovations.

The strengthening of Assumption A is crucial to showing the asymptotic validity of the recursive-

design WB in the martingale difference context. In particular, conditional on the data, and given the

independence of {ηt},
©
Y ∗t−1�ε

∗
t ,F∗t

ª
can be shown to be a vector m.d.s., where F∗t = σ

¡
ηt, ηt−1, . . . , η1

¢
.

We use Assumption A0 (vi0) to ensure convergence of n−1
Pn
t=1 Y

∗
t−1Y ∗0t−1�ε

∗2
t toB

∗
n ≡ V ar∗

¡
n−1/2

Pn
t=1 Y

∗
t−1ε∗t

¢
,

thus verifying one of the conditions of the CLT for m.d.s. Assumption A0 (iv0) ensures convergence

of the recursive-design WB variance B∗n to the correct limiting variance of n−1/2
Pn
t=1 Yt−1εt. More
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speciÞcally, letting Y ∗t−1 ≡
Pt−1
j=1
�bj�ε

∗
t−j with �bj ≡

³
�ψj−1, . . . , �ψj−p

´0
, �ψ0 = 1 and �ψj = 0 for j < 0, it

follows by direct evaluation that

B∗n = n
−1

nX
t=1

t−1X
j=1

t−1X
i=1

�bj�b
0
iE

∗ ¡�ε∗t−j�ε∗t−i�ε∗2t ¢ ,
where E∗

¡
�ε∗t−j�ε

∗
t−i�ε

∗2
t

¢
= �ε2t−i�ε

2
t for i = j and zero otherwise. We can rewrite B∗n as

Pn−1
j=1

�bj�b
0
jn
−1Pn

t=1+j �ε
2
t�ε
2
t−j , which converges in probability to �B ≡

P∞
j=1 bjb

0
jσ
4τ jj under Assumption A. Without

Assumption A0 (iv0) an asymptotic bias term appears in the estimation of B ≡ σ4P∞
i=1

P∞
j=1 bib

0
jτ i,j ,

which is equal to −σ4P∞
i=1

P∞
j=1 bib

0
jτ i,j for all i 6= j. Assumption A0 (iv0) sets τ i,j equal to zero for

i 6= j, and thus ensures that the recursive-design WB consistently estimates B.
Theorem 3.2 formally states the asymptotic validity of the recursive-design WB for Þnite-order

autoregressions with heteroskedastic errors. Let �φ
∗
n denote the recursive-design WB OLS estimator,

i.e. �φ
∗
n =

¡
n−1

Pn
t=1 Y

∗
t−1Y ∗0t−1

¢−1
n−1

Pn
t=1 Y

∗
t−1y∗t .

Theorem 3.2. Under Assumption A strengthened by Assumption A0 (iv0) and (vi0), it follows that

sup
x∈Rp

¯̄̄
P ∗
³√
n
³
�φ
∗
n − �φn

´
≤ x

´
− P

³√
n
³
�φn − φ

´
≤ x

´¯̄̄
P→ 0,

where P ∗ denotes the probability measure induced by the recursive-design WB.

Fixed-design wild bootstrap

The Þxed-design WB generates {y∗t }nt=1 according to the equation

y∗t = �φ1nyt−1 + �φ2nyt−2 + . . .+ �φn,pyt−p +�ε
∗
t , t = 1, . . . , n, (3.2)

where �ε∗t = �εtηt, �εt = �φn (L) yt, and where ηt is an i.i.d. sequence with mean zero and variance one such

that E∗ |ηt|2r ≤ ∆ < ∞. The bootstrap estimator is �φ∗n =
¡
n−1

Pn
t=1 Yt−1Y

0
t−1
¢−1

n−1
Pn
t=1 Yt−1y

∗
t .

The Þxed-design WB corresponds to a regression-type bootstrap method in that (3.2) is a Þxed-design

regression model, conditional on the original sample. The Þxed-design WB was suggested by Kreiss

(1997). Kreiss� (1997) Theorem 4.2 provides the Þrst-order asymptotic validity of the Þxed-design WB

for Þnite-order autoregressions with conditional heteroskedasticity of a speciÞc form. More speciÞcally,

he assumes a data generating process of the form yt =
Pp
i=1 φiyt−i + σ (yt−1) vt, where vt is i.i.d. (0, 1)
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with Þnite fourth moment. The i.i.d. assumption on the rescaled innovations vt is violated if for instance

the conditional moments of vt depend on past observations. We prove the Þrst-order asymptotic validity

of the Þxed-design WB of Kreiss (1997) under a broader set of regularity conditions, namely Assumption

A.

Theorem 3.3. Under Assumption A,

sup
x∈Rp

¯̄̄
P ∗
³√
n
³
�φ
∗
n − �φn

´
≤ x

´
− P

³√
n
³
�φn − φ

´
≤ x

´¯̄̄
P→ 0,

where P ∗ denotes the probability measure induced by the Þxed-design WB.

In contrast to the recursive-design WB, the ability of the Þxed-design WB to consistently esti-

mate the variance, and hence the limiting distribution, of �φn does not require a strengthening of

Assumption A. SpeciÞcally, the variance of the limiting conditional bootstrap distribution of �φ
∗
n

is given by A∗−1n B∗nA∗−1n , where A∗n = n−1
Pn
t=1 Yt−1Y

0
t−1 and B∗n ≡ V ar∗

¡
n−1/2

Pn
t=1 Yt−1�ε

∗
t

¢
=

n−1
Pn
t=1 Yt−1Y

0
t−1�ε

2
t . Under Assumption A one can show that A∗n

P→ A and B∗n
P→ B, thus ensuring

that A∗−1n B∗nA∗−1n
P→ A−1BA−1 ≡ C.

Pairwise bootstrap

Another bootstrap method that captures the presence of conditional heteroskedasticity in autore-

gressive models consists of bootstrapping �pairs�, or tuples, of the dependent and explanatory vari-

ables in the autoregression. This method is an extension of Freedman�s (1981) bootstrap method

for the correlation model to the autoregressive context. In the AR(p) model, it amounts to re-

sampling with replacement from the set of tuples
¡
yt, Y

0
t−1
¢
= (yt, yt−1, . . . , yt−p), t = 1, . . . , n. Let©¡

y∗t , Y ∗0t−1
¢
=
¡
y∗t , y∗t−1, . . . , y∗t−p

¢
, t = 1, . . . , n

ª
be an i.i.d. resample from this set. Then the pairwise

bootstrap estimator is deÞned by �φ
∗
n =

¡
n−1

Pn
t=1 Y

∗
t−1Y ∗0t−1

¢−1
n−1

Pn
t=1 Y

∗
t−1y∗t . The bootstrap ana-

logue of φ is �φn since �φn is the parameter value that minimizes E
∗
h¡
y∗t − φ1y∗t−1 − . . .− φpy∗t−p

¢2i
. The

following theorem establishes the asymptotic validity of the pairwise bootstrap for the AR(p) process

with m.d.s. errors satisfying Assumption A.
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Theorem 3.4. Under Assumption A, it follows that

sup
x∈Rp

¯̄̄
P ∗
³√
n
³
�φ
∗
n − �φn

´
≤ x

´
− P

³√
n
³
�φn − φ

´
≤ x

´¯̄̄
P→ 0,

where P ∗ denotes the probability measure induced by the pairwise bootstrap.

Asymptotic validity of bootstrapping the studentized slope parameter

Corollary 3.1 below establishes the asymptotic validity of bootstrapping the t-statistic for the ele-

ments of φ. To conserve space, we let �φ
∗
n denote the OLS estimator of φ obtained under any of the

three bootstrap resampling schemes studied above. Similarly, we use (y∗t , Y ∗0t−1) to denote bootstrap

data in general. In particular, we implicitly set Y ∗t−1 = Yt−1 for the Þxed-design WB.

For a typical element φj a bootstrap percentile-t conÞdence interval is based on t�φ∗jn =
√
n(�φ

∗
jn−�φjn)q
�C∗n,jj

,

the bootstrap analogue of the t-statistic t�φjn =
√
n(�φjn−φj)√

�Cn,jj
. In the context of (conditional) heteroskedas-

ticity, �Cn,jj and �C∗n,jj are the heteroskedasticity-consistent variance estimators evaluated on the original

and on the bootstrap data, respectively. SpeciÞcally, for the bootstrap t-statistic let

�C∗n = �A∗−1n
�B∗n �A

∗−1
n , with

�A∗n = n−1
nX
t=1

Y ∗t−1Y
∗0
t−1 and �B

∗
n = n

−1
nX
t=1

Y ∗t−1Y
∗0
t−1eε∗2t ,

where eε∗t = y∗t − �φ∗0nY ∗t−1 are the bootstrap residuals.
Corollary 3.1. Assume Assumption A holds. Then, for the Þxed-design WB and the pairwise boot-

strap, it follows that

sup
x∈R

¯̄̄
P ∗
³
t�φ∗jn

≤ x
´
− P

³
t�φjn

≤ x
´¯̄̄

P→ 0, j = 1, . . . , p.

If Assumption A is strengthened by Assumption A0 (iv0) and (vi0), then the above result also holds for

the recursive-design WB.

4. Simulation Evidence

In this section, we study the accuracy of the bootstrap approximation proposed in section 3 for sample

sizes of interest in applied work. We focus on the AR(1) model as the leading example of an autore-
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gressive process. The DGP is yt = φ1yt−1 + εt with φ1 ∈ {0, 0.9}. In our simulation study we allow

for GARCH(1,1) errors of the form εt =
√
htvt, where vt is i.i.d. N (0, 1) and ht = ω + αε2t−1 + βht−1,

t = 1, . . . , n. We normalize the unconditional variance of εt to one. In addition to conditional N(0,1)

innovations we also consider GARCH models with conditional t5-errors (suitably normalized to have

unit variance). For β = 0 this model reduces to an ARCH(1) model. For α = 0 and β = 0 the

error sequence reduces to a sequence of (possibly non-Gaussian) i.i.d errors. We allow for varying

degrees of volatility persistence modeled as GARCH processes with α+β ∈ {0, 0.9, 0.99}. In addition,

we consider AR(1) models with exponential GARCH errors (EGARCH), asymmetric GARCH errors

(AGARCH) and with the GJR-GARCH errors proposed by Glosten, Jaganathan and Runkle (1993).

Our parameter settings are based on Engle and Ng (1993). Note that many of these processes are not

covered by either the conventional asymptotic theory or by the asymptotic theory for the bootstrap.

In particular, the assumption of a Þnite fourth moment may be violated for some parameter settings.

Nevertheless, it is important to investigate the robustness of these methods to such departures from

our assumptions.

Finally, we also consider the stochastic volatility model εt = vt exp(ht) with ht = λht−1 + 0.5ut,

where |λ| < 1 and (ut, vt) is a sequence of independent bivariate normal random variables with zero

mean and covariance matrix diag(σ2u, 1). This model is a m.d.s. model and satisÞes Assumption A.

We follow Deo (2000) in postulating the values (0.936, 0.424) and (0.951, 0.314) for (λ,σu). These are

values obtained by Shephard (1996) by Þtting this stochastic volatility model to real exchange rate

data.

We generate repeated trials of length n = 120 and n = 240 from these processes and conduct

bootstrap inference based on the Þtted AR(1) model for each trial. All Þtted models include an

intercept. The number of Monte Carlo trials is 1,000 with 1,000 bootstrap replications each. The Þxed-

design and recursive-design WB involve applying the WB to the residuals of the Þtted model. Recall

that the WB innovation is ε∗t = �εtηt, with �εt = yt − �φ1nyt−1, where ηt is an i.i.d. sequence with mean
zero and variance one such that E∗ |ηt|4r ≤ ∆ < ∞. In practice, there are several choices for ηt that
satisfy these conditions. In the simulations we use ηt ∼ N(0, 1). Our results are robust to alternative
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choices including the two-point distribution ηt = −(
√
5−1)/2 with probability p = (√5+1)/(2√5) and

ηt = (
√
5+1)/2 with probability 1−p, as proposed by Mammen (1993), and the two-point distribution

ηt = 1 with probability 0.5 and ηt = −1 with probability 0.5, as proposed by Liu (1988).

We are interested in studying the coverage accuracy of nominal 90% symmetric percentile-t bootstrap

conÞdence intervals for the slope parameter φ1. We also considered equal-tailed percentile-t intervals,

but found that symmetric percentile-t intervals in all cases were at least as accurate. Unlike the

percentile interval, the construction of the bootstrap t-interval requires the use of an estimate of the

standard error of n1/2(bφ∗1n − bφ1n). We use the heteroskedasticity-robust estimator of the covariance

proposed by Nicholls and Pagan (1983) based on work by Eicker (1963) and White (1980). We

also experimented with several modiÞed robust covariance estimators (see MacKinnon and White 1985,

Chesher and Jewitt 1987, Davidson and Flachaire 2000). For our sample sizes, none of these estimators

performed better than the basic estimator proposed by Nicholls and Pagan (1983). Finally, virtually

identical results were obtained based on WB bootstrap standard error estimates. The latter approach

involves a nested bootstrap loop and is not recommended for computational reasons. As a benchmark

we also include the coverage rates of the Gaussian large-sample approximation based on Nicholls-Pagan

robust standard errors.

We begin with a review of the simulation results for the stationary AR(1) model. Starting with

the results for N-GARCH errors in Table 2 several broad tendencies emerge. First, the accuracy of the

standard recursive-design bootstrap procedure based on i.i.d. resampling of residuals is high when the

model errors are truly i.i.d., but can be very poor in the presence of N-GARCH. Second, conventional

large-sample approximations based on robust standard errors are more accurate than the recursive-

design i.i.d. bootstrap in the presence of N-GARCH, but less accurate for models with i.i.d. errors.

In either case, their coverage rates may be substantially below the nominal level. Third, all three

robust bootstrap methods are more accurate than the i.i.d. bootstrap or the conventional Gaussian

approximation. Fourth, the recursive-design WB is always at least as accurate as the Þxed-design

WB and the pairwise resampling procedures, and its accuracy is very high for all variations of the

DGP, including models with i.i.d. innovations. SpeciÞcally, for n = 120 and AR(1) models with high
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persistence, the accuracy of the recursive-design WB tends to be higher than for the pairwise bootstrap.

For n = 240, these differences vanish and both methods are equally accurate. The Þxed-design WB is

typically less accurate than the recursive-design WB both for n = 120 and for n = 240, although the

discrepancies diminish with the larger sample size.

The results for the AR(1) model with t5-GARCH errors in Table 3 are qualitatively similar, except

that the recursive-design i.i.d. bootstrap and the conventional Gaussian approximation are even less

accurate than for N-GARCH processes. In Table 4 we explore a number of additional models of

conditional heteroskedasticity that have been used primarily to model returns in empirical Þnance. The

results for the stochastic volatility model are qualitatively the same as for N-GARCH and t-GARCH.

For the other three models, we Þnd that there is little to choose between the recursive-design WB and

the pairwise bootstrap. Their accuracy for n = 120 and highly persistent data tends to be slightly below

nominal coverage, but consistently higher than that of any alternative method. In all other cases both

methods are highly accurate. Neither the i.i.d. bootstrap nor the conventional Gaussian approximation

perform well. The high accuracy of the recursive-design WB even for EGARCH, AGARCH and GJR-

GARCH error processes is surprising, given its lack of theoretical support for these DGPs. Apparently,

the asymptotic inconsistency of the recursive-design WB method has little effect on its performance in

small samples. Fortunately, applications in Þnance, for which such asymmetric volatility models have

been developed, invariably involve large sample sizes, conditions under which pairwise resampling is

just as accurate as the recursive-design WB and theoretically justiÞed.

Given the computational costs of the simulation study, we have chosen to focus on a stylized autore-

gressive model, but have explored a wide range of conditionally heteroskedastic errors. Although our

simulation results are necessarily tentative, they suggest that the recursive-design WB should replace

conventional recursive design i.i.d. bootstrap methods in many standard applications. The pairwise

bootstrap provides a suitable alternative when sample sizes are at least moderately large and the pos-

sibility of asymmetric forms of GARCH is a practical concern. Even for moderate sample sizes the

accuracy of the pairwise bootstrap is slightly higher than that of the Þxed-design bootstrap, which

appears only suited for very large samples.
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5. Concluding Remarks

The aim of the paper has been to extend the range of applications of autoregressive bootstrap methods

in empirical Þnance and macroeconometrics. We documented widespread evidence of conditional

heteroskedasticity not just in Þnancial time series, but also in monthly macroeconomic data. We

analyzed the theoretical properties of three bootstrap procedures for stationary autoregressions that

are robust to conditional heteroskedasticity of unknown form: the Þxed-design WB, the recursive-design

WB and the pairwise bootstrap.

Throughout the paper, we established conditions for the Þrst-order asymptotic validity of these

bootstrap procedures. We did not attempt to address the issue of the existence of higher-order asymp-

totic reÞnements provided by the bootstrap approximation. Arguments aimed at proving asymptotic

reÞnements require the existence of an Edgeworth expansion for the distribution of the estimator of

interest. Establishing the existence of such an Edgeworth expansion is beyond the scope of this paper.

Moreover, the quality of the Þnite-sample approximation provided by analytic Edgeworth expansions

often is poor and less accurate than bootstrap approximations. Thus, Edgeworth expansions in general

are imperfect guides to the relative accuracy of alternative bootstrap methods (see Härdle, Horowitz

and Kreiss 2001). Indeed, preliminary simulation evidence indicates that wild bootstrap methods based

on two-point distributions that may yield asymptotic reÞnements in our context tend to perform no

better than - and in some cases worse than - the Þrst-order accurate methods studied in this paper.

Nevertheless, we found that the robust bootstrap approximation was typically more accurate in small

samples than the usual Þrst-order asymptotic approximation based on robust standard errors. Our

simulation results also highlighted the dangers of incorrectly modelling the error term in dynamic re-

gression models as i.i.d. We found that conventional residual-based bootstrap methods may be very

inaccurate in the presence of conditional heteroskedasticity.

The theoretical and simulation results in this paper suggested that no single bootstrap method for

dealing with conditional heteroskedasticity of unknown form will be optimal in all cases. We concluded

that the recursive-design WB is well-suited for many applications in empirical macroeconomics. This

method performs equally well, whether the error term is i.i.d. or conditionally heteroskedastic, but it
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lacks a theoretical justiÞcation for some forms of GARCH that have Þgured prominently in the literature

on high-frequency returns. When the sample size is at least moderately large and asymmetric forms of

GARCH are a practical concern, the pairwise bootstrap method provides a suitable alternative . The

Þxed-design WB has the same theoretical justiÞcation as the pairwise bootstrap for parametric models,

but based on our simulation evidence appears only suited for very large samples.

There are several interesting extensions of the approach taken in this paper. One possible extension

is the development of bootstrap methods for conditionally heteroskedastic stationary autoregressions

of possibly inÞnite order. This extension is the subject of ongoing research. Another useful extension

would be to establish the validity of the recursive-design WB for regression parameters in I(1) autore-

gressions that can be written in terms of zero mean stationary regressors, generalizing recent work by

Inoue and Kilian (2002) on I(1) autoregressive models with i.i.d. errors. Yet another useful extension

would be to establish the asymptotic validity of robust versions of the grid bootstrap of Hansen (1999).

These extensions are nontrivial and left for future research.
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Table 1. Approximate Finite-Sample P-Values of
LM Test of No-ARCH(q) Hypothesis (in Percent)

Univariate AR Models

q 1 2 3 4 5
CRSP Returns 0.00 0.00 0.00 0.00 0.00
DM-U.S. Dollar Returns 1.25 5.99 8.28 1.15 1.18
Industrial Output Growth 1.58 2.40 3.28 1.61 1.47
M1 Growth 0.00 0.01 0.01 0.02 0.01
CPI Inßation 0.50 1.13 1.79 2.35 2.05
Real T-Bill Rate 0.08 0.18 0.29 0.37 0.34
Federal Funds Rate 3.37 0.45 0.71 0.94 0.90
Percent Change in Oil Price 2.39 3.77 5.25 4.60 6.44

SOURCE: Based on 20000 bootstrap replications under i.i.d. error null hypothesis. The LM test

is based on Engle (1982). All data are monthly. The macroeconomic data have been Þltered using an

autoregressive approximation selected by the AIC. The returns are unÞltered.
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Table 2. Coverage Rates of
Nominal 90% Symmetric Percentile-t Intervals for φ1

AR(1)-N-GARCH Model

DGP: yt = φ1yt−1 + εt, εt = ht
1/2vt, ht = ω + αε

2
t−1 + βht−1, vt ∼ N(0, 1)

Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian

n φ1 α+ β α β

120 0 0 0 0 0.92 0.91 0.91 0.91 0.90
0.9 0.9 0 0.60 0.89 0.87 0.89 0.85

0.7 0.2 0.64 0.89 0.88 0.90 0.87
0.45 0.45 0.73 0.89 0.89 0.91 0.88
0.2 0.7 0.84 0.90 0.90 0.90 0.88

0.99 0.99 0 0.57 0.88 0.87 0.89 0.83
0.79 0.2 0.60 0.88 0.87 0.91 0.84
0.495 0.495 0.69 0.90 0.89 0.89 0.85
0.2 0.79 0.82 0.91 0.90 0.90 0.89

0.9 0 0 0 0.87 0.88 0.86 0.84 0.83
0.9 0.9 0 0.75 0.89 0.86 0.87 0.83

0.7 0.2 0.76 0.88 0.86 0.87 0.84
0.45 0.45 0.79 0.88 0.86 0.88 0.85
0.2 0.7 0.84 0.89 0.87 0.87 0.84

0.99 0.99 0 0.73 0.89 0.87 0.88 0.84
0.79 0.2 0.73 0.88 0.85 0.87 0.85
0.495 0.495 0.77 0.88 0.85 0.87 0.83
0.2 0.79 0.84 0.88 0.85 0.87 0.84

240 0 0 0 0 0.92 0.90 0.90 0.91 0.90
0.9 0.9 0 0.56 0.88 0.87 0.90 0.86

0.7 0.2 0.59 0.89 0.87 0.90 0.87
0.45 0.45 0.69 0.88 0.87 0.91 0.88
0.2 0.7 0.81 0.90 0.89 0.91 0.90

0.99 0.99 0 0.51 0.88 0.86 0.89 0.84
0.79 0.2 0.56 0.88 0.87 0.90 0.85
0.495 0.495 0.64 0.89 0.88 0.91 0.88
0.2 0.79 0.78 0.90 0.89 0.92 0.90

0.9 0 0 0 0.89 0.89 0.87 0.87 0.86
0.9 0.9 0 0.72 0.88 0.86 0.90 0.87

0.7 0.2 0.72 0.88 0.86 0.89 0.87
0.45 0.45 0.76 0.89 0.88 0.89 0.87
0.2 0.7 0.83 0.89 0.87 0.88 0.86

0.99 0.99 0 0.67 0.88 0.87 0.90 0.86
0.79 0.2 0.67 0.89 0.85 0.89 0.85
0.495 0.495 0.70 0.90 0.85 0.89 0.85
0.2 0.79 0.81 0.90 0.88 0.88 0.87

SOURCE: 1000 Monte Carlo trials with 1000 bootstrap replications each. The regression model

includes an intercept. The bootstrap algorithms are described in the text.
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Table 3. Coverage Rates of
Nominal 90% Symmetric Percentile-t Intervals for φ1

AR(1)-t5-GARCH Model

DGP: yt = φ1yt−1 + εt, εt = ht
1/2vt, ht = ω + αε

2
t−1 + βht−1, vt ∼ t5

Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian

n φ1 α+ β α β

120 0 0 0 0 0.91 0.91 0.88 0.90 0.88
0.9 0.9 0 0.58 0.88 0.87 0.90 0.83

0.7 0.2 0.62 0.89 0.86 0.90 0.83
0.45 0.45 0.69 0.89 0.87 0.90 0.83
0.2 0.7 0.81 0.91 0.87 0.90 0.85

0.99 0.99 0 0.55 0.88 0.87 0.91 0.79
0.79 0.2 0.58 0.89 0.86 0.89 0.81
0.495 0.495 0.65 0.90 0.86 0.89 0.83
0.2 0.79 0.79 0.90 0.88 0.91 0.85

0.9 0 0 0 0.88 0.90 0.85 0.86 0.84
0.9 0.9 0 0.75 0.90 0.85 0.89 0.82

0.7 0.2 0.77 0.91 0.85 0.88 0.83
0.45 0.45 0.79 0.90 0.86 0.87 0.83
0.2 0.7 0.84 0.91 0.86 0.87 0.84

0.99 0.99 0 0.73 0.91 0.85 0.89 0.81
0.79 0.2 0.74 0.90 0.85 0.88 0.81
0.495 0.495 0.75 0.89 0.86 0.88 0.83
0.2 0.79 0.83 0.91 0.86 0.87 0.85

240 0 0 0 0 0.91 0.90 0.89 0.91 0.89
0.9 0.9 0 0.49 0.88 0.87 0.90 0.85

0.7 0.2 0.56 0.89 0.89 0.90 0.87
0.45 0.45 0.67 0.90 0.90 0.90 0.88
0.2 0.7 0.78 0.91 0.90 0.91 0.88

0.99 0.99 0 0.46 0.88 0.87 0.90 0.83
0.79 0.2 0.53 0.88 0.88 0.89 0.85
0.495 0.495 0.61 0.90 0.89 0.89 0.86
0.2 0.79 0.74 0.89 0.88 0.89 0.87

0.9 0 0 0 0.90 0.89 0.86 0.89 0.85
0.9 0.9 0 0.69 0.89 0.87 0.90 0.86

0.7 0.2 0.71 0.90 0.88 0.90 0.86
0.45 0.45 0.76 0.90 0.88 0.89 0.87
0.2 0.7 0.82 0.89 0.88 0.89 0.87

0.99 0.99 0 0.67 0.89 0.87 0.90 0.84
0.79 0.2 0.67 0.89 0.87 0.90 0.84
0.495 0.495 0.69 0.90 0.87 0.91 0.84
0.2 0.79 0.79 0.89 0.87 0.90 0.85

SOURCE: See Table 2.
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Table 4. Coverage Rates of
Nominal 90% Symmetric Percentile-t Intervals for φ1
(a) AR(1)-EGARCH Model (Engle and Ng 1993)

DGP: yt = φ1yt−1 + εt, εt = ht1/2vt, ln(ht) = −0.23 + 0.9ln(ht−1) + 0.25[|v2t−1|− 0.3vt−1]
vt ∼ N(0, 1)

Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian

n φ1
120 0 0.72 0.88 0.88 0.89 0.86

0.9 0.79 0.87 0.85 0.87 0.83
240 0 0.69 0.89 0.88 0.90 0.87

0.9 0.76 0.91 0.89 0.90 0.88
(b) AR(1)-AGARCH Model (Engle 1990)

DGP: yt = φ1yt−1 + εt, εt = ht
1/2vt, ht = 0.0216 + 0.6896ht−1 + 0.3174[εt−1 − 0.1108]2

vt ∼ N(0, 1)
Recursive Recursive Fixed Pairwise Robust SE

iid WB WB Gaussian
n φ1
120 0 0.73 0.89 0.88 0.89 0.87

0.9 0.78 0.87 0.85 0.87 0.84
240 0 0.68 0.90 0.88 0.89 0.87

0.9 0.73 0.90 0.89 0.88 0.87
(c) AR(1)-GJR GARCH Model (Glosten, Jaganathan and Runkle 1993)
DGP: yt = φ1yt−1 + εt, εt = ht

1/2vt, ht = 0.005 + 0.7ht−1 + 0.28[|εt−1|− 0.23εt−1]2
vt ∼ N(0, 1)

Recursive Recursive Fixed Pairwise Robust SE
iid WB WB Gaussian

n φ1
120 0 0.75 0.89 0.88 0.89 0.86

0.9 0.79 0.87 0.85 0.87 0.84
240 0 0.70 0.90 0.89 0.90 0.88

0.9 0.75 0.91 0.90 0.89 0.87
(d) AR(1)-Stochastic Volatility Model (Shephard 1996)

DGP: yt = φ1yt−1 + εt, εt = vtexp(ht), ht = λht−1 + 0.5ut, (ut, vt) ∼ N [0, diag(σ2u, 1)]
Recursive Recursive Fixed Pairwise Robust SE

iid WB WB Gaussian
n φ1 λ σu
120 0 0.936 0.424 0.76 0.89 0.88 0.89 0.86

0.951 0.314 0.81 0.89 0.89 0.89 0.87
0.9 0.936 0.424 0.79 0.90 0.88 0.86 0.83

0.951 0.314 0.82 0.89 0.88 0.86 0.83
240 0 0.936 0.424 0.73 0.88 0.87 0.91 0.89

0.951 0.314 0.79 0.89 0.89 0.91 0.90
0.9 0.936 0.424 0.80 0.88 0.87 0.90 0.88

0.951 0.314 0.83 0.89 0.88 0.89 0.88

SOURCE: See Table 2.
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Figure 5.1: Squared Returns
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Figure 5.2: Squared Residuals of Autoregressions
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A. Appendix

Throughout this Appendix, K denotes a generic constant independent of n. We use u.i. to mean

uniformly integrable. Given an m × n matrix A, let kAk = Pm
i=1

Pn
j=1 |aij |; for a m × 1 vector a,

let |a| = Pm
i=1 |ai|. For any n × n matrix A, diag (a11, . . . , ann) denotes a diagonal matrix with aii,

i = 1, . . . , n in the main diagonal. Similarly, let [aij]i,j=1,...,n denote a matrix A with typical element

aij. For any bootstrap statistic T ∗n we write T ∗n
P∗→ 0 in probability when limn→∞ P [P ∗ (|T ∗n | > δ)] = 0

for any δ > 0, i.e. P ∗ (|T ∗n | > δ) = oP (1). We write T ∗n ⇒dP∗ D, in probability, for any distribution

D, when weak convergence under the bootstrap probability measure occurs in a set with probability

converging to one. For simplicity, we omit the dependence on n of bootstrap estimators, e.g. �ε∗t ≡ �ε∗nt,
Y ∗t ≡ Y ∗nt. Likewise, �φ ≡ �φn throughout

The following CLT will be useful in proving results for the bootstrap (cf. White, 1999, p. 133; the

Lindeberg condition there has been replaced by the stronger Lyapunov condition here):

Theorem A.1 (Martingale Difference Arrays CLT). Let {Znt,Fnt} be a martingale difference
array such that σ2nt = E

¡
Z2nt
¢
, σ2nt 6= 0, and deÞne Z̄n ≡ n−1

Pn
t=1Znt and σ̄

2
n ≡ V ar

¡√
nZ̄n

¢
=

n−1
Pn
t=1 σ

2
nt. If

1. n−1
Pn
t=1 Z

2
nt/σ̄

2
n − 1 P→ 0, and

2. limn→∞ σ̄
−2(1+δ)
n n−(1+δ)

Pn
t=1E |Znt|2(1+δ) = 0 for some δ > 0,

then
√
nZ̄n/σ̄n ⇒ N (0, 1).

The following Lemma generalizes Kuersteiner�s (2001) Lemma A.1. Kuersteiner�s Assumption A.1

is stronger than our Assumption A in that it assumes {εt} is stationary ergodic, and in that it imposes
a summability condition on the fourth order cumulants.

Lemma A.1. Under Assumption A, for each m ∈ N, m Þxed, the vector

n−1/2
nX
t=1

(εtεt−1, . . . , εtεt−m)0 ⇒ N (0,Ωm) ,

where Ωm = σ4 [τ r,s]r,s=1,...,m.

Lemmas A.2-A.5 are used to prove the asymptotic validity of the recursive-design WB (cf. Theorem

3.2). In these lemmas, �ε∗t = �εtηt, t = 1, . . . , n, where �εt = yt − �φ
0
nYt−1, and ηt is i.i.d. (0, 1) such that

E∗ |ηt|4 ≤ ∆ <∞.
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Lemma A.2. Under Assumption A, for Þxed m ∈ N,

(i) n−1
Pn
t=j+1 �ε

∗2
t−j

P ∗→ σ2, in probability, j = 0, 1, . . . ,m;

(ii) n−1
Pn
t=j+1 �ε

∗
t−j�ε

∗
t
P ∗→ 0, in probability, j = 1, . . . ,m.

If we strengthen Assumption A by A0 (vi0), then

(iii) n−1
Pn
t=max(i,j)+1 �ε

∗2
t �ε

∗
t−j�ε

∗
t−i

P∗→ σ4τ ij1 (i = j), in probability, j, i = 1, . . . ,m, where 1 (i = j) is 1

if i = j, and 0 otherwise.

The following lemma is the WB analogue of Lemma A.1.

Lemma A.3. Under Assumption A strengthened by A(vi0), for all Þxed m ∈ N,

n−1/2
nX

t=m+1

¡
�ε∗t�ε

∗
t−1, . . . ,�ε

∗
t�ε
∗
t−m

¢0 ⇒dP∗ N
³
0, �Ωm

´
,

in probability, where �Ωm ≡ σ4diag (τ11, . . . , τmm) and⇒dP∗ denotes weak convergence under the boot-

strap probability measure.

Lemma A.4. Suppose Assumption A holds. Then, n−1
Pn
t=1 Y

∗
t−1Y ∗0t−1

P ∗→ A, in probability, where

A ≡ σ2P∞
j=1 bjb

0
j.

Lemma A.5. Suppose Assumption A strengthened by A(vi0) holds. Then,

n−1/2
nX
t=1

Y ∗t−1�ε
∗
t ⇒dP∗ N

³
0, �B

´
,

in probability, where �B =
P∞
j=1 bjb

0
jσ
4τ jj .

Proof of Theorem 3.1. We show that (i)A1n ≡ n−1
Pn
t=1 Yt−1Y

0
t−1

P→ A; and (ii)A2n ≡ n−1/2
Pn
t=1 Yt−1εt

⇒ N (0, B). First, notice that for any stationary AR(p) process we have yt =
P∞
j=0 ψjεt−j , where

©
ψj
ª

satisfy the recursion ψs − φ1ψs−1 − . . .− φpψs−p = 0 with ψ0 = 1 and ψj = 0 for j < 0, implying thatP∞
j=0 j

¯̄
ψj
¯̄
< ∞. We can write Yt−1 =

³P∞
j=0 ψjεt−1−j, . . . ,

P∞
j=0 ψjεt−p−j

´0
=
P∞
j=1 bjεt−j with

bj =
¡
ψj−1, . . . ,ψj−p

¢0, where ψ−j = 0 for all j > 0. Hence, by direct evaluation,
A ≡ E ¡Yt−1Y 0t−1¢ = E

 ∞X
j=1

∞X
i=1

bjb
0
iεt−jεt−i

 = σ2 ∞X
j=1

bjb
0
j = σ

2

 ∞X
j=0

ψjψj+|k−l|


k,l=1,...,p

since E (εt−iεt−j) = 0 for i 6= j under the m.d.s. assumption, and
P∞
j=0

¯̄̄
ψjψj+|k−l|

¯̄̄
<P∞

j=0

¯̄
ψj
¯̄P∞

j=0

¯̄̄
ψj+|k−l|

¯̄̄
<∞ for all k, l. To show (i), for Þxedm ∈ N, deÞneAm1n ≡ n−1

Pn
t=1 Yt−1,mY

0
t−1,m,
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where Yt−1,m =
Pm
j=0 bjεt−j. It suffices to show: (a) A

m
1n → Am1 ≡ σ2

Pm
j=1 bjb

0
j as n → ∞, for

each Þxed m; (b) Am1 → A as m → ∞, and (c) limm→∞ lim supn→∞ P [|A1n −Am1n| ≥ η] = 0 for

all η > 0 (cf. Proposition 6.3.9 of Brockwell and Davis (BD) (1991), p.207). For (a), we have

Am1n =
Pm
j=0

Pm
i=0 bjb

0
in
−1Pn

t=1 εt−jεt−i. For Þxed i 6= j it follows that n−1
Pn
t=1 εt−jεt−i

P→ 0

by Andrews� LLN (1988) for u.i. L1-mixingales since {εt−jεt−i} is a m.d.s. with E |εt−jεt−i|r ≤
kεt−jkr2r kεt−ikr2r < ∆2r <∞ by Cauchy-Schwartz and Assumption A(vi). For Þxed i = j, we can write

n−1
Pn
t=1 ε

2
t−j −σ2 = n−1

Pn
t=1 zt+n

−1Pn
t=1E

³
ε2t−j |Ft−j−1

´
−σ2, with zt = ε2t−j −E

³
ε2t−j |Ft−j−1

´
.

Since zt can be shown to be an u.i. m.d.s, the Þrst term goes to zero in probability by Andrews� LLN.

The second term also vanishes in probability by Assumption A(iii). Thus, n−1
Pn
t=1 ε

2
t−j − σ2 P→ 0

for Þxed j. It follows that Am1n
P→ σ2

Pm
j=0 bjb

0
j ≡ Am1 , proving (a). (b) follows from the dominated

convergence theorem, given that
°°°P∞

j=1 bjb
0
j

°°° =P∞
j=1 |bj |2 <∞. To prove (c), note that

P [|A1n −Am1n| ≥ η] ≤ E |A1n −Am1n|

≤ 2

 ∞X
j>m

|bj |
 ∞X

j=1

|bj|
n−1 nX

t=1

E |εt−iεt−j | ≤
 ∞X
j>m

|bj|
K → 0 as m→∞,

since E |εt−iεt−j | ≤ ∆ for some ∆ < ∞, and since P∞
j=1 |bj | < ∞. Next, we prove (ii). We apply

Proposition 6.3.9 of BD. Let Zt = Yt−1εt ≡
P∞
j=0 bjεt−jεt. For Þxed m, deÞne Zmt = Yt−1,mεt =Pm

j=0 bjεt−jεt, where Yt−1,m is as above. We Þrst show n−1/2
Pn
t=1 Z

m
t ⇒ N (0, Bm), with Bm =Pm

j=0

Pm
i=0 bjb

0
iσ
4τ ji. We have

n−1/2
nX
t=1

Zmt = n
−1/2

nX
t=1

mX
j=0

bjεt−jεt =
mX
j=0

bjn
−1/2

nX
t=1

εt−jεt ≡
mX
j=0

bjXnj .

By Lemma A.1 we have that (Xn1, . . . ,Xnm) ⇒ N (0,Ωm) . Thus,
Pm
j=0 bjXnj ⇒ N (0, Bm), with

Bm = b0Ωmb, b = (b01, . . . , b0m)
0 . Since

°°°P∞
j=0

P∞
i=0 bjb

0
iσ
4τ ji

°°° ≤ P∞
j=0

P∞
i=0 |bj| |bi|σ4 |τ ji| < ∞, it

follows that Bm → B ≡P∞
j=0

P∞
i=0 bjb

0
iσ
4τ ji as m→∞. Finally, for any λ ∈ Rp, consider

lim
m→∞ lim sup

n→∞
P

"¯̄̄̄
¯n−1/2

nX
t=1

λ0Zt − n−1/2
nX
t=1

λ0Zmt

¯̄̄̄
¯ ≥ η

#
= lim
m→∞ lim sup

n→∞
P

¯̄̄̄¯̄n−1/2 nX
t=1

X
j>m

λ0bjεt−jεt

¯̄̄̄
¯̄ ≥ η


≤ lim
m→∞ lim sup

n→∞
1

nη2
E

¯̄̄̄¯̄ nX
t=1

X
j>m

λ0bjεt−jεt

¯̄̄̄
¯̄
2 = lim

m→∞ lim sup
n→∞

1

nη2

 nX
t=1

X
j>m

X
i>m

λ0bjb0iλσ
4τ ji

 = 0,

where the inequality holds by Chebyshev�s inequality, the second-to-last equality holds by the fact that

E (εt−jεtεs−iεs) = 0 for s 6= t, and all i, j, and the last equality holds by the summability of
©
ψj
ª
and

the fact that τ ji are uniformly bounded. ¥
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Proof of Theorem 3.2. By Lemma A.4, n−1
Pn
t=1 Y

∗
t−1Y ∗0t−1

P→
∗
A, in probability, whereas Lemma

A.5 implies n−1/2
Pn
t=1 Y

∗
t−1�ε

∗
t ⇒dP∗ N

³
0, �B

´
, in probability. Since under Assumption A(iv0), B = �B,

the result follows by Polya�s Theorem, given that the normal distribution is everywhere continuous. ¥
Proof of Theorem 3.3 We need to show (a) n−1

Pn
t=1 Yt−1Y

0
t−1

P→ A, and (b) n−1/2
Pn
t=1 Yt−1�ε

∗
t ⇒dP∗

N (0, B) in probability. (a) was proven in Theorem 3.1. To show (b) note that

n−1/2
nX
t=1

Yt−1�ε∗t = n−1/2
nX
t=1

Yt−1εtηt − n−1/2
nX
t=1

Yt−1 (εt − �εt) ηt

= n−1/2
nX
t=1

Yt−1εtηt − n−1
nX
t=1

Yt−1Y 0t−1ηt
√
n
³
�φ− φ

´
≡ A∗1 −A∗2.

First, note that A∗2
P ∗→ 0, in probability, since

√
n
³
�φ− φ

´
= OP (1) and n−1

Pn
t=1 Yt−1Y

0
t−1ηt

P∗→ 0, in

probability. This follows by showing E∗
¡
n−1

Pn
t=1 Yt−1Y

0
t−1ηt

¢
= 0 and V ar∗

¡
n−1

Pn
t=1 Yt−1Y

0
t−1ηt

¢
=

n−2
Pn
t=1 Yt−1Y

0
t−1Yt−1Y 0t−1

P→ 0, under Assumption A. We next show A∗1 ⇒dP∗ N (0, B) in probabil-

ity P , where B = V ar
¡
n−1/2

Pn
t=1 Yt−1εt

¢
= n−1

Pn
t=1E

¡
Yt−1Y 0t−1ε2t

¢
. For any λ ∈ Rp, λ0λ = 1,

let Z∗t = λ0Yt−1εtηt. {Z∗t } is (conditionally) independent such that E∗
¡
n−1/2

Pn
t=1 Z

∗
t

¢
= 0 and

V ar∗
¡
n−1/2

Pn
t=1 Z

∗
t

¢
= λ0n−1

Pn
t=1 Yt−1Y

0
t−1ε2tλ. We now apply Lyapunov�s Theorem (e.g. Durrett,

1995, p.121). Let α∗2n = λ0
Pn
t=1 Yt−1Y

0
t−1ε2tλ. By arguments similar to Theorem 3.1, n−1α∗2n

P→ B. If

for some r > 1

α∗−2rn

nX
t=1

E∗ |Z∗t |2r P→ 0 (A.1)

then α∗−1n

Pn
t=1 Z

∗
t ⇒dP∗ N (0, 1) in probability. By Slutsky�s Theorem, it follows that n−1/2

Pn
t=1 Z

∗
t ⇒dP∗

N
¡
0,λ0Bλ

¢
. To show (A.1), note that the RHS can be written asµ

α∗2n
n

¶−r
n−r

nX
t=1

¯̄
λ0Yt−1εt

¯̄2r
E∗ |ηt|2r .

Thus, it suffices to show that E
¯̄̄
n−r

Pn
t=1

¯̄
λ0Yt−1εt

¯̄2r
E∗ |ηt|2r

¯̄̄
→ 0. Since E∗ |ηt|2r ≤ ∆ < ∞, this

holds provided E
¯̄
λ0Yt−1εt

¯̄2r ≤ ∆ <∞, which follows under Assumption A. ¥
Proof of Theorem 3.4 Let �εt = yt − �φ0Yt−1, �ε∗t = y∗t − �φ

0
Y ∗t−1, and ε∗t = y∗t − φ0Y ∗t−1. We show that

(i) n−1
Pn
t=1 Y

∗
t−1Y ∗0t−1

P ∗→ A in probability, and (ii) n−1/2
Pn
t=1 Y

∗
t−1�ε

∗
t ⇒dP∗ N (0, B) in probability.

Conditional on the original data, for any δ > 0,

n−1
nX
t=1

Y ∗t−1Y
∗0
t−1−A =

(
n−1

nX
t=1

Y ∗t−1Y
∗0
t−1 − n−1

nX
t=1

Yt−1Y 0t−1

)
+

(
n−1

nX
t=1

Yt−1Y 0t−1 −A
)
≡ A∗1n+A2n.

Theorem 3.1 shows A2n
P→ 0. Next we show A∗1n

P∗→ A, in probability. Conditional on the data, by
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Chebyshev�s inequality, it suffices that E∗ (A∗2nA∗02n) = oP (1) . But

E∗
¡
A∗2nA

∗0
2n

¢
= n−1E∗

Ã
n−1

nX
t=1

nX
s=1

Ã
Y ∗t−1Y

∗0
t−1 − n−1

nX
t=1

Yt−1Y 0t−1

!Ã
Y ∗s−1Y

∗0
s−1 − n−1

nX
t=1

Yt−1Y 0t−1

!0!

= n−1
(
n−1

nX
t=1

Ã
Yt−1Y 0t−1 − n−1

nX
t=1

Yt−1Y 0t−1

!Ã
Yt−1Y 0t−1 − n−1

nX
t=1

Yt−1Y 0t−1

!0)
,

where the middle matrix is OP (1) given Assumption A (in particular, given A (vi)), delivering the

result. Next we show (ii). We can write

n−1/2
nX
t=1

Y ∗t−1�ε
∗
t = n

−1/2
nX
t=1

Ã
Y ∗t−1ε

∗
t − n−1

nX
t=1

Yt−1εt

!

+

Ã
n−1

nX
t=1

Yt−1Y 0t−1 − n−1
nX
t=1

Y ∗t−1Y
∗0
t−1

!
√
n
³
�φn − φ

´
≡ B1 +B2.

Since B2
P ∗→ 0 in probability because of the previous argument and

√
n
³
�φn − φ

´
= OP (1). (ii) follows

if we prove that B1 ⇒dP∗ N (0, B) in probability. This follows straightforwardly by an application of

Lyapunov�s CLT given that Z∗t ≡ Y ∗t−1ε∗t − n−1
Pn
t=1 Yt−1εt is (conditionally) i.i.d. with mean zero

and variance V ar∗ (Z∗t ) = n−1
Pn
t=1 ZtZ

0
t, where Zt ≡ Yt−1εt − n−1

Pn
t=1 Yt−1εt, and by Theorem 3.1

n−1
Pn
t=1 Yt−1Y

0
t−1ε2t

P→ B and n−1
Pn
t=1 Yt−1εt

P→ 0. ¥
Proof of Corollary 3.1. Given the previous results, it suffices to show that �C∗n

P∗→ C, i.e. (i) �A∗n
P∗→ A,

and (ii) �B∗n
P ∗→ B, in probability, where B = �B for the recursive-design WB. We showed (i) in Lemma

A.4 for the recursive-design WB, and in Theorems 3.3 and 3.4, for the Þxed-design WB and pairwise

bootstrap, respectively. Next, we sketch the proof of (ii). For simplicity we take p = 1. The proof for

general p is similar. For each of the three bootstrap schemes, we can write eε∗t = �ε∗t − ³�φ∗n − �φn´ y∗t−1,
where �ε∗t = �εtηt for the recursive-design and Þxed-design WB, and �ε

∗
t = y∗t − �φny∗t−1 for the pairwise

bootstrap. Thus,

�B∗n = �B∗1n + �B∗2n + �B∗3n, with

�B∗1n = n−1
nX
t=1

y∗2t−1�ε
∗2
t ,

�B∗2n = −2n−1
nX
t=1

y∗3t−1�ε
∗
t

³
�φ
∗
n − �φn

´
, and �B∗3n = n

−1
nX
t=1

y∗4t−1
³
�φ
∗
n − �φn

´2
.

It is enough to show that with probability approaching one, (a) �B∗1n
P ∗→ B, (b) �B∗2n

P ∗→ 0, and

(c) �B∗3n
P∗→ 0. For the Þxed-design WB, starting with (a), note that y∗t−1 = yt−1, and therefore

�B∗1n − B = n−1
Pn
t=1 y

2
t−1�ε

2
t

¡
η2t − 1

¢
+ n−1

Pn
t=1 y

2
t−1�ε

2
t − B ≡ χ1n + χ2n. Under our assump-

tions χ2n
P→ 0. Since �εt = εt −

³
�φn − φ

´
yt−1, we can write χ1n = n−1

Pn
t=1 y

2
t−1ε2t

¡
η2t − 1

¢ −
2
³
�φn − φ

´
n−1

Pn
t=1 y

3
t−1εt

¡
η2t − 1

¢
+
³
�φn − φ

´2
n−1

Pn
t=1 y

4
t−1
¡
η2t − 1

¢
. We can show that each of
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these terms is oP∗ (1), in probability. For the Þrst term, write zt = y2t−1ε2t
¡
η2t − 1

¢
, and note that

zt is (conditionally) a m.d.s. with respect to F tη = σ (ηt, . . . , η1). Thus, by Andrews� (1988) LLN, it

follows that n−1
Pn
t=1 zt

P∗→ 0, in probability, provided that E∗ |zt|r = OP (1), or E (E∗ |zt|r) = O (1),
for some r > 1, which holds under our moment conditions (in particular, the existence of 4r mo-

ments of εt suffices). A similar argument applies to the last two terms of χ1n, where we note that

�φn − φ P→ 0. For (b), and given �φ
∗
n − �φn = oP ∗ (1), it suffices that n−1

Pn
t=1 y

3
t−1�ε

∗
t = OP∗ (1), in

probability, or that E∗
¯̄
n−1

Pn
t=1 y

3
t−1�ε

∗
t

¯̄
= OP (1). This condition holds under Assumption A (Þrst

apply the triangle inequality, then use the deÞnition of �εt, and Þnally apply repeatedly the Cauchy-

Schwartz inequality to the sums involving products of yt−1 and/or εt.) For (c), by a reasoning similar

to (b), it suffices that n−1
Pn
t=1 y

4
t−1 = OP (1), which holds under our moment conditions. For the

pairwise bootstrap, we proceed similarly, but rely on the (conditional) independence of
¡
y∗t , y∗t−1

¢
to

obtain the results. In particular, for (a), following Theorem 3.3 we can deÞne �ε∗t = ε∗t −
³
�φn − φ

´
y∗t−1,

with ε∗t = y∗t − φy∗t−1, which implies �B∗1n = χ1n + χ2n. We can show that χ2n = oP∗ (1), whereas

χ1n = n
−1Pn

t=1 z
∗
1t + ζn where z

∗
1t = y

∗2
t−1ε∗2t−1 − n−1

Pn
t=1 y

2
t−1ε2t and ζn = n−1

Pn
t=1 y

2
t−1ε2t . By Theo-

rem 3.1 ζn
P→ B. Since z∗1t is a uniformly square-integrable m.d.s. (conditional on the original data)

Andrews� LLN implies that the Þrst term of χ1n is oP∗ (1), in probability. For the recursive-design WB,

for part (a), note that we can write �B∗1n = χ1n+ χ2n, where χ1n =
Pn−1
j=1

�b2j

³
n−1

Pn
t=j+1 �ε

∗2
t−j�ε

∗2
t

´
, and

χ2n = n
−1Pn

t=1

P
i6=j,i,j=1

t−1�bj�bi�ε∗t−i�ε
∗
t−j�ε

∗2
t . Now, using arguments analogous to those used in the proof

of Lemmas A.4 and A.5 we can show that χ1n
P ∗→ �B, and χ2n

P ∗→ 0, in probability. Similar arguments

apply for (b) and (c).

Proof of Lemma A.1. The proof follows closely that of Lemma A.1 of Kuersteiner (2001). We

reproduce his steps under our weaker Assumption A. In particular, we show that for all λ ∈ Rm such
that λ0λ = 1 we have n−1/2

Pn
t=1 λ

0Yt ⇒ N
¡
0,λ0Ωmλ

¢
, where Yt = (εtεt−1, . . . , εtεt−m)0. Noting that

{Yt,Ft} is a vector m.d.s., we check the m.d.s. CLT conditions (cf. Davidson, 1994, Theorem 24.3).

Let Zt = λ0Yt. We check: (i) n−1
Pn
t=1

£
Z2t −E

¡
Z2t
¢¤ P→ 0, where E

¡
Z2t
¢
= λ0E (YtY 0t )λ = λ0Ωmλ;

and (ii) n−1/2max1≤t≤n |Zt| P→ 0. To see (i), note that n−1
Pn
t=1

£
Z2t −E

¡
Z2t
¢¤
= A1 +A2, with

A1 = n
−1

nX
t=1

£
Z2t −E

¡
Z2t |Ft−1

¢¤
and A2 = n−1

nX
t=1

£
E
¡
Z2t |Ft−1

¢−E ¡Z2t ¢¤ .
First consider A1. Since {Zt,Ft−1} is a m.d.s we have that Z2t −E

¡
Z2t |Ft−1

¢
is an L1-mixingale with

mixingale constants ct = E
¯̄
Z2t −E

¡
Z2t |Ft−1

¢¯̄
: E

¯̄
E
¡
Z2t −E

¡
Z2t |Ft−1

¢ |Ft−k¢¯̄ ≤ ctξk, k = 0, 1, . . . ,
with ξk = 1 for k = 0 and ξk = 0 otherwise. Thus, we apply Andrews� LLN for L1-mixingales (Andrews,

1988) to show A1
P→ 0. It suffices that for some r > 1 E

¯̄
Z2t
¯̄r ≤ K <∞ and n−1

Pn
t=1 ct <∞. Now,
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E |Zt|2r = E |
Pm
i=1 λiεtεt−i|2r ≤ (

Pm
i=1 |λi| kεtεt−ik2r)2r < K by repeated application of Minkowski and

Cauchy-Schwartz, given Assumption A(vi). The second condition on {ct} follows similarly. Next we

consider A2. We have that

A2 = λ
0n−1

nX
t=1

¡
E
¡
YtY

0
t |Ft−1

¢−E ¡YtY 0t ¢¢λ = λ0
"
n−1

nX
t=1

εt−iεt−jE
¡
ε2t |Ft−1

¢− σ4τ i,j#
i,j=1,...,p

λ
P→ 0,

given Assumption A(v). This proves (i). To prove (ii), note that by Markov�s inequality, for any η > 0

and for some r > 1,

P

µ
1√
n
max
1≤t≤n

|Zt| > η
¶
≤

nX
t=1

P
³
|Zt| > n1/2η

´
≤ η−2rn−r

nX
t=1

E |Zt|2r ≤ Kη−2rn1−r → 0. ¥

Proof of Lemma A.2. First we consider (i) with j = 0, without loss of generality. By deÞnition,

�ε∗t ≡ �εtηt, and thus

n−1
nX
t=1

�ε∗2t − σ2 =
"
n−1

nX
t=1

�ε2t
¡
η2t − 1

¢#
+

"
n−1

nX
t=1

�ε2t − σ2
#
≡ F ∗1n + F2n,

with the obvious deÞnitions. Under our assumptions F2n = oP (1). So it suffices to show that

P ∗ [|F ∗1n| > δ] = oP (1), for any δ > 0, or, by Chebyshev�s inequality, that E∗
³
(F ∗1n)

2
´
= oP (1).

Let z∗t ≡ �ε2t
¡
η2t − 1

¢
and note that E∗ (z∗t z∗s ) = 0 for t 6= s, E∗

¡
z∗2t
¢
= �ε4tE

∗ ¡η4t − 2η2t + 1¢ =
�ε4t
¡
E∗
¡
η4t
¢− 1¢. Thus,

E∗
h
(F ∗1n)

2
i
= E∗

Ã
n−2

nX
t=1

nX
s=1

z∗t z
∗
s

!
= n−1

Ã
n−1

nX
t=1

�ε4t
¡
E∗
¡
η4t
¢− 1¢! ≤ n−1KÃn−1 nX

t=1

�ε4t

!
= oP (1) ,

where the last inequality holds by E∗
¡
η4t
¢ ≤ ∆ < ∞ and n−1

Pn
t=1 �ε

4
t = OP (1), given that E |εt|4 <

K <∞ and that �φn → φ in probability. For (ii), by a similar reasoning, it suffices to note that

E∗
n−1 nX

t=j+1

�ε∗t−j�ε
∗
t

2 = n−2 nX
t=j+1

�ε2t−j�ε
2
tE

∗ ¡η2t η2t−j¢ = n−2 nX
t=j+1

�ε2t−j�ε
2
t = oP (1) .

For (iii), note that

n−1
nX

t=max(i,j)+1

�ε∗2t �ε
∗
t−i�ε

∗
t−j − σ4τ ij1 (i = j) = n−1

nX
t=max(i,j)+1

�ε2t�εt−i�εt−j
¡
η2tηt−iηt−j − 1 (i = j)

¢
+n−1

nX
t=max(i,j)+1

¡
�ε2t�εt−i�εt−j − σ4τ ij

¢
1 (i = j) ≡ G∗1n +G2n.
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Under our assumptions, for any Þxed i, j,

n−1
nX

t=max(i,j)+1

�ε2t�εt−i�εt−j = n
−1

nX
t=max(i,j)+1

ε2t εt−iεt−j +Rn,

where the remainder Rn involves products of elements of �φn−φ, which are oP (1) under our assumptions,
with averages of products of elements of Yt−1 and εt, up to the fourth order, which are bounded in

probability, given that E |εt|4 < ∆ <∞. Thus, Rn = oP (1), and since n−1
Pn
t=max(i,j)+1 ε

2
t εt−iεt−j →

σ4τ ij (cf. proof of Lemma A.1), it follows that G2n = oP (1). So, if we let z
∗(i,j)
t = �ε∗2t �ε

∗
t−i�ε

∗
t−j−1 (i = j),

it suffices that

P ∗ (|G∗1n| > δ) ≤ 1

η2n2
E∗

 nX
t=max(i,j)+1

nX
s=max(i,j)+1

E∗
³
z
∗(i,j)
t z∗(i,j)s

´
=

1

η2n2

nX
t=max(i,j)+1

�ε4t�ε
2
t−i�ε

2
t−jE

∗
h¡
η2t ηt−iηt−j − 1 (i = j)

¢2i

≤ K

η2n

n−1 nX
t=max(i,j)+1

�ε4t�ε
2
t−i�ε

2
t−j

 ,
where the equality holds because E∗

³
z
∗(i,j)
t z

∗(i,j)
s

´
= 0 for s 6= t by the properties of {ηt}, and the

second inequality uses the fact that E∗ |ηt|4 < ∆ < ∞. Under Assumption A strengthened by A0

(vi0), we can show that n−1
Pn
t=max(i,j)+1 �ε

4
t�ε
2
t−k�ε

2
t−l = OP (1), which implies that P ∗ (|G∗1n| > δ) =

oP (1). In fact, given that �εt = εt −
³
�φn − φ

´0
Yt−1, it follows that n−1

Pn
t=max(i,j)+1 �ε

4
t�ε
2
t−i�ε

2
t−j =

n−1
Pn
t=max(i,j)+1 ε

4
t ε
2
t−iε2t−j + oP (1). In particular, the remainder contains terms involving products

of elements of �φ − φ (which are oP (1)) with terms involving averages of cross products of elements
of Yt−1 and εt, up to the eighth order, which are OP (1), given E |εt|8 ≤ ∆ < ∞. This assumption
also ensures that n−1

Pn
t=max(i,j)+1 ε

4
t ε
2
t−iε2t−j = OP (1), by repeated application of the Markov and

Cauchy-Schwartz inequalities. ¥
Proof of Lemma A.3. Let F∗t = σ

¡
ηt, ηt−1, . . . , η1

¢
, and deÞne Y ∗t =

¡
�ε∗t�ε

∗
t−1, . . . ,�ε

∗
t�ε
∗
t−m

¢0. Con-
ditional on the original sample, we have E∗

¡
Y ∗t |F∗t−1

¢
= E∗

¡
�ε∗t |F∗t−1

¢ ¡
�ε∗t−1, . . . ,�ε

∗
t−m

¢0
= 0 since

E∗
¡
�ε∗t |F∗t−1

¢
= E∗

¡
�εtηt|F∗t−1

¢
= �εtE

∗ ¡ηt|F∗t−1¢ = 0, where E∗ ¡ηt|F∗t−1¢ = E∗ (ηt) = 0, by the inde-

pendence and mean zero properties of {ηt}. Thus, {Y ∗t ,F∗t } is a vector m.d.s. We now apply Theorem
A.1 to Z∗t = λ

0Y ∗t for arbitrary λ ∈ Rm, λ0λ = 1. First, note that σ̄∗2n ≡ V ar∗ ¡n−1/2Pn
t=m+1Z

∗
t

¢
=

λ0n−1
Pn
t=m+1E

∗ (Y ∗t Y ∗0t )λ ≡ λ0Ω∗n,mλ, where by direct evaluation and using the independence and
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zero properties of {ηt},

Ω∗n,m = diag

Ã
n−1

nX
t=m+1

�ε2t�ε
2
t−1, . . . , n

−1
nX

t=m+1

�ε2t�ε
2
t−m

!
.

Under our assumptions, we can show n−1
Pn
t=m+1 �ε

2
t�ε
2
t−i

P→ σ4τ ii, i = 1, . . . ,m, which implies Ω∗n,m
P→

�Ωm ≡ σ4diag (τ11, . . . , τmm). Thus, to verify the Þrst condition of the CLT it suffices that

λ0
"
n−1

nX
t=m+1

Y ∗t Y
∗0
t − �Ωm

#
λ
P ∗→ 0, in probability.

A typical element (k, l) of the middle matrix is given by

V ∗n,kl ≡ n−1
nX

t=m+1

�ε∗2t �ε
∗
t−k�ε

∗
t−l − σ4τk,l1 (k = l) ,

where by Lemma A.2 (iii), under Assumption A strengthened by A0 (vi0), we have that V ∗n,kl
P∗→ 0 in

probability. Lastly, condition 2. holds if for some r > 1, n−r
Pn
t=m+1E

∗ ¯̄λ0Y ∗t ¯̄2r = oP (1). We take

r = 2. By the cr-inequality, we have

n−r
nX

t=m+1

E∗
¯̄
λ0Y ∗t

¯̄2r
= n−r

nX
t=m+1

E∗
¯̄̄̄
¯
mX
i=1

λi�ε
∗
t�ε
∗
t−i

¯̄̄̄
¯
2r

≤ m2r−1
mX
i=1

|λi|2r n−r
nX

t=m+1

E∗
¯̄
�ε∗t�ε

∗
t−i
¯̄2r

≤ n−(r−1)m2r−1
mX
i=1

|λi|2r n−1
nX

t=m+1

|�εt�εt−i|2r E∗ |ηt|2r E∗
¯̄
ηt−i

¯̄2r
= oP (1) ,

given in particular that n−1
Pn
t=m+1 |�εt�εt−i|2r = OP (1). ¥

Proof of Lemma A.4. We can write y∗t =
Pt−1
j=0

�ψj�ε
∗
t−j , t = 1, . . . , n, where

n
�ψj

o
are deÞned by

�ψj =
Pmin(j,p)
i=1

�φi�ψj−1, with �ψ0 = 1 and �ψj = 0 for j < 0. It follows that Y ∗t−1 =
Pt−1
j=1
�bj�ε

∗
t−j, for

t = 2, . . . , n, where �bj =
³
�ψj−1, . . . , �ψj−p

´0
. Note Y ∗1 = 0, given the zero initial conditions. Hence,

n−1
nX
t=1

Y ∗t−1Y
∗0
t−1 = T ∗1n + T

∗
2n, with T ∗1n =

n−1X
j=1

�bj�b
0
j

n−1 nX
t=j+1

�ε∗2t−j

 , and
T ∗2n =

n−2X
k=1

n−k−1X
j=1

³
�bj�b

0
j+k +

�bj+k�b
0
j

´Ã
n−1

n−jX
t=1+k

�ε∗t−j�ε
∗
t

!
.

Next, we show: (a) T ∗1n
P∗→ A ≡ σ2P∞

j=1 bjb
0
j , and (b) T

∗
2n

P∗→ 0, in probability. To prove (a), consider

for Þxed m ∈ N,

T ∗1n = T
∗m
1n +R∗m1n , with T ∗m1n =

m−1X
j=1

�bj�b
0
j

n−1 nX
t=j+1

�ε∗2t−j

 , and R∗m1n =
n−1X
j=m

�bj�b
0
j

n−1 nX
t=j+1

�ε∗2t−j

 .
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By Lemma A.2.(i), for each j = 1, . . . ,m, m Þxed, n−1
Pn
t=j+1 �ε

∗2
t−j

P ∗→ σ2, in probability; also, under

Assumption A, �ψj
P→ ψj, implying �bj

P→ bj . Thus, by Slutsky�s theorem, T ∗m1n
P ∗→Pm−1

j=1 bjb
0
jσ
2 ≡ Am,

in probability. Since
©
ψj
ª
are absolutely summable, it follows that Am → A as m→∞, by dominated

convergence. Thus, T ∗m1n
P∗→ A, in probability. Choose λ ∈ Rp arbitrarily such that λ0λ = 1. By BD�s

Proposition 6.3.9, it now suffices to show that, for any δ > 0, limm→∞ lim supn→∞ P ∗
¡¯̄
λ0R∗m1n λ

¯̄
> δ

¢
=

0, in probability, or limm→∞ lim supn→∞E∗
¡¯̄
λ0R∗m1n λ

¯̄¢
= 0, in probability, by Markov�s inequality.

Using the triangle inequality and the properties of {ηt}, we get

E∗
¡¯̄
λ0R∗m1n λ

¯̄¢ ≤ n−1X
j=m

¯̄̄
λ0�bj�b0jλ

¯̄̄
E∗
n−1 nX

t=j+1

�ε∗2t−j

 =
n−1X
j=m

¯̄̄
λ0�bj�b0jλ

¯̄̄
n−1

nX
t=j+1

�ε2t−j .

Given that �εt = εt −
³
�φn − φ

´0
Yt−1, and that �φn − φ P→ 0, we can show n−1

Pn
t=j+1 �ε

2
t−j = OP (1).

Thus, conditional on the sample, and for all n sufficiently large,

E∗
¡¯̄
λ0R∗m1n λ

¯̄¢ ≤ K n−1X
j=m

¯̄̄
λ0�bj�b0jλ

¯̄̄
≤ K

pX
k=1

pX
l=1

|λkλl|
∞X
j=m

¯̄̄
�ψj−k �ψj−l

¯̄̄

Under our assumptions,
Pp
j=1

¯̄̄
�φj − φj

¯̄̄
= oP (1), so there exists n1 such that supn≥n1

P∞
j=1

¯̄̄
�ψj

¯̄̄
<∞

in probability (cf. Bühlmann, 1995, Lemma 2.2.). This implies supn≥n1
P∞
j=m

¯̄̄
�ψj−k �ψj−l

¯̄̄
= oP (1)

as m → ∞, which completes the proof that T ∗1n P ∗→ A, in probability. Finally, to show (b), consider

Þrst for Þxed m ∈ N, T ∗m2n =
Pm−2
k=1

Pm−k−1
j=1

�bj�b
0
j+k

³
n−1

Pn−j
t=1+k �ε

∗
t−j�ε

∗
t

´
. For Þxed j and k, it follows

by Lemma A.2.(ii) that n−1
Pn−j
t=1+k �ε

∗
t−j�ε

∗
t
P∗→ 0, in probability. Since �bj�b0j+k

P→ bjbj+k, we have that

T ∗m2n
P ∗→ 0, in probability. To complete the proof of (b) we need to show that each of the following

R∗m2,1n =
n−1X

k=m−1

n−k−1X
j=1

³
�bj�b

0
j+k +

�bj+k�b
0
j

´Ã
n−1

n−jX
t=1+k

�ε∗t−j�ε
∗
t

!
, and

R∗m2,2n =
m−2X
k=1

n−k−1X
j=m−k

³
�bj�b

0
j+k +

�bj+k�b
0
j

´Ã
n−1

n−jX
t=1+k

�ε∗t−j�ε
∗
t

!
,

satisÞes the condition limm→∞ lim supn→∞ P ∗
³¯̄̄
λ0R∗m2,inλ

¯̄̄
> δ

´
= 0 in probability, for i = 1, 2, where

λ and δ are as above. This can be veriÞed analogously to above, using in particular the fact thatP∞
k=1 k |ψk| <∞. ¥

Proof of Lemma A.5. As in the proof of Lemma A.4, we have Y ∗t−1 =
Pt−1
j=1
�bj�ε

∗
t−j, where �bj =³

�ψj−1, . . . , �ψj−p
´0
, with �ψ0 = 1 and �ψj = 0 for j < 0. Let Z∗t = Y ∗t−1�ε

∗
t =

Pt−1
j=1

�bj�ε
∗
t−j�ε

∗
t , for
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t = 2, . . . , n, and note that Z∗1 = 0. Thus,

n−1/2
nX
t=1

Z∗t = n
−1/2

nX
t=2

t−1X
j=1

�bj�ε
∗
t−j�ε

∗
t =

n−1X
j=1

�bjn
−1/2

nX
t=j+1

�ε∗t−j�ε
∗
t ≡ X ∗n .

For Þxed m ∈ N, let X ∗n,m ≡
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j=1
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−1/2Pn
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∗
t−j�ε

∗
t . Next we show: (a) for m Þxed, X ∗n,m ⇒dP∗

N
³
0, �Bm

´
, as n → ∞, where �Bm =

Pm
j=1 bjb

0
jσ
4τ jj; (b) �Bm → �B as m → ∞, and

(c) limm→∞ lim supn→∞ P ∗
¡¯̄X ∗n −X ∗n,m¯̄ > κ¢ = 0 for any κ > 0. For (a), write
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m−1X
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³
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nX
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By LemmaA.3, under Assumption A strengthened by A(vi0), we have that for Þxed j n−1/2
Pn
t=j+1 �ε

∗
t−j�ε

∗
t

⇒dP∗ N
¡
0,σ4τ jj

¢
, where the elements of the m× 1 vector composed of these sums are asymptotically

uncorrelated. Hence, Q∗1n ⇒dP∗ N
³
0, �Bm

´
, in probability, where �Bm =

Pm
j=1 bjb

0
jσ
4τ jj . Next, note
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∗
t−j�ε

∗
t = OP ∗ (1) for each j = 1, . . . ,m.

The asymptotic equivalence lemma now implies (a). (b) follows by dominated convergence given

the summability of
©
ψj
ª
and the uniform boundedness of σ4τ jj. To prove (c), note it suffices that

limm→∞ lim supn→∞E∗
³¯̄X ∗n −X ∗n,m¯̄2´ = 0, by Chebyshev�s inequality. Equivalently, we consider for

any λ ∈ Rp, such that λ0λ = 1,
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³¯̄
λ0
¡X ∗n −X ∗n,m¢¯̄2´ = E∗

n−1X
j=m

n−1X
i=m

λ0�bj�b0iλZ
∗
njZ

∗
ni

 ,
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Using the deÞnition of �εt, i.e. �εt = εtηt −

³
�φn − φ

´0
Yt−1, and the fact that �φn − φ P→ 0, we can show
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P→ σ4τ jj, and σ4τ jj are uniformly bounded by assumption. The proof of (c) now

follows exactly the argument used in Lemma A.4 when dealing with R∗m1n . ¥
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