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Abstract

In this paper we propose exact likelihood-based mean-variance efficiency tests of the
market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a
wide class of error distributions which include normality as a special case. These tests are
developed in the framework of multivariate linear regressions (MLR). It is well known
however that despite their simple statistical structure, standard asymptotically justified
MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed
for afew specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982),
MacKinlay (Journal of Financial Economics, 1987), Gibbons, Ross and Shanken
(Econometrica, 1989), Zhou (Journal of Finance 1993)] most of which depend on
normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’'s
mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance
efficiency tests alowing for multivariate Student-+ and gaussian mixture errors. Our
framework alows to cast more evidence on whether the normality assumption is too
restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks
(including tests for multivariate GARCH and multivariate generalization of the well known
variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening
nuisance parameters. Our results [over five-year subperiods| show the following: (i)
multivariate normality is rejected in most subperiods, (ii) residual checks reveal no
significant departures from the multivariate i.i.d assumption, and (iii) mean-variance
efficiency tests of the market portfolio is not rejected as frequently once it is allowed for
the possibility of non-normal errors.

Key words: capital assed pricing model; CAPM; mean-variance efficiency; non-
normality; multivariate linear regression; uniform linear hypothesis; exact
test; Monte Carlo test; bootstrap; nuisance parameters; specification test;
diagnostics;, GARCH; variance ratio test.
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Zusammenfassung

In diesem Papier schlagen wir exakte likelihood-basierte Tests auf Mittelwert-Varianz-
Effizienz im Rahmen des CAPM vor. Dabei wird eine breite Klasse von Verteilungen fir
den stochastischen Term zugelassen. Normalverteilung ist ein Speziafall. Die Tests
werden im Rahmen von multivariablen linearen Regressonen (MLR) entwickelt.
Bekanntlich sind Standardtests, die auf MLR basieren und asymptotisch gerechtfertigt
werden, nicht zuverldssig. In der Finanzokonometrie sind exakte Tests flr einige wenige
Hypothesen vorgeschlagen worden. Die meisten héngen von der Annahme der
Normalverteilung ab (Jobson und Korkie (1982), Mac Kinley (1987), Gibbons, Ross und
Shanken (1989), Zhou (1993)). Fur das gaussianische Modell entsprechen unsere Tests
denen von Gibbons, Ross und Shanken. Im nichtgaussianischen Modell betrachten wir
Mittelwert-Varianz-Effizienz-Tests, wobel multivariate-Student-t  und ,, gemischte”
Normalverteilungen zugel assen werden. Unser Ansatz gibt mehr Aufschluf? dartiber, ob die
Annahme der Normalverteilung zu restriktiv ist, wenn das CAPM gestestet wird. Wir
schlagen auch exakte multivariate Diagnosen (einschliefdlich Tests fur multivariate
GARCH-Modelle und multivariate Verallgemeinerungen der bekannten Varianz-
Relationen-Tests) sowie Tests auf die Anpassungsgite und eine Schétzung fur die
stérenden Verschmutzungsparameter vor. Unsere Ergebnisse (fur 5-Jahres-Perioden)
zeigen das Folgende: (i) multivariate Normalitét wird fur die meisten Perioden verworfen
(i) die Uberprifung der Residuen zeigt keine signifikante Abweichung von der Annahme
einer multivariaten i.i.d. Verteillung (iii), wenn man nichtnormalverteilte Fehler zul&sst,
werden Mittelwert-V arianz-Effizienz Tests des Marktportfolios seltener verworfen.
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Testirg meanvariane efficiency in CAPM with possibly
non-gaussiamrrors:anexactsimulation-base@pproach

1. Introduction

The capital asset pricing model (CAPM) is one of the most commonly used models in asset-pricing
theory and practice. The associated empirical literature is enormous: reviews and references may
be found in Campbell, Lo and MacKinlay (1997, Chapters 5 and 6) and Shanken (1996). Since the
work of Gibbons (1982), empirical tests of the CAPM are usually conducted withimtitgvariate

linear regression(MLR) framework. Statistical inference for the MLR model in econometrics and
empirical finance is usually based either on asymptotic approximations or on finite-sample distribu-
tional theory.

Concerning the first approach, several studies in the econometrics and finance literatures have
shown that standard asymptotic theory provides a poor approximation to the finite-sample distribu-
tion of MLR-based tests, even with fairly large samples; see Shanken (1996, Section 3.4.2), Camp-
bell et al. (1997, Chapter 5), Dufour and Khalaf (2802and the references therein. In particular,
test size distortions grow quickly as the number of equations increases. As a result, the conclusions
of financial MLR-based empirical studies on the CAPM can be strongly affected and may lead to
spurious rejections.

In this context, as emphasized by Shanken (1996) and Campbell et al. (1997), applying finite-
sample statistical methods appears to be important. As a result, a number of authors have proposed
tests based on a finite-sample distributional theory in order to assess the CAPM; see Jobson and Ko-
rkie (1982), MacKinlay (1987), Gibbons, Ross and Shanken (1989, henceforth GRS), Zhou (1991)
and Stewart (1997). These proposals are based on exploiting results from the statistical literature on
multivariate analysis-of-variance, in particular Hotellin@'$ statistic which may be transformed
into a statistic with a Fisher distribution [see, for example, Anderson (1984, chapters 8 and 13) and
Rao (1973, chapter 8)]. These results, however, are based on the assumption that the errors in the
CAPM follow a gaussian distribution. This may provide valid tests of a gaussian CAPM satisfying
mean-variance efficiency but not of alternative similarly restricted non-gaussian CAPM. Rejections
of mean-variance efficiency by such tests may be interpreted as a rejection of hormality, instead of
the CAPM relationships. Further, the CAPM can be derived from an expected utility maximization
under a variety of distributional assumptions on the cross-sectional distribution of the returns, which
include the gaussian distribution, but also several non-gaussian distributions such as the multivariate
Studentt, normal mixtures, elliptically symmetric distributions, étc.

It has long been recognized that financial returns do not exhibit normality [see, for example,
Fama (1965), Baillie and Bollerslev (1998) and Beaulieu (1998)]. Consequently, it appears that the
appropriateness of the multinormal assumption should be tested in statistical analysis of the CAPM
and, eventually, valid tests for non-gaussian CAPM should be put forward. Of course, the normality
assumption can usually be relaxed by considering large-sample procedures based on the central limit
theorem (such as GMM procedures) or bootstrap techniques (to get better finite-sample behavior);
for some examples in the context of the CAPM, see Affleck-Graves and McDonald (1989), Fama

!For discussions of the class of return distributions compatible with the CAPM, the reader may consult Ross (1978),
Chamberlain (1983), Ingersoll (1987, Chapter 4), Nielsen (1990), Allingham (1991) and Berk (1997). Another possibility
would consist in considering stable Paretian laws; see Samuelson (1967). However, since stable distributions other the
normal distribution do not have finite second moments, this requires replacing the variance of a portfolio by another
measure of risk.



and French (1993) and Groenwold and Fraser (2001). But asymptotically-based procedures can
only be a solution of last resort, which is always fundamentally unsatisfactory: there is no guarantee
that thelevel or the sizeof the test is controlled and what can be legitimately rejected by such a
procedure typically remains unclear [for further discussion of these issues, see Dufour (1997) and
Dufour and Khalaf (2001)].

Clearly, it would be much more satisfactory to have finite-sample tests that allow for non-
gaussian errors. But there has been very little work on this issue. The main contribution on this
important problem appears to be due to Zhou (1993). In a seminal paper, this author reconsidered
the GRS problem under elliptical distributions and, on observing some invariance properties of the
Hotelling statistic for testing mean-variance efficiency, suggested the use of a simulation procedure
to approximate the approprigtevalues. To the best of our knowledge, no other non-asymptotic re-
sult that does not impose normality appears to be available for the CAPM model with an observable
risk-free returr?. Zhou (1993) also provided formal tests of multinormality and other elliptically
symmetric distributions: these are based on the statistics proposed by Mardia (1970) for the multi-
variate location-scale modéle. a MLR where the regressor matrix reduces to a vector of ones _
without however providing finite-sample adjustments to deal with the fact that the tests were applied
to regression residua¥s.

In this paper, we pursue the work of Zhou (1993) in several directions. The objective is to
propose exact finite-sample tests for possibly non-gaussian versions of the CAPM. The procedures
suggested involve testing both the usual cross-equation parameter restrictions entailed by the CAPM
as well as various specification tests, including tests of normality and distributional goodness-of-fit,
tests against the presence of ARCH effects and serial dependence, which all take into account the
multivariate nature of the model. To be more specific, our contributions can be classified in five
categories.

First, we reconsider the problem of building exact tests of mean-variance efficiency in non-
gaussian set-ups, using Monte Carlo (MC) test techniques. The procedures we propose for that pur-
pose are based on the finite-sample methods described in Dufour and Khalaf) @00%pothesis
testing in MLR models. The latter allow one to test linear restrictions on MLR models using a
wide array of multivariate test statistics _ such as the gaussian LR criterion [or the Wilks (1932)
statistic], the Lawley-Hotelling (LH) trace criterion, the Bartlett-Nanda-Pillai (BNP) trace criterion,
or the maximum root (MR) criterion _ under general parametric distributional assumptions, which
include, besides the gaussian distribution, a wide spectrum of non-gaussian distributions, both ellip-
tically symmetric and non-elliptical. In particular, in the case of uniform linear (UL) restricfions,
all standard test statistics have null distributions which are free of nuisance parameters as long the
error distribution is specified up to an unknown linear transformation, so that Monte Carlo (MC)
test techniques [originally proposed by Dwass (1957) and Barnard (1963)] can be applied to obtain

2There has also been work on finite-sample inference for the CAPM model without an observable risk-free asset
(Black's CAPM); see Shanken (1986), Zhou (1991, 1995) and Velu and Zhou (1999). This problem goes beyond the
scope of the present paper, but we reconsider it in Beaulieu, Dufour and Khalaf (2001).

3This limitation is pointed out by Zhou (1993, page 1935, footnote 5).

“Examples of UL hypotheses include: (i) identical transformations of the regression coefficients (within or across
equations) are equal to given values, (ii) the coefficients of the same regressor are zero across equations, and (iii) a single
parameter equals zero; see also Berndt and Savin (1977) and Stewart (1997).



provably exact tests even with a very small number of MC replications [such as 19 replications for a
test of level 5%; see Dufour and Khalaf (2001)]. The fact that the relevant analytical distributions are
complicated is not a problem: the only requirement is the possibility of simulating the test statistic
under the null hypothesis. On observing that standard CAPM mean-variance efficiency restrictions
take the UL form when the risk-free rate is observable, we show that the latter can be tested in this
way under quite general distributional assumptions, which include all elliptical distributions. Both
single and multi-beta portfolios are covered by these results.

Secondin conformity with standard and recent mean-variance efficiency theoretical set-ups,
we focus for practical applications on two families of distributions: (1) multivariate Studeist-
tributions, and (2) mixtures of two normal distributions. Both these families raise a nuisance pa-
rameter problem: the number of degrees of freedom, for the multivariate Sttydieatprobability-
of-mixing and ratio-of-scale parameters for the normal mixtures. To deal with this problem [not
considered by Zhou (1993)], we propose a two-stage confidence procedure similar to the ones used
in Dufour (1990) and Dufour and Kiviet (1996). First, one builds an exact confidence set for the
nuisance parameter, through the “inversion” of a distributional goodness-of-fit (GF) test (described
below). Second, the M@-value for the hypothesis of interest (which depends on the nuisance pa-
rameter) is maximized over this confidence set. Provided the significance levels used at the different
steps of the procedure satisfy a simple inequality, this two-stage procedure yields an exact test that
controls for the presence of the nuisance parameters consildrethis way, we formally deal
with the (often ignored) problem of the joint characteristic of the null hypothesis which imposes
distributional constraints, in addition to the restrictions on the regression coefficients.

Third, we propose and apply exact multivariate goodness-of-fit (GF) tests. As emphasized by
Richardson and Smith (1993) who considered tests for departures from normality, it is crucial in
MLR-based financial models to consider multivariate tests of asset returns which explicitly take the
error covariance into consideration. In order to obtain provably valid tests within the MLR frame-
work, we adjust the tests proposed by Mardia (1970) and Zhou (1993), and we propose an exact GF
test of the hypothesized error distributions (multivariate normal, Studentr and normal mix-
tures, with possibly unknown parametetsfhe test is based on comparing multivariate skewness
and kurtosis criteria to a simulation-based estimate of their expected value under the hypothesized
distribution and is implemented as a MC test. Although the GF test is used, as explained above, to
obtain a confidence set for the intervening distributional parameters, we note that the test is new and
to our knowledge, no other exact test for these distributions is available. Beside its relevance for the
present paper, this test would be quite useful as a specification check in empirical finance, given the
popularity of the Student-distribution.

Fourth, we conduct exact multivariate residual-based diagnostic tests for departures from the
maintained hypothesis afi.d. disturbances. As with normality tests, concerns over cross-

5This procedure may be interpreted as a special form of “maximized MC” (MMC) test [see Dufour (2002)]. For further
discussions of MMC tests in econometrics, see Dufour and Khalaf (2001 cR002 nuisance parameter dependent
problems, a test isxactat level« if the largest rejection probability over the nuisance parameter space consistent with
the null hypothesis is not greatera{see Lehmann (1986, sections 3.1, 3.5)].

®Regarding normality tests, available empirical evidence for monthly data (on which we focus) is mixed. For instance,
whereas the results of Campbell et al. (1997) and Affleck-Graves and McDonald (1989) suggest that normality is not
rejected often at monthly frequencies, the tests conducted by Richardson and Smith (1993) provide more firm rejections.



correlations of portfolio returns has been the subject of several stdgsHichardson and Smith

(1993) and Shanken (1990)]. For these problems, standard multivariate approaches [including
Richardson and Smith (1993) and Shanken (1990)] are asymptotic. In spite of the well known
problems associated with such an approach, reliance on asymptotics is not surprising in the absence
of applicable exact resultsin view of the fact that CAPM tests may be sensitive to the presence

of GARCH-type heteroskedasticity [see MacKinlay and Richardson (1991)], we first consider tests
against multivariate GARCH effects, in the spirit of those proposed in Shanken (1990). Our proce-
dures differ from Shanken'’s in two basic aspects. First, our tests are based on pstaetbrdized

OLS residuals to ensure invariance to the error-covariance matrix. Second, we combine tests across
equations using an exact simulation-based procedure [similar to the one used in Dufour and Khalaf
(20020)] which does not call for using Bonferroni level adjustment. Bonferroni-based combined
tests require one to divide the level of each individual test by the number of tests [see Dufour (1990)
or Shanken (1990)]. Although this can provide guarantees against certain types of specification er-
rors [see Dufour and Torrés (1998)], it can also yield utterly conservative tests if the MLR includes
many equations.g., many portfolios), leading to possibly large power losses. Following the exact
strategy we applied to test the significance of the CAPM intercepts, we also consider multivariate
Studentt errors and multivariate normal mixtures with possibly unknown parameters; this allows
one to test whether GARCH effects are still prevalent, even if fat tails are formally modelled into the
error distribution. The second class of tests we study are multivariate generalizations of the popular
variance ratio tests. Using the same residual standardization and the simulation-based combination
strategy proposed for the GARCH test, we show how these very useful tests can be applied exactly,
in a multivariate set-up. We emphasize that the usefulness of these new tests extends beyond the
specific applications studied here.

Fifth, the tests proposed are applied to the CAPM with observable risk-free rates. We con-
sider monthly returns on New York Stock Exchange (NYSE) portfolios, which we construct from
the University of Chicago Center for Research in Security Prices (CRSP) 1926-1995 data base.
Our results allow to compare test results for asymptotic statistics and exact tests under normality.
Furthermore we can also compare exaetalues for different elliptical distributions. We explain
why non-rejections obtained under a gaussian distributional assumption may formally be treated
as conclusive from our viewpoint (recall, of course, that we formally combine GF with efficiency
tests here). Our results (over five-year subperiods) show the following: (i) multivariate normality is
rejected in most subperiods, (ii) multivariate residual checks reveal no significant departures from
thei.i.d. assumption, and (iii) mean-variance efficiency of the market portfolio is not rejected as
frequently once it is allowed for the possibility of non-normal errors.

The paper is organized as follows. Section 2 describes the statistical framework studied. In
Section 3, we describe the existing test procedures and we show how extensions allowing for non-
normal distributions can be obtained. In Section 4, we present extensions to error distributions
involving nuisance parameters. Exact GF and diagnostic tests are proposed in Section 5. In Section
6 we report the empirical results. Section 7 concludes and discusses extensions to other asset pricing

’Indeed, this problem is not exclusive to financial applications: our review of the statistics and econometrics literature
has revealed that exact multivariate specification tests which take the error covariance explicitly into consideration are
quite rare; see Dufour, Khalaf and Beaulieu (2001).



tests.

2. Framework

The fundamental finance problem we focus on here involves testing the mean-variance efficiency of
a candidate benchmark portfolio. LBf;,i = 1, ... , n, be returns om securities for period, and

Rwm: the returns on the market portfolio under consideratiog=(1, ... , T). If these variables
satisfy a temporally stable CAPM, the following relations must hold:

Tit:bi?Mt‘Fuita t=1,...,T,i=1,...,n, (21)

wherery;, = Ry — RF, 7w = Rwi — RF, RF is the riskless rate of return, ang, is a random
disturbance. Following Gibbons et al. (1989), this can be cast as a MLR model of the form

rie =a; +birme tug, t=1,...,T,i=1,...,n, (22)
on which the following restrictions have been imposed:
Ho:a;,=0, i=1,...,n, (2.3)

i.e, the intercepts,; are jointly equal to zero.
The above model is a special case of the MLR model:

Y=XB+U (2.4)
whereY = [V, ..., Y,] isT x n matrix of dependent variableX] is a7 x k full-column rank
matrix of regressors, and

U=[U, ..., U=V, ..., Vr| (2.5)

is aT x n matrix of random disturbances which are independenkofso that we can easily
condition onX and takeX as fixed for statistical analysis). In this framework, the CAPM-based
restrictionH ¢ belong to the class of so-callediform linear(UL) restrictions,.e. it has the form

Hy: HBE =D (2.6)

whereH is anh x k matrix of rankk andE is ann x e matrix of ranke . This is relevant because
H¢ is a special case dfy. Indeed, rewriting (2.2) as in (2.4) with

Y = [r,...,m], X =/, ™™],

T, = (Tl’ia-"arTi)/a ?M:(?le--'vFTM)/7 LT:(lv"‘vl)lv
we see that{ can be written a$l, 0) B = 0, which corresponds tély with H = (1, 0), £ = I,,
and D = 0. For further discussion of the MLR model, the reader may consult Anderson (1984,

chapters 8 and 13), Berndt and Savin (1977), Dufour and Khalaf (B082riya (1985), Kariya
and Kim (1997), Rao (1973, chapter 8) and Stewart (1997). In particular, it is worthwhile to note



that standard exact methods for testing hypotheses of the fyrnely on the assumption that the
disturbance vectors ai.d. gaussian, namel:

Vi, ..., Vpareiid. N[0, X]. (2.7)

The CAPM can de derived from an expected utility maximization under a variety of assumptions
on the cross-sectional distribution of returns, which include the gaussian distribution, the multivari-
ate Student, mixtures of normals, etc. [see Ingersoll (1987) and Berk (1997)]. In view of the
available statistical methods, the standard assumption under which finite-sample tests have been
proposed is (2.7). However, since security returns tend to follow more heavy-tailed distribution
than the normal, this may be unduly restrictive.

In this paper, we use a more comprehensive statistical theory [developed in Dufour and Khalaf
(200)] which allows one to easily obtain finite-sample tests under alternative error distributions.
More precisely, we consider the general case:

Vi=JW,, t=1,..., T, (2.8)

where J is an unknown, non-singular matrix and the distribution of the veator =

vec (Wy, ..., Wr) is either: (i) known (hence, free of nuisance parameters), or (ii) specified
up to an unknown nuisance-parameter. We gathe vector ofnormalized disturbanceand its
distribution thenormalized disturbance distributiohis set-up includes as a special casa ilok
gaussian or the (more general) elliptical symmetry assumption as well as many other distributional
set-upsé.g, caseswher®d/y, ... , Wy arei.i.d. according to an arbitrary heavy-tailed distribution,
which may not be elliptically symmetric).

In conformity with standard and recent mean-variance efficiency theoretical set-ups, we will
now focus on two families of distributions consistent with both CAPM theory and the statistical
framework just described: (1) multivariate Studemtistributions, and (2) mixtures of two normal
distributions. Let us denote these two distributiong!) andF» (1) respectively. We say that:

Wi ~ Fi( k) & Wy = Zuy/(Za/5)Y? (2.9)

whereZy; ~ N[0, I,,] _i.e. Zy; is multivariate normal with meafand covariance matrik, _ and
Za ~ x?(k) and is independent dfy;; and

Wt ~ ]:2(71', w) <~ Wt = 71'th + (1 — W)th R (210)

whereZs, ~ N[0, wl,] and is independent ofy;, and0 < = < 1. As mentioned in the intro-
duction, we focus on these families of distributions for the following reasons: (i) from an empirical

81t is also possible to show that the gaussian-based distributional theory still leads to valid tests under the more general
assumption of that the distribution &f is jointly elliptically symmetric; see Kariya (1985) and Kariya and Kim (1997).
However, except in gaussian case, this assumption has the unattractive feature of precluding independence between the
vectorsVi, ... , Vr, even if each vectoV; follows an elliptically symmetric distribution. For further discussion of
elliptically symmetric distributions, see Kelker (1970), Chmielevsky (1981), Owen and Rabinovitch (1983) and Dufour
and Roy (1985).



perspective, financial return data typically displays spikes and fat tails [Fama (1965)] and, (ii) on
theoretical grounds, the multivariate Studeind this specific mixture-of-normals are return dis-
tributions consistent with expected utility maximization. For further reference, we shall use the
following notation:

Wy~ Fi(v), i=1,2, (2.11)
where
K, if W, satisfies (2.9),
(m, w), if W, satisfies (2.10).

N
I

3. Mean-variance efficiency tests with a known normalized distur-
bance distribution

In this section, we study the case where the nuisance paramistgpecified by the null hypothesis.
Extensions to unknown are presented in Section 4. Note that no further regularity conditions are
required for most of our proposed statistical procedures, not even the existence of second moments.
Yet the latter hypothesis is typically maintained in CAPM contexts. In this case, the covariance
matrix of V; is X' = JJ anddet(X) # 0.

One of the most commonly used statistics to féstin (2.3) [indeed, to test any UL hypothesis]
is the gaussian quasi maximum likelihood (QMLE) based criterion:

LR =T In(A), A=1|%c|/|2]|, (3.12)
whereX = U'U/T,U =Y — XB, B = (X'X)"'X'Y andX( is the gaussian QMLE undéf_.

In TheoremA.1 of Appendix A.1, we provide the exact null distribution of the latter statistic under
(2.4), (2.8) and the general UL hypothesis (2.6). Two results regarding this distribution are worth

noting.
First, under (2.8), the distribution does not dependaamd >’ and thus may easily be simulated
if draws from the distribution oft’;, ... , Wy are available. This entails that a Monte Carlo exact

test procedure may be easily applied based.&1 The general simulation-based algorithm which
allows to obtain a MC size-correct exaevalue for all hypotheses conforming with (2.8) may be
summarized as follows. Using the distributional assumption (2.11), gen€riite. replications of
the disturbance matrid” = [y, ... , Wr]. This yieldsN simulated values of the test statistic.
The exact Monte Carlp-value is then calculated from the rank of the obserkétirelative to the
simulated ones. Further details on Monte Carlo tests are presented in Appendix B.

Second, results specific to the gaussian special case of (2.8) leadKetésts used by GRS.
Formally, ifmin(h, e) < 2 whereh = rank (H) ande = rank(FE), then a (monotonic) transforma-
tion of LR follows the F-distribution with known degrees-of-freedom; see (A.4) in Appendix A.1.
Obviously, this is relevant sincH¢ corresponds tmin(h, e) = 1.

For the CAPM problem, Theore.1 in Appendix A.1 allows one to characterize the null
distribution of LR for all error distributions which satisfy (2.8), as follows.



Theorem 3.1 DISTRIBUTION OF THE QUASFLR CAPM TEST STATISTIC Under (2.2), (2.3
and(2.8), the LR statistic defined k8.12) is distributed like

LW)=T In (|WMW|/|W'MW]|)
where
M=I-XX'X)"'X', My=M+X(X'X)"'"H'HX'X)"'H""HX'X)"'X/,
H is the row vecto(1, 0) andW = [Wq, ..., Wr]'.

In the present case, we hav& = I —7y (7w'Tm) 1 7},. Note that Theoreri.1also allows one
to characterize the null distribution of LR in multi-beta efficiency tests problems. In other words,
we can also use it to tesl in the context of

S
Tit:ai—l—iji?’jt—i—uit, t=1,...,T,i=1,...,n, (313)
j=1
where7;; = Rj; — RF andR;;, j = 1, ..., s, are returns ors benchmark portfolios. In this
case, the null distribution of the statistic defined by (3.12) obtains as in Thehdewhere X =
lvr, T, oo, Ts), 75 = (14, ..., T1;)’, andH is the(s+1)-dimensional row vecta(l, 0, ... , 0).

It is of interest to relate Theore® 1 to the available non-asymptotic tests of mean-variance
efficiency,i.e.: (i) the GRS test, and (ii) the simulation-based test proposed by Zhou (1993). When
errors are gaussian afid— s — n > 1, Theorem3.1and (A.4) entail that

(T'—s—n)

- (A=1)~F(n, T—s—mn),

which yields the Hotelling™ test proposed by MacKinlay (1987) and Gibbons et al. (1989). Specif-
ically, GRS suggest the following test statistic:

~1—1
zwﬂ%#ﬂ &
Q:

_ (3.14)
1+7 AT
whereq is the vector of intercept OLS estimates, . 2 is the OLS-based unbiased estimatoshf

7 and A include respectively the time-series-means and sample covariance matrix corresponding

to the right-hand-side portfolio returns. Under (2.8) follows the Hotelling 72(n, T — s — 1)
distribution or equivalently,

(T'—s—mn)

a?j;jﬁQNPw%T—s—m (3.15)



where() and A are related by a monotonic transformation:

Q

N—1=—-—""—":
T—s—1"

(3.16)
see Stewart (1995, 1997). We thus see that GRS'’s results follow from Th&atemder the special
case of normal errors.

To the best of our knowledge, the first study proposing useful finite-sample tests of mean-
variance efficiency within a non-gaussian MLR is due to Zhou (1993), who reconsidered the GRS
problem in models with elliptical distributions. In this context, Zhou demonstrates exact loca-
tion/scale invariance of the GRS-type efficiency test statistic and exploits this property to approxi-
mate the relevant critical value by simulation (in applications, Zhou used 10000 replications). From
TheorenB.1, we see that the required pivotality property holds under conditions much more general
than elliptical symmetry. Further, from the general theory of Monte Carlo tests (Appendix B), we
observe that the size of a simulation-based test cguebfectly controlledeven with a very small
number of Monte Carlo replications (provided it is implemented in the right way): for example,
19 replications are sufficient to obtain a test of size .05, although of course larger number of repli-
cations can also be employed [such3as59, 79, 99, 119, ... ,for a test of size .05]. For power
considerations, there is in principle an advantage in using a larger number of replication, but the
power gain from using a number of replications larger than 100 or 200 is typically small; for further
discussion and evidence on this issue, see Dwass (1957), Jockel (1986), Dufour, Farhat, Gardiol and
Khalaf (1998), Dufour (2002) and Dufour and Khalaf (2602002).

Another problem _ which is not solved by Zhou (1993) or the above results _ consists in testing
mean-variance efficiency when the error distribution has nuisance parameters which do not dis-
appear from the null distribution of the test statistic. TheoRfsimply ensures location-scale
invariance i.e., invariance toB and X)), which yields pivotality (forv given) and allows the re-
alization of an exact MC test. However,iifis not specified, it will typically appear in the null
distribution of the test statistic. We consider this case in the next section. Our empirical results
illustrate the importance of formally accounting for such unknown parameters (see Section 6).

4. Mean-variance efficiency tests with an incompletely specified error
distribution

In this section, we extend the above results to a case where the error distribution involves a nuisance
parameter, namely (2.11). At this stage, two points deserve notice. First, o given, the
distributional assumption (2.11) is covered by (2.8). Egt(vo) be the conjunction ofio and

v = vg. Then the MCp-value provided by Theorer®.1is exact for the null hypothesiE(v)
provided the corresponding distributicdfi(v) is used to perform the simulations of the MC test.
Second, whether is viewed (from an empirical perspective) as a parameter of interest or a nuisance
parameter, it is important, for test validity, to devise a decision rule which takes this parameter into
consideration. Otherwise, level control is not assured.



4.1. Two-stage constrained maximized Monte Carlo test

Here we propose a solution based on the finite-sample approach described in Dufour and Kiviet
(1996). The method involves two stages: (1) an exact confidence set is buijtdod (2) the MC
p-value presented above is maximized over all the valuesinfthe confidence set. We will refer
to the latter test as a maximized MC [MMC] test. It is important to note that if a test withdeigel
desired, then the pre-test confidence set and the MMC test should be applied with levelsand
ag, respectively, so that = a1 + as. In the empirical application considered next, we use=
ag = af2.

For any confidence set with levél— «; for v which we will denoteC(Y') whereY refers
to the return data [as in (2.4)], the maximized MC algorithm proceeds as follows. On applying
Theorem3.1 and the MC algorithm in Appendix B.1, we can obtain for eackk C(Y) a MC
p-valuepy (Ao|v) [see (B.1), in Appendix B.1]. If we set

Qu(v) = sup pn(Aolv), (4.1)
veC(Y)
then the critical region
Qu(v) < az (4.2)

has level; + ay. The associated test is conservative in the following sense: if in@egd) < as
for the sample at hand, then the test is certainly significant atdevely; + «s.

Since a procedure to derive an exact confidence set femot available, we provide one in
what follows. The maximized MC procedure just presented is however not specific to our proposed
confidence set. Observe that, in principle, the confidena&¥etmay not be a bounded confidence
interval. For proofs and further references, see Dufour (1990), Dufour and Kiviet (1996) and Dufour
(2002).

4.2. Confidence set for error distribution parameters

We now discuss the set estimation method we propose to abt&in Given the recent literature
documenting the dramatically poor performance of asymptotic Wald-type confidence intervals [see
for example Dufour (1997), Staiger and Stock (1997), Wang and Zivot (1998)], we prefer to build a
confidence set by “inverting” a test for the null hypothesis (2.11) wheter for knownv.

In Section 5.1, we describe a moment-based method for testing any given value @&.11).
But our proposed set estimate fois however not specific to the latter test, so we presentitin terms
of an arbitrary test with levek; for (2.11) and based on a given criterion dencléd”), whereY
refers to the return data [as in (2.4)].

The “inversion” of the tes? (V") is performed as follows. LeIy(Y') denote the value of the
statistic computed from the observed sample. Obtaimpthalue p(7o(Y")|vo) conforming with
(2.11). For the GF tests described below, this is achieved on applying MC test techniques. The
confidence set far corresponds to the valuesmaf which are not rejected by the tesg. for which
p[To(Y)|vo] > ai.

Itis useful to compare our confidence set MC test with Zhou (1993)’s test. This author considers

10



the multivariate skewness and kurtosis criteria proposed by Mardia (1970) and argues that these cri-
teria may serve to test for departures from (2.11), if cut-off points are appropriately “approximated”,
e.g. by simulation, assuming (2.11). In view of this, he estimatess follows: a few values are
retained by trial-and-error techniques (no further details are provided); then skewness and kurtosis
tests are applied which confirm that the values retained do not yield significant lack-of-fit.

Although concerns regarding the possible conservative character of our inference procedure
may not be ruled out, our proposed confidence set is definitely an improvement over available trial
and error methods. From the results of our empirical analysis, we do observe that the estimated
confidence sets are wide, yet the associated efficiency test decision is not adversely affected.

5. Exact diagnostic checks

In this section, we propose multivariate specification tests, including distributional goodness-of-
fit tests and checks for departures from the hypothesid.df errors. We present in turn exact
multivariate GF tests (for a given error distribution), tests for multivariate GARCH effects and
multivariate variance ratio (VR) tests. The proposed tests are formally valid for any parametric
error model consistent with (2.8). Such procedures have not apparently been proposed in the earlier
literature on the statistical analysis of MLR models. In conformity with our empirical model, we
focus on (2.11) with possibly unknown parameters.

5.1. Goodness-of-fit tests

The null hypothesis of concern here is (2.11) withunspecified. We will solve the unknown
problem by applying a MMC strategy, as follows. We propose a GF criterion which is pivotal
whenv is specified by the null hypothesis and thus allows to easily obtain aM&ue givenv.
The GF test is considered significant if the largest M€alue overall relevant values ofis less
than or equal to the desired significance level. The MMC approach allows one to (jointly) assess
whether Student distributions with different degrees of freedom are empirically relevant; this leads
to a formal estimate for the Student distributions which are consistent with the data. The argument
also holds for multivariate mixtures.

To test the goodness-of-fit of alternative disturbance distributions, we reconsider the multivariate
skewness and kurtosis criteria used by Zhou (1993):

1 T T )
SK = =Y > d, (5.1)
s=1 t=1

1 T
KU = > dy, (5.2)

t=1

whered;; are the elements of the matrix

D=U'S T = TUED) T (5.3)



These statistics were introduced by Mardia (1970) to assess deviations from multivariate normality,
in models where the regressor matrix reduces to a vector of ones (the location-scale model). Zhou
proposed to use them as well to test elliptically symmetric distributions, without however providing
a finite-sample theory for their application to least squares residuals from MLR models _ a limitation
pointed out by Zhou (1993, p. 1935, footnote 5) himself.

In order to obtain provably valid: F' tests in MLR models, we shall use the following charac-
terization of the distribution of K and KU statistics in MLR models.

Proposition 5.1 DISTRIBUTION OF THE MULTIVARIATE SKEWNESS AND KURTOSIS TEST
STATISTICS. Under(2.4), and for all error distributions compatible witf2.8), the multivariate
skewness and kurtosis criterf&.1) and (5.2) are distributed, respectively, likg, Zthl ZiT:1 d3,
and X "7, d7,, whered,, are the(s, t)-th element of the matrik = MW (I/V’J\ZJ\ZI/V)_1 W'M,
M= (1)T)[I - X(X'X)"'XJandW = [W1, ..., W]

The proof of latter proposition is given in Appendix B.2. This proposition shows that the statis-
tics SK and KU follow null distributions without nuisance parameters. In the literature on multi-
variate normality tests, this property is recognized (under normality) in models where the regressors
reduce to a vector of ones. Propositior entails that nuisance parameter invariance holds even
though residuals (rather than observable variables) are used to construct the skewness and kurtosis
statistics. This implies that the MC tests method can be straightforwardly applied to test any dis-
tributions compatible with (2.8), including the normal. Before implementing these tests, we shall,
however, consider two further adjustments: (1) a simulation-based “centering” of the test statistics;
(2) a formal procedure for combining them into a single test.

The statisticsS K and KU are not unbiased estimators of the relevant moments, especially for
non-normal distributions. To avoid corresponding biases (and power losses) in the tests based on
these statistics, it appears desirable to “center” the test statistics with respect to their mean under
the error distribution tested. Further, such a centering can simplify the construction of two-sided
tests (which are relevant in the present problem). We thus propose the following modification: we
consider alternative measures of skewness and kurtosis in excess of expected values consistent with
(2.11). Forv given, our modified tests are pivotal under the null hypothesis which justifies an MMC
test technique, maximizing overall We next propose an exact combined skewness-kurtosis test.
Our proposed modified statistics take the following form:

ESK(V()) = ‘SK—ST(Vo)l, (54)
EKU(vo) = |KU-KU(v)|, (5.5)

where SK (vg) and KU (v) are simulation-based estimates of the expe&é&dand KU given

(2.11). These may be obtained, given by drawing Ny samples ofl" observations from (2.11),

then computing the corresponding average measures of skewness and kurtosis; see Apperfdix B.2.1.
To obtain an exact test based on these criteria, we apply the MC technique [as described in

Appendix B.1]. Note that the observed and simulated statistics have to be obtained conditional

°For the Gaussian case, one may §9€ = 0 and KU = n(n + 2); see Mardia (1970).
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on the sam&'K (v9) and KU (vy); see Appendix B.2.2 for further details. This ensures that they
remain exchangeable, which provides, along with Proposgiénthe necessary conditions for the
validity of the MCp-values in B5; see Dufour (2002).

This procedure allows to obtain size correct individpalalues for each test statistic. The
problem of combining the skewness and kurtosis tests remains unanswered. To avoid relying on
Boole-Bonferroni rules, we propose the following combined test statistic, which may be used for
all null hypotheses underlying Propositibri:

CSK =1—min {p(ESK (vo)|vo), p(EKU (vo)|vo) } (5.6)

where the subscripV¥ (previously used in the notation for the individual M&/alues) is suppressed

to simplify notation. The intuition underlying this combined criterion is to reject the null hypothesis

if at least one of the individual tests is significant; for convenience, we subtract the miniraalme

from one to obtain a right-sided test. The MC test technique may once again be applied to obtain a
test based on the combined statistic; details of the algorithm can be found in Appendix B.2.3. For
further reference on such combined tests, see Dufour and Khalafdg @Zour, Khalaf, Bernard

and Genest (2001) and Dufour and Khalaf (2€)02

5.2. Multivariate tests for GARCH effects and variance ratio tests

We now consider tests for departure framd. errors, specifically, tests for GARCH effects and
variance ratio tests. If one pursues a univariate approach, these standard tests may be applied to
each equation in the system (2.2). For instance, the Engle GARCH test statistic for equation
which we will denoteE; is given by T R?, whereT is the sample sizeR? is the coefficient of
determination in the regression of the equation’s squared OLS resitfuatsa constant an@l(zt_j)ﬂ.
(j=1, ..., q); see Engle (1982) and Lee (1991). Lee and King (1993) proposed an alternative
test which exploits the one-sided naturefHf. The test statistic is

T q T 1/2
{(T— q) [(a3,/57 = 1)] Z@?,tj} /{ > (a3,/67 — 1)2}
t=q+1 j=1

t=q+1

. . 2 . . 2
(T—q) > Uig—j | — > Ui t—j
t=q+1 \j=1 t=g+1 \j=1

wheres? = L ST, 42, and its asymptotic null distribution is standard normal. The variance ratio
test statistic [ Lo and MacKinlay (1988, 1989)] is:

LK; = (5.7

172

J .
I\ A
VR =142 (1—=)p,; 5.8
+ j:l( 7D (5.8)
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where

U’LL
pij = Lyt S =1 (5.9)

Zt 1 “n

are empirical residual autocorrelations. The latter statistic estimates the ratio

V(Ui — Ui g—)
JV ()

whereV(u;: — ;¢ s) is the variance of the lag differencés — 4, ;— s, andV(4,) is the residual
variance. In a single equation perspective, undet. errors,V(u;; — u;¢—y) is J timesV (),

hence deviations from a ratio of one are considered evidence against the null hypothesis. The
asymptotic null distribution of this statistic is

asy

VR; —1 '~ N[0, 2(2J — 1)(J — 1)/3J] . (5.10)

In Dufour, Khalaf, Bernard and Genest (2001), we showed that the Engle and Lee-King test criteria
are nuisance-parameter-free under the homoskedasticity hypothesis, in a single equation setting.
We establish the same property in the case of the variance ratio test in Dufour and Khalai.(2002
This ensures that the MC versions of these tests are valid univariate tests (and preferred to the
asymptotic tests). However, it is well known that such univariate tests may not be appropriate in
multivariate regressions. This is mainly due to two statistical problems. First, as pointed out above,
the error covariance, which appears as a nuisance parameter, is typically not taken into consideration
if a series of univariate tests are applied. Second, the problem of combining test decisions overall
equations is not straightforward, since the individual tests are not independent. For further useful
insight on this problem in finance, see Shanken (1990).

In view of this, we considerme following multivariate modification of these tests [see Dufour,
Khalaf and Beaulieu (2001)]. Lé¥;; denote the elements of tistandardized residualsatrix

W =UU'U)"/? (5.11)

where(U'U )~1/2 refers to the inverse of a Cholesky-type decompositiot/tif . Obtain standard-
ized versions of the univariate Engle, Lee-King and variance ratio test, deﬁgtﬁ{i andﬁi,
replacingi;; by W;; in the formula for these statistics. In Dufour, Khalaf and Beaulieu (2001) we
show that for all error distributions compatible with (2.8), has a distribution which is completely
determined by the distribution 6% given X. Hence any statistic which depends on the data only
throughW has a distribution which is invariant 8 and >, under (2.8). It follows that under (2.8),
thejoint (across equations) null distributions B, LK andVR do not depend o3 and .

To obtain combined inference across equation, we propose a combination method similar to the
one we used in Section 5.1. The combined statistics are:

E = 1- 115121 [p(E )], (5.12)
LK = 1 —11212 [p(LK )] (5.13)
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VR=1- min. [p(VR;)], (5.14)
wherep(Ei), p(ﬁ(i) andp(f/\éi) refer top-values; these may be obtained applying a MC test
method, or using asymptotic null distributions (to cut execution time). Then apply a MMC test pro-
cedure to the combined statistic imposing (2.11). In Appendix B, we provide a MMC test algorithm
for any criterion which is a pivotal function of andW, where the distribution of/” depends on
the parameter. We use the same confidence set#aas in the MMC mean-variance efficiency
test. The overall procedure remains exact even if approximate individualues are used, if the
p-value of the combined test is obtained applying the MMC technique. Indeed, the property under-
lying exactness is joint pivotality, which was achieved by using standardized residuals.

6. Empirical analysis

Our empirical analysis focuses on mean-variance efficiency tests of the market portfolio [formally,
tests of (2.3) in the context of (2.2)] with different distributional assumptions on stock market re-
turns. We use nominal monthly returns over the period going from January 1926 to December
1995, obtained from the University of Chicago’s Center for Research in Security Prices (CRSP).
As in Breeden, Gibbons and Litzenberger (1989), our data include 12 portfolios of New York Stock
Exchange (NYSE) firms grouped by standard two-digit industrial classification (SIC). Table 1 pro-
vides a list of the different sectors used as well as the SIC codes included in the atfallysis.
each month the industry portfolios comprise those firms for which the return, the price per com-
mon share and the number of shares outstanding are recorded by CRSP. Furthermore, portfolios
are value-weighted in each month. In order to assess the testable implications of the asset pricing
models, we measure the market return by the value-weighted NYSE returns, also available from
CRSP. The risk-free rate is measured by the one-month Treasury Bill rate, also from CRSP.

Our results are summarized in Tables 2 and 3. All MC tests where applied with 999 replications.
As usual in this literature, we estimate and test the model over intervals of 5%ealsreport in
columns (1)-(3) of Table 2, thg-values of the exact multi-normality tests basedrofiK, EKU
andCSK (see Section 5.1). These tests allow us to evaluate whether observed residuals exhibit
non-gaussian behavior through excess skewness and kurtosis. For most subperiods, normality is
rejected. These results are interesting since, although it is well accepted in the finance literature that
continuously compounded returns are skewed and leptokurtic, empirical evidence of non-normality
is weaker for monthly data; for instance, Affleck-Graves and McDonald (1989) reject normality in
about 50% of the stocks they study. Our results, which are ekagtqannot reject spuriously),
indicate much stronger evidence against normality. This also confirms the results of Richardson and
Smith (1993) who provide evidence against multivariate normality based on asymptotic tests; see
also Fiorentini, Sentana and Calzolari (2000). Of course, this evidence provides further motivation
for using our approach to test mean-variance efficiency under non-gaussian errors.

1ONote that as in Breeden et al. (1989), firms with SIC code 39 (Miscellaneous manufacturing industries) are excluded
from the dataset for portfolio formation.

1we ran the analysis with October 1987 and January returns over 5 and 10 year subperiods as well as without those
observations over 10 year subperiods. Our results are not significantly affected by such modifications.
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Table 1. Portfolio definitions

Portfolio number Industry Name Two-digit SIC codes
1 Petroleum 13, 29
2 Finance and real estate 60-69
3 Consumer durables 25, 30, 36, 37, 50, 55, 57
4 Basic industries 10, 12, 14, 24, 26, 28, 33
5 Food and tobacco 1, 20, 21,54
6 Construction 15-17, 32,52
7 Capital goods 34, 35, 38
8 Transportation 40-42, 44, 45, 47
9 Utilities 46, 48, 49
10 Textile and trade 22,23, 31, 51, 53, 56, 59
11 Services 72,73,75, 80, 82, 89
12 Leisure 27,58, 70, 78,79

Note _ This table presents portfolios according to their number and sector as well as the SIC codes included
in each portfolio using the same classification as Breeden et al. (1989).

In columns (4)-(7) of Table 2, we present the LR statistics for mean-variance efficiency, the
corresponding asymptotip-values obtained from the asymptofié(n — 1) distribution(ps, ), the
exact gaussian-based Mvalues(py), and the maximized M@-values based on the Student-
t error model(Q). The confidence sef(Y") for the number of degrees of freedamappears
in column (8). These results allow one to compare rejection decisions across different distribu-
tional assumptions on the returns of the 12 portfolios. Similarly in columns (1)-(5) of Table 3,
we report our set estimates ofandw; for presentation simplicity, the confidence region is sum-
marized as follows: we give the confidence setdocorresponding to five different values of
[* = 0.1, 0.2, 0.3, 0.4, 0.5]. Column (6) of Table 3 present the largest mixture-of-normals based
MC p-values associated with the efficiency LR statistic [reported in column (4) of Table 2]. This
empirical evidence shows that asymptgsizalues are quite often spuriously significaetq, for
1941-55). Furthermore, the maximabalues exceed the gaussian-bagealue. It is “easier” to
reject the testable implications under normality. Conversely, recall that the gaussian model obtains
ask — oo. So, if py exceeds the significance level, the largestalue a fortiori also exceeds
the significance level. Thus the decision implied by a non-significant gaugsialue is exactly
conclusive i e., there is no need to reconsidebased-values ifps fails to reject). For instance, at
the 5% level of confidence, we find ten rejections of the null hypothesis for the asymyptotit)
test, nine for the MG-values under normality, six for the MC under the Studedistribution and,
as shown on the last column of Table 3, seven under the mixtures of normal distriddtibnese

20ur tests for MC p-values under the Student and mixtures of normals distributions are joint tests for nuisance param-
eters consistent with the data and the mean-variance efficiency hypothesis. Since we have attributed a level of 2.5% to the
construction of the confidence set, to establish a fair comparison with the MC p-values under the normality assumption or
the asymptotic p-values, we must refer the p-values for the efficiency tests under the Student and the mixtures of normals
distributions to 2.5%.
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Table 2. Normality and mean-variance efficiency tests

Normality tests Tests ofHo

) @& @O 4) G [ ® | 7O 6
Sample| SK KU CSK | LR Poo oy | Qu  C(Y)
1927-30( .001 .001| .001 | 16.104| .1866| .364 | .357 3-12
1931-35( .001 .001| .001 | 16.257| .1798| .313| .322 3-8
1936-40| .001 .001| .001 | 16.018| .1904| .319| .333 4-26
1941-45( .004 .002| .004 | 25.869| .0112| .045| .049 >5
1946-50| .001 .001| .001 | 37.196| .0002 | .003| .004 4-26
1951-55( .001 .002| .001 | 36.510( .0003| .004 | .005 5-31
1956-60| .024 .003| .003 | 43.841| .0000(| .002| .002 >5
1961-65( .594 .479| .631 | 39.098| .0001( .002| .002 >7
1966-70| .011 .002| .004 | 36.794| .0002| .003| .003 >5
1971-75( .001 .002| .001 | 21.094| .0490( .120| .129 4-24
1976-80| .001 .001| .001 | 28.373| .0049( .023| .026 4-17
1981-85( .001 .001| .001 | 27.189| .0073| .033| .035 5-34
1986-90( .028 .020| .030 | 35.747| .0007 | .003| .005 >5
1991-95| .177 .311| .239 | 16.752| .1592| .299| .305 > 15

Notes _ Numbers in columns (1)-(3) represpalues for multinormality tests: numbers in (1)-(2) pertain

to the null hypothesis of respectively no excess skewness and no excess kurtosis in the residuals of each
subperiod. The-values in column (3) correspond to the combined statiSiftK designed for joint tests

of the presence of skewness and kurtosis; individual and joint statistics obtain applying (5.5), (5.5) and (5.6)
given multivariate normal errorg-values are MC pivotal statistics based. Column (4) presents the quasi-
LR statistic defined in (3.12) to ted [see (2.3)]; columns (5), (6) and (7) are the associatedlues

using, respectively, the asymptop(@(n) distribution, the pivotal statistics based MC test method imposing
multivariate normal regression errors, and an MMC confidence set based method imposing multivayiate
errors which yields the largest Mg value for allx within the specified confidence set. The latter is reported

in column (8). See Section 4.2 for details on the construction of the confidence set: the vaiuiestiois

set are not rejected by the joint test GF test associated with (5.6) under multivariate Stedems. See
Appendix B for description of MC tests. January and October 1987 returns are excluded from the dataset.
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Table 3. Tests of mean-variance efficiency with multivariate normal mixture errors

Confidence set for, w LR
1) (2) (3) (4) ®) | 6
Sample| r=.1 7=2 7#=3 nm=4 7n=.5|Qu
1927-30| >1.7 1.6-2.8 1.6-25 1.6-25 1.6-2/6.382
1931-35| >2.1 1.9-3.0 1.9-2.7 19-2.7 2.1-3/0.313
1966-40| 1.5-3.5 1.4-2.3 1.4-20 1.5-2.2 1.4-20328
1941-45| 1.3-3.0 1.3-2.1 1.3-1.9 1.3-2.0 1.3-1,9043
1946-50| 1.5-3.5 1.4-2.2 1.4-20 1.4-23 1.4-2.0003
1951-55| 1.4-35 1.4-22 1.4-20 1.3-2.1 1.4-2.0003
1956-60| 1.3-2.8 1.2-2.0 1.2-1.9 1.0-1.9 1.2-1.9002
1961-65| 1.0-2.2 1.0-1.7 1.0-1.5 1.0-1.5 1.0-1.5002
1966-70| 1.3-2.8 1.3-2.0 1.3-1.9 1.3-1.8 1.2-1,9002
1971-75| 1.5-35 1.5-22 1.4-20 1.4-2.2 1.4-2.Q128
1976-80| 1.6-4.0 15-25 1.5-22 1.5-24 1.5-23022
1981-85| 1.4-35 1.4-22 1.3-20 1.4-21 1.4-24030
1986-90| 1.1-3.0 1.1-2.0 1.1-19 1.0-1.9 1.1-1,7004
1991-95| 1.0-1.9 <15 <13 1.0-14 1.0-1.3 .306

Note _ Numbers in columns (1)-(5) represent a confidence set for the parafmeter$ [respectively, the
probability of mixing and the ratio of scales] of the multivariate mixtures-of-normal error distribution. See
Section 4.2 for details on the construction of the confidence set: the values af) in this set are not
rejected by the joint test GF test associated with (5.6) under multivariate mixture errors. The maximum of
thep-value occurs in the closed interval for Column (6) presents a MM@-value relative to the quasi-LR
statistic defined in (3.12) to tedl~ [see (2.3)]; the observed values of this statistic are reported in Table 2,
column (4). The MMCp-value is the largest M@-value for all(7, w) within the reported confidence set.

The maximum of the-value occurs in the closed interval for See Appendix B for description of MC tests.
January and October 1987 returns are excluded from the dataset.
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findings differ from those of Zhou (1991), who found no change in rejection rates of mean-variance
efficiency using elliptical distributions other than the normal. This difference can be explained
by the fact that Zhou did not explicitly account for nuisance parameters. Interestingly, whenever
the results obtained under non-gaussian distributions differ from those obtained under the gaussian
distribution, the gaussian distributional assumption is strongly rejected.

Our results clearly indicate that GRS-type tests are sensitive to the hypothesized error distri-
bution. Of course, this observation is relevant when the hypothesized distributions are empirically
consistent with the data. Focusing on thend mixture distributions with parameters not rejected
by exact GF tests, we see that the decision of the MMC mean-variance efficiency test can change
relative to theF’-based test.

Figures 1 to 14 illustrate how thevalue varies overall (Y) for the ¢-distribution. Although
C(Y) is quite wide, it is evident from Figures 1-14 that restricting this set further does not have a
strong influence on the decision. Specifically, thealues do not seem to fluctuate a lot throughout
C(Y), atleast in this application.

It is usual to aggregate the efficiency test results overall subperiods, in some manner. For in-
stance, Gibbons and Shanken (1987) propose two aggregate statistics which, in terms of our nota-
tion, may be expressed as follows:

14 14
GS =23 In(pnlil) . G2 =37 (pwli) (6.1)
j=1 J=1

where[j] refers to the sub-periods, a#d ! (.) provides the standard normal deviate corresponding
to par[j]. If the mean-variance efficiency hypothesis holds across all subperiodstfien-
x2(2 x 14) whereasS, ~ N(0, 14). It is worth noting that the same aggregation methods can
be applied to our test problem even under (2.11) by replacing, in (&)] with Qy(;, the MMC
p-values obtained imposing (2.11). Indeed, as is observed by Gibbons and Shanken (1987), the
F-distribution is not necessary to obtain the null distribution of these combined statistics. All what
is needed is a continuous null distribution (a hypothesis satisfied given normal, Stodemniture
errors) and, of course, independence across subperiods. Our results, under normal,t Stodent
mixture errors respectively, aré&:S; = 102.264, 101.658 and 105.464 and/Sy = 28.476, 28.397
and28.476; all associate@-values are smaller thaf000. If independence is upheld as in Gibbons
and Shanken (1987), this implies that mean-variance efficiency is jointly rejected with od? data.
Finally, Table 4 presents the results of our multivariate exact diagnostic checks for departures
from thei.i.d. assumption, namely our proposed multivariate versions of the Engle, Lee-King and
variance ratio tests; we use 12 months-I&g3he results show very few rejections of the null hy-

13Note that even if one questions independence and prefers to combine using Bonferroni-based criteria, the smallest
p-value is .002 which when referred 1025/14 ~ .002 comes close to a rejection. In the context of a MC with 999
replications, the smallest possible p-values are .001, .002 and so on so forth. To allow a fair Bonferroni test, it is preferable
to consider the leveD28/14 = .002. This means that in every period, the pre-test confidence set should be applied with
a1 = 2.2% to allow 2.8% to the mean-variance efficiency test. The results reported in the above Tables are robust to this
change of levels.

14We have also run univariate diagnostic checks. For space considerations, we only report the multivariate results.
Note that the univariate test results are available upon request.
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Figure 1: MC GRS test (excluding January), 1927—-30

Figure 2: MC GRS test (excluding January), 1931-35
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Figure 4: MC GRS test (excluding January), 1941—45
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Table 4. Multivariate diagnostics

Normal errors Studentt errors Mixture errors
B @ @ 6 ® | 0O 6
Sample| £ LK VR| E LK VR| E LK VR
1927-30| .001 .356 .004 .013 .301 .004 .155 .335 .004
1931-35| .022 .748 .069 .082 .659 .066 .208 .671 .080
1936-40| .075 .612 .855 .124 587 .867 .150 .672 .864
1941-45| .824 979 .163 .843 .982 .177] .831 .979 .175
1946-50| .003 .804 .063 .017 .784 .068 .029 .772 .072
1951-55| .139 .353 .111 .168 .321 .120 .190 .326 .120
1956-60| .987 .628 .093 .994 .628 .095 .996 .625 .099
1961-65| .339 .207 .577| .375 .195 .584 .344 .207 .592
1966-70| .027 .274 .821] .043 .278 .847| .065 .288 .846
1971-75| .280 .224 .218 .316 .212 .224 .326 .207 .217
1976-80| .004 .011 .165 .016 .013 .183 .043 .009 .184
1981-85| .027 .103 .208 .050 .103 .217) .081 .095 .223
1986-90| .033 .453 .346 .077 .442 .366 .089 .455 .357
1991-95| .803 .236 .088 .821 .237 .092 .816 .252 .092

Note _ Numbers shown agevalues associated with the combined teEtiK andVR defined by (5.12),

(5.1 13) and (5.14) .E and LK are multivariate versions of Engle’s and Lee and King's GARCH tests and

V R is a multivariate version of Lo and MacKinlay’s variance ratio tests; see Section 5.2. In columns (1)-(3),
thep-values are MC pivotal statistics baseelyalues in columns (4)-(9) are MMC confidence set based. The
relevant 2.5% confidence set for the nuisance parameters is reported in Table 2, column (8) for the multivariate
Studentt distribution, and in Table 3, columns (1)-(5) for the multivariate mixture-of-normals distribution.
See Appendix B for description of MC tests. January and October 1987 returns are excluded from the dataset.

pothesis both at the 1% and 5% level of significance. This implies that, in our statistical framework,
i.i.d. errors provide an acceptable working assumption.

7. Conclusion

We have shown that in gaussian or non-gaussian contexts, the exact test procedure proposed in
Dufour and Khalaf (200@ may be used to perform a mean-variance efficiency test of the market
portfolio. We have specifically illustrated how to deal in finite samples with Studentrs and
multivariate mixtures of normals, with possibly unknown parameters.

Our empirical results are important for assessing the reliability and empirical performance of
the CAPM. It appears that the normality assumption is too restrictive given the observed finan-
cial return data, even with monthly data. First, while our exact multivariate GF tests conclusively
reject normality, Student-or mixtures-of-normals are consistent with our data. Furthermore, we
show that mean-variance efficiency exact tests which formally take these non-normal distributions
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into consideration fail to reject mean-variance efficiency for 3 out of 9 subperiods for which the
gaussian-based test is significant. It appears that the distributional set-up is crucial when testing
mean-variance efficiency. This suggests that more work is needed from a theoretical perspective to
better circumscribe the necessary and sufficient distributional hypotheses underlying fundamental
asset pricing models.

Although we focused on mean-variance efficiency tests, it is worth emphasizing that our pro-
posed methodology applies to several interesting asset pricing tests including many problems where
the Hotelling test [exploited by GRS and MacKinlay (1987)] and R&otest [see Stewart (1997)
and (A.4) in Appendix A.1] have been used. Although, in view of its fundamental importance,
mean-variance efficiency is one of the first and very few MLR-based problems which have been
approached from an exact perspective, a few authors have recognized that hypotheses dealing with
the joint significance of the coefficients o regression coefficients across equations can also be
tested exactly applying RaoS test. Examples include inter-temporal asset pricing tests in Shanken
(1990, footnote 18). Furthermore, as discussed in Shanken (1996), econometric tests of spanning
fall within this class. Indeed, spanning tests [see Jobson and Korkie (1989), Kan and Zhou (2001)]
may be written in terms of a model of the GRS form. The hypothesis is however more restrictive,
in the sense that over and above the restriction on the intercepts, the betas for each regression are
required to sum to one. These hypotheses fit into our UL framework. The results in this paper
extend available exact tests of these important financial problems beyond the gaussian context.

The fact remains that the results presented in this paper are specific to UL hypotheses. Recall
that not all linear hypotheses may be cast in this form. We study extensions to non-linear problems
including tests of Black’s version of the CAPM in Beaulieu et al. (2001). Finally, we note that an
apparent shortcoming of our exact tests comes from the fact that the right-hand-side benchmark
may be observed with errors. The development of exact tests which correct for error-in-variable
problems is an appealing idea for future research.
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Appendix

A. Appendix: Finite-sample distributional theory

The results in this Appendix pertain to any asset pricing model which may be cast in terms of the
MLR given by (2.4) and (2.8).

A.1. General uniform linear restrictions tests

In this section, we discuss the testing of constraints on regression coefficients of the UL form (2.6).
On observing that (2.6) corresponds(6’ ® H) vec(B) = wvec(A), it is clear that not all linear
hypotheses can be cast in the UL form. The associated gaussian quasi-LR statistic is:

LR =T In(|%|/|2]) = T In(A) , (A1)

whereA = |5|/|2] and % is the constrained MLE of. The statisticA corresponds to the
inverse of the well known Wilks statistic. The following exact distributional results are proved in
Dufour and Khalaf (200d).

Theorem A.1 DISTRIBUTION OF THE QUASFLR UNIFORM-LINEAR HYPOTHESIS TEST
STATISTIC. Under(2.4), (2.8) and(2.6), the statistic

A=1Zl/|%] (A.2)
is distributed like
AW) = |EWMWE|/|E'W' MyWE| (A.3)
whereX,; and X are the constrained and unconstrained MLEXfIV = (Wi, ..., W,]and

My = M+XX'X)'H'[HX'X)'H|"'"HX'X)"'X',
M = I-X(X'X)'X.

For certain values of ande and normal errors, the null distribution reduces to Fhdistribu-
tion. For instance, ifnin(h, €) < 2, then

— 2\
WT(A”T —1) ~ F(he, pT — 2)) (A.4)
where
he —2 (e—h+1)
= — T _ A S
A P k . 7
r o= ((h2€2—4)/(h2+€2—5))1/2, ifh2+e2—-5>0,
1, otherwise.
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Further, the special cage= 1 leads to Hotelling’d ™ criterion which is a monotonic function of .

If h > 2ande > 2, then the distributional result (A.4) holds asymptotically [Rao (1973, Chapter
8)]. Stewart (1997) provides an extensive discussion of these spédedts. Of course, these
results are restricted to UL hypotheses of the form (2.8). However, beside this specific hypothesis
class, the null distribution of the LR statistic is not nuisance-parameter-free.

A.2. Invariance of lack-of-fit tests
Proof of Propositiors.1 On observing thall = MU andU = W.J’, we see that
vuo'o)T'v = MUU'MU)T'U'M
= MU YJOUMU) JIUM
= MU Y[ YU MUY T UM
= MW (WMW)'W'M.
Since (2.8) entails tha¥’ has a known distribution, it follows that(U’U) =10’ (and consequently

SK and KU) are completely determined by the distributiondf (given X). This is the same
method of proof which led to Theorefl.

B. Appendix: Monte Carlo tests

The Monte Carlo (MC) test procedure goes back to Dwass (1957) and Barnard (1963). Here we
summarize the underlying methodology (given a right tailed test), as it applies to the test statistics
we consider in this paper. A general discussion is available in Dufour and Khalaf (2001) and Dufour
(2002).

B.1. General method

Let us first consider the case of a pivotal statisiie, the case where the statistic at hand, say
S(y, X) can be written as a pivotal function &f [defined in (2.8)], formally

S(y, X)=SW, X),

wherelV is defined by (2.8), and the distribution of the rowd/fis known. This is the case where
the conditional distribution ob(y, X), given X, is completely determined by the mattk and
the conditional distribution ofV" given X .

1. LetSq) denote the observed test statistic.

2. By Monte Carlo methods, draw i.i.d. replications ofiV :

W =W, ., W], i=1,..., N
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3. From each simulated error matW(j), compute the statistics

Sj:S(W(j),X), j=1,...,N.
For instance, in the case of the QLR statistic underlying Theorerd -calculate
\W MW])\/] MOW()\,jzl,...,N.
4. Compute the M@-value )
R NGN(S(O)) +1
PN (S)) = Nl ; (B.1)

where

Z\H

N
]'7 .f €A7
gf[ooo Si—x), Ia(z) = {0’ ;figéA.

In other words,NGN(S(O)) is the number of simulated criteria S, and RN(S(O)) =

N — NGN(S(O)) + 1 gives the rank of ) in the seriesS(g), S1, ..., Sn-
5. The MC critical region is
ﬁN(S(O)) <o, O0<a<l. (B.3)
If a(N + 1) is an integer,
P(Ho) [ﬁN(S(O)) S a] = . (B4)

The above algorithm is valid for any fully specified distributio/f Consider now the case where
the distribution ofit” involves a nuisance parameter as in (2.11). In this case, givé 1) yields

a MC p-value which we will denotex (S(g)|v) where the conditioning om is emphasized for
further reference. The test definedy(S)|v) < ais exactly size corredfin the sense of (B.})
for knownv. Treatingy as a formal nuisance parameter, the test based on

sup [P (S()lv)] < a (B.5)
v E dg

where®, is a nuisance parameter set consistent i) is exact at leveky; see Dufour (2002).

Note that no asymptotics on the numbBénf MC replications is required to obtain the latter result;

this is the fundamental difference between the latter procedure and the (closely related) parametric
bootstrap method, which in this context would correspond to test baged (i, [70), whered is
anypoint estimate ofv. In Dufour and Khalaf (2008, we call the test based on simulations using

a point nuisance parameter estimateaal MC (LMC) test. The ternfocal reflects the fact that the
underlying MCp-value is based on a specific choice for the nuisance parameter. Furthermore, we
show that LMC non-rejections aexactlyconclusive in the following sense: jify (S(g)|70) > «,

then the exact test MMC test is clearly not significant at lexel
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B.2. MC skewness and kurtosis tests

The algorithm for implementing the MC skewness and kurtosis tests can de decomposed in three
wide steps.

B.2.1. Estimating expected skewness and kurtosis

Al. Draw N i.i.d.replications W) = [Wl(i), e VT/,(f)], i=1, ..., Ny, conforming with the
hypothesized distribution with = v .

A2. From each simulated error matﬂﬁ((,-), compute

_ _ -1 _ _
MW [W(z')MW(z‘)} WiyM, i=1,..., No.

These providéV; replications ofSK and KU, applying (5.1) and (5.2), namel;ﬁ?(i) and
KUg, i=1,..., No.

A3. Calculate the average values:

No No
SK(vo) => SK(/No, KU(vg)=>» KU /No.
=1 =1

Two questions arise at this stage: (i) how to obtain exact cut-off points for (5.4) and (5.5),
and (ii) how to obtain a size-correct simultaneous test which combines (5.4) and (5.5). Let us first
address the individual-values issue, which may be run as in Appendix B.1 above.

B.2.2. Individual excess skewness and kurtosis tests
Bl. LetESK o) andEK Uy, denote the observed test statistics.

B2. For a given numbeN; of replications, and independently from the simulation performed to
obtain SK (vo) and KU (vo) (i.e. step Al above), draw;, = [Wlm, L WY, =
1, ..., Ny, conforming with (2.9).

B3. From each simulated error mat#i¥,;,, compute

_ _ -1 _ )

MW {W(j)MW(j)} WM, j=1,..., N,
and, on applying (5.1) and (5.2); replications ofSK and KU SK(]-) andKU(j), j=
1 , N1.

g e

B4. Conditioning onSK (v¢) and KU () [generated only once as in steps A1-A3], obtain, ap-
plying (5.4) and (5.5)/V; replications ofESK andF KU :

ESK(jyandEKUg;), j=1, ..., N.

)
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B5. Obtain (respectively) the ranks ofESK and EKUg in the series
{ESK(O), ESK(l), ey ESK(Nl)} and {EKU(O), EKU(l), e EKU(Nl)} respec-
tively; applying (B.1), these yield the M@valuespy, (ESK g)|vo) andpn, (EKUg)|vo)-

B.2.3. Combined excess skewness and kurtosis test

C1. Using the functiorpy, (z|vo) obtained from the simulations performed over the steps B.2.1

and B.2.2, compute the observed value of the combined test statistic:

CSK () =1—min {ﬁNl(ESK(O)WO), PN, (EKU(0)|V0)} .

C2. GeneratéV i.i.d. replications ofS K and KU, independently of the values simulated over the
steps B.2.1 and B.2.2, and compute the corresponding excess skewness and kurtosis statistics:

ESK,q, EKUygy, 1=1,2,...,N. (B.6)

For each replication, the centering value& (vo) and KU (v,) are identical to the ones
generated in step B.2.1.

C3. Using the functiopy, (x|vo) already defined, compute the combined test statistics associated
with the statistics generated in the previous step:

CSK([) =1—min {ﬁNl(ESKl(l)|V0), ﬁNl(EKUl(l)’VO)} y l= 1, 2, ey N. (B?)

C4. Obtain the rank of the observed statiti6 ), within the simulated series, and derive the
corresponding-value, which we will denot@x (C'SK g)|vo) -

The null hypothesis is rejectedsify (C'SK g)|vo) < a. This test has levek because the vari-
ablesCSK(), | =0, 1, ..., N, are exchangeable under the null hypothesis. In the applications

presented in this paper, we used the vali¥gs= N1 = N.
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