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Density forecasts have become quite important in economics and finance. For example,

such forecasts play a central role in modern financial risk management techniques like

Value at Risk. This paper suggests a regression based density forecast evaluation

framework as a simple alternative to other approaches. In simulation experiments and an

empirical application to in- and out-of-sample one-step-ahead density forecasts of daily

returns on the S&P 500, DAX and ATX stock market indices, the regression based

evaluation strategy is compared with a recently proposed methodology based on likelihood

ratio tests. It is demonstrated that misspecifications of forecasting models can be detected

within the proposed regression framework. It is further demonstrated that the likelihood

ratio methodology without additional misspecification tests has no power in many practical

situations and therefore frequently selects incorrect forecasting models. The empirical

results provide some evidence that GARCH-t models provide good density forecasts. The

results further suggest that extensions of statistical models with fat-tailed conditional

distributions to models that incorporate higher order conditional moments beyond the

conditional variance might be appropriate to capture the empirical regularities in financial

time series in some cases.
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Die Voraussagen von Dichten ist in verschiedenen ökonomischen Fragestellungen sehr

wichtig geworden. Solche Voraussagen spielen zum Beispiel eine wichtige Rolle bei

modernen Methoden des Risikomanagements im Finanzsektor. Dieses Papier schlägt vor,

Dichte-Prognosen mithilfe einer Methode zu beurteilen, die auf einem Regressionsansatz

beruht. In Simulationsexperimenten und empirischen Anwendungen auf Dichte-Prognosen

für tägliche Erträge verschiedener Aktienindices (S&P 500, DAX, ATX) wird diese

Methode mit einer verglichen, die auf likelihood ratio Tests beruht und die erst neulich

vorgeschlagen wurde. Es zeigt sich, dass Fehlspezifikationen der Prognosemodelle mithilfe

der hier vorgeschlagenen Methode entdeckt werden können. Dagegen hat die Methode, die

auf likelihood ratio Test beruht, ohne zusätzliche Tests auf Fehlspezifikation in vielen

praktischen Fällen keine Macht. Die empirischen Ergebnisse deuten darauf hin, dass

GARCH-t-Modelle gute Dichte-Prognosen liefern. Weiterhin wird gezeigt, dass

Erweiterungen von statistischen Modellen mit Verteilungen mit
 dicken Enden zu

Modellen, die höhere Momente einbeziehen, geeignet sein können, um in manchen Fällen

empirische Regelmäßigkeiten in Finanzzeitreihen abzubilden.

Zusammenfassung



*����
�"
!������


1 Introduction 1

2 Density Forecast Evaluation 3

3 Regression Framework 6

4 Simulation Study 8

5 Data and Forecasting Models 12

6 Empirical Results 14

7 Conclusions 21

Appendix 22

References 24



 �
�
�"
*����

���
��	���


*����


Table 1 Power and size of density forecast evaluation methodologies based
on n-series from simulated GARCH-t models 10

Table 1 Power and size of density forecast evaluation methodolgies based
(continued) on n-series from simulated GARCH-t-models 11

Table 2 Summary statistics of Return Series 15

Table 3 Test statistics of n-series of density forecasts of daily S & 500
stock market returns 16

Table 4 Test statistics of n-series of density forecasts of daily DAX
stock market returns 17

Table 5 Test statistics of n-series of density forecasts of daily ATX
stock market returns 18

Table 6 Skewness and kurtosis of transformed stock market returns,
1/29/1996 – 1/26/2000 20



– 1 –

���������	
���
���
������
�

����
��
�����������
��
�����
������
������

*

+
 ,�����������

A density forecast is a forecast of the entire probability distribution of a random variable.

Recently, such forecasts have become quite important in the financial industry because they

form the backbone of modern risk measures like Value at Risk (VaR) which are derived

from forecasts of entire profit/loss distributions of financial portfolios (for details on VaR,

see Jorion, 1997). Apart from risk management, density forecasts have also come to play a

role in macroeconomic forecasting. Density forecasts of inflation are assessed in Diebold,

Tay and Wallis (1999), density forecasts of output growth and unemployment are examined

in Clements and Smith (2000) and Kaufmann (2000) evaluates the statistical adequacy of a

dynamic Markov switching factor model for the business cycle using the predictive

densities implied by the model (for a survey about density forecasting, see Tay and Wallis,

2000). Given the rapidly growing importance of density forecasts for economic forecasting

in general and risk management in particular, techniques to evaluate the quality of density

forecasts are of vital practical importance.

Recently, Crnkovic and Drachman (1997) and Diebold, Gunther and Tay (1998) have

introduced methodologies to evaluate the accuracy of density forecasts based on a

probability integral transformation in Rosenblatt (1952). Applied to the realizations of a

stochastic process, the transformation implies iid U(0,1) data if a sequence of density

forecasts coincides with the sequence of true conditional densities. Frühwirth-Schnatter

(1996) and Berkowitz (2000) extend this framework by utilizing a second transformation

that implies iid N(0,1) data if a sequence of density forecasts is correct. Whereas Frühwith-

Schnatter proposes certain indices to explore the adequacy of forecasting models,

Berkowitz suggests a likelihood ratio (LR) framework to test for iid N(0,1). He further

finds that the LR-framework is quite powerful even in small samples. However, the LR-

framework maintains the assumption of normality and therefore does not cover the

complete hypothesis.

                                                

- This working paper was previously presented at the regular joint research workshop of the Deutsche
Bundesbank and the Oesterreichische Nationalbank. It is also available as Oesterreichische Nationalbank
working paper No. 59. The opinions expressed do not necessarily reflect those of the Oesterreichische
Nationalbank or the Deutsche Bundesbank.
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Unfortunately, under standard statistical assumptions about a forecasting model situations

may arise where deficiencies in density forecasts cannot be detected within the LR-

framework. An important case are density forecasts derived from GARCH-models with

correctly specified first- and second moments estimated with quasi-maximum likelihood

methods. This paper demonstrates that deficient density forecasts derived from such

models may not be detected within the LR-framework. It is further shown that the LR-

methodology also has no power under the weaker condition of a correct specification of the

conditional mean of a forecasting model, if normally distributed density forecasts are

assumed.

To overcome these problems, this paper proposes a regression framework in conjunction

with tests for normality to evaluate the quality of density forecasts. The approach is

motivated through a probabilistic reduction argument (Spanos, 1999, ch.15) and covers the

alternative hypotheses of the LR-tests proposed in Berkowitz (2000) as a special case.

Given a reasonable sample size, the regression framework does not require the assumptions

of normality and homoskedasticity in tests concerning the correlation structure of a

transformed series and the additional tests for normality provide further important

information about deficiencies of density forecasts and hence about misspecifications of

the models that were used to generate the forecasts. Since neglected conditional volatility

dynamics in a forecasting model induces heteroskedasticity into the transformed series

used for density forecast evaluation, tests that help to identify such effects are an integral

part of the evaluation framework. Simulation experiments indicate that the proposed

methodology has good statistical properties.

In an empirical application the regression methodology is used to evaluate in-sample and

out-of-sample one-step-ahead density forecasts from econometric models that are popular

in the financial industry and the results are compared with the results from the LR-

approach. The different forecasting models are applied to daily stock market returns from

the S&P 500, the DAX and the ATX. The empirical results provide some support for

GARCH-models with fat tailed distributed errors for the purpose of density forecasting and

GARCH-models in general for the purpose of volatility forecasting. The results further

suggest that for financial return series an adequate model for the relevant conditional

moments as well as proper distributional assumptions are needed to produce good density

forecasts.

The rest of the paper is organized as follows. Section 2 covers some theory about density

forecast evaluation, reviews the LR-framework, discusses properties of transformed series

obtained from misspecified forecasting models and provides conditions under which LR-

tests will fail to detect incorrect density forecasts. Section 3 outlines the regression based



– 3 –

evaluation approach. Section 4 reports simulation experiments concerning the size and the

power of LR-tests and the regression based evaluation methodology. The data and the

models used in the empirical study are presented in section 5. Section 6 describes the

setting of the forecasting experiments and discusses the in- and out-of-sample forecast

evaluation results. Section 7 comprises the concluding remarks. Proofs are collected in an

appendix.
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Let {xt}t = 1,..., m be a time series generated from the series of conditional densities {f(xt| It-

1)}t = 1,..., m where It-1 denotes the information set available at time t-1 and let {p(xt| It-1)}t =

1,..., m be a series of one-step-ahead density forecasts for {xt}t = 1,..., m (in what follows, ft(xt)

and pt(xt) are sometimes used as shorthand notations for the true and the predicted

conditional densities, respectively). Assume that a series of one-step-ahead density

forecasts has been generated. Such forecasts can be evaluated through a probability integral

transformation (Rosenblatt, 1952) applied to each observed xt with respect to its predicted

density pt(xt). The probability integral transformation for a single xt is given by

(1) ).()(∫
∞−

==
W

[

WWWW
�������

Diebold, Gunther and Tay (1998) show that a transformed series {zt}t = 1,...,m is iid U(0,1) if

a series of one-step-ahead density forecasts {pt(xt)}t = 1, ..., m coincides with the series of the

true densities {ft(xt)}t = 1,..., m. This result can be further exploited to evaluate multivariate

density forecasts- and multi-step ahead forecasts, respectively (Diebold, Hahn and Tay,

1999, Clements and Smith, 2000). It is also worth noting that this result does in no way

depend on how the density forecasts were generated. Correct density forecasts, however

obtained, imply a transformed series that is iid U(0,1).

Diebold et al. suggest graphical methods to assess the iid U(0,1) property of transformed

data and Crnkovic and Drachman (1997) advocate Kupier’s statistics to test for uniformity

and Brock-Dechert-Scheinkman (BDS) tests for iid. Berkowitz (2000) emphasizes that

nonparametric tests require rather large sample sizes to be reliable. He therefore suggests a

further well known transformation (the so called quantile transformation) to the individual

zt's. The transformation for a single zt is given by

(2) )(1
W1W
��� −= .
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This transformation produces data that are standard normal if zt is U(0,1) and FN
-1 is the

inverse of a standard normal distribution function. If a series of zt's is iid U(0,1) it follows

from the iid property of the z-series that the corresponding n-series must also be iid N(0,1).

Berkowitz proposes likelihood-ratio tests against the first order autoregressive alternative

(3) ( ) ,1 WWW
�� εµρµ +−=− −  

to test for iid N(0,1) data. In this framework a test for independence is given by (3a) and a

joint test for independence, a mean of zero and a variance of one is given by (3b)

(3a) ( ) ( )( )ρσµσµ �����
,,0,,2 22

1 			
 −−=  ∼  χ2(1)

(3b) ( ) ( )( )ρσµ ���
,,0,1,02 2

2 			
 −−=  ∼  χ2(2),

where σ2 is the variance of εt and L(.) denotes a Gaussian log-likelihood function. A test

concerning µ = 0 can be constructed analogously to (3a). In simulation experiments he

demonstrates that the test statistics have good small sample properties. However,

Berkowitz himself points out that the LR tests have only power to detect non normality

through the first two moments of the distribution and that additional distributional tests

might be useful.

There are indeed good reasons to examine an n-series of a forecasting model for normality

and also for heteroskedasticity because the LR-tests outlined above maintain the

assumption of normality and do not cover the possibility of heteroskedasticity. If density

forecasts are deficient in such a way that they do not lead to a violation of µ = 0, ρ = 0 and

σ = 1, then these deficiencies will not be detected within the LR-framework and an

incorrect forecasting model may be selected. Propositions 1 and 2 below state that this will

happen under standard statistical assumptions about a forecasting model.

�����������	
 Assume that the forecasting model can be represented in the form Xt = µ(It-1)

+σ(It-1)Yt, where µ(It-1) is the conditional mean and σ(It-1) is the conditional standard

deviation of Xt. The random variable Yt is iid with some arbitrary distribution D(0,1) with

zero mean and unit variance. Further assume that the forecasted densities p(Xt It-1)

adequately capture the first two conditional moments of Xt. Then the n-series implied by

the forecasting model will also be iid D(0,1) if the forecasted densities {p(Xt It-1)}t = 1, ... , m

are assumed to be normal densities.
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 Assume a forecasting model of the form Xt = µ(It-1) +σ(It-1)Yt, where µ(It-1)

is the conditional mean and σ(It-1) is the conditional standard deviation of Xt. Further

assume that the (constant) unconditional standard deviation σ exists. Then the n-series {nt}t

= 1, ... ,m resulting from the forecasting model is

a) conditionally heteroskedastic

b) uncorrelated, has conditional mean and unconditional mean 0

c) and has unconditional standard deviation 1

if the density forecasts {p(Xt It-1)}t = 1, ... , m adequately capture the conditional mean, are

assumed to be normal and are based on unconditional standard deviation σ.

/���"�
see appendix

Propositions 1 implies that the LR-tests given in (3a) and (3b) and other tests that do not

cover the distributional part of the iid N(0,1) hypotheses of correct density forecasts will

have no power in detecting incorrect density forecasts if the stated conditions apply. An

important practical case arises in the context of quasi-maximum likelihood estimation

(QML) of GARCH models. It is well known that under mild regularity conditions the

parameters of a GARCH model estimated under the incorrect assumption of a normal

distribution are consistent if the conditional mean- and the conditional variance functions

are correctly specified (for details, see Bollerslev and Wooldridge, 1992, and Lumsdaine,

1996). Hence a GARCH model might approximate the first two conditional moments quite

well, but deliver poor density forecasts under the incorrect assumption of normality.

Proposition 1 states that in such a situation the LR-tests will virtually never reject the null-

hypotheses of correct density forecasts because the iid, mean 0 and variance 1 property of

the derived n-series will not be violated. Without additional tests for normality even very

poor density forecasts may not be detected and an incorrect forecasting model may be

selected.

Proposition 2 says that the LR-tests described above (which focus on the unconditional

standard deviation of an n-series) and other tests that do not cover the possibility of

heteroskedasticity will tend to have no power to detect incorrect density forecasts if the

forecasting model correctly specifies the conditional mean of the target variable but the

forecaster incorrectly assumes normally distributed density forecasts based on the

unconditional standard deviation. Propositions 1 and 2 further imply that in such situations

attempts to refine the alternative hypotheses about an n-series given in (3) by including for
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example various powers of a n-series or other variables will not help to detect incorrect

density forecasts.

What else can be said about the properties of an n-series under a misspecified forecasting

model? It can be shown (Diebold, Hahn and Tay, 1999, proposition 1)  that a z-series keeps

the iid property but is not uniformly distributed anymore if a sequence of true conditional

densities f(xt It-1) belongs to a location-scale family (i.e. Xt = µ(It-1) +σ (It-1)Yt  is an affine

transformation of a random variable Yt with a distribution D, independent of the

information It-1, σ(It-1) > 0) and the forecasted densities p(xt It-1) adequately capture the

dynamics of the first two conditional moments but belong to another location-scale family.

It can easily be shown that this result extends to the corresponding n-series. It can also be

demonstrated (Berkowitz, 2000, proposition 2) that if h(nt) is the density of nt generated

under the density forecast p(xt) and φ(nt) is the standard normal density, then log[f(xt)/p(xt)]

= log[h(nt)/φ(nt)], which implies that deviations of a density forecast from the true density

will be preserved in the corresponding regions of a standard normal density.

Taken together, the discussion in this section suggests that a) misspecifications of a

forecasting model will be preserved in the corresponding n-series and b) that density

forecast evaluation procedures based on n-series should cover the possibility of conditional

heteroskedasticity (i.e. incorporate higher conditional moments of an n-series) and tests

about the distribution of an n-series.

0
 ��	��

���
���$�����

It is well known that for a random variable Y (with E[Y2 ]< ∞) the orthogonal

decomposition Y = E(YΗ ) + (Y- E(YΗ )), where E(YΗ ) denotes the expectation of Y

conditional on the information set Η, is well defined relative to Η (for details see Spanos,

1999, ch.15, or Karr, 1992, ch. 8). Thus the statistical generating mechanism for the first

conditional moment for Y can be stated as Y = E(YΗ ) + u. A similar orthogonal

decomposition can be applied to Y2 assuming that the required moments exist. If the

transformed series {nt} t = 1,...,m is iid N(0,1), then the first two conditional moments take the

form E(NtΗ t) = µ = 0 (independence) and E(Nt
2Η t) = Var(Nt) = σ2 = 1 (conditional

homoskedasticity and unit variance). The setting obviously also implies that Nt = ut must

be distributed N(0,1) if the iid N(0,1) property holds.

In the context of density forecast evaluation many choices for variables ∈  Ηt  are possible.

For example Ηt could contain various lags of an n-series as well as various powers and

cross-products of an n-series, other variables of interest could also be included. The
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important point is that a) the more general model which forms the alternative hypothesis

contains the H0 of iid N(0,1) as a special case and is based on a set of internally consistent

probabilistic assumptions and that b) the more general model covers important departures

from iid N(0,1) that are interesting for the purpose of density forecast evaluation. In the

light of the results from the last section, the two regression functions are specified as

(4a)
WNWNWW
����� ++++= −− ββ ...110

(4b)
WVWVWW
���� ++++= −−

22
110

2 ... γγγ

where {ut} and {vt} are martingale difference sequences (i.e. non-autocorrelated with zero

expectation conditional on it’s own past). In this framework the hypotheses of an iid N(0,1)

n-series implies the restrictions β0 = β1 = ... = βk = 0 (zero mean and independence) and nt

∼  N(0,1) (normal distribution with mean zero and unit unconditional variance) in (4a) and

γ0 = 1, γ1 = ... = γs = 0 (constant conditional unit variance, i.e. conditional

homoskedasticity) in (4b). Note that for k = 1 equation (4a) is similar to the alternative

hypothesis of the LR-methodology defined in equation (3) above, but there are also

important differences. In contrast to (3), model (4a) accommodates conditional

heteroskedasticity and does not assume normality. Hence, the model given by (4a) is more

general than model (3) and includes it as a special case. In addition, equation (4b)

incorporates second order dependence of nt explicitly and includes the possibility of

conditional heteroskedasticity. Hence, a test of the restriction γ1 = ... = γs = 0 can be

interpreted as an ARCH test. The restrictions on the coefficients in (4a) and (4b) can easily

be tested using heteroskedasticity consistent Wald tests. Under the assumptions made in

(4a) and (4b) these tests can be justified asymptotically (for details, see Hayashi, ch. 2).  A

joint Wald test of all β and γ restrictions under the possibility of heteroskedasticity can be

carried out using standard system estimation methods.1

As discussed in section 2, detected deviations of an n-series from normality indicate

problems with the distributional assumptions on which the density forecasts are built and

tests concerning the normality of an n-series are therefore essential for the proper selection

of a forecasting model. In principal one could extend the regression framework by

including autoregressions of third and fourth powers of an n-series and run a joint Wald

test on the restrictions implied by iid N(0,1) in the enlarged system of equations. If only a

                                                

1 In large samples and in absence of heteroskedasticity the test results obtained from t- and F-tests in (4a) will be
virtually identical to the results obtained from LR-tests based on (3a) since then the tests are asymptotically
equivalent. In the regression framework the equivalent to the joint LR-test based on (3b) is a test of the restriction β0

= β1 = 0, γ0 =1, in the sub system nt = β0 + β1nt-1 + ut, nt
2 = γ0 + vt.
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few restrictions are violated, a joint Wald test of this type is likely to have low power for

typical sample sizes, however. One strategy is to test the relevant set of restrictions on each

equation individually to explore possible directions of misspecifications more closely. This

is done in the empirical applications as a further step if normality of an n-series is rejected

by a Jarque-Bera normality test (Jarque and Bera, 1980) and separate tests about skewness

and kurtosis in the first step of the analysis.

1 ��$�������
�����

This section explores the power and size of LR-tests based on (3b), joint Wald tests (W) on

the system (4a) and (4b) and the JB-test for a data generating processes that is realistic for

financial return series. The data generating mechanism is specified to be a GARCH(1,1)

process of the form

(5) ννν ���
WW

2/12/1 )]2/([)( −−=

12
2

110 −− ++=
WWW
��� ααα

with zero conditional mean and innovations drawn from a fat-tailed t-distribution with ν =

5 degrees of freedom. This process displays the typical features often found in financial

time series, namely conditional heteroskedasticity, fat-tailed conditional distributions and

fat-tailed unconditional distributions.

The data generating process is investigated for four different parameter vectors of the

variance equation. In model 1 and model 2  the parameters α0 and α1 are set to 0.004 and

0.06, respectively. The processes differ in their persistence parameter α2 of the conditional

variance. In model 1, α2 is set to 0.75 which is a value closer to the lower end of the range

of persistence parameters typically found for financial return series, whereas model 2

assumes α2 = 0.90 which is a more typical value. However, empirical studies sometimes

report estimates for α2  close to one. Model 3 and model 4 take this findings into account

by assuming α1 = 0.03 and α2 = 0.95 and α1 = 0.01 and α2 = 0.98, respectively.

The power of the different tests are investigated under two alternative scenarios. The first

case (qml) corresponds to proposition 1 and assumes that the forecaster correctly specifies

the functional form of the econometric model, but estimates the GARCH(1,1) model under

the wrong assumption of gaussian innovations (i.e. performs quasi maximum likelihood

estimation of the model) and hence issues normally distributed density forecasts instead of

fat-tailed t-distributed forecasts. The second case (uc. normal) corresponds to proposition 2
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and assumes normally distributed density forecasts based on the unconditional standard

deviation of yt, thereby wrongly neglecting conditional heteroskedasticity in addition to the

incorrect distributional assumption. Each experiment is based on 10000 simulations and

the rejection ratios of the different test statistics applied to nt series resulting from one step

ahead density forecasts are calculated for sample sizes of 200, 500, 1000 and 1500

observations. To investigate the size of the test statistics, the rejection ratios are also

calculated for the correct models.

Table 1 reports the results of the simulation experiments. Consistent with the implications

of proposition 1, the LR-test and the joint W-test (based on the first lag of nt in (4a) and the

first six lags of nt
2 in (4b)) have virtually no power in detecting incorrect density forecasts

under the qml scenario for all four models and all sample sizes. For example, in the qml

scenario for model 3 (with a significance level α = 0.05) the power of the LR-test is

ranging between 0.031 for a sample size of 200 and 0.022 for the largest sample size of

1500 observations and is therefore extremely low. The same is true for the W-test under the

same scenario. It’s power is only between 0.031 for a sample size of 200 and 0.039 for a

sample size of 1500 observations. Note that the JB tests are quite powerful (about 0.74 to

1.0) in all cases, however, indicating significant deviations from normality and therefore

incorrect density forecasts. Without the additional JB-tests which virtually always reject

normality, one would nearly always accept the wrong model and hence deficient density

forecasts.

The simulation results suggest that the LR-test also has no power in the four models under

the alternative uc. normal scenario, as predicted by proposition 2. For example, looking at

model 3 again (significance level α = 0.05) the power of the LR-test is again very low and

only in a range of 0.026 to 0.038. In contrast to the results for the LR-test, the joint W-test

(which includes a test for conditional heteroskedasticity) has now reasonable power in

detecting incorrect density forecasts for sample sizes of 1000 (power = 0.411) and 1500

observations (power = 0.543). With respect to the different persistence parameters, the

simulations under the scenario uc.normal show that the W-test tends to have reasonable

power for α2 = 0.75, α2 = 0.90 and α2 = 0.95 and sample sizes of 1000 or more

observations. However, the power of the W-test decreases rather sharply for α2 = 0.98,

suggesting that additional distributional tests are important for successful density forecast

evaluations. The simulation results for uc. normal again highlight this point. Like in the

qml scenario, the JB-test rejects normality for all four models with rejection rates between

0.84 to 1.0, thereby correctly indicating deficient density forecasts most of the time.
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�
�����    yt = √ht*t5, ht =  0.004 + 0.06yt-1 + 0.75ht-1

�������������"��������������������������������������������������������# �����������������������������������������������������$%
α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05

&
���' qml
t = 200 0.057 0.028 0.053 0.033 0.798 0.758
t = 500 0.050 0.024 0.058 0.038 0.992 0.989
t = 1000 0.040 0.020 0.053 0.033 1.000 1.000
t = 1500 0.044 0.020 0.055 0.035 1.000 1.000

&
���' uc. normal
t = 200 0.067 0.035 0.204 0.161 0.894 0.864
t = 500 0.070 0.040 0.348 0.289 0.997 0.995
t = 1000 0.071 0.039 0.516 0.446 1.000 1.000
t = 1500 0.077 0.042 0.652 0.583 1.000 1.000

�
����( yt = √ht*t5, ht =  0.004 + 0.06yt-1 + 0.90ht-1

&
���' qml
t = 200 0.052 0.023 0.057 0.033 0.796 0.756
t = 500 0.049 0.023 0.059 0.035 0.992 0.989
t = 1000 0.045 0.022 0.060 0.038 1.000 1.000
t = 1500 0.040 0.017 0.059 0.039 1.000 1.000

&
���' uc. normal
t = 200 0.064 0.033 0.273 0.216 0.893 0.865
t = 500 0.077 0.041 0.540 0.473 0.998 0.996
t = 1000 0.088 0.050 0.800 0.749 1.000 1.000
t = 1500 0.095 0.056 0.922 0.890 1.000 1.000

�
����) yt = √ht*t5, ht =  0.004 + 0.03yt-1 + 0.95ht-1

&
���' qml
t = 200 0.061 0.031 0.052 0.031 0.782 0.740
t = 500 0.051 0.028 0.060 0.038 0.993 0.989
t = 1000 0.052 0.023 0.060 0.038 1.000 1.000
t = 1500 0.044 0.022 0.059 0.039 1.000 1.000

&
���' uc. normal
t = 200 0.053 0.026 0.146 0.105 0.875 0.842
t = 500 0.060 0.029 0.288 0.227 0.997 0.996
t = 1000 0.062 0.032 0.476 0.411 1.000 1.000
t = 1500 0.067 0.038 0.609 0.543 1.000 1.000

�
����* yt = √ht*t5, ht =  0.004 + 0.01yt-1 + 0.98ht-1

&
���' qml
t = 200 0.067 0.033 0.050 0.029 0.786 0.744
t = 500 0.062 0.032 0.047 0.030 0.993 0.988
t = 1000 0.059 0.034 0.049 0.033 1.000 1.000
t = 1500 0.061 0.034 0.053 0.034 1.000 1.000

&
���' uc. normal
t = 200 0.050 0.023 0.081 0.055 0.882 0.846
t = 500 0.046 0.022 0.107 0.075 0.997 0.994
t = 1000 0.041 0.020 0.146 0.112 1.000 1.000
t = 1500 0.053 0.027 0.185 0.142 1.000 1.000
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�
�����    yt = √ht*t5, ht =  0.004 + 0.06yt-1 + 0.75ht-1

�������������"��������������������������������������������������������# �����������������������������������������������������$%
α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05

����'
t = 200 0.100 0.052 0.093 0.049 0.078 0.045
t = 500 0.098 0.049 0.099 0.051 0.090 0.049
t = 1000 0.099 0.051 0.103 0.051 0.092 0.048
t = 1500 0.100 0.052 0.100 0.051 0.091 0.047

�
����( yt = √ht*t5, ht =  0.004 + 0.06yt-1 + 0.90ht-1

����'
t = 200 0.102 0.052 0.099 0.055 0.079 0.047
t = 500 0.100 0.049 0.100 0.051 0.090 0.048
t = 1000 0.101 0.052 0.099 0.051 0.092 0.046
t = 1500 0.096 0.047 0.095 0.048 0.097 0.051

�
����) yt = √ht*t5, ht =  0.004 + 0.03yt-1 + 0.95ht-1

����'
t = 200 0.102 0.050 0.092 0.050 0.080 0.044
t = 500 0.102 0.050 0.095 0.049 0.084 0.046
t = 1000 0.101 0.051 0.097 0.049 0.095 0.051
t = 1500 0.099 0.051 0.102 0.055 0.092 0.050

�
����* yt = √ht*t5, ht =  0.004 + 0.01yt-1 + 0.98ht-1

����'
t = 200 0.098 0.049 0.096 0.054 0.075 0.043
t = 500 0.104 0.053 0.101 0.055 0.089 0.049
t = 1000 0.101 0.050 0.100 0.051 0.090 0.047
t = 1500 0.100 0.052 0.100 0.050 0.096 0.046
________________________________________________________________________________________________

Notes: For all simulated GARCH-t models t5 denotes a t-distributed random variable with mean zero and five degrees of
freedom, ht denotes the conditional variance and yt stands for the generated returns. LR is the short cut for a joint
likelihood ratio test as defined in (3b) of zero mean, zero correlation and unit variance of an n-series derived from the
model. W denotes a joint Wald test of an n-series for iid N(0,1) as implied by the system (4a) and (4b). JB denotes the
Jarque-Bera test statistic. The  acronym qml indicates that the n-series on which the different tests are carried out are
derived from quasi maximum likelihood estimates (i.e. conditionally normally distributed density forecasts) of the model,
uc. normal indicates that the n-series from the model is generated under the assumption of unconditionally normally
distributed density forecasts. For all models y1 = 0 and the implied unconditional variance are used as starting values in
the simulations.    



– 12 –

With respect to the size of the different test statistics the simulations show that the LR and

the W-test have virtually always the correct size for all models and sample sizes. The size

of the JB-test is found to be slightly too low for the sample sizes considered. Taken

together, the results of the simulation experiments suggest that the regression based density

forecast evaluation methodology in conjunction with normality tests is a quite powerful

tool for the analysis of density forecasts and model specifications.

9 ����
���
������
���	
�����


The analysis of the density forecasts from the forecasting models outlined below is based

on daily time series of the S&P 500, DAX and ATX stock market indices. The data set

obtained from Datastream covers the period from 1/26/1990 to 1/26/2000 and contains

2,609 observations per index. Daily logarithmic returns are calculated as xt = ln(Pt) - ln(Pt-

1) where Pt denotes the level of the index at day t.

One-step-ahead density forecasts of daily returns are generated from seven popular models.

The first model is an equally weighted moving average (MA) of squared returns with a

rolling time window of 250 trading days. The MA forecast of the variance of a return at

time t is given by

(5) ∑
−

−=

=
1

22 /
W

QWL

LW
��σ .

The second model is the exponentially weighted moving average (EWMA) of squared

returns with a smoothing parameter λ = 0.94 as proposed by J.P. Morgan.2

(6) 2
1

2
1

2 )1( −− +−=
WWW

� λσλσ .  

In (5) and (6) it is assumed that the mean of the daily returns are approximately zero.3 It is

further assumed that the returns are conditionally normal with variance σt
2. Therefore, both

models imply normal density forecasts with mean zero based on the variances generated

from (5) and (6), respectively.

                                                

2 For further details, see RiskMetricsTM (1996).
3 This assumption is often made in practical applications of MA and EWMA models because it is argued that

incorporation of the rather imprecise estimates of the mean of a daily return series (which are often close to zero) tend
to produce inferior volatility predictions. For a discussion of this issue, see Figlewski (1994).
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The next four forecasting models are all variants of GARCH(1,1) models. In contrast to

MA and EWMA specifications, which can be applied to squared returns directly, the

coefficients of GARCH models must be estimated with maximum likelihood methods. For

all GARCH models the equation for the conditional mean is specified as an AR(1) process

(7)
WWW

�� ηωω ++= −110    

to capture aggregation effects and other sources that might induce correlation into a return

series. The dynamics of the conditional variances are specified as

(8a) 12
2

110 −− ++=
WWW
�� αηαα

(8b) 121
2

1
2

110 −−−− +++=
WWWWW
�	� αγηηαα

	W
�





���
����


��
W

  0

0    1 �η
�

Variant (8a) is the standard GARCH (1,1) specification (Bollerslev, 1986) where positive

and negative innovations are treated symmetrically. Specification (8b) is the GARCH

model proposed in Glosten, Jagannathan and Runkle (1993), which allows for asymmetric

reactions to news on the stock market.

Equation (7) together with (8a) or (8b) determine the location and shape of the density

forecasts from GARCH models. In equation (7) the coefficients ω0 and ω1 determine the

conditional mean of the return xt and hence the location of a density forecast at time t and

the coefficients in (8a) or (8b) specify the dynamics and the size of the conditional second

moments of the forecasts. The distributional form of the density forecasts is given by the

distribution assumed for the disturbance term ηt. In the empirical applications the GARCH-

models are estimated under the assumption of normally distributed errors and under the

assumption of t-distributed error terms. In each application of the t-distribution, the degrees

of freedom parameter of the t-distribution is estimated jointly with the other model

coefficients. The reason for assuming a Student-t distribution is that although in the

GARCH framework conditionally normal distributions produce fat-tailed unconditional

distributions, often not all of the excess kurtosis is captured under the assumption of

conditional normality. Since the Student’s-t distribution is able to produce (symmetric) fat-

tailed conditional densities, forecasts based on the Student-t distribution might be better

able to capture excess kurtosis in the data.
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The last model is the scaled Student’s t distribution, for which the density is given by

(9)
2

)1(

2

2

2

1
2 1)(

2

1

)1(
2

1

)(

+
−

−







+





Γ





 +Γ

=

ν

νσ
ηνπσ

ν

ν
η W

W
�

with expectation E(ηt) = 0 and variance Var(ηt) = σ2(ν/ν-2). In (8) Γ(.) represents the

gamma function, ν is the degrees of freedom parameter and σ2 denotes the scale parameter.

We allow for a time dependent first moment of the density forecasts since (9) is applied to

the residuals obtained from the mean equation (6). Hence the location of the density

forecasts based on (9) can change over time, but the shape of the forecasted densities

remains the same (i.e. constant conditional variance is assumed). The intention behind this

model is to analyze the consequences of neglected second moment dynamics if a an

unconditional fat-tailed distribution is already assumed. The properties of the resulting

density forecasts should provide valuable information about the relative importance of

distributional assumptions versus assumptions about the dynamics of second moments.

:
 �$�������
��
���


It is interesting how well the individual models perform in-sample as well as out-of-

sample. Therefore, the data available for each daily index return series are divided into two

subsamples. The first sample (1/29/1990 to 1/26/1996), contains 1,564 observations and is

reserved for the estimation of the various GARCH models, the scaled t distributions and

for the in-sample evaluation of the density forecasts. The remaining 1,044 observations of

the data set, covering the period from 1/29/1996 to 1/26/2000, are used to evaluate out-of-

sample density forecasts. The density forecasts of the MA models are based on a rolling

window of 250 trading days shifted each day. EWMA density forecasts are obtained from

the recursive expression (6). The in-sample density forecasts from the GARCH models are

based on parameters estimated from the in-sample period data. The out-of-sample density

forecasts are based on coefficients updated once a year using a sample of fixed length

containing the latest 1564 observations available at the time of updating. The parameters

for the scaled t distributions are estimated from the in-sample period data and both the in-

and out-of-sample density forecasts are based on these parameters.

Table 2 provides a summary statistic on each daily return series for both samples.
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                   in-sample period 1/14/1991-1/26/1996 out-of-sample period 1/29/1996-1/26/2000

�;/
9<< ��= �*= �;/
9<< ��= �*=

$��� 0.000523 0.000461 9.56E-05 0.000778 0.001005 6.67E-05
$�>�$�$ 0.036642 0.072875 0.076139 0.049887 0.061057 0.052623
$���$�$ -0.037272 -0.098707 -0.074695 -0.071127 -0.083822 -0.086995

��)
��� 0.006373 0.009683 0.011174 0.010891 0.014343 0.011651


�����

 0.056141 -0.475196 0.373809 -0.482427 -0.581209 -0.907929
�����
�
 5.908284 14.41501 10.75624 7.638396 6.321387 8.761885
���?��'%��� 463.7719 7183.514 3324.317 974.5155 537.6211 1584.563

___________________________________________________________________

The summary statistics indicate that all return series display a significant amount of excess

kurtosis (the kurtosis of a normal distribution is 3) in both samples. Hence, all

unconditional distributions have fatter tails than the normal distribution, which implies that

extreme events tend to occur more frequently than a normal distribution would predict.

This result is typical for most financial time series. Note that all return distributions over

the out-of-sample period show greater negative skewness than over the in-sample period.

Tables 3, 4 and 5 report the in-sample and out-of-sample evaluation results about the

quality of the one-step-ahead density forecasts generated by the different models. In the

tables LR denotes the joint likelihood ratio test LR2 of correct density forecasts given by

(3b) and Wj denotes a joint test of the restriction β0 = β1 = γ1 = ... = γ6 = 0, γ0 = 1 in the

system given by (4a) and (4b) with the first lag of nt and the first six lags of nt
2 under the

possibility of heteroskedasticity. Estimated coefficients and p-values from individual t-tests

for zero β coefficients are reported under β0 and β1. These estimates and tests come from

regressions (4a) under the assumption of homoskedasticity. Because of the large sample

size and the assumption of homoskedasticity the reported p-values of the t-statistics are

virtually identical to the p-values from corresponding individual LR-tests and hence

directly comparable. Under σ chi-square tests of the hypothesis of an unconditional unit

variance of an n-series are reported and J-B and ARCH-F denote Jarque-Bera normality

tests of an n-series and F-tests for conditional homoskedasticity in regressions (4b).
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in-sample period 1/14/1991 – 1/26/1996

��'@ �6��'@ 3��!4'@ 3��'@ 3��!4'� 3��'� ������'�

 � 13.314
(0.004)

17.391
(0.001)

0.675
(0.879)

0.828
(0.843)

3.926
(0.270)

2.656
(0.448)

16.399
(0.001)

6M 29.570
(0.001)

13.647
(0.135)

1.619
(0.996)

2.316
(0.985)

9.421
(0.421)

10.143
(0.339)

59.272
(0.000)

β� 0.076
(0.004)

0.081
(0.006)

0.002
(0.951)

0.013
(0.620)

0.013
(0.615)

0.008
(0.780)

0.013
(0.606)

β� 0.006
(0.817)

0.035
(0.205)

-0.012
(0.671)

-0.017
(0.537)

-0.032
(0.248)

-0.027
(0.327)

-0.056
(0.044)

σ� 0.911
(0.009)

1.104
(0.005)

0.974
(0.252)

0.983
(0.334)

0.942
(0.066)

0.952
(0.107)

0.871
(0.000)

�'% 261.91
(0.000)

438.18
(0.000)

353.91
(0.000)

386.25
(0.000)

0.075
(0.963)

0.21
(0.898)

0.60
(0.741)

��!4'� 2.946
(0.007)

0.231
(0.967)

0.161
(0.987)

0.242
(0.962)

0.754
(0.606)

1.167
(0.321)

6.209
(0.000)

out-of-sample period 1/29/1996 – 1/26/2000

 � 29.815
(0.000)

15.718
(0.001)

21.893
(0.000)

38.574
(0.000)

21.532
(0.000)

35.531
(0.000)

213.885
(0.000)

6M 49.769
(0.000)

13.887
(0.126)

13.272
(0.151)

12.971
(0.164)

26.258
(0.002)

42.946
(0.000)

201.513
(0.000)

β� 0.079
(0.021)

0.063
(0.056)

0.010
(0.764)

0.021
(0.557)

0.031
(0.368)

0.028
(0.415)

0.061
(0.143)

β� 0.028
(0.367)

0.052
(0.091)

0.008
(0.785)

0.002
(0.955)

0.044
(0.155)

0.051
(0.103)

-0.004
(0.906)

σ� 1.221
(0.000)

1.132
(0.002)

1.219
(0.000)

1.297
(0.000)

1.201
(0.000)

1.270
(0.000)

1.778
(0.000)

�'% 878.01
(0.000)

553.44
(0.000)

699.38
(0.000)

547.63
(0.000)

10.51
(0.005)

12.54
(0.002)

20.25
(0.000)

��!4'� 6.253
(0.000)

0.669
(0.675)

1.208
(0.299)

0.375
(0.895)

1.007
(0.419)

1.799
(0.096)

7.315
(0.000)

Notes: P-values in parenthesis
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in-sample period 1/14/1991 – 1/26/1996

��'@ �6��'@ 3��!4'@ 3��'@ 3��!4'� 3��'� ������'�

 � 7.219
(0.065)

37.772
(0.000)

2.675
(0.444)

2.122
(0.547)

3.100
(0.376)

3.137
(0.371)

16.088
(0.001)

6M 30.428
(0.000)

6.245
(0.715)

0.945
(0.999)

1.010
(0.999)

10.421
(0.317)

11.732
(0.229)

80.725
(0.000)

β� 0.041
(0.125)

0.035
(0.250)

0.005
(0.859)

0.019
(0.486)

0.023
(0.388)

0.023
(0.397)

0.029
(0.261)

β� 0.042
(0.131)

0.049
(0.072)

-0.012
(0.671)

-0.005
(0.867)

0.022
(0.417)

0.021
(0.436)

0.006
(0.818)

σ� 0.934
(0.060)

1.241
(0.000)

0.941
(0.062)

0.952
(0.106)

0.951
(0,102)

0.949
(0.094)

0.857
(0.000)

�'% 1171.01
(0.000)

56697.15
(0.000)

20615.00
(0.000)

19143.43
(0.000)

2.05
(0.358)

1.81
(0.404)

0.04
(0.981)

��!4'� 4.053
(0.000)

0.036
(0.999)

0.054
(0.999)

0.039
(0.999)

1.164
(0.323)

1.380
(0.219)

9.520
(0.000)

out-of-sample period 1/29/1996 – 1/26/2000

 � 27.463
(0.000)

15.238
(0.002)

19.880
(0.000)

28.404
(0.000)

14.200
(0.003)

15.780
(0.001)

118.587
(0.000)

6M 106.456
(0.000)

14.727
(0.099)

21.682
(0.010)

21.667
(0.010)

17.508
(0.041)

19.118
(0.024)

280.119
(0.000)

β� 0.094
(0.006)

0.100
(0.007)

0.045
(0.187)

0.054
(0.121)

0.069
(0.037)

0.069
(0.039)

0.109
(0.005)

β� -0.026
(0.397)

-0.008
(0.809)

-0.000
(0.989)

-0.002
(0.938)

0.013
(0.679)

0.015
(0.635)

-0.001
(0.965)

σ� 1.199
(0.000)

1.121
(0.004)

1.197
(0.000)

1.239
(0.000)

1.138
(0.001)

1.150
(0.001)

1.524
(0.000)

�'% 497.75
(0.000)

232.47
(0.000)

140.22
(0.000)

154.81
(0.000)

19.10
(0.000)

18.14
(0.000)

19.76
(0.000)

��!4'� 15.277
(0.000)

0.641
(0.698)

1.909
(0.076)

1.361
(0.227)

0.645
(0.694)

0.709
(0.642)

29.059
(0.000)

Notes: P-values in parenthesis



– 18 –

*����
9)
*�
�

����
���

�"
�'
����

�"
���
���
"�����
�

�"
�����
�*=

����
$�����
������


in-sample period 1/14/1991 – 1/26/1996

��'@ �6��'@ 3��!4'@ 3��'@ 3��!4'� 3��'� ������'�

 � 46.595
(0.000)

71.368
(0.000)

2.793
(0.425)

1.841
(0.606)

3.137
(0.373)

3.293
(0.349)

21.939
(0.000)

6M 111.679
(0.000)

68.190
(0.000)

7.010
(0.636)

9.267
(0.413)

8.088
(0.325)

8.742
(0.461)

190.188
(0.000)

β� 0.001
(0.956)

-0.019
(0.506)

-0.006
(0.833)

0.017
(0.519)

0.001
(0.980)

-0.000
(0.996)

0.012
(0.649)

β� 0.176
(0.000)

0.202
(0.000)

-0.010
(0.708)

-0.008
(0.779)

-0.019
(0.499)

-0.019
(0.496)

-0.053
(0.056)

σ� 0.914
(0.012)

1.162
(0.000)

0.939
(0.057)

0.956
(0.128)

0.938
(0.055)

0.937
(0.050)

0.844
(0.000)

�'% 902.64
(0.000)

4692.83
(0.000)

4356.85
(0.000)

2788.45
(0.000)

0.079
(0.961)

0.040
(0.980)

0.880
(0.644)

��!4'� 11.214
(0.000)

1.548
(0.159)

1.015
(0.414)

1.191
(0.308)

0.927
(0.475)

0.811
(0.561)

26.090
(0.000)

out-of-sample period 1/29/1996 – 1/26/2000

 � 6.210
(0.102)

16.127
(0.001)

4.262
(0.235)

4.464
(0.215)

2.039
(0.564)

1.646
(0.649)

34.580
(0.000)

6M 117.892
(0.000)

21.880
(0.009)

9.805
(0.367)

7.868
(0.547)

6.216
(0.718)

5.443
(0.794)

295.028
(0.000)

β� 0.017
(0.606)

0.019
(0.556)

0.000
(0.994)

0.015
(0.635)

0.021
(0.502)

0.018
(0.565)

0.042
(0.163)

β� 0.038
(0.220)

0.094
(0.002)

-0.064
(0.039)

-0.064
(0.040)

-0.029
(0.342)

-0.023
(0.453)

-0.175
(0.000)

σ� 1.096
(0.017)

1.116
(0.005)

0.999
(0.493)

1.007
(0.429)

1.038
(0.193)

1.039
(0.183)

0.965
(0.212)

�'% 2419.55
(0.000)

353.21
(0.000)

161.35
(0.000)

125.51
(0.000)

9.24
(0.010)

8.63
(0.013)

6.90
(0.032)

��!4'� 19.190
(0.000)

1.600
(0.144)

0.924
(0.477)

0.568
(0.756)

0.692
(0.656)

0.629
(0.707)

43.289
(0.000)

Notes: P-values in parenthesis
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The tests of the n-series for the simple MA and the EWMA models indicate a rather poor

performance in-sample as well as out-of-sample. The Wj tests, which in contrast to the

LR2-test, also cover the dynamics of the conditional second moments do not always reject

the hypotheses of correct density forecasts for the EWMA-models because due to the

similarity with GARCH-models, EWMA-models often provide a good approximation of

the volatility dynamics which leads to more frequent non-rejections. In fact, all n-series

from the EWMA-models pass the separate ARCH-F tests. However, all n-series generated

from MA and EWMA models clearly do not pass the J-B normality test, as indicated by the

rather large values of the Jarque-Bera test statistics. In addition, the individual t-tests

sometimes indicate problems with the location and the dynamics of the density forecasts.

The results for the GARCH- and GJR-models with normally distributed errors clearly

highlight the danger of using only LR tests without additional tests for normality. The LR

tests support the hypotheses of correct density forecasts all times over the in-sample period.

The J-B normality tests, however, strongly reject normality in all cases indicating severe

problems with the assumption of normally distributed density forecasts. Without the

additional tests for normality one would have incorrectly accepted all GARCH-models

with normally distributed errors over the in-sample period. Without normality tests the Wj

statistic alone would of course also lead to incorrect conclusions. In conjunction with

normality tests, however, the results do not support normally distributed density forecasts

from GARCH models.  Over the out-of-sample period the results are somewhat mixed. The

LR tests reject, except for the ATX where the Wj statistics also accept due to the absence of

ARCH-effects. The Wj statistics also weakly support the GARCH-n and GJR-n models for

the S&P 500. However, the additional J-B tests strongly reject normality again.

The results for GARCH- and GJR-models with t-distributed errors are quite different from

the models with normally distributed errors. Both models pass all tests over the in-sample-

period indicating good density forecasts. In the case of the S&P 500 and the DAX, the

GARCH-t and GJR-t models are not supported by the LR and Wj statistics over the out-of

sample period and the J-B normality test rejects normality at conventional significance

levels in all three cases. However, the value of the J-B test statistic is small and by far

lower, compared to the models that assume normally distributed density forecasts.4

                                                

4 Another interesting point is that the incorporation of an asymmetric reaction of volatility to positive and negative
innovations into the econometric specification does not seem to be crucial for the purpose of density forecasting,
although we found some evidence for significant positive γ coefficients for the GJR models implying a larger impact
of negative innovations on volatility.
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Individual chi-square statistics for skewness SK = 0 and kurtosis K = 3 for the out-of-

sample n-series of the GARCH-t and GJR-t models reported in table 5 provide additional

insights about likely directions of misspecification. The statistically significant negative

skewness coefficients for the n-series suggests that the main deficiency of the density

forecasts from these models might result from the symmetry imposed by the t-distribution.

Additional F-tests (F) of the restriction δ1 = δ2 = ... =δ5 = 0 from the regression n3
t = δ0 +

δ1n
3

t-1 + . . . + δ5n
3

t-5 + et of the cubed n’s on it’s first five lags provide information about

time dependence of skewness of the n-series. If there is no time dependence, than the

lagged cubed nt’s should not help to predict actual cubed nt’s. The F-tests does not reject

the hypotheses of time independent skewness for the transformed DAX and ATX series.

The F-tests for n3-series from the GARCH-t and GJS-t models for the S&P 500 series

indicate time dependent skewness. Density forecasts from models along the lines of

Hansen (1994) that allow for time dependent skewness might therefore be more

appropriate for the S&P 500. Such models are beyond the scope of this paper, however.
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+B.CB+CC:
D
+B.:B.<<<

� �� �'��
�

�;/9<< 3��!4'� 2.699
(0.041)

-0.191
(0.012)

4.031
(0.001)

3��'� 2.633
(0.016)

-0.196
(0.010)

3.793
(0.002)

��= 3��!4'� 2.843
(0.300)

-0.322
(0.000)

0.857
(0.509)

3��'� 2.850
(0.323)

-0.315
(0.000)

0.794
(0.554)

�*= 3��!4'� 2.839
(0.289)

-0.216
(0.004)

1.587
(0.161)

3��'� 2.808
(0.206)

-0.201
(0.008)

1.426
(0.212)

Notes: P-values in parenthesis

The last model to be discussed is the scaled t-distribution with a constant conditional

second moment. This model, neglecting the time dependence in the conditional second

moments, is always strongly rejected by the LR and Wj statistics, although the J-B-

statistics looks good in all cases, often supporting normality. The ARCH-F tests clearly

indicate serious heteroskedasticty. A comparison of the test results for the GARCH-t and

GJR-t models with scaled t-distributions shows that both, proper distributional assumptions
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and a reasonable model of the dynamics of the relevant conditional moments are necessary

to obtain good density forecasts.

E
 !�����
���


Based on the fact that correct density forecasts for a stochastic process imply iid N(0,1)

data under certain transformations of the realizations of a process with respect to the

corresponding predicted conditional densities, a simple regression framework in

conjunction with normality tests was proposed to evaluate the quality of density forecasts

obtained from econometric time series models. The methodology is not only useful to

examine the quality of density forecasts per se, because it is also applicable to identify the

nature of misspecifications of the forecasting model being used. It was further

demonstrated theoretically, as well as in simulation experiments and in empirical

applications that likelihood ratio tests focusing only on the mean, correlation and

unconditional variance of a transformed series may lead to misleading conclusions about

the quality of density forecasts and the associated forecasting models if no additional

normality- and heteroskedasticity tests are conducted.

The empirical results about the quality of in- and out-of-sample one-step-ahead density

forecasts of daily returns from the S&P 500, DAX and ATX suggest that GARCH-models

with t-distributed errors are able to produce good density forecasts over the in-sample

period. Experiments with unconditional t-distributions (thereby ignoring the dynamics in

the second moments) show that the choice of a fat-tailed distribution alone is not enough to

obtain acceptable density forecasts. Distributional assumptions as well as the correct

specification of conditional moments play an important role. The performance of GARCH-

t and GJR-t models is weaker out-of-sample, but still better compared to the other models.

Separate skewness- and kurtosis tests and an analysis of the correlation structure in the

third conditional moments of the transformed series indicates that GARCH-models with

skewed fat-tailed conditional distributions might be more appropriate to describe the return

series over the out-of sample period. In the case of the S&P 500, skewness was also found

to be time varying. Extensions of statistical models of financial returns to higher order

conditional moments beyond the conditional variance might therefore be an interesting

direction for future research.
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The random variable Xt in it’s standardized form is given by St = (Xt - µ(It-1))/σ(It-1) and

the probability integral transformation (1) can be written as Zt = Pt(St) where Pt(.) is the

assumed distribution function of the density forecasts. The n-transformation applied to St

can then be expressed as Nt =  FN
-1 [Pt(St)]. Since the density forecast p(Xt It-1) is assumed

to be a normal density it follows that Nt =  FN
-1 [Pt(St)] = FN

-1 [FN(St)] = St. The fact that the

predicted densities p(Xt It-1) adequately capture the first two conditional moments of the

density forecasts implies that St = Yt for all t. But then Nt = Yt is iid D(0,1) and the result

follows.
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a) Assume a normally distributed density forecast for Xt based on the unconditional

standard deviation σ. The random variable Xt in it’s standardized form can be expressed

as
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Since Nt =  FN
-1 [Pt(St)] = FN

-1 [FN(St)] = St  holds for a normal distribution function we can

substitute Nt for St in (A1).

The conditional second moment of Nt is given by

(A2) 





= −

−
− 1

2
2

2
1

1
2 )(

)(
WW

W

WW
��

�
����

σ
σ

)(
)(

1
2

2

2
1

−
−=

WW

W ���
�

σ
σ

)(
)( 2

2

2
1

W

W ��
�

σ
σ −= .

Since σ(It-1)
2 varies across t it follows that the second conditional moment of Nt varies

across t which  proofs conditionally heteroskedasticity.
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Since Nt has mean zero conditional on It-j and It-j of course contains Nt-j , it follows that

E(Nt Nt-j) = 0 and hence E(NtNt-j) = 0.
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Write the model for Xt in the form Xt = µ(It-1) + εt, where εt ∼  D(0, σ(It-1)). Then
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Since E(Yt
2) = 1 by assumption, it follows that E(Nt

2) = 1 which proofs point c.
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