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Abstract

Risk neutral densities (RND) can be used to forecast the price of the underlying basis for
the option, or it may be used to price other derivatives based on the same sequence. The
method adopted in this paper to calculate the RND is to first estimate daily the diffusion
process of the underlying futures contract for foreign exchange, based on the price of the
American puts and calls reported on the Chicago Mercentile Exchange for the end of the
day. This process implies a risk neutral density for each point of time in the future on
each day. In order to estimate the diffusion process we need methods of calculating the
prices of American options that are fast and accurate. The numerical problems posed by
American options are tough. We solve the pricing of American options by using higher
order lattices combined with smoothing the value function of the American Option at
the boundaries in order to mitigate the non-differentiability of both the payoff boundary
at expiration and the early exercise boundary. By calculating the price of an American
option quickly, we can estimate the diffusion process by minimizing the squared distance
between the calculated prices and the observed prices in the data.

This paper also tests whether the densities provided from American options provide a
good forecasting tool. We use a non-parametric test of the densities that depends on
inverse probabilities. A problem with the use of these tests in the past has been the time
series nature of the transformed variables when the forecasting windows overlap. The
inverse probability of the realized thirty day ahead spot at time ¢ is correlated with the
corresponding inverse probability at time £ — 1, because the development of the spot rate
untill £ shares twenty-nine days of history. We modify the tests based on the inverse
probability functions to account for this correlation between our random variables that
are uniform distributed under the null hypothesis. We find that the densities based on the
American option prices for foreign exchange do considerably well for the thirty to sixty
day time horizon, but less well for the shorter horizons. The most sophisticated single
state model of the diffusion process did best at the one-hundred-eighty day time horizon.

Keywords: Risk-neutral densities from option prices, American exchange rate options,
Evaluating Density Forecasts, Pentionomial tree, Density evaluation, Overlapping data

problem

JEL Classification: F47, F31, C52, C63



Zusammenfassung

Risikoneutrale Dichten (RND) koénnen dazu genutzt werden, den Preis des der Op-
tion unterliegenden Basiswertes vorherzusagen, oder aber um den Wert anderer Deriva-
tive, die sich auf den gleichen Basiswert beziehen, zu berechnen. Die in diesem Aufsatz
vorgestellte Methode zur Berechnung der RND besteht darin, in einem ersten Schritt
téglich den Diffusionsprozess der Futures Kontrakte des Devisenmarktes zu schiitzen, in-
dem auf die Tagesendnotierungen von amerikanischen Kauf- und Verkaufsoptionen zuriick-
gegriffen wird, die an der Chicagoer Produktenbotrse gehandelt werden. Dieser téglich
geschitzte Prozess impliziert dann fiir beliebige Zeitpunkte in der Zukunft risikoneutrale
Dichten. Allerdings erfordert die Schétzung des Diffusionsprozesses schnelle und genaue
Berechnungsmethoden fiir die Preise amerikanischer Optionen. Wir 16sen das Problem der
Bewertung amerikanischer Optionen, indem wir Zustandsbdume hoherer Ordnung ver-
wenden und mildern das Problem der Nicht-Differenzierbarkeit des Wertkurvenverlaufs
amerikanischer Optionen dadurch, dass wir an nicht differenzierbaren Stellen glitten, also
zum Filligkeitszeitpunkt der Option bzw. bei Wertentwicklungen des Basiswertes, an
dem sich moglicherweise das Ausiiben der Option vor Filligkeit lohnt. Wir schitzen den
Diffusionsprozess, indem wir den Kleinstquadratabstand zwischen den vom Diffusions-
prozess implizierten Preisen und den beobachteten Notierungen amerikanischer Optionen
bestimmen; ein Verfahren, das nur bei schneller Berechnung der Optionspreise durch-
fithrbar ist.

Dariiber hinaus wird im vorliegenden Aufsatz gepriift, ob die aus amerikanischen Op-
tionen abgeleiteten Dichten ein geeignetes Prognosewerkzeug darstellen. Dies geschieht
mittels eines nichtparametrischen Verteilungstests, der von inversen Wahrscheinlichkeiten
abhéingt. Fin Problem, das sich beim Einsatz solcher Tests in der Vergangenheit ergab,
war der Zeitreihen-Charakter der transformierten Variablen bei iiberlappenden Prognose-
fenstern. Die inverse Wahrscheinlichkeit des beispielsweise 30 Tage in der Zukunft liegen-
den realisierten Kassakurses zum Zeitpunkt ¢ ist mit der entsprechenden inversen Wahr-
scheinlichkeit zum Zeitpunkt ¢ — 1 korreliert, da die Kassakursentwicklung bis zum Zeit-
punkt ¢ 29 Tage gemeinsam hat. Wir modifizieren die Tests auf Grundlage der inversen
Verteilungsfunktion, um dieser Korrelation zwischen unseren Zufallsvariablen, die unter
der Nullhypothese gleichverteilt sind, Rechnung zu tragen. Es zeigt sich, dass die Dichten
auf der Basis amerikanischer Devisenoptionspreise bei einem Prognosehorizont von 30 bis
60 Tagen sehr aussagekriftig sind, sich bei kiirzeren Prognosezeithorizonten jedoch weniger
gut bewdhren. Fiir den 180-Tage Prognosehorizont schnitt das Ein-Faktor-Zustandsmodell
des Diffusionsprozesses am besten ab.
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The Empirical Performance of Option Based
Densities of Foreign Exchange™

1 Introduction

It is well known that with complete markets, a sufficiently rich set of European
options prices implies a state price density that one may interpret as a probability
density over the price that underlies the derivative contract, if agents are risk neutral.
In this case the state price density is called a risk neutral density. European options
have been used to recover the risk neutral densities for a variety of prices and
indices, including oil and the Standard and Poor’s 500 index. The richest market
for foreign exchange options present a difficulty in applying this theory, however.
The most liquid foreign exchange options, sold on the Chicago Mercantile Exchange
are American options based on a futures price. As is well known, this type of option
have an early exercise feature that destroys the logic behind computing the risk
neutral densities from European options. To see this, the European option price,
¢ (K, X,T —t), (in this case of a call option) at time, ¢, with a strike price, K,
expiring at time 7', in a one state model can be expressed as

o (K, X, T —t)=e¢ P70 / (X7 — K)mp(X)dX (1)

K
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where p is the discount rate, (here assumed constant) and 7 (X) is the risk neutral
density over the state space of X at the expiration date 7. As pointed out by
Breeden and Litzenberger (1978), differentiation of this expression twice with respect
to the strike price, K, gives the risk neutral density, 77(X) times a discount factor,
e P(T=Y)_ The subsequent literature (e.g. Shimko (1993), Malz (1997), Jackwerth and
Rubinstein (1996) and Stutzer (1996)) has concentrated on estimation of the density
from noisy or, in the Malz case, extrapolated data on prices by using parametric
distributions, mixtures of parametric distributions, or non-parametric smoothers
to fit the second derivative of the option price function with respect to the strike
price. Others, like Neuhaus (1995) do not rely on smoothing equations and calculate
probabilities at and between strike prices. Once the risk neutral density is calculated,
then it can be used to forecast the price of the underlying basis for the option, or it
may be used to price other derivatives based on the same sequence.

With an American option based on a future price, the relationship in equation (1)
breaks down. The expectation operator must take into account the early exercise
boundary, which will differ for each option based on a different strike price, and differ
by time to expiration for the same option. Under this regime, equation (1) is no
longer true, and arguments which generate equation (1) from the theory of option
pricing, such as application of Feynmann-Kac to the partial differential equation
system defining the evolution of the option price no longer make sense. This leaves
a researcher with two choices. One can use a thinner market, such as the European
options offered by the Philadelphia exchange or use the European options prices
where they are quoted by a single bank. Another possibility, explored in this paper,
is to calculate the risk neutral densities from American option prices on the thickly
traded market by using methods that are theoretically consistent with the early
exercise option.

The method adopted in this paper to calculate the risk neutral density in this
case is to first estimate the underlying process of the underlying futures contract
for foreign exchange, based on the traded price of the American puts and calls
reported for the end of the trading day. This estimated process implies a risk

neutral density for each point of time in the future. In order to estimate the diffusion



process we need methods of calculating the prices of American options that are fast
and accurate. The numerical problems posed by American options are tough. We
solve the pricing of American options by using higher order lattices combined with
smoothing at the boundaries in order to mitigate the non-differentiability of both
the payoff boundary at expiration and the early exercise boundary. By calculating
the price of an American option quickly, we can estimate the diffusion process by
minimizing the sum of the squares between the calculated prices and the observed
prices in the data.

This paper also tests whether the densities provided from American options pro-
vide a good forecasting tool. We use a non-parametric test of the densities that
depends on the inverse probability ideas of Fischer (1930) and others. A problem
with the use of these tests in the past has been the time series nature of the trans-
formed variables when the forecasting windows overlap. The inverse probability of
the realized thirty day ahead spot at time, ¢, is correlated with the same corre-
sponding number at time ¢ — 1, because the spot shares twenty-nine days of history.
We modify the tests based on the inverse probability functions to account for this
correlation between our random variables that are uniform under the null.

We find that the densities based on the American option markets for foreign
exchange do quite well for the thirty to sixty day time horizon. Less sophisticated
models of the diffusion process, such as the simple log normal Black-Scholes model,
do less well than more sophisticated models in forecasting the one-hundred-eighty
day horizon. However, all of the single state models described in this paper fail to
match the data for short time horizons.

The plan of the paper is this: first we describe our data. The next section lays
out the numerical methods we used to calculate the risk neutral densities implied
by American option prices based on a futures contract. Next we describe the tests
that we use to evaluate our implied densities, especially those that take into account
the time series nature of the overlapping windows of the forecasts. Our results are
detailed in the next section and are followed by a short section where we lay out

some of the implications that may be drawn from our study.



2 The data

The American options are exchange-traded, approach a fixed expiration date and
can be exercised before maturity. Our data are over two million transaction prices
from the Chicago Mercantile Exchange (CME) for fifteen years of options based
on the US dollar DM futures prices. The prices are close of day transactions, and
they always represent prices which have been used in an exchange on that day.
While these data are advantageous in that they represent the most liquid market
for foreign exchange options, and they include more different strike prices each day
than all other data sources combined, they have a major disadvantage: because of
historical reasons, these are American style options based on an underlying future.
Because of this there is a substantial incentive to exercise the option early. One
can think of the underlying future as providing a continuous stream of “dividends”
as the future price changes to reflect the known expected change of the foreign
exchange. As is well known, an American style option on an underlying stock which
provides a continuous stream of dividends does not always provide incentive to hold
the option until its expiration date. For some values of the underlying price, a trader
can do better by cashing in the option early. This provides a “boundary” of prices,
under or over which (depending on whether the option is a call or a put) the trader
always exercises the option before the expiration date. This early exercise boundary
is something that we take account of in calculating our risk neutral densities.

In addition, some of the data are especially noisy. As a result we imposed some
requirements which all our data had to meet. All options included in the data set
had to have both a volume of exchange and an open interest that were positive on
the trading day. In addition, because of the historical illiquidity in certain markets,
other prices were excluded: options expiring within 10 days of the current trading
date, options expiring more than 100 days from the current trading date, and options
with strike prices that are greater than .05 in relative, time normalized moneyness.
In other words, options are excluded if ‘%‘ > .05, with K being the strike price,
X, the actual futures rate and /T —t = \/7 the normalizing time factor, which
is the difference between expiration date T" and the actual date ¢ . This excludes

those options in the extreme tails where prices are known to be driven more by



illiquidity than by market expectations. The time period under investigation runs
from January 25, 1984 to December 31, 1998. Days with traded options that did
not include at least 8 different strike prices were excluded. This left us with 3900
separate trading days with which to estimate densities. The number of different
options on the days where densities were estimated ran from a low of 8 to a high
of 106. An average day included about 58 options prices that were usable. Note
that all option prices that matched the above filters were used, even those that
occasionally did not meet the arbitrage conditions implied by option theory. (In the
two million data points this happened about 20 times). In the case of our estimation,
these anomalies were considered part of the error term in the non-linear least squares

technique.

3 Estimation of the Densities

Following Dumas et.al. (1998), our procedure is to estimate the parameters of a
diffusion process in order to approximate the risk neutral density for each day. Thus
we first calculate the instantaneous volatility of the spot, :(X, T, @), a function of
the state of the exchange rate and of time to expiration 7 of the contract. We estimate
the diffusion function, 6,(X, 7, B), parametrically, by minimizing with respect to a
parameter vector B the sum of the squared deviations of the observed option prices
from the prices implied by &;(X ,T,B). This function is estimated separately for
each day for which we have options price data. Each function implies a distinct risk
neutral density for any period ahead for which one wishes to forecast.

As is usual when handling option prices, a trade off must be made between having
a rich enough parameterization of 64(X, 7, B) to capture the details of the market’s

valuation of the risk and over fitting. Following the literature on fitting European



options to single state diffusions, we fit four specifications of &+(X, 7, 5) in this paper.

&t(X>TaB) = (X,
Bo + 51X,
Bo + 61X + 8, X2, (2)
By + Br X + B, X7 + B, X°

The first parameterization is the Black Scholes, log normal specification. The second
adds a normal term which has the effect of allowing for thicker tails on the density.
The third and fourth specifications are polynomial extensions to this which allow
for the standard volatility “smile” and “sneer” often observed in foreign exchange
options.

By estimating the diffusion process rather than the implied state space density for
each expiration date, we allow for tests of forecast densities of a variety of horizons,
not just the expiration dates for which we have option data. We obtain forecast
ahead densities for one, seven, fourteen, thirty, ninety and one-hundred-eighty days
ahead of the current information by using the separate estimates &4(X, 7, B) for each
day, t. From these densities we acquire the series ﬁgﬂg(XH_g), which is the probability,
given the estimated density at ¢ that the # ahead forecast is less than or equal to the
observed 6 ahead outcome, X;,y. For clarification reasons, we drop the 6 notation
when we refer to an estimated density, so that ﬁg,t(Xt+9) = ﬁt(Xt).

Estimation of the daily diffusions (X, 7, B) hinges on being able to calculate the
price of a given option quickly and accurately, given an arbitrary function (X, 7, 5)
We accomplish this by using higher order lattice methods. Lattices are simply dis-
cretizations of both the time and the state space that allow one to compute the value
function for each option directly. A binomial tree is a lattice with two branches.
Our initial work with binomial lattices suggested that they did not converge quickly
enough to provide accurate prices of the options. Therefore we use higher order
lattices that hold the intervals of discretization of the state space and time con-
stant and have more branches. In our case, we match the first five moments of the
Brownian motion process assumed in our parameterization of 64(X, 7, @)

The probability weights for each branch are given in figure 1. They are derived



Probability Structure for one Node

Pentionomial-Tree for 1/6<0<2/3

Xi+2Ah,t+At  with probability p2=(1/2)062-(1/1 2o
Xi+Ah,t+At  with probability p; =-20c2+(4/3)oc

Xis Xi,t+At with probability p3=3oc2-(5/2)0c+1
Xi-Ah, t+At with probability ps=p4

Xi-2Aht+At  with probability ps=p»

Trinomial-Tree for 0<g<1/6 (low values of &°(X,t,3))

Xi+Ah,t+At  with probability p;=o/2

X¢< Xit+At with probability p,=1-o
Xi-Ah, t+At

with probability p;=o/2

with o« =62(X,7, B)Atl AK?
with Ar= (23)Ah? I max@?(X,7,5)) , B isinitial guess of the diffusion process
with Ah: equally spaced absolute value of the underlying in DM/US-$ exchange rate

Figure 1: The probability structure of the pentionominal tree



by solving six equations in seven unknowns (the probabilities p;, 7:(X, T, E)Q, At),
giving one degree of freedom, which we employ to set new state depending proba-
bilities for each daily estimated diffusion process (X, 7, B) The system to solve

(3)

pL+p2tp3s+pst+ps=1
E [X(t + At) - X(t)]l = plAh +p22Ah —|—p30 —p4Ah - p52Ah =0

E[X(t+ At) — X(8)]* = prAR2+po(2AR)24ps0+ps AR +ps(2AR)? = 6,(X, 7, B)2At
E[X(t+ At) — X ()] = prAR® + pa(2Ah)3 4 ps0 — pyAhS — ps(2AR)2 =0

E[X(t+ At) — X(8)]* = pi AR +po(2AR) +p30-+ps AR +ps(2AR)* = 36,(X, 7, )1 At?
E[X(t+ At) — X(1)]° = p1ARS + pa(2Ah) + ps0 — py AR5 — ps(2Ah)° =0

For either tree in figure 1, p; depends upon a = ‘”(X’AT—;L’E)QE
12

tree the p; are positive if and only if a € [67 5}. For a € [O,%

values of (X, T, B)Q, we reduce the pentionomial model to a trinomial model, by

. For the pentionomial

] , i.e. for c.p. small

dropping the equations for the fourth and fifth moment and cutting the further
branches (i.e., those branches with an increment of 2Ah)*.

The time step At is determined by the size of a chosen state space increment, Ah,
a chosen value of o and the maximum o,(X, 7, ﬁ) at the end of the lattice, given the
initial guess B of the diffusion process on day t. A reasonable value of Ah proved to
be 10~7. This space increment yielded very acurate prices for European options for
which an analytical solution exists. In our scheme we used a value for the time step
of At = %ﬁ};ﬂm, which allowed the fourth moments to be matched for the
largest part of the state space. This lays down the tree structure in terms of At and
Ah for the whole estimation procedure for a trading day. To simplify the notation,

we drop the bar and write At = At. The probabilities are modified appropriately for

'In another version of this paper we circumvent the problem of ”too small” values of
au(X, T, B)Q, and therefore of values of o below 1/6, by augmenting, if necessary, the state space
increment Ah , so that the critical value of « is only reached by smaller values of 6.(X, 7, B)Q In
this case we have therefore an adaptive tree structure which allows for every value of 6,(X, 7, B)Q
to match the first 5 moments.



fractional values of At when needed to place the lattice on those whole numbered
days when the options expire (so that the end condition can be set.) The value of the
options on day t is calculated using the probabilities p; of figure 1. The p; change for
each node, according to the diffusion process (X, 7, B) and the value of the state
X, since « is a function of X.

In contrast to a scheme using approximations that calculate the value of the
option only at the trading date, the early exercise boundary is easily incorporated
within this framework by adding a maximization operator into the calculation of the
discretized value functions at each node and at each time. Thus, for a call option,
the value of the node at state X and time ¢t — At, is

V(X,t — At) = max{e "M PVy,, Fp(X,t — At) — K},

where

PV x, =P, (V(X+Aht)+V(X-Ah,t))+Poy (V(X+2Ah,t)+
V(X-2Ah,t))+(1-2P,-2P2, ) V(X,t)

and where K is the strike price, F'p(X,t— At) is the value of the underlying future
price.

For a given diffusion, a higher order lattice approximates the value function
of each option by using the higher order terms of a moment generating function
for the true value function. The comparison of using a binomial tree to using a
higher order approximation in evaluation a diffusion expectation is analogous to the
comparison of using a sum of binomial variables to using the sum of multinomial
variables that are close to the normal in evaluating a normal expectation. Because
of central limit theorems, averaging the binomial outcomes does approximate the
normal distribution, but it does so more slowly than the sum of variables drawn
from a distribution closer to the normal.

The American option adds a complication to the calculation of a standard diffu-

sion process. The argument above relies on the underlying true value function being



smooth. This is a problem with options in general (because the value at the expira-
tion date contains a point at the strike price where it is clearly non-differentiable)
and with American options in particular (because the early exercise also creates a
non-differentiability in the value function at the boundary). We handle this by using
kernel smoothers. Thus, for a small distance around the early exercise boundary,
in the neighborhood where e *A!PVy, and Fp(X,t — At) — K are nearly equal, we
use the value function, ¢(e P2 PVy,) + (1 — ¢)(Fp(X,t — At) — K) where ¢ is a
many times differentiable kernel between 0 and 1, with the property that ¢ — 1 for
values of e 7?2 PV, that are ‘much’ greater than Fp(X,t — At) — K and ¢ — 0 for

e PA'PVy, that are ‘much’ smaller than Fp(X,t — At) — K. The kernel that we use
—PALPVx, —(Fp(X t—At)—K)

is a Logistic cumulative distribution function, ¢(e ), where w

is the bandwidth. The bandwidth parameter w, defines the term ”‘much’ greater
(e*PAtPVXt —(Fp(X,t—At)—K) )

than” by determining how quickly ¢

goes to one or zero for
positive or negative values. Choosing w too large over-smoothes in the sense that the
underlying function evaluation is completely dominated by the smoothing function.
Choosing w too small does not solve the problem caused by non-differentiability for
the higher order lattice. However, for a wide range of w, calculation of the value of
an option quickly converged to the theoretical true value where these were known.
We report results for values of w of .005 for the value function boundary and of
.003 for the early exercise boundary. Although the kernel smoothing adds a lot of
computation and complication even for small bandwidths, we find it makes a large
difference in the calculated theoretical price of an option (and was much closer to

the actual value of the option when we had a solution to compare our solution to.)

4 Evaluating density forecasts

Different methods of estimation lead to different forecasting densities, some of which
necessarily must be wrong. The ranking of these non correct density forecasts is a
difficult task. This is because a ranking depends on the often unknown individual
loss function of agents, that may include more arguments than the first two moments.

For example, decision makers with non symmetric expected loss indexes care about

10



more than the mean and the variance of a distribution. Moreover, different agents
have different loss functions, so that it is often impossible to find a ranking upon
which all individuals agree unanimously. However, it can be shown, that the correct
density is always preferred over false densities. Therefore, as a second best solution
one tries to approximate the true density as good as possible.

To assess whether there is significant evidence whether the estimated densities
coincide with the true densities at a first step we perform the probability integral
transforms of the actual realizations. Under the hypothesis that the true densities
functions correspond to our estimated densities the transformed realizations are
uniformly distributed. To assess this property of the transformed realizations we
suggest as a second step two different tests, based upon the distance of the observed
distribution of the transformed random variables from the uniform distribution.
This distance is in the Ly topology, and was first suggested by Cramer in the 1920’s.
These tests are robust to time dependence in the data.

The basic univariate integral transformation theorem is due to Fischer (1930)
and has been generalized for the multivariate case by Rosenblatt (1952). A thor-
ough overview of transformation methods in Goodness-of-Fit techniques is given by
Quesenberry (1986). Recently, Diebold et.al. (1998) apply this concept to time se-
ries, evaluating the densities implied by a MA(1)-t-GARCH(1,1) model. Clements
and Smith (2001) use the probability integral transforms for evaluating the density
forecast of a self-exciting threshold autoregressive model.

The basic idea is to evaluate a sequence of actual exchange rate realizations
{X;}Y, with respect to a sequence of densities {%9775};\;1 (: AN 1) estimated
at time ¢, with the information available at ¢. Again, the forecast horizon is 6. The
probability integral transforms z; correspond to the function values of the cumu-
lative density functions, evaluated at X;.y. For simplification X; 4 is written as
Xz

11



Under the null hypothesis of correct forecast densities (i.e. II, (X;) = II; (X;)), the
sequence of integral transformed realization {z}, is U[0,1] and their theoretical
cdf F(pry) = pry, is equal to the proportion of z;’s that is less than a number pr, in
the interval (0,1) (see appendix).

The step between our estimates of the diffusion function, &+(X, 7, B), and calcula-
tion of the cumulative distribution of the observed ¢ day ahead draw, X, is easy. We
simulate a large number of draws from the diffusion process defined by &4(X, 7, B)
(through a discrete Markov approximation) and record the proportion less than or
equal to X, to get the estimated cumulative distribution (Ecdf) II, (X;) = 2.

We then test the null that the observed sequence of z;’s is a sequence of uniformly
(though not necessarily independently) distributed random variables. In this paper,
we use inference based upon bootstrap samples that preserve the time series prop-
erties of our original sample, z1, ...z, ..., zy. From this bootstrap we can construct
confidence intervals for a variety of statistics. We report results from a distance
statistic, the so-called Cramer-von Mises statistic [von Mises (1931)]. This statistic

is defined as

Codt = [ (F(pr) = Fom,)Pdor,). (6)

Note that this is a distance in the Ly topology between the empirical distribution
function (Fedf) of z, F\(prn), and its theoretical value, F(pr,) = pry, representing
the uniform null. A similar statistic that was also computed with the same results

lies in the L., topology, the so called Kolmogorov-Smirnov statistic,

KS = sup|F(pr.) — F(pr,)|. (7)
PTrn
This bootstrap procedure is lacking in that rejection of the null does not indicate
where the proposed densities apparently fail.
For this, we test whether the Ecdf (where in the following definition, I"(z; <

pry,) = I™" is the indicator function),
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R g: In(zt < prn)
For) = H = ®)

is equal to pr, for a large number of different pr,, in the interval (0,1). We perform
this test separately for each pr,. These tests have the advantage of showing what
quality of the outcome density is missing in the estimated forecasting density. For
example, if the option implied densities have thicker tails than the forecasting out-
comes then this shows up graphically as F (pryn) < pry, for values of pry, close to 0 or
1 and as ﬁ(prn) > pr, for values close to 0.5. However, this is not a powerful test
because it fails to account for the departures of F (pry,) from pr, jointly for all n.

One possible way to jointly test the departures for each pr, would be to sum up
their squares, as was suggested by Karl Pearson (1905) very early in the history of
specification tests. However, this leads to problems of choosing the individual pry,,
and, ultimately, to the theory of inference in the presence of unbounded operators.
We pursue that line of research in a separate paper.

First we expand our discussion of the tests based on the stationary bootstrap.

4.1 The stationary bootstrap approach

The stationary bootstrap approach (IFSB) of Politis and Romano (1994) uses a
resampling procedure to calculate standard errors of estimators that account for
weak data dependence in stationary observations. The procedure requires a sample
of random blocks of random lengths out of the original time series, where the length
L of each block is drawn from a geometric distribution, so that the probability of
drawing a block of length L is (1—prob)*~prob for L = 1,2, .... End effects (in case of
a block going beyond the last observation) are handled by ordering the observations
in a circle, so that the series "restarts” after the last observation. A difficult aspect in
applying this procedure is the choice of the parameter governing the stochastic length
of the blocks, prob. Politis and Romano suggest a data-based choice of prob so that

~1/3

prob = proby — N~/ with N equal to the number of observations. By this choice

~2 . . ..
the mean squared error of & as an estimator of 0%, is minimal. Fortunately
bt,proby N ’

13



as long as prob — 0 and Nprob — oo fundamental consistency properties of the
bootstrap are unaffected by choosing prob suboptimaly. As can be directly seen,
these requirements are clearly met by the choice of prob = N~=1/3.

We use the sample sequence {z;} to calculate the Cramer-von Mises statistic CoM
directly for our sample Ecdf, I (pry), and then to calculate whether this is a signif-
icant distance from the 45°-line through the bootstrapped samples. Bootstrapped

distribution functions, F,(pr,) are also formed and the Cv M, statistic,

1

CoM, = / (F(prs) — Fy(pry))2d(prs) (9)

is evaluated for each bootstrapped sample. Because the sample distribution function
CvM and all bootstrapped sample distribution functions CvM, are step functions,
the integral expression in CvM, is calculated directly. We computed CvM, for
100,000 replications and report a number, CvM, which is the proportion of boot-
strapped distances, CvM,, that are greater than C’W, the distance between our
sample distribution function and the null, the uniform distribution function. A value
of CvM, less than some critical value, «y, rejects the hypothesis of zi, ...z, ..., zn

being drawn from a uniform distribution at the «q level.

4.2 Tests based on deviations of the empirical density from

individual quantiles, pr,

Figure 2 depicts the integral transformation. The simulated density II, of the dif-
fusion function 64(X, 7, B) is on the right side at the top and 7, the corresponding
first empirical derivative of ﬁt with respect to K, is situated at the bottom. The
sequence of actual {z1,...2;,...2x} are on the left side at the top and the estimated
F (pry,) are plotted below. Note, that the whole sequence of N actual z; is generated
by N diffusion functions, since for each diffusion process, estimated on ¢, one obtains
only one z;. However, the ﬁt, 7 and the sequence {z1, ...z, ...zy } in figure 2 share

the same forecast horizon 6 (here 6 = 30 days).
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The null hypothesis of correct forecasts corresponds to the dashed 45°-line that
connects the origin of the diagram (on the left side at the bottom) to the upper
left corner. The empirical proportion F (pry) of the sequence {z;} being less than

F(pr,) is represented by the n'* bar. The total number of bars is N. The basis of
each bar equals 1/ N and F(pr,) = pr, = >_ 1/ N. Under the null, each bar is
i=1

crossed by the dashed line at its right corner.

To address the question whether violations of the uniformity (F(pr,) # F(pry))
are significant we need to estimate the standard deviations of F (pry). However, since
our #-days ahead forecast densities are calculated daily, the evaluated realizations
X; and consequently the sequence of {z} are time dependent due to the overlapping
data problem. This issue arrises when the forecast horizon is longer than the sample
frequency. If i.e. the sample frequency is daily and the forecasts are 1-month ahead
(24 business days), the overlap amounts to 24 days. Thus, the forecast errors are
no longer #id but follow a moving average process (M A) equal to the length of the
forecast horizon 6. In this case inference from standard tests, which are based on the
assumption of vid observations, is misleading. If the forecast errors are dependent,
different types of standard tests, as Chi-squared tests and Fecdf tests i.e., lead the
researcher to reject the true null hypothesis too often.

Our test consists of calculating confidence intervals for individual F (pry) by using
the function values I™*(z; < pry,) of the indicator function. The time dependence of

the observations is considered up to the order of the theoretical data overlap 6.
N N 1 0 ]
var(F(pry)) = 6°(F(pry)) = — [7"(0) + 2 1— = 3" 10
W (P(pr.)) = 5°(For) N[’y()+ Z( N)vm] (10)

where the sample autocovariance is defined by 7(j).

)= 3 (T (=T e

~ ~

Under the null hypothesis, the ratio t = (F(pr,) — F(pry))/o(F(pr,)) has a t dis-
tribution with N — 2 degrees of freedoms.
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5 The results

The results of the Cv M, statistics are reported in table 1. These tables present the
probabilities that bootstrapped samples differ from original sample in the Cramer-
von Mises distance by as much as the original sample differs from the null of the
45°-line. Lower values than .05 imply a rejection of the null at the five percent
level. Several things are immediately clear from these tests. First, the data strongly
support the options price densities as useful forecasting densities at the one to three
month forecast horizon. In no case was the model rejected. Second, all of the models
do a poor job of predicting the densities at the one week or shorter time horizon.
Third, the simpler models and the more complicated models do about equally well
at the thirty to ninety day horizon, and all do extremely poorly at the very short
time horizon. Fourth, the complicated cubic polynomial does a better job of fitting
the density for the half year horizon than the less complicated models. Indeed, it

can not be rejected as a forecasting model of the density for this long horizon.

Horizon 6 in days 1 7 14 30 90 180
Specification™

B, X .001 .004 .049 .225 .204 .015

B+ 6, X .005 .006 .059 .218 .160 .008

Bo + 81X + B, X? .001 .005 .055 .230 .133 .023

Bo+ 31X + B, X%+ 6,X3 | .001 .002 .035 .166 .151 .058

*Bold numbers indicate, that the hypothesis of an accurate density can’t be rejected.

table 1: Test results of the stationary bootstrap approach

These broad patterns were also supported by other tests based on the boot-
strapped variance of the CvM,. To assess where the forecast densities fail, we plot
the actual Ecdf of the z; against the theoretical cdf for the extremely long and
extremely short forecasted densities of the log Normal model. Results are shown
in figures 3a and 3b. The number of bins N is 40, so that the basis of each bin
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corresponds to a probability mass of 0.025. Here, the n'® bar shows the function
value F(pry), while the theoretical cdf value F(pr) is given by the dashed 45°-line
above bin no. n. The thick bulging out lines surrounding the estimated F (pry)
indicate approximately the 95% confidence interval (i2813 (pry)), where 8(13 (pry))
are calculated by (10).2

Figure 3a shows that the areas of rejection of the density, represented by the
greyed out areas, are somewhat symmetric. The density corresponding to the Ecdf’s
displayed in figure 3a would be slightly below the uniform line on the extreme ends
of the distribution and then slightly above it on the other portions of the density.
Thus, the option forecast densities fail at the short horizon because they do not place
enough mass at the extreme ends of the densities. The tails are not fat enough. Note
also that the confidence bands are fairly tight with the one day horizon. The Cramer-
von Mises test has fairly good power at this horizon, due to the large number of
independent daily observations.

Figure 3b shows a very different picture for the longer time horizon. Although
the power of the graphic test is too small to reject the null (which is rejected over-
whelmingly by the Cramer-von Mises test) it is clear that the log Normal model
overpredicts very low outcomes of the Dollar to Deutsche Mark ratio. Following a
forecasting model based on a Black-Scholes model results in the lowest twenty per-
cent of possible outcomes being too pessimistic in terms of the value of the DM. The
confidence bands for these estimates are much wider because of the high correlation

of the actual outcomes in dates within a month of one another.

6 Concluding remarks

Our results fall into two groups, one the thirty to ninety day time horizon for which
the forecasting densities seem to fit the data fairly well, and the very short and the
very long horizons which are poor specifications for forecast densities (except for the

cubic diffusion model which is not rejected for the long horizon.)

?In case of independent data Var(pr,,) = ((1—pry,)pr,)/N, which has its maximum at 2pr,, = 1.
Therefore at pr,, = 0.5 the bulging out of the confidence interval is biggest.
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Where the densities fail as forecasting tools, several points should be noted. First,
the polynomial expansion of a single state specification of the variance clearly limits
the set of models, that can be fitted to the date. More work can be done to specify a
set of models that are sufficiently rich to match the option prices, either by increasing
the dimension of the states, controlling the diffusion process or by incorporating time
dependence into the process. Second, the time horizons for which we do not fit the
data correspond exactly to the expiration dates of the option contracts which we
cast out of our data set on the grounds that these are typically low liquidity markets.
Thus, we did not use all price data of options which expired within ten days of the
trading day, options that are perhaps best designed to forecast the future exchange
rate at one and seven days ahead. Clearly there is fruitful work to be done in
examining the trade-off in estimating risk neutral densities between the signal and
noise provided by thinly traded options.

The second group of conclusions concern the thirty to ninety day horizons where
our tests clearly do not reject any of the specifications of the diffusion process as
forecasting densities. This is in spite of the fact that we used techniques that allowed
the information from all of the daily observations between the years 1983 and 1998.
This finding is not solely a result of poor power of our tests. In other research
(Craig and Keller (2001)), we resoundingly reject densities on the thirty day horizon
implied by other methods, such as a GARCH technique, or based on other options
with lower liquidity, even though these tests are based only on less than three years
of data.

The implications of the lack of rejection of these state space densities are of some
importance. The first one is that the pricing of risk in these very liquid markets
is very low. In other words, any risk premium built into the state price densities
is small enough that the risk neutral implied density is indistinguishable from the
forecasting density. Any theory, such as uncovered interest rate parity, which relies
on large shifts in risk premia in order to reconcile it with the data is thus less
convincing.

Second, these risk neutral densities are fairly good estimates of the market’s fore-

cast of future prices. These densities can be computed daily, and thus form a useful
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policy tool, as well as providing an important set of data with which to test deeper
theories of foreign exchange determination.

Having stated that, we must admit that there is much left to do in testing the
densities before we can say more. The tests are not powerful enough to distinguish
the fairly simple parameterization offered in this paper from each other, or from
more elegant parameterizations of the densities. The diffusion densities offered here
seem very crude approximations when compared with the densities often calculated
with non-parametric techniques from European options. In contrast to these multi-
modal, quickly changing shapes, our densities are often unimodal, and usually are
close to the density of the previous day. A more powerful test might have much to say
about which of the densities represent the market’s true assessment of possibilities.

The tests of the densities that are explored in this paper are of lower power than
other more specific tests in part because of their all encompassing character. In
other words, the CvM test is designed to cover all possible specifications against
all possible alternatives. The CvM test does perform well against other such tests,
including the Kolmorgorov-Smirnov test, in terms of power. However, as shown
in Cs6rgt and Horvdth (1993), the CvM test does not exploit much information
that may be known about the null, such as behavior of the density in the tails.
Further, in the space of probability distribution functions, the CvM is only optimal
for deviations in the Lo-direction cos(ox) as shown by Gregory (1980). The theory
of statistical distribution specification testing is still fruitful, offering major new
advances each year. It is our hope that with these advances tests of sufficient power

to distinguish different parameterizations of the diffusion process may be developed.
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Appendix

We are interested in the density of the integral transforms f; (z;) at time ¢ + 0
From (5) we know that the integral transforms z, = II, (X,), where II; (X;) is the
estimated cdf (and therefore monotonic function) of X, based on information at

time ¢. Moreover, assume that the true density of X; is m; (X;) at t.

e Then, since II, (X;) is monotonic, the inverse transformation X, = I1-1(z)

exists.

e The Jacobian of the transformation is the absolute value of the determinant

B
of the partial derivative J = % = QHtgizfzt)
-1 ~ -1
o Then the density f; (z) = m(X;) |2 E ) = (11 (z,)) |22
e Inserting values for z and II, (z) in %;(zt) yields gﬁi)(()t(t) == (1Xt)

T -1 Zt Tt t
e Therefore f; (Zt) = qﬁt(xﬁ)” = ﬁtgt;'

Since 7; (X;) is the estimated density and m; (X;) is the true density of X,
ft (Zt) ~ U(O, 1) if ;T\t (Xt) = Tt (Xt) .
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