The stock return-inflation puzzle and the asymmetric causality in stock returns, inflation and real activity Jeong-Ryeol Kim

Discussion paper 03/03 Economic Research Centre of the Deutsche Bundesbank

January 2003

The discussion papers published in this series represent the authors' personal opinions and do not necessarily reflect the views of the Deutsche Bundesbank.

Deutsche Bundesbank, Wilhelm-Epstein-Strasse 14, 60431 Frankfurt am Main, Postfach 10 06 02, 60006 Frankfurt am Main

Tel +49 69 95 66-1 Telex within Germany 4 1 227, telex from abroad 4 14 431, fax +49 69 5 60 10 71

Please address all orders in writing to: Deutsche Bundesbank, Press and Public Relations Division, at the above address or via fax No. +49 69 95 66-30 77

Reproduction permitted only if source is stated.

ISBN 3-935821-44-1

Contents

1	Introduction	2
2	Testing asymmetry	3
3	Empirical application	5
4	Concluding remarks	8
	References	9

Tables

Table 1	Estimates of coefficients for return-inflation regression	6
Table 2	Estimates for coefficients of regression for stock return and real	
	activity	7
Table 3	Test for asymmetric Granger-causality	7

The stock return-inflation puzzle and the asymmetric causality in stock returns, inflation and real activity *

Abstract

In this paper, we use a modified concept of Granger-(non)causality in reconsidering the negative correlation between stock returns and inflation known in the literature as stock return-inflation puzzle. Based on the quarterly data for Germany including stock returns, inflation rates and growth rates of gross domestic production, it turns out that the proxy causality between stock returns and inflation may be regarded as an asymmetric one, and the indicative role of stock returns may be also asymmetrically Granger-causal to the growth rates of gross domestic production.

Zusammenfassung

In der vorliegenden Arbeit soll das konventionelle Konzept der Granger-Kausalität modifiziert werden, um die negative Korrelation zwischen Aktienrenditen und Inflationsrate zu untersuchen, das in der Literatur als Rätsel der Aktienrendite-Inflation-Relation (bzw. Proxy-Hypothese) bekannt ist. Es zeigt sich auf der Grundlage deutscher Quartalsdaten für Aktienrendite, Inflationsrate und Wachstumsrate des Inlandsprodukts, dass die Proxy-Kausalität zwischen Aktienrenditen und Inflationsrate als eine asymmetrische Beziehung anzusehen ist. Darüber hinaus ist die führende Rolle der Aktienrendite für die Wachstumsrate der Inlandsprodukts ebenfalls als eine asymmetrische Beziehung zu betrachten.

JEL classification: C12, E44

Keywords:

Proxy hypothesis; Granger-causality; asymmetry; threshold; nonlinearity.

^{*} The views expressed in this paper are those of the author and not necessarily those of the Deutsche Bundesbank.

E-Mail: jeong-ryeol.kim@bundesbank.de, Tel.: +49 69 9566 4576, Fax: +49 69 9566 2982. The author thanks Heinz Herrmann for helpful comments. Research support from the Alexander von Humboldt Foundation is gratefully acknowledged.

1 Introduction

The basic Fisher hypothesis states that the expected nominal rate of return on asset is equal to expected inflation plus the real rate of return, where the ex ante real rate of return is independent of expected inflation. There is, however, little empirical evidence which supports a positive relation between ex ante nominal returns and expected inflation. In contrast to the Fisher hypothesis, many empirical studies has shown a significant negative correlation between stock returns and inflation known in the financial economic literature as a stock return-inflation puzzle. There have been many empirical studies in the financial literature to explain this anomaly. Fama (1981) explains this phenomena as a proxying for positive relations between stock returns and real variables, which is termed proxy hypothesis. Geske and Roll (1983) argue that the spurious causality between stock returns and inflation results from a combination of a reversed adaptive inflation expectations model and a reversed money growth/stock returns model. In line with the findings of Geske and Roll (1983), James et al. (1985) also perceive a reversed causality in the context of vector autoregressive moving average analysis. Kaul (1987) finds evidence indicating that the negative stock return-inflation relations are caused by money demand and counter-cyclical money supply effects. Using a multivariate VAR approach, Lee (1992) strengthens the empirical evidence of Fama and shows that stock returns explain real activity but not inflation, while interest rates explain inflation and inflation does not explain real activity. Balduzzi (1995) examines the proxy hypothesis based on a variance decomposition analysis and finds that production growth induces only a weak negative correlation between inflation and stock returns. He also finds a stronger covariance between inflation and interest rates than between stock returns and inflation. More recently, Gallagher and Taylor (2002) develop a theoretical model for testing the proxy hypothesis and conclude that real stock returns are strongly significantly negatively correlated with inflation purely due to supply innovation exactly as the proxy hypothesis states.

This paper considers the causal relations between stock returns and inflation as well as those between stock returns and the growth rate of gross domestic production. The main econometric method for analyzing causalities in the context of the proxy hypothesis is a refined version of Granger-causality, namely symmetric and asymmetric Granger-causality.

The rest of the paper is organized as follows: in Section 2 we provide definitions and econometric testing procedures for asymmetric Granger-causality. Section 3 provides an empirical analysis and its findings. Section 4 summarizes the paper and contains some concluding remarks.

2 Testing asymmetry

Non-linear regression analysis: Linear regressions as surveyed in the previous section are usually used for the analysis of proxy hypothesis. A non-linear regression is also a useful complementary for the analysis of proxy causality as follows:

$$y_t = \nu + ax_t + bI_{\{\Phi\}}(\Delta x_t), \tag{1}$$

where $I_{\{\Phi\}}(\Delta x_t)$ is defined as

$$I_{\{\Phi\}}(\Delta x_t) := \begin{cases} 1, & \text{if } \Delta x_t \in \Phi \\ 0, & \text{otherwise.} \end{cases}$$

Above, Φ is a set of real numbers which determines what kind of asymmetry is assumed under null hypothesis and Δ is the first difference operator. Typically, two features of asymmetry are considered in this paper. The first one is

$$\Phi = \{\Delta x_t | \Delta x_t \in (-\infty, 0]\}.$$
(2)

This type of asymmetry¹ will be assumed under null hypothesis if the asymmetry depends on the sign of the exogenous variable Δx . The other is

$$\Phi = \{\Delta x_t | |\Delta x_t| \in [\theta, \infty)\}.$$
(3)

Clearly, this type of asymmetry will be assumed under null hypothesis if the asymmetry depends on the absolute magnitude of the exogenous variable Δx from zero.² This case may be regarded as a threshold regression with a threshold parameter θ .

Asymmetric Granger-causality: Test for Granger-(non)causality (Granger, 1969) is usually performed in an autoregressive model with exogenous variables (ARX). This idea can be extended in a non-linear ARX model in order to test for asymmetric Granger-(non)causality. To provide a formal definition of a symmetric and asymmetric Granger-causality, three types of mean squared error (MSE) are defined as follows:

$$\begin{split} MSE_1 &:= MSE\{ \hat{E}[y_{t+s}|y_t, y_{t-1}, \ldots] \} \\ MSE_2 &:= MSE\{ \hat{E}[y_{t+s}|y_t, y_{t-1}, \ldots, x_t, x_{t-1}, \ldots] \} \\ MSE_3 &:= MSE\{ \hat{E}[y_{t+s}|y_t, y_{t-1}, \ldots, x_t, x_{t-1}, \ldots, I_{\{\Phi\}}(\Delta x_t), I_{\{\Phi\}}(\Delta x_{t-1}), \ldots] \}, \end{split}$$

where $MSE\{\cdot\}$ is defined to be the mean-squared error operator.

¹Depending on the characteristic of time series, one can equivalently write $\Phi = \{\Delta x_t | \Delta x_t \in [0, \infty)\}.$

²For this case Δx will be typically a demeaned variable by a log-difference operator such as growth rates.

Definition 1 According to Granger (1969), x is Granger-causal to y if for all s > 0the MSE of a forecast of y_{t+s} that uses both y_t, y_{t-1}, \ldots and x_t, x_{t-1}, \ldots is smaller than the MSE of a forecast of y_{t+s} based only on y_t, y_{t-1}, \ldots so that³

$$MSE_1 > MSE_2. \tag{4}$$

Definition 2 x is symmetric Granger-causal to y if for all s > 0 the MSE of a forecast of y_{t+s} that uses both y_t, y_{t-1}, \ldots and x_t, x_{t-1}, \ldots is smaller than the mean squared error (MSE) of a forecast of y_{t+s} based only on y_t, y_{t-1}, \ldots and the former is the same as the MSE of a forecast of y_{t+s} based on y_t, y_{t-1}, \ldots and x_t, x_{t-1}, \ldots as well as $I_{\{\Phi\}}(\Delta x_t), I_{\{\Phi\}}(\Delta x_{t-1}), \ldots$ so that

$$MSE_1 > MSE_2 = MSE_3. \tag{5}$$

Definition 3 x is asymmetric Granger-causal to y if for all s > 0 the MSE of a forecast of y_{t+s} that uses both y_t, y_{t-1}, \ldots and x_t, x_{t-1}, \ldots is smaller than the mean squared error (MSE) of a forecast of y_{t+s} based only on y_t, y_{t-1}, \ldots and the former is larger than the MSE of a forecast of y_{t+s} based on y_t, y_{t-1}, \ldots and x_t, x_{t-1}, \ldots as well as $I_{\{\Phi\}}(\Delta x_t), I_{\{\Phi\}}(\Delta x_{t-1}), \ldots$ so that

$$MSE_1 > MSE_2 > MSE_3. \tag{6}$$

To implement this test for Granger-(non)causality, one can specify an AR model with lag length p under the null hypothesis

$$y_t = \nu + \sum_{i=1}^p \alpha_i y_{t-i} + u_{0t}$$
(7)

and an ARX model under the alternative hypothesis of Granger-causality

$$y_t = \nu + \sum_{i=1}^p \alpha_i y_{t-i} + \sum_{i=1}^p \beta_i x_{t-i} + u_{1t}.$$
 (8)

This ARX model can also be used under null hypothesis of non-asymmetric Grangercausality. Under alternative hypotheses one can specify the same ARX with terms capturing asymmetric dynamics such that

$$y_t = \nu + \sum_{i=1}^p \alpha_i y_{t-i} + \sum_{i=1}^p \beta_i x_{t-i} + \sum_{i=1}^p \gamma_i I_{\{\Phi\}}(\Delta x_{t-i}) + u_{2t}.$$
 (9)

Under the null hypothesis of Granger-noncausality, namely H_0 : $\beta_1 = \beta_2 = \cdots = \beta_p = 0$, the likelihood ratio statistic is usually based on ordinary least squares

$$[(T - 2p - 1)(RSS_0 - RSS_1)]/[p \times RSS_1]$$
(10)

 $^{^{3}}$ The original idea is defined as *non*causaliy. But for a better understanding of asymmetric causality we use Granger-causality.

is F(p, T-2p-1)-distributed, where the restricted and unrestricted sum of squared residuals is calculated as $RSS_0 = \sum_{t=1}^T \hat{u}_{0t}^2$ and $RSS_1 = \sum_{t=1}^T \hat{u}_{1t}^2$. Consequently, under null hypothesis of symmetric Granger-causality (under alternative hypothesis of asymmetric Granger-causality), namely H_0 : $\gamma_1 = \gamma_2 = \cdots = \gamma_p = 0$, the likelihood ratio statistic

$$[(T - 3p - 1)(RSS_1 - RSS_2)]/[p \times RSS_2]$$
(11)

is F(p, T - 3p - 1)-distributed, where RSS_1 is given above and $RSS_2 = \sum_{t=1}^T \hat{u}_{2t}^2$.

3 Empirical application

The three variables involved in the empirical analysis are returns on the valueweighted German stock index (DAX) portfolio (r_t) , inflation (π_t) based on the gross domestic product (DGP) deflator⁴ and growth rates of GDP (q_t) . All the series are measured in annual percentage points⁵ and the periodicity of the data is quarterly. They cover the period from 1970 I to 1999 IV (120 observations) and are taken from the database of the Deutsche Bundesbank.

With respect to the proxy hypothesis and in the context of a bivariate analysis, two groups of variables are of interest. To determine exogenous variables in the regressions and ARX models in each group, we take the usual causal chains: $\pi_t \to r_t$ and $E[q_{t+s}] \to r_t$, where in our empirical analysis we will use q_{t+s} as a measure for the unobservable variable $E[q_{t+s}]$.⁶ Each of the groups can serve as testing for the following empirical issues:

- stock return-inflation (r_t, π_t) : the proxy hypothesis

- stock return-expected growth rates of GDP $(r_t, E[q_{t+s}])$: the indicative role of stock prices to real activity

Non-linear regression analysis: The estimation results of equation (1) combined with an asymmetric term (2) and (3) are summarized in Tables 1 and 2, with the regression of stock return-inflation in Table 1 and the regression of stock returngrowth rates of GDP in Table 2. The estimate for θ is chosen by maximizing the *t*-value for the coefficient \hat{b}_2 . For searching for the value of θ , at which the *t*-value of \hat{b}_2 is maximum, we use a simple grid method, i.e. regressions are estimated by given $\theta \in [\theta_{min}, \theta_{max}]$ with a step of $(\theta_{max} - \theta_{min})/\delta$, where δ can be determined

⁴Inflation based on the consumer price index instead of the DGP deflator gives approximately the same results.

 $^{^5\}mathrm{GDP}$ deflator and GDP are seasonally unadjusted data.

⁶Alternatively, one can measure the expected GDP using the Kalman-filter method as performed by Lee (1992) and Gjerde and Sættem (1999) for measuring expected inflation.

arbitrarily.⁷ In our empirical analysis, we set $\theta_{min} = 0.001$ and $\theta_{max} = 0.02$, i.e. $\delta = 20$, because $min\{|\Delta \pi_t|\} = 0.0001$ and $max\{|\Delta \pi_t|\} = 0.0229$. The number of $|\Delta \pi_t| \in [min\{|\Delta \pi_t|\}, \theta_{min})$ and $|\Delta \pi_t| \in (\theta_{max}, max\{|\Delta \pi_t|\}]$ is 15 and 2, respectively.

Regression	$r_t = \nu_0$	$+ a_0 \pi_t$	$r_t = \nu_1$	$+ a_1 \pi_t -$	$+ b_1 \mathbf{I}_{[0,\infty)}(\Delta \pi_t)$	$r_t = \nu_2$	$+ a_2 \pi_t -$	$+ b_2 \mathbf{I}_{[\theta,\infty)}$	$(\Delta \pi_t)$
Coefficients	$\hat{ u}_0$	\hat{a}_0	$\hat{ u}_1$	\hat{a}_1	${\hat b}_1$	$\hat{ u}_2$	\hat{a}_2	\hat{b}_2	$\hat{ heta}$
Estimates	0.17	-2.53	0.17	-2.55	0.01	0.17	-2.08	-0.10	0.01
t-value ^{a}	(6.07)	(3.44)	(5.62)	(3.30)	(0.37)	(5.99)	(2.73)	(2.34)	

Table 1. Estimates of coefficients for return-inflation regression

^{*a*}*t*-values are given in absolute value.

The proxy hypothesis of Fama (1981) also confirms German data considered, i.e. the correlation between stock return and inflation is negative (-2.53) and highly significant. The estimated regression in (1) with an asymmetric term given in (2) shows that the sign of the changes of inflation has no effect on the stock returns. But the same regression with an asymmetric term given in (3) clearly shows that the big (positive and negative) changes do matter for the stock returns. A big change in inflation induces a significant negative reaction (-0.10) in the changes of stock returns, where the threshold parameter is 0.01, say 1%.⁸

In order to see whether the stock market is determined by means of expectations about the future development of real activity, we specify a regression with a lead from 0 to 4 as $r_t = \nu + aq_{t+j}$, j = 0, 1, 2, 3, 4 and add the asymmetric terms in (2) and (3) to each regression.

The results of stock return-real activity regression in Table 2 show that the stock returns play an indicative role concerning the development in future real activity, namely the first three lead terms (j = 0, 1, 2) are significant. This phenomenon was also recently observed by Estrella and Mishkin (1998) who find in US data that stock prices are useful with one to three-quarter horizons for prediction of real activity. The regressions with an asymmetric term in (1) show that, in contrast to the return-inflation regression, the sign of changes of the growth rates of GDP has an influence on the stock returns, while the magnitude of the changes of GDP is not very significant.

Asymmetric Granger-causality: In order to test for asymmetric Granger-causal ity we specify the auxiliary regressions given in (7), (8) and (9), where, based upon the results in Table 2 and the empirical evidence of Estrella and Mishkin (1998), p is assumed to be 3. For all θ_i , i = 1, 2, 3, we set $\theta_{min} = 0.001$ and $\theta_{max} = 0.01$ with

⁷In order to avoid singularity, $\theta_{min} > min\{|\Delta x_t|\}$ and $\theta_{max} < max\{|\Delta x_t|\}$.

⁸The number of $\Delta \pi_t > 0.01$ and $\Delta \pi_t < -0.01$ is 6 and 8, respectively.

Regression	(r_t, q_t)	(r_t, q_{t+1})	(r_t, q_{t+2})	(r_t, q_{t+3})	(r_t, q_{t+4})
Coefficients					
$\hat{ u}_0$	0.05(2.56)	0.05(2.38)	0.06(3.21)	0.08(4.38)	0.09(4.37)
\hat{a}_0	1.61(2.69)	1.75(2.89)	1.00(1.61)	-0.03(0.04)	-0.03(0.05)
$\hat{ u}_1$	0.01(0.18)	-0.02(0.71)	-0.00(0.10)	0.04(1.41)	0.08(2.71)
\hat{a}_1	2.35(3.53)	2.78(4.22)	2.08(3.03)	0.65(0.91)	-0.04(0.06)
\hat{b}_1	0.06(2.04)	0.09(3.13)	0.09(3.03)	0.07(2.13)	0.01(0.39)
$\hat{ u}_2$	0.01(0.37)	0.01(0.31)	0.02(0.47)	0.10(1.81)	0.01(0.30)
\hat{a}_2	1.63(2.68)	1.71(2.81)	0.99(1.56)	1.73(2.83)	-0.30(0.46)
\hat{b}_2	0.05(1.28)	0.05(1.23)	0.06(1.62)	-0.05(0.96)	0.10(2.23)
$\hat{ heta}$	0.005	0.005	0.005	0.005	0.003

Table 2. Estimates for coefficients of regression for stock return and real activity^{ab}

 ^{a}t -values (in absolute value) are reported in parentheses.

^bCoefficients come from the following three regressions: $r_t = \nu_0 + a_0 q_{t+j}$; $r_t = \nu_1 + a_1 q_{t+j} + b_1 \mathbf{I}_{(-\infty,0]}(\Delta q_{t+j})$ and $r_t = \nu_2 + a_2 q_{t+j} + b_2 \mathbf{I}_{[\theta,\infty)}(|\Delta q_{t+j}|)$, j = 0, 1, 2, 3, 4.

step length of 0.001 and estimate θ_1 , θ_2 and θ_3 simultaneously at which the SSR_{22} has its minimum from the 100³ combinations of $\hat{\theta}_1$, $\hat{\theta}_2$ and $\hat{\theta}_3$.⁹ Table 3 shows the results of the test for symmetric and asymmetric Granger-causality.

Statistics	SSR_0	SSR_1	SSR_{21}	SSR_{22}	TS_1	TS_{21}	TS_{22}
Estimates	0.0509	0.0454	0.0425	0.0403	4.4119	2.3948	4.9211
p-value					(0.0057)	(0.0723)	(0.0031)
$\hat{ heta_1}$							0.034
$\hat{ heta_2}$							0.015
$\hat{ heta}_3$							0.046

Table 3. Test for asymmetric Granger-causality^{ab}

^a The sum of squares of residuals, SSR_j , j = 0, 1, 21, 22, comes from the following four regressions, respectively: $q_t = \nu + \sum_{i=1}^3 \alpha_i q_{t-i} + u_{0t}$, $q_t = \nu + \sum_{i=1}^3 \alpha_i q_{t-i} + \sum_{i=1}^3 \beta_i r_{t-i} + u_{1t}$, $q_t = \nu + \sum_{i=1}^3 \alpha_i q_{t-i} + \sum_{i=1}^3 \beta_i r_{t-i} + \sum_{i=1}^3 \gamma_i \mathbf{I}_{(-\infty,0]}(\Delta r_{t-i}) + u_{21t}$ and $q_t = \nu + \sum_{i=1}^3 \alpha_i q_{t-i} + \sum_{i=1}^3 \beta_i r_{t-i} + \sum_{i=1}^3 \beta_i r_{t-i} + \sum_{i=1}^3 \gamma_i \mathbf{I}_{[-\infty,0]}(\Delta r_{t-i}) + u_{21t}$ and $q_t = \nu + \sum_{i=1}^3 \alpha_i q_{t-i} + \sum_{i=1}^3 \beta_i r_{t-i} + \sum_{i=1}^3 \beta_i$

^bThe likelihood ratio statistics are calculated as $TS_1 = (115 - 2 \times 3 - 1) \times (SSR_1 - SSR_0)/(3 \times SSR_1)$, $TS_{21} = (115 - 3 \times 3 - 1) \times (SSR_{21} - SSR_1)/(3 \times SSR_{21})$ and $TS_{22} = (115 - 3 \times 3 - 1) \times (SSR_{22} - SSR_1)/(3 \times SSR_{22})$.

The results of tests for Granger-causality summarized in Table 3 show that the null hypothesis of Granger-noncausality from stock returns to real activity can be rejected at 99% significance level (p-value = 0.0057). This means that the expectation

⁹The number of $\Delta r_t \in [min\{|\Delta r_t|\}, 0.001)$ and of $\Delta r_t \in (0.01, max\{|\Delta r_t|\}]$ is 9 for both cases.

of the future real activity in the stock market may be regarded as highly rational —in the sense that the expectation and the realization match well— as long as the expectations are not beyond three quarters. On the other hand, the test for asymmetric Granger-causality shows that the null hypothesis of *Granger-causality but not asymmetric Granger-causality* with the asymmetric term (2) cannot be accepted at 90% significance level (*p*-value = 0.0723), while the same cannot be accepted at 99% significance level (*p*-value = 0.0031) with the asymmetric term (3).¹⁰

4 Concluding remarks

The empirical evidence of the German data found in this paper confirms the proxy hypothesis of Fama (1981) and the indicative role of stock returns on the real activity also reported by Fama (1981), Geske and Roll (1983) and Lee (1992). The findings in the paper also extend the negative correlation of stock returns and inflation and the indicative role of stock returns on the real activity in an asymmetric manner of causality. The asymmetric features are different in the two regressions: in the return-inflation regression the sign of changes of inflation rates plays the key role, while in the return-GDP regression the absolute magnitude of changes of the growth rates of GDP does.

¹⁰Because of the time trend in the GDP series, the first difference of the growth rates of GDP usually shows more the positive than negative growth rates and the magnitude of positive growth rates are also usually larger than those of the negative. From this point of view one can modify the asymmetric feature in (3) into $\Phi = \{\Delta x_t | \Delta x_t \in [\theta, \infty)\}$, i.e. without absolute value operator. With this type of asymmetry we obtain the value of likelihood ratio statistic in (11) as 4.3759 (*p*-value = 0.0061), which is a little lower than that of the case in (3).

References

- Balduzzi, P., 1995, Stock returns, inflation, and the "proxy hypothesis": A new look at the data, *Economics Letters* 48, 47–53.
- Estrella, A. and F.S. Mishkin, 1998, Predicting US recessions: financial variables as leading indicators, *The Review of Economics and Statistics* 80, 45–61.
- Fama, E.F., 1981, Stock returns, real activity, inflation and money, American Economic Review 71, 545–565.
- Gallagher, L.A. and M.P. Taylor, 2002, The stock return-inflation puzzle revisited, *Economics Letters* 75, 147–156.
- Geske, R and R. Roll, 1983, The monetary and fiscal linkage between stock returns and inflation, *The Journal of Finance* 38, 1–33.
- Gjerde, Ø and F. Sættem, 1999, Causal relations among stock returns and macroeconomic variables in a small, open economy Journal of International Financial Markets, Institutions and Money 9, 61–74.
- Granger, C.W.J., 1969, Investigating causal relations by econometric models and cross spectral methods, *Econometrica* 37, 424–438.
- James, C., S. Koreisha and M. Partch, 1985, A VARMA analysis of the causal relations among stock returns, real output, and nominal interest rates, *The Journal of Finance* 40, 1375–1384.
- Kaul, G., 1987, Stock returns and inflation The role of the monetary sector, *Journal* of Financial Economics 18, 253–276.
- Lee, B.-S., 1992, Causal relations among stock returns, interest rates, real activity, and inflation, *The Journal of Finance* 47, 1591–1603.

The following papers have been published since 2002:

January	2002	Rent indices for housing in West Germany 1985 to 1998	Johannes Hoffmann Claudia Kurz
January	2002	Short-Term Capital, Economic Transform- ation, and EU Accession	Claudia M. Buch Lusine Lusinyan
January	2002	Fiscal Foundation of Convergence to European Union in Pre-Accession Transition Countries	László Halpern Judit Neményi
January	2002	Testing for Competition Among German Banks	Hannah S. Hempell
January	2002	The stable long-run CAPM and the cross-section of expected returns	Jeong-Ryeol Kim
February	2002	Pitfalls in the European Enlargement Process – Financial Instability and Real Divergence	Helmut Wagner
February	2002	The Empirical Performance of Option Based Densities of Foreign Exchange	Ben R. Craig Joachim G. Keller
February	2002	Evaluating Density Forecasts with an Application to Stock Market Returns	Gabriela de Raaij Burkhard Raunig
February	2002	Estimating Bilateral Exposures in the German Interbank Market: Is there a Danger of Contagion?	Christian Upper Andreas Worms
February	2002	The long-term sustainability of public finance in Germany – an analysis based on generational accounting	Bernhard Manzke

March	2002	The pass-through from market interest rates to bank lending rates in Germany	Mark A. Weth
April	2002	Dependencies between European stock markets when price changes are unusually large	Sebastian T. Schich
May	2002	Analysing Divisia Aggregates for the Euro Area	Hans-Eggert Reimers
May	2002	Price rigidity, the mark-up and the dynamics of the current account	Giovanni Lombardo
June	2002	An Examination of the Relationship Between Firm Size, Growth, and Liquidity in the Neuer Markt	Julie Ann Elston
June	2002	Monetary Transmission in the New Economy: Accelerated Depreci- ation, Transmission Channels and the Speed of Adjustment	Ulf von Kalckreuth Jürgen Schröder
June	2002	Central Bank Intervention and Exchange Rate Expectations – Evidence from the Daily DM/US-Dollar Exchange Rate	Stefan Reitz
June	2002	Monetary indicators and policy rules in the P-star model	Karl-Heinz Tödter
July	2002	Real currency appreciation in acces- sion countries: Balassa-Samuelson and investment demand	Christoph Fischer
August	2002	The Eurosystem's Standing Facilities in a General Equilibrium Model of the European Interbank Market	Jens Tapking

August	2002	Imperfect Competition, Monetary Policy and Welfare in a Currency Area	Giovanni Lombardo
August	2002	Monetary and fiscal policy rules in a model with capital accumulation and potentially non-superneutral money	Leopold von Thadden
September	2002	Dynamic Q-investment functions for Germany using panel balance sheet data and a new algorithm for the capital stock at replacement values	Andreas Behr Egon Bellgardt
October 20	002	Tail Wags Dog? Time-Varying Informa- tion Shares in the Bund Market	Christian Upper Thomas Werner
October 20	002	Time Variation in the Tail Behaviour of Bund Futures Returns	Thomas Werner Christian Upper
November	2002	Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form	Sílvia Gonçalves Lutz Kilian
November	2002	Cost-Push Shocks and Monetary Policy in Open Economies	Alan Sutherland
November	2002	Further Evidence On The Relationship Between Firm Investment And Financial Status	Robert S. Chirinko Ulf von Kalckreuth
November	2002	Genetic Learning as an Explanation of Stylized Facts of Foreign Exchange Markets	Thomas Lux Sascha Schornstein
December	2002	Wechselkurszielzonen, wirtschaftlicher Aufholprozess und endogene Realign- mentrisiken *	Karin Radeck

* Available in German only.

December 2002	Optimal factor taxation under wage	Erkki Koskela
	bargaining – a dynamic perspective	Leopold von Thadden
January 2003	Testing mean-variance efficiency in	
	CAPM with possibly non-gaussian	Marie-Claude Beaulieu
	errors: an exact simulation-based	Jean-Marie Dufour
	approach	Lynda Khalaf
January 2003	Finite-sample distributions of	
	self-normalized sums	Jeong-Ryeol Kim
January 2003	The stock return-inflation puzzle and	
	the asymmetric causality in stock returns,	
	inflation and real activity	Jeong-Ryeol Kim

Visiting researcher at the Deutsche Bundesbank

The Deutsche Bundesbank in Frankfurt is looking for a visiting researcher. Visitors should prepare a research project during their stay at the Bundesbank. Candidates must hold a Ph D and be engaged in the field of either macroeconomics and monetary economics, financial markets or international economics. Proposed research projects should be from these fields. The visiting term will be from 3 to 6 months. Salary is commensurate with experience.

Applicants are requested to send a CV, copies of recent papers, letters of reference and a proposal for a research project to:

Deutsche Bundesbank Personalabteilung Wilhelm-Epstein-Str. 14

D - 60431 Frankfurt GERMANY