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Abstract

The literature on the tail behaviour of asset prices focuses mainly on the

foreign exchange and stock markets, with only a few papers dealing with

bonds or bond futures. The present paper addresses this omission. We focus

on three questions: (i) Are heavy tails a relevant feature of the distribution

of BUND futures returns? (ii) Is the tail behaviour constant over time? (iii)

If it is not, can we use the tail index as an indicator for financial market

risk and does it add value in addition to classical indicators? The answers to

these questions are (i) yes, (ii) no, and (iii) yes. We find significant heaviness

of the tails of the Bund future returns. The tail index is on average around 3,

implying the nonexistence of the forth moments. With the aid of a recently

developed test for changes in the tail behaviour we identify several breaks in

the degree of heaviness of the return tails. Interestingly, the tails of the return

distribution do not move in parallel to realised volatility. This suggests that

the tails of futures returns contain information for risk management that

complements those gained from more standard statistical measures.



Zusammenfassung

Die Literatur über Extreme der Renditeverteilung hat sich bisher überwiegend

mit Wechselkursen und Aktienkursen befasst. Die Kurse von Rentenwerten

oder Terminkontrakten auf Rentenwerte haben hingegen bisher kaum Beach-

tung erfahren. Das vorliegende Arbeitspapier versucht diese Lücke zu schließen.

Unser Augenmerk gilt dabei insbesondere drei Fragen: (i) Haben die Ren-

diteverteilungen von Terminkontrakten auf Bundeswertpapiere “fat tails”?

(ii) Ist die Wahrscheinlichkeit extremer Kursbewegungen im Zeitablauf kon-

stant? (iii) Kann ein Tail-Index Informationen über den Grad von Marktun-

sicherheit liefern, die klassische Indikatoren wie die Volatilität nicht liefern

können? Die Antworten zu diesen drei Fragen sind (i) ja, (ii) nein und (iii) ja.

Wir finden ein signifikantes “fat tails” Phänomen in der Renditeverteilung

von BUND Future Kontrakten. Ein Tail-Index von circa 3 impliziert, dass

das vierte und alle höheren Momente der Verteilung nicht existieren. Mit

Hilfe kürzlich entwickelter Tests finden wir Brüche der Tail-Stärke der Ren-

diteverteilungen. Interessanterweise bewegt sich der Tail-Index nicht immer

in die gleiche Richtung wie die Volatilität. Dies lässt vermuten, dass die

Betrachtung der Tails dem Risikomanagement Informationen liefert, die mit

herkömmlichen Verfahren nicht gewonnen werden können.
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Time Variation in the

Tail Behaviour

of Bund Futures Returns

1 Introduction

It has been well known at least since the contribution of Mandelbrot (1963)

that the distribution of asset returns is not well approximated by the Gaus-

sian normal. Above all, the return distribution seems to have fatter tails

than the normal distribution. The literature on the tail behaviour of re-

turns has grown rapidly over recent years for a number of reasons. First of

all, long series of asset prices and higher frequencies have become available.

Together with the concurrent increase in computing power, this permitted

the use of data intensive methods that previously had been difficult if not

impossible to implement. Secondly, several new methods based on extreme

value theory have been developed. An important example used in this paper

is the bootstrap Hill estimator. Finally, the turbulences in the international

financial markets in the summer and autumn of 1998 have questioned many

of the assumptions of quantitative trading and risk management models, in

particular the use of normal distributions.

The literature on the tail behaviour of asset prices has focussed mainly

on the foreign exchange (for example Müller, Dacorogna, and Pictet (1998)),

and stock markets (for example Lux (2001) for the spot and Cotter (2001)

for the futures market). Only few papers deal with bonds or bond futures.

Perhaps this is because bond returns are less volatile than stock or forex

returns and are therefore believed to pose less risk than other assets. We
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believe that this argument is wrong and that the omission is not justified.

What matters is not the volatility of an asset price per se but the volatility

of a position in that asset relative to capital. Even the safest asset becomes

risky if leverage is sufficiently high.

Our paper addresses this omission. Rather than working with data on the

bond market directly, we estimate the tail behaviour of the BUND future.

The BUND future contract traded on Eurex has become the main instru-

ment for hedging long term interest rate risk in the Euro area. Trading is

much heavier in the futures than in the spot market, and transactions data

is available for a longer time span. Furthermore, since futures are traded

electronically on a centralized exchange, the data is also of higher quality

than that on the underlying bonds, where trading is more fragmented. Nev-

ertheless, we show in a companion paper (Upper and Werner (2002)) that

prices in the futures and spot market move together very closely, so our main

findings should apply to the bond market as well.

We focus on three questions: (i) Are heavy tails a relevant feature of the

distribution of BUND futures returns? (ii) Is the tail behaviour constant over

time? (iii) If it is not, then can we use the tail index as an indicator for finan-

cial market risk and does it add value in addition to classical indicators? The

answers to questions (i) and (ii) have important implications for the design

of trading and risk management models. If the return distribution has fat

tails, then the assumption of normality in many of such models would lead

one to seriously underestimate the likelihood of sharp falls and gains. For

example, the Value at Risk (VaR) measure often used in risk management

corresponds to the maximum loss that can occur with a given probability.

In mathematical terms, it refers to a quantile, which depends crucially on

the shape of the distribution. Another aspect is the liquidation risk of an
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asset. In a recent paper Duffie and Ziegler (2001) analyse the riskiness of

different liquidation strategies and show that the riskiness of different liqui-

dation strategies depends significantly on the fatness of the tails. But it is

not only the fatness of tails alone that is important, also the variation of the

tail behaviour over time is of interest. If the fatness of a tail is changing over

time it is necessary to recognize this for risk evaluation and modelling.

We find that the distribution of high-frequency returns of the BUND

future is indeed characterized by heavy tails. At five-minute intervals, the

tail index estimated over our complete sample is around three. This implies

that the distribution has infinite kurtosis but finite variance. The tail index

increases as one reduces the frequency, although the tails remain significantly

heavy even for daily data.

The tail behaviour is not stable over time. What is interesting is that the

tail index does not move in parallel with more standard measures for volatil-

ity such as the variance of returns. This suggests that the tail index does

indeed provide information not contained in more commonly used volatility

measures.

The paper is organized as follows. In section 2 we present the theoretical

foundations for the tail index estimation discussed in section 3. This is

followed by sections presenting the data and the empirical results. A final

section concludes.

2 What are heavy tails?

Until now we have used a loose definition of heavy tails. It is not easy to

define heavy tails precisely. Even the name is not used uniformly. Sometimes

heavy-tailed distributions are called fat-tailed, thick-tailed or long-tailed. In
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the following we use all of these terms as synonyms.

An often used definition of heavy-tailness is based on the 4th central

moment. If X is a random variable and µX and σX are the mean and the

standard deviation of X, then X is called heavy-tailed if

E

[

(X − µX)
4

σX

]

> 3.

This property is called excess kurtosis because the 4th central moment (the

kurtosis) of the normal distribution is 3. However, this definition can only

be applied in a sensible way if the 4th moment of a random variable actually

exists. If two variables have infinite 4th moments, then no discrimination

between their distributions is possible on the basis of the kurtosis.

Unfortunately there is no general accepted definition of tail-heavyness

under which a tail ranking is possible. We obtain such a ranking only for

particular classes of distributions. In the following we briefly discuss five

classes.1

E: nonexistence of exponential moments

D: subexponential distributions

C: regular variation with tail index α > 0

B: Pareto tails with α > 0

A: stable (non-normal) distributions

These classes of distributions are nested as demonstrated in figure 1. The

broadest class E encompasses all distributions with

E
(

eX
)

=∞.

1This classification is borrowed from Bamberg and Dorfleitner (2001).
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A
B

C
D

E

Figure 1: Different classes of heavy-tailed distributions

It is important to note that the normal distribution is not contained in this

class as its tail probability P (X > x) = F (x) = 1−F (x) declines faster than

exponentially.2 In this sense all distributions of class E are heavy-tailed with

respect to the normal distribution.

Since the normal distribution has comparatively thin tails, stronger as-

sumptions are possible for heavy tails. The class D contains the subexpo-

nential distributions.3 A distribution is subexponential if

lim
x→∞

P (X1 + · · ·+Xn) > x)

P (max(X1, . . . , Xn) > x))
= 1. (1)

This condition has a nice interpretation: the sum of n iid subexponential

random variables is likely to be large if and only if their maximum is likely

2F (x) is the cumulative distribution function of X with F (x) = P (X ≤ x).
3A short survey about subexponential distributions is given by Goldie and Klüppelberg

(1998).
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to be large. It is possible to show that equation 1 implies

lim
x→∞

F (x)

e−εx
→∞ ∀ε > 0.

As the name suggests, the tails of a subexponential distribution decrease

more slowly than any exponential distribution.

In this paper we focus on the class C of distributions, which are charac-

terized by regular variation in the tails. They form a subclass of the subex-

ponential distributions4 and satisfy the condition5

lim
t→∞

F (tx)

F (t)
= x−α. (2)

This condition states that far out in the tail (t→∞) the distribution behaves

like a Pareto distribution. As a consequence, the tail probabilities P (X > x)

decline according to a power function. The parameter α is called ”tail index”

and can be used as a measure of tail-heavyness. An important member of

class C is the Student-t distribution.

In contrast, distributions in class B have exact Pareto tails. The cumu-

lative distribution function of the Pareto distribution is

F (x) = 1− uαx−α where x ≥ u and u > 0. (3)

The tail probability P (X > x) = 1 − F (x) = F of a class B distribution

is therefore uαx−α. The tail index α can be related to the moments of a

distribution with Pareto tails. From6

E[Xk] = αuα

∫ ∞

u

xk−α−1dx

4This is shown, for example, by Goldie and Klüppelberg (1998) pp. 442-443.
5See for example Embrechts, Klüppelberg, and Mikosch (1997) p. 335.
6The density of the Pareto law is αuαx−α−1. See for example Dacorogna, Müller,

Pictet, and de Vries (1998).
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it follows that only the first k-moments with k < α are bounded. This prop-

erty is important to understand the class A, the class of stable or, as they are

also called, α-stable distributions. The distributions of this class have Pareto

tails with α < 2, which implies infinite variance and, as a consequence, very

fat tails. In spite of this restriction, class A is of great importance because

asymptotic theory similar to central limit laws is possible.7 Unfortunately,

it is only possible to represent the stable distributions in a analytical way by

the characteristic function (spectral representation). The density function

can only be computed by numerical approximation.8 In this paper we use

a semi-parametric approach based on the Hill estimator that encompasses

α-stable distributions. However, if the variance of a distribution is known

to be infinite, then a parametric approach based on α-stable distributions

would be more appropriate.9

Let us consider class C in more detail. There is a nice connection between

this class and classical extreme value theory. A main topic of extreme value

theory is the modelling of the fluctuation of sample maxima. If X1, X2, . . . is

a sequence of iid random variables then the sample maximum Mn is defined

as

M1 = X1, Mn = max(X1, X2, . . . , Xn), n ≥ 2.

One of the most famous theorems of extreme value theory is the Fisher-

Tippett theorem.10 It states that if the properly normalised sample maximum

converges to a non-degenerate distribution, then this distribution belongs to

7Note that the central limit theorems are not applicable to stable distributions because

the variance is infinite.
8See McCulloch (1998).
9For a recent application of α-stable distributions to asset pricing models see Kim

(2002)
10See for example Embrechts, Klüppelberg, and Mikosch (1997) pp. 121-125.
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one of the following three distributions (density functions):

Fréchet: Φα(x) =











0, x ≤ 0

exp(−x−α), x > 0,

α > 0

Weibull: Ψα(x) =











exp(−(−x−α)), x ≤ 0

0, x > 0,

α > 0

Gumbel: Λα(x) = exp(−e−x), x ∈ R,

If the distribution of the sample maximum of a give distribution converges

to one of the three, then it belongs to the maximum domain of attraction

of Φα(x), Ψα(x) or Λα(x). It is possible to characterize distributions that

belong to the maximum domain of attraction of the Gumbel distribution

as having thin or moderately heavy tails. Distributions that belongs to the

domain of attraction of the Weilbull distribution have a fixed upper end

point. Important for our discussion of heavy tails is the class of distributions

that belongs to the domain of attraction of the Fréchet distributions. A

distribution belongs to this class if and only if its tails are regularly varying.11

This exactly corresponds to our class C. The heaviness of the tails depends

negatively on the tail index α. We turn to its estimation in the next section.

11This is proven for example in Embrechts, Klüppelberg, and Mikosch (1997) pp. 131-

132.
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3 Estimating and testing the tail index

3.1 The Hill estimator

The tail-index α of equation 2 can be estimated with the Hill estimator. If the

distribution under consideration is exactly Pareto, then the Hill estimator can

easily be constructed as a maximum likelihood estimation. The likelihood

for the observation of k values x1, . . . , xk is

L(x1, . . . , xk;α) =
k
∏

i=1

αuαx−α−1
i

and the log-likelihood function

logL =
k

∑

i=1

(log(α) + α log(u)− (α + 1) log(xi)) . (4)

Maximizing equation 4 with respect to α gives the Hill estimator

1

α̂
=

k
∑

i=1

(log(xi)− log(u)) .

The distributions of class C are not exactly Pareto but their tails behave like

the tails of a Pareto distribution. Therefore the Hill estimator can be used

for the outer parts of the distribution. Let xi be the ith order statistic such

that xi ≥ xi−1 for all i = 2, . . . , n. If we choose to include k observations

from the right tail in our estimate of α, the Hill estimator becomes

γ̂(k) =
1

α̂(k)
=

k
∑

i=1

(log(xn−i+1)− log(xn−k)) . (5)

Whereas the concept and the calculation of the Hill estimator are straight-

forward, the choice of k is not. On the one hand, the approximation of the

tails by the Pareto distribution improves as one moves further out into the

tails. On the other hand, this leads to a reduction in the number of data
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points available, which drives up the variance. No general solution for this

trade-off exists and many competing methods are available. An often used

heuristical method is the Hill plot.12 The Hill estimates are plotted for all

possible values of k and an optimal k is selected by eye-ball search for a range

that is robust with respect to k. Unfortunately, the Hill plot is sometimes

erratic and may thus not be very useful.

Regression based estimator

A recently developed alternative to the Hill plot by Huisman, Koedijk, Kool,

and Palm (2001) is especially useful for small samples. Their regression-based

approach is based on an approximation of the asymptotic expected value of

the Hill estimator as a linear function of k

E(γ(k)) ≈
1

α
− ck. (6)

Here c is a constant depending on parameters of the distribution and the

sample size. If k becomes small, the bias goes down and the expectation

goes to the true value γ = 1
α
. The variance of the estimator increases with

small k

var(γ(k)) ≈
1

kα2
(7)

The idea of Huisman, Koedijk, Kool, and Palm (2001) is to use equation 6 in

a regression analysis and regress the γ(k) values (computed with an ordinary

Hill estimator) against k as follows:

γ(k) = β0 + β1k + ε(k), k = 1, . . . , κ.

The estimated β̂0 is an estimator of γ = 1
α
. The authors propose to choose

κ = n/2 where n is the sample size13. Furthermore they propose a weighted

12See for example Reiss and Thomas (2001) chapter 5.
13The authors show that the results are robust with respect to the choice of κ.
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least squares method to improve the efficiency of the estimator by use of

equation 7 and show that the resulting estimator has good small sample

properties.

We are especially interested in α because it can be related directly to

the existence of moments. One can show, by monte-carlo simulation, that

the distribution of α is asymmetric. To construct confidence intervals for

the point estimation of this parameter we use therefore a nonparametric per-

centile bootstrap proposed and tested in a similar context by Caers, Beirlant,

and Vynckier (1998).

Bootstrap based estimator

Another method to determine the optimal value of k has been developed by

Danielsson, de Haan, Peng, and de Vries (1998). It is based on an evaluation

of the mean squared error of γ̂ defined as

MSE(k) = E
(

(γ̂(k)− γ)2
)

. (8)

To evaluate this value the authors have proposed a bootstrap approach. The

idea is to randomly draw with replacement from the original data set and

to compute γ̂ from this artificial sample. If this procedure is repeated for a

large number of bootstrap samples the MSE can be calculated in principle.

The optimal value of k is then found be minimizing equation 8. The problem

is the value of γ in this equation. It is unknown and more problematic, and

estimation is only possible if k is know in advance. Danielsson, de Haan,

Peng, and de Vries (1998) have solved this problem by a method based on a

combination of subsample bootstraps and the use of asymptotic theory. The

details are summarized by Matthys and Beirlant (2000).14

14This method should not be confused with the bootstrapping of confidence intervals.

We use it only to asses the robustness of the tail index estimations and do not provide
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3.2 Testing for structural breaks in the tail behaviour

Although it is well known that the volatility of asset returns varies over time,

not much is known about the stability of the tail behaviour. To deal with

this question, Quintos, Fan, and Phillips (2001) have recently developed a

test for structural change in tail behaviour. If a priori a change from thinner

to thicker tails is suspected then a recursive version of the Hill estimator

(equation 5) is proposed by the authors. The test is based on

YT (t) =

(

tmt

T

)1/2 (
α̂t

α̂T

− 1

)

. (9)

The test is performed by the computation of equation 9 for a recursively

increasing sample size t. In equation 9, α̂T is the Hill estimator for the whole

sample size T and α̂t is the same estimator for the sample up to time t. mt

is equal to k in the Hill estimator. In addition, Quintos, Fan, and Phillips

(2001) have proposed a modification to this test to deal with GARCH type

dependency. It is known15 that the Hill estimator is a consistent estimator

for a large class of dependent processes but the variance is effected by de-

pendency. This problem is solved by the authors by a variance correction.

In this paper we use the more general version allowing for GARCH type

dependency.

4 Data

Our analysis is based on tick data for the Bund future obtained from Deutsche

Börse AG. It covers all transactions from January 1997 to December 2001,

a total of 12.7 million trades. For each transaction, we have a time stamp

confidence intervals because bootstrapping a bootstrap method is computational infeasible

in our case.
15See for example Resnick and Stărică (1996).
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(up to the centisecond), volume and price as well as the expiry date of the

contract. Our data does not, however, include quotes.16

Contracts expire in March, June, September and December of each year.

Trading is concentrated on the nearby maturity and switches to the next

contract within days just before expiry. Since contracts with different expiry

dates tend to differ in price, we look only at the most actively traded maturity

on each trading day. Since the changeover occurs very rapidly, we loose only

about 5 % of the observations. We then link the individual contracts to a

long series covering the whole sample period.

Trades occur at irregular intervals whereas the statistical methods used in

this paper require equally spaced data. We create such a series by recording

price of the last transaction in each time bracket. Intervals where no trans-

actions take place are treated as missing data. This means that we do not fill

in with the last available price, as is often done in the literature. Overnight

returns are discarded for frequencies higher than a day. We also construct

a series with daily data. In this case, we take the last trade on or before 5

p.m., when trading activity is at its peak.

5 Empirical results

5.1 Tail estimates

The results of the tail index estimations are summarized in table 1. Remem-

ber from section 2 that α declines as the tails of the distribution become

16Until the December 1998 contract, each Bund future refered to a notional German

government bond with a face value of 250,000 DM and a coupon of 6 %. The Euro Bund

future, which replaced the Bund future in the transition to EMU, has a contract value of

100,000 Euro.
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Year Method 5 minute 1 hour 1 day

Left-tail Right-tail Left-tail Right-tail Left-tail Right-tail

1997-2001 Regression 3.01 3.33 3.36 3.90 4.55 6.28

[2.91, 3.09] [3.20, 3.46] [3.06, 3.73] [3.52, 4.35] [3.35, 6.98] [4.61, 10.16]

Bootstrap 3.16 3.44

1997 Regression 2.46 2.88 2.91 3.40

[2.34, 2.61] [2.72, 3.09] [2.43, 3.58] [2.74, 4.34]

Bootstrap 3.16 3.75

1998 Regression 2.46 2.88 3.18 3.77

[2.33, 2.62] [2.70, 3.09] [2.66, 4.12] [3.18, 5.02]

Bootstrap 2.66 2.77

1999 Regression 3.75 4.41 3.51 3.91

[3.49, 4.04] [4.06, 4.81] [2.94, 4.55] [3.23, 5.07]

Bootstrap 3.46 3.86

2000 Regression 3.22 3.19 4.09 4.59

[2.98, 3.46] [2.96, 3.45] [3.29, 5.37] [3.67, 6.15]

Bootstrap 2.72 3.12

2001 Regression 2.78 2.91 3.38 4.37

[2.60, 2.97] [2.74, 3.11] [2.79, 4.57] [3.62, 5.87]

Bootstrap 2.66 3.17

Table 1: The tail index of Bund futures returns

thicker and that a tail index of less than 4 implies infinite forth moments

and therefore an infinitely high kurtosis. Let us first discuss the results for

the complete sample (1997-2001) shown at the top of table 1. For the five-

minute returns, both methods estimate α to be greater than 3 but smaller

than 4. The values in square brackets are the upper and lower bounds of 95%

bootstrap confidence intervals for the regression-based tail index.17 High-

frequency returns thus appear to have fat tails with infinite kurtosis, possibly

infinite third moments but definitely finite variance. At lower frequencies,

17Computing confidence intervals for the bootstrap method would involve bootstrapping

the bootstrap. In our case, it has turned out to be unfeasible
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the tail index increases, and the tails become thinner.18 For daily returns,

the estimates for α obtained by the regression-based method are above 4,

suggesting a bounded fourth moment. But it is important to note that even

in this case the tails remain heavier than those of the normal distribution,

which has a very large, in theory infinite, tail index. Therefore our results

suggest that the first of our questions can be answered in the affirmative:

Yes, the returns on the Bund future do have thick tails. Moreover, the left

tails, corresponding to negative returns, tend to be slightly thicker than the

right tails irrespective of the frequency.

Let us now turn to the estimates for the different years of our sample.

Unfortunately, only results for frequencies higher than a day are available

as there are not sufficient data points at the daily level. We find that the

tails seem to be particularly fat during 1998 and 2001, and less so in 1999

and 2000. This is not surprising, given that 1998 saw some of the worst

turbulence in the international financial markets in living memory, and 2001

was marred by the September 11 shock. In contrast, 1999 and 2000 were

rather tranquil years. The confidence intervals of the 5 minute losses (left-

tail) are non-overlapping for 1998 to 2001. This finding is a first sign of

time variation in the tail behaviour, which we shall explore in the following

subsection.

18We use the bootstrap method only for the 5 minute returns because it is known from

the literature that it requires a very large sample size (>5000), see Matthys and Beirlant

(2000).
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5.2 Structural break in the tail behaviour during 1998

and 2001

The estimation of the tail index α for fixed subperiods provides only rough-

and-ready evidence for time variation in the tail behaviour. To answer our

second question in a more rigorous manner, we apply the test on struc-

tural change in the tail behaviour that has been described in section 3.2.

In particular, we are interested whether events such as the turbulences in

international financial markets in 1998 or the attacks on September 11, 2001

have affected the tail behaviour of the return distribution. In order to limit

the computational burden, we do the estimations for each year separately.

Here we present the results for the years 1998 and 2001, when the tails of

the distribution seemed to have been particularly heavy.

The recursive test statistic of equation 9 for the year 1998 is plotted in

figure 2. The critical value at the 1 % confidence level is 2.54. We find that

the maximum of the test statistic is well above 20 and the null hypothesis

of constant tail behaviour is therefore soundly rejected. The test statistic

has two peaks: one at the end of July 1998 and another at the beginning

of September 1998. These dates roughly match the Russian devaluation on

August 17th and the LTCM crisis.19

The corresponding test statistic for the year 2001 is plotted in figure 3.

Again the maximum is above twenty and the null hypothesis of stability is

clearly rejected. But the shape of the plot is very different from that of the

year 1998. During most of 2001, the test statistic is low but it rises sharply

towards the end of the year, possibly in response to the September 11 attacks.

If one performs a change test for the year up to the end of August only, the

19LTCM was recapitalized on September 23rd, but there had been massive disruptions

in the markets during the previous weeks.
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Figure 2: Change test for 1998

highest value of the test statistic is less than 1.8 and the null hypothesis

cannot be rejected.20

The time variation of the tails seems to be limited to high-frequencies, as

we could not find any breaks in the tail behaviour for the one hour and one

day returns.

5.3 The tail index as a risk indicator

Let us now focus on the third and final of the questions posed in the intro-

duction: Can we use the tail index as an indicator for financial market risk

and does it add value in addition to classical indicators? Although there is a

20We have also found breaks during the other years of our sample, but the test statistics

were much lower and not associated with any identifiable events. For the sake of brevity,

they are not presented here.
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wide variety of indicators for financial risk, we limit our analysis to realized

volatility and use this measure to compare it with the tail index.

Realized volatility

Unusually strong price fluctuations are an important characteristic of finan-

cial risk. It is therefore natural to use volatility measures as indicators for

financial turbulence. In contrast to tail indices from extreme value theory,

they are computed using the complete support of the distribution of returns.

We compute the realized volatility for each trading day by summing up the

squared five-minute returns

σ̂t =
∑

i

(∆logPi)
2. (10)
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Figure 4: Tail index and realized volatility

Anderson, Bollerslev, Diebold, and Labys (2001) show that this approaches

the price volatility of a continuous process as the intervals between the ob-

servations goes to zero.

Realized volatility versus tail index

We asses whether the tail index is a useful indicator for financial market un-

certainty by means of a recursive estimation of the tail index over a rolling

20-day window using equally-spaced date with 5-minute intervals. On av-

erage, around 1,000 data points are included in the estimation of the tail

index.21 To compare this index with a classical measure of financial market

uncertainty, we have computed the average of the realized volatility for the

last 20 days. The two indicators are plotted in figure 4. The dark line is γ̂

21The precise number varies because of missing values.
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which is the inverse of the tail index α̂. A high value of γ̂ thus implies thicker

tails. The dotted line is the rescaled realized volatility.

Year Correlation between tail index

and realized volatility

1997 0.51

1998 0.49

1999 0.14

2000 -0.06

2001 -0.32

Table 2: Correlation between tail index and realized volatility

The tail index and realized volatility move in parallel during most of

our sample, suggesting that the tail index added no additional information

beyond that contained in our volatility measure. A closer inspection of the

graph reveals that this view is not correct. For example, during 1999 realized

volatility was relatively high but the tail index relative low. Consequently,

this period was a good one for classical risk management. The volatility is

captured by standard methods and the relative thin tails might be a justifica-

tion for the normal approximation that is commonly used. The development

during the following year was less benign for risk managers. Volatility de-

clined but the tail index rose for more than half a year. Although the decline

in volatility suggested lower risk, the actual probability of extreme events

went up rather than down. As a consequence, the risk of extreme events

could easily have been underestimated and caught market participants on

the wrong foot. It is therefore fair to say that the tail index does indeed add

information beyond that contained in realized volatility. The information

contend of the tail index relativ to realised volatility can be analysed further
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by the correlation between the two indexes. Table 2 shows the correlation

coefficients for the years 1997-2001. In the years 1997-1999 the correlation

between the tail index and the realized volatility is positive but in 2000 and

2001 the correlation is even negative. This means that the two indexes move

on average in the opposite direction during this years. The tail index con-

tribute strongly with information in addition to the volatility.

5.4 Implications of the tail behaviour on Value-at-Risk

To emphasize the importance of the variation of the tail behaviour through

time, we compare value-at-risk measures based on the tail index and on the

normal distribution, respectively. Value-at-Risk (VaR) is generally defined

as the ”possible maximum loss over a given holding period with a fixed

confidence level”. That is VaR at the 100(1− α) percent confidence level is

defined as the lower 100α percentile of the return distribution.22 Our VaR

measures are based on 5 minute returns and quoted in basis points.

The results are collected in table 3. The second column contains the

volatility of the futures returns measured by the standard deviation times

1,000. Realised volatiltiy increases between 1997 to 1999, and falls during the

following two years. The VaR calculated under the assumption of normally

distributed returns is given in column four. Clearly this VaR measure is

driven by the volatility because the distribution is fixed.23 The values imply a

significant decline in the market risk in the years 2000 and 2001 in comparison

to 1999. In column five the VaR based on the tail-index for the left-hand of

22It is very common to use α as the probability in a VaR measure and we do not like to

change this habit. Please do not mix up this α with the tail-index.
23The mean of the return distribution is virtually zero at high frequencies. Any changes

in the distribution are therefore driven by the higher moments
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Year Volatility Tail-Index VaR 99% VaR 99% VaR 99%

(1/α) (normal) (tail-index) (tail-index)

(left) (right)

1997 0.244 0.406 5.7 10.1 8.8

1998 0.263 0.406 6.1 11.2 9.7

1999 0.343 0.267 8.0 10.2 9.2

2000 0.293 0.311 6.9 9.7 9.8

2001 0.262 0.359 6.1 9.7 8.3

Table 3: Value-at-Risk for the years 1997-2001

the distribution is given.24 It is a measure for the riskiness of a long trading

position. Two points are important. Firstly the VaR based on the tail-index

is always higher than the VaR based on normal distribution. This is a direct

consequence of the fat tails. Secondly, and more important, the VaR based

on the tail-index does not decline much in 2000 and 2001. The reason is the

increase of the fatness of the tails in 2000 and 2001 in comparison to 1999.

This partially compensates the decline in volatility. It is therefore dangerous

to asses the market risk exclusively on the basis of volatility measures. In

column six we have added the VaR based on the tail-index for the right-hand

of the distribution. According to the tail indexes in 1 the right-hand of the

distribution is less fat tailed than the left-hand. This is the reason for the

lower associated VaR measures and implies a lower risk of a short position

in the BUND future than a long position. Nevertheless our main argument

24How VaRs can be calculated based on tail-index and Hill estimation is described in

Gourieroux and Jasiak (2001). The basic idea is to use an empirical quantile (in our case

the 90% quantile) to compute an extreme quantile based on the tail index and the pareto

like behaviour of the tails.
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about the importance of time variation in the tail is not effected. A risk

assessment based on the normal distribution implies a symmetric VaR and

the risk of a short position in the BUND future should lower in 2000 than in

1999 because the variance is lower in 1999. Contrary to this argument the

VaR values in table 3 show, because of the increase in the tail fatness, an

even higher risk in 2000. Neglecting the time variation of the tail behaviour

results in an absolut misleading assessment of the market risk.

6 Conclusion

In this paper we have focused on three questions. (i) Are the bond futures re-

turns heavy-tailed? (ii) Is the tail behaviour constant during time? (iii) Does

the tail index add further information with respect to classical indicators of

financial market uncertainty?

We have found a significant heaviness of the tails of the Bund futures log-

returns. The tail index is on average around 3, implying the nonexistence of

the fourth moments. The tails of the 1-hour and 1-day returns are slightly

thinner than the 5-minute return tails but remain thicker than those of the

normal distribution.

With the aid of a recently developed test for changes in tail behaviour we

have identified several breaks in the degree of heaviness of the log-return tails.

Such breaks were particularly pronounced during 1998 and 2001, probably in

relation with the Russia and LTCM crises in the former, and the September

11 attacks in the latter year.

Another finding is that the behaviour of the tails of a distribution is

not necessarily captured by measures for volatility. For example, in 2000

volatility declined, suggesting a reduction in risks, whereas the probability
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of extreme price changes, as measured by the tail index, actually increased.

This shows that the tail index contains important information for financial

market risk assessment beyond that captured in standard volatility measures.

In some sense our paper is a first step in modelling time variation of

tail behaviour. The results we have presented show the need for such an

investigation. Unfortunately we can not forecast the tail behaviour because

the used method is only able to extract information for the tail behaviour

out of a given data set. There is no explicit modelling of the time variation.

There is some very recent research about autoregressive conditonal kurtosis

by Brooks, Burke, and Persand (2002), which seems promising. The idea is to

model time variation in the fourth moment similar to the well knows GARCH

type modelling. Nevertheless, our results show that the fourth moment may

not exist. More research in this area is indicated for the future.
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