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Non-technical summary

Research Question

Covered bonds have been the cornerstone of bank funding in Europe since the late eigh-

teenth century. Despite their longevity as a financial instrument, there has been no

theoretical analysis of covered bonds. Moreover, policymakers have become increasingly

concerned about the financial stability implications of the collateralization of bank bal-

ance sheets. Our paper addresses these issues by offering a positive analysis of how asset

encumbrance affects bank fragility, and contributes to the debate on prudential regulation.

Contribution

We develop a model of bank funding with covered bonds. A bank issues covered bonds

by ring-fencing, or encumbering, high-quality assets into a bankruptcy-remote cover-pool,

which remains on the balance sheet. The cover pool is also dynamically replenished —

non-performing asset are replaced with performing ones of equivalent value and quality

to maintain the requisite collateralization. Covered bond holders are also protected by

dual recourse. If the value of the cover pool is insufficient to meet repayments, they have

claims to the unencumbered assets of an equal seniority to unsecured creditors.

Results

These institutional features make covered bonds safe assets for investors and a cheap

source of funding for banks. At the same time, they asymmetrically shift risks onto un-

secured creditors, which can heighten bank fragility and increase the cost of unsecured

funding. We show that a bank’s usage of covered bonds balances this trade-off between

profitability and fragility, and derive several testable implications about asset encum-

brance. We also obtain normative results about covered bond usage in the context of

guaranteed unsecured debt. Such schemes usually apply to retail deposits, but were also

extended to unsecured wholesale debt during the global financial crisis. The privately

optimal level of covered bond usage and bank fragility are excessive because the banker

does not internalize the effect of encumbrance on the cost of providing the guarantee. We

study three forms of regulation aimed at curbing excessive asset encumbrance by banks.



Nichttechnische Zusammenfassung

Fragestellung

Obwohl gedeckte Schuldverschreibungen seit dem späten 18. Jahrhundert einen Eckpfeiler

der Bankenrefinanzierung in Europa darstellen, gibt es zu ihnen bisher noch keine theore-

tische Analysen. Darüber hinaus sind die politischen Entscheidungsträger zunehmend be-

sorgt über die Implikationen, die diese für die Stabilität des Finanzsystems haben könnten.

Wir analysieren den Einflusses der Belastung von Vermögenswerten (Asset Encumbrance)

auf die Fragilität von Banken und tragen zur Debatte bezüglich ihrer bankenaufsichtlichen

Regulierung bei.

Beitrag

Wir entwickeln ein Modell der Bankenrefinanzierung durch gedeckte Schuldverschreibun-

gen: Banken emittieren solche Papiere, indem sie erstklassige Aktiva in einem insolvenzfes-

ten Deckungspool begeben. Der Deckungspool verbleibt in der Bilanz und wird dynamisch

erneuert, d. h., notleidende Aktiva werden durch werthaltige ersetzt, die den gleichen Wert

und die gleiche Qualität aufweisen, sodass die erforderliche Besicherung gewährleistet

ist. Die Inhaber der gedeckten Schuldverschreibungen sind zudem durch einen doppelten

Rückgriff geschützt: Reicht der Wert des Deckungspools für die Rückzahlungen nicht aus,

können sie gleichrangig mit unbesicherten Gläubigern Ansprüche auf die unbelasteten

Vermögenswerte geltend machen.

Ergebnisse

Aufgrund dieser institutionellen Merkmale stellen gedeckte Schuldverschreibungen si-

chere Vermögenswerte für Anleger und eine günstige Refinanzierungsquelle für Banken

dar. Indes führen sie zu einer asymmetrischen Verlagerung von Risiken auf unbesicher-

te Gläubiger, was die Fragilität der Banken verstärken und die Kosten der unbesicherten

Refinanzierung erhöhen kann. Wir zeigen, dass die Verwendung gedeckter Schuldverschrei-

bungen den Trade-off zwischen Rentabilität und Fragilität beeinflusst. Ferner analysieren

wir die normativen Implikationen der Verwendung gedeckter Schuldverschreibungen im

Zusammenspiel mit garantierten unbesicherten Schuldtiteln (Einlagensicherung). Da die

Banken die Kosten der Garantie nicht internalisieren, refinanzieren sie sich zu stark mit

gedeckten Schuldverschreibungen und sind daher unverhältnismäßig fragil. Wir unter-

suchen drei Formen der Regulierung, die auf die Begrenzung einer übermäßigen Asset

Encumbrance in den Bilanzen der Banken abzielen.
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1 Introduction

Following the global financial crisis, the moribund state of securitization markets in the
United States has led some commentators to advocate secured funding by banks, notably
in the form of covered bonds, as a means of reviving mortgage finance (Paulson, 2009;
Soros, 2010). Campbell (2013, p.1) makes a forceful case that “the US has much to learn
from mortgage finance in other countries, and specifically from the Danish implementation
of the European covered bond system.”

Covered bonds are secured senior debt issued by banks. These are claims on orig-
inating banks, collateralized by a pool of mortgages that remain on the balance sheet.
This cover pool is ring-fenced, or encumbered, and therefore is bankruptcy remote. The
cover pool is also dynamically replenished — non-performing assets are replaced with per-
forming ones of equivalent value and quality to maintain the requisite collateralization.1

These institutional features incentivize banks to underwrite mortgages carefully, avoiding
some of the pitfalls associated with the originate-to-distribute model (Bernanke, 2009;
Keys, Mukherjee, Seru, and Vig, 2010; Purnanandam, 2011). Indeed, covered bonds are
perceived as a safe asset by investors, since there are no recorded instances of default
since their introduction in the eighteenth century.2

Despite their longevity as a financial instrument, there has been no theoretical analy-
sis of covered bonds. Moreover, policymakers have become increasingly concerned about
the financial stability implications of the collateralization of bank balance sheets (CGFS,
2013). In response, several jurisdictions have introduced measures to restrict asset en-
cumbrance.3 Our paper addresses these issues by offering a positive analysis of how asset
encumbrance affects bank fragility, and contributes to the normative debate on prudential
regulation.

In our model, a banker seeks funding to finance profitable investment opportunities.
The banker has access to secured and unsecured debt markets, each with its own dis-
tinct investor clienteles. Debt is issued in two stages. First, building on Rochet and
Vives (2004), the banker attracts unsecured debt from risk-neutral investors by offering
demandable-debt. The banker invests these proceeds and its own funds. Second, the
banker attracts secured debt from infinitely risk-averse investors, reflecting the highly
restrictive mandates of pension funds and other large institutional investors. The banker
issues covered bonds by encumbering, or ring-fencing, a fraction of existing assets into
the cover pool that remains on its balance sheet. The cover pool is bankruptcy remote
and the returns on its assets back the covered bond. The banker invests these additional
funds raised from covered bond issuance.

The banker is subject to a balance sheet shock that has knock-on effects. First, since

1Covered bond holders are also protected by dual recourse. If the value of the cover pool is insufficient,
covered bond holders have a claim of the shortfall on unencumbered assets that is of equal seniority to
unsecured creditors. For institutional details on covered bonds, see Schwarcz (2011).

2Covered bonds have been a cornerstone of bank funding in Europe for over two centuries. They are
especially important in Germany, where the Pfandbrief system was established by Frederick the Great
in 1769 following the Seven Years War, and in Denmark following the Great Fire of Copenhagen in 1795.
See Mastroeni (2001) and Wandschneider (2014) for historical details.

3These comprise limits on encumbrance (Australia, New Zealand), ceilings on the amount of se-
cured funding by banks (Canada, US), and including encumbrance levels in deposit insurance premiums
(Canada).
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the cover pool is dynamically replenished, the banker replaces any non-performing assets
in the cover pool with performing unencumbered assets. This maintains the value of
the cover pool, but at the expense of the remainder of the balance sheet. Second, since
premature liquidation is costly, the rollover decisions of unsecured creditors constitute a
coordination problem that can lead to multiple equilibria (Diamond and Dybvig, 1983). To
uniquely pin down behavior, we use a global games approach (Carlsson and van Damme,
1993; Morris and Shin, 2003; Goldstein and Pauzner, 2005). A private signal about
the balance sheet shock informs the decision on whether to roll over unsecured debt. An
unsecured debt run occurs if and only if the balance sheet shock is sufficiently high relative
to the value of unencumbered assets. We link the incidence of ex-post runs to the banker’s
ex-ante issuance of covered bonds, and also solve for the unique face values of secured and
unsecured debt.4

Our analysis suggests that covered bonds may not be the panacea that the proponents
of such instruments might hope for. We highlight two opposing balance sheet effects
of asset encumbrance and covered bond issuance. The first is a bank funding channel:
greater covered bond issuance allows the banker to make additional profitable investments,
which increases the expected equity value and reduces the potential for a run. The
second is a risk-concentration channel: as more bonds are issued, the balance sheet shock
is asymmetrically concentrated on unsecured creditors, exacerbating rollover risk and
increasing the incidence of an unsecured debt run. The optimal level of asset encumbrance
balances these two effects.

Covered bonds are safe assets for risk-averse investors and a stable and cheap source of
bank funding. These results stem from two institutional features. The first feature is the
replenishment of cover pool assets that protects covered bond holders from the balance
sheet shock. The second feature is the bankruptcy-remoteness of the cover pool, whereby
covered bond holders do not suffer a dilution of their claims in bankruptcy.5 At the same
time, these features make unsecured debt more risky. Risk-neutral investors who hold
unsecured debt suffer the full extent of the balance sheet shock, and can only lay claim to
unencumbered assets in bankruptcy. As a result, bank fragility and the cost of unsecured
debt are higher.

We study the normative implications of asset encumbrance when a proportion of un-
secured debt is guaranteed. Such schemes usually apply to retail deposits, but were
also extended to unsecured wholesale debt during the global financial crisis.6 Assuming
a deep-pocketed guarantor, a guarantee reduces both the rollover risk and the cost of
unsecured funding, since the guarantor pays in bankruptcy. As a result, the privately
optimal amount of encumbrance increases in the coverage of the guarantee. However, by
encumbering assets, the banker shifts risks to the guarantor. Since the banker does not

4Our approach sidesteps Modigliani and Miller (1958). Costly liquidation of investment drives a wedge
between debt and equity, and we assume that secured and unsecured debt markets are segmented.

5We also show that dual recourse is never called upon in equilibrium, since infinitely risk-averse
investors evaluate holding a covered bond at the largest possible balance sheet shock. This result is
consistent with the finding of Wandschneider (2014), who notes that dual recourse has never been called
upon in practice.

6Between 2007 and 2011, many countries enacted special arrangements for banks to have new and ex-
isting wholesale bank funding guaranteed by the government until market conditions normalized. Recent
analyses of the interplay between government guarantees and financial stability include König, Anand,
and Heinemann (2014), Allen, Carletti, Goldstein, and Leonello (2015), and Leonello (2016).
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internalize the impact of encumbrance on the cost of the guarantee, the privately optimal
levels of encumbrance and bank fragility are excessive. The extent of these excesses in-
creases in guarantee coverage and in the dead-weight loss of raising the funds that back
the guarantee (for instance, distortionary taxes).

Our welfare criterion is constrained efficiency. A social planner chooses the amount of
asset encumbrance that maximizes the expected payoffs net of the expected cost of the
guarantee, taking the rollover risk of unsecured debt and the face values of guaranteed
and non-guaranteed unsecured debt as given. We study three tools of prudential regu-
lation, namely: (i) a limit on asset encumbrance; (ii) a minimum capital requirement;
and (iii) a surcharge for asset encumbrance that is paid to a deposit insurance fund or
as a contribution to a bailout fund. Several jurisdictions introduced regulations aimed at
curbing excessive encumbrance — for example, limits on encumbrance in Australia and
New Zealand, ceilings on the amount of secured funding in Canada and the United States,
and an inclusion of encumbrance levels in deposit insurance premiums in Canada.

Our results suggest that imposing either a limit on encumbrance or a minimum capi-
tal requirement will induce the banker to choose the constrained efficient level of encum-
brance, which induces the constrained efficient level of fragility. The unweighted capital
ratio is given by the banker’s own funds divided by total assets. A minimum capital ratio
effectively limits the amount of secured-debt-funded investment, because more encum-
brance lowers the capital ratio. Therefore, a floor on the capital ratio effectively becomes
a bound on encumbrance. Finally, a surcharge for encumbrance reduces unencumbered
assets and increases fragility, which induces the banker to reduce the level of encumbrance.
However, if the surcharge schedule is continuous, the banker still pays a positive surcharge
to encumber the constrained efficient level, which exacerbates fragility. Thus, constrained
efficiency requires the surcharge schedule to have a large discontinuity at the constrained
efficient level of encumbrance.

Our model offers several testable implications about asset encumbrance and the re-
liance on collateralized funding by banks.7 In line with the trade-off between profitability
and fragility, higher liquidation values and cheaper unsecured debt reduce the rollover risk
of unsecured funding, which lowers fragility and thus raises encumbrance levels. In con-
trast, greater conservatism in unsecured debt markets increases fragility and thus reduces
encumbrance. A lower outside option of investors, perhaps because of lower competition
or unconventional monetary policy, increases the bank funding channel and encumbrance.
Higher risks to a bank’s balance sheet increase fragility and therefore reduce encum-
brance. Under mild conditions on parameters or distributional assumptions about the
shock, encumbrance levels are higher for better-capitalized banks and for more-profitable
investments.

Although we focus on covered bonds, our analysis is also relevant to other forms of
secured funding. Central to our model is the interaction between the rollover risk of
unsecured debt, the bankruptcy-remoteness of the cover pool, and the replenishment of

7The existing literature on covered bonds is empirical. Carbo-Valverde, Rosen, and Rodriguez-
Fernandez (2011) examine the extent to which covered bonds are a substitute for mortgage-backed
securities. Prokopczuk and Vonhoff (2012) and Prokopczuk, Siewert, and Vonhoff (2013) study how
market liquidity and asset quality affect the pricing of covered bonds. Beirne, Dalitz, Ejsing, Grothe,
Manganelli, Monar, Sahel, Susec, Tapking, and Vong (2011) empirically examine the effectiveness of the
ECB’s covered bond purchase program during 2009-10. Rixtel, Gonzalez, and Yang (2015) contrast the
issuance of various bonds by European banks.
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assets backing secured debt. A similar interaction may be found for term repos, where safe
harbor arrangements ensure the bankruptcy-remoteness of collateral (Goralnik, 2012), and
the replenishment of asset pool occurs via the creditor’s right to ask for a substitution
of collateral or via variation margins. Credit card asset-backed securities also feature
bankruptcy-remoteness and the replenishment of asset pools (Furletti, 2002).

An important contribution to the literature on bank funding is Greenbaum and Thakor
(1987). They study the choice between deposit funding (on-balance-sheet) versus secu-
ritized funding (off-balance-sheet). Borrowers effectively choose the funding mode by
signalling the private information about the quality of their projects. Higher-quality
projects are securitized, while lower-quality projects remain on the bank’s balance sheet
and are funded with deposits. Prudential regulation, for example the pricing of deposit
insurance premiums and capital requirements, is shown to influence the relative appeal
of deposit funding.

More recent work has begun to examine the interplay between secured and unsecured
funding. Gai, Haldane, Kapadia, and Nelson (2013) and Eisenbach, Keister, McAndrews,
and Yorulmazer (2014) adopt a balance sheet approach to examine the financial stability
implications of alternative funding structures. Eisenbach et al. (2014) highlight some of
the ex-post balance sheet dynamics associated with asset encumbrance and collateralized
funding in the context of exogenous creditor behavior. Using global games techniques to
describe endogenous creditor behavior, Gai et al. (2013) study how a bank’s liquidity and
solvency risks change with the composition of funding and show how “dashes for collateral”
by short-term secured creditors can occur. In contrast, we explore the additional balance
sheet dynamics of ex-post replenishment of the asset pool, endogenize the banker’s ex-
ante encumbrance choice, and determine the cost of secured and unsecured funding. Our
paper also has points of contact with Matta and Perotti (2015), who study the role played
by safe harbor provisions for repos in exacerbating funding liquidity risk.

The paper proceeds as follows. Section 2 sets out the model. Section 3 studies the
rollover decision of unsecured creditors, and solves for the equilibrium in the secured and
unsecured funding markets. Section 4 introduces guarantees for unsecured funding and
studies the private incentives to shift risk to a guarantor, such as a deposit insurance
fund. We examine how prudential safeguards can mitigate such risk shifting. Section 5
concludes.

2 Model

There are three dates, t = 0, 1, 2, and three agents – a banker and two segmented clienteles
of wholesale investors. The banker is risk-neutral and consumes at t = 2. The first
clientele of mass one is risk-neutral and indifferent between consuming at t = 1 and
t = 2. By contrast, the second clientele of mass ω is infinitely risk-averse and consumes
at t = 2. This clientele may be thought of as pension funds or other large institutional
investors, reflecting their mandates for high-quality and safe assets. All investors have a
unit endowment at t = 0 and access to safe storage that yields r ≥ 1 at t = 2.

At t = 0, the banker has its own funds E0 and seeks additional funding from investors
to finance profitable and high-quality investments. Each investment matures at t = 2
and its return is R > r. As in Diamond and Rajan (2001), the sale of investments yields
a fraction ψ ∈ (0, 1) of the return at maturity, where ψR < r. This cost reflects effi-
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ciency losses as asset ownership is transferred from skilled bankers to relatively unskilled
investors.

There are two rounds of funding at t = 0. In the first, the unsecured funding round,
risk-neutral investors place their endowment with the banker to receive a demandable debt
claim as in Rochet and Vives (2004). Unsecured debt, D0 ≡ 1, can be withdrawn at t = 1
or rolled over until t = 2. This rollover decision is taken by a group of professional fund
managers, indexed by i ∈ [0, 1]. They face strategic complementarity in their decisions,
whereby an individual manager’s incentive to roll over increases in the proportion of
managers who roll over. The relative cost to managers of rolling over, 0 < γ < 1, plays
an important role in this decision.8 The higher γ is, the more conservative managers are,
and the less likely that unsecured debt is rolled over. The face value of unsecured debt
is independent of the withdrawal date, Du ≤ R. The banker invests the proceeds and its
own funds.

In the second round, the secured funding round, the banker can attract covered bond
funding from risk-averse investors by pledging high-quality assets. Specifically, the banker
encumbers, or ring-fences, a fraction 0 ≤ α ≤ 1 of existing assets and places them in the
cover pool – a bankruptcy remote vehicle on the bank’s balance sheet. The level of asset
encumbrance is publicly observed at t = 1. We denote by B0 ≥ 0 the total amount of
covered bond funding raised, and by Db ≤ R the face value of a covered bond at t = 2.
Table 1 shows the bank’s balance sheet at t = 0, once all wholesale funding is raised and
the investment is made.

Assets Liabilities
(cover pool) α(1 + E0) B0

(unencumbered assets) (1− α)(1 + E0) +B0 1
E0

Table 1: Balance sheet at t = 0

A defining feature of covered bonds is the dynamic replenishment of the cover pool
after an adverse shock. Replenishment requires the banker to maintain the value of the
cover pool at all dates, replacing non-performing assets in the cover pool with performing
unencumbered assets. Covered bond holders are thus protected and effectively become
senior debt holders. But replenishment is detrimental to unsecured debt holders, since
the entire shock is concentrated on them. We suppose that the balance sheet of the bank
is subject to a shock S ≥ 0 at t = 2. The shock has a continuous probability density
function f(S) > 0 and a cumulative distribution function F (S), where f ′(S) ≤ 0, so that
small shocks are more likely than larges ones. The banker observes the shock at t = 1 and
replenishes the cover pool. Table 2 shows the balance sheet at t = 2 for a small shock,
S > 0, when all unsecured debt is rolled over at t = 1. The value of bank equity at t = 2
is denoted by E(S).

8Rochet and Vives (2004) argue that the decisions of managers are governed by their compensation.
In the case of a bankruptcy, a manager’s relative compensation from rolling over is negative, −c < 0.
Otherwise, the relative compensation is positive, b > 0. The conservativeness γ ≡ c

b+c summarizes these
parameters.
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Assets Liabilities
(cover pool) Rα(1 + E0) B0Db

(unencumbered assets) R
[
(1− α)(1 + E0) +B0

]
− S Du

E(S)

Table 2: Balance sheet at t = 2 after a small shock

Another important feature of covered bonds is dual recourse. Under bankruptcy, the
bank is closed and covered bond holders receive the market value of the cover pool,
ψRα(1 + E0), at t = 2. If, however, this is insufficient to meet their claims, worth DbB0

in total, then each covered bond holder has a claim on the bank’s unencumbered assets
for the residual amount, Db − ψRα 1+E0

B0
, at t = 2, with equal seniority to unsecured debt

holders.
If a proportion ` ∈ [0, 1] of unsecured debt is not rolled over at t = 1, the banker

sells an amount `Du
ψR

in order to meet withdrawals. Owing to partial liquidation and the

balance sheet shock, the value of unencumbered assets at the final date is R
[
(1− α)(1 +

E0) +B0− `Du
ψR

]
−S = R

[
(1−α)(1 +E0) +B0

]
− `Du

ψ
−S. Since the banker must service

the remaining proportion (1 − `) of unsecured debt, with face value Du, along with the
residual claims of covered bond holders, as required by dual recourse, bankruptcy occurs
at t = 2 if

R
[
(1− α)(1 + E0) +B0

]
− S − `Du

ψ
< (1− `)Du +

[
DbB0 − αRψ(1 + E0)

]
. (1)

If the shock were common knowledge, the rollover behavior of fund managers would
be characterized by multiple equilibria, as illustrated in Figure 1. If no unsecured debt
is rolled over, ` = 1, bankruptcy is avoided whenever the shock is smaller than a lower
bound S ≡ R

[
(1 − α)(1 + E0) + B0

]
−
(
B0Db − αRψ(1 + E0)

)
− Du

ψ
. For S < S,

it is a dominant strategy for fund managers to roll over. We assume that the banker
is well-capitalized, E0 > 1−ψ2R2

ψ2R2 , so no run occurs absent a shock, S > 0. Likewise,

if ` = 0, bankruptcy occurs whenever the shock is larger than an upper bound S ≡
R
[
(1 − α)(1 + E0) + B0

]
−
(
B0Db − αRψ(1 + E0)

)
− Du. For S > S, it is a dominant

strategy for fund managers not to roll over. Since 0 < S < S < ∞ for any funding
choices, both dominance regions are well defined.

0

- Shock S

S S

Liquid Liquid / Bankrupt Bankrupt

Roll over Multiple equilibria Withdraw

Figure 1: Tripartite classification of the shock

Unlike the banker, wholesale investors cannot observe the shock before it materializes.
However, fund managers receive a noisy private signal, xi, about the shock at t = 1 upon
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which they base their rollover decisions. Specifically, they receive the signal xi ≡ S + εi,
where εi is idiosyncratic noise drawn from a continuous distribution G with support [−ε, ε],
for ε > 0. The idiosyncratic noise is independent of the shock and is independently and
identically distributed across fund managers. Such incomplete information facilitates a
unique solution to the coordination game between fund managers (Morris and Shin, 2003).

Table 3 summarizes the timeline of events.

t = 0 t = 1 t = 2

1. Unsecured debt issuance 1. Banker observes shock 1. Investment matures

2. Investment 2. Dynamic replenishment 2. Shock materializes

3. Asset encumbrance 3. Private signals about shock 3. Banker honors debts

4. Secured debt issuance 4. Unsecured debt withdrawals

5. Additional investment

Table 3: Timeline of events.

3 Equilibrium

We solve the model backwards. We start by analyzing the rollover decisions of fund
managers at t = 1, for a given amount and face value of funding and level of asset encum-
brance. Next, we study the optimal choices of the banker at t = 0. In the secured funding
round, the banker chooses the amount of covered bond funding, B0, the level of asset
encumbrance, α, and the face value of covered bonds, Db, to maximize the expected value
of bank equity, subject to the participation constraint of infinitely risk-averse investors.
In the unsecured funding round, the banker chooses the face value of unsecured funding,
Du, to maximize the expected value of equity, subject to the participation constraint of
risk-neutral investors.

3.1 Rollover risk of unsecured debt

Under imperfect information about the shock, there is a unique Bayesian equilibrium in
each unsecured debt rollover subgame at t = 1 summarized in Proposition 1. In what
follows, we consider the limit case of vanishing private noise, ε→ 0.

Proposition 1. Bankruptcy threshold. There exists a unique Bayesian equilibrium
in each unsecured debt rollover subgame. It is characterized by a bankruptcy threshold

S∗ ≡ R
[
B0 + (1− α)(1 + E0)

]
− κDu −

(
B0Db − αRψ(1 + E0)

)
∈
(
S , S

)
, (2)

where κ ≡ 1 + γ
(

1
ψ
− 1
)
∈
(

1, 1
ψ

)
. Fund managers roll over unsecured debt if and only

if S ≤ S∗ such that bankruptcy occurs if and only if S > S∗.

Proof See Appendix A. �
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Coordination failure in the unsecured funding market is measured by κ−1. It increases
in the conservativeness of fund managers and decreases in the liquidation value of assets.
In the former case, more conservative managers choose to roll over less often and cause
costly liquidation. In the latter case, higher liquidation values decrease the strategic
complementarity among fund managers.

Corollary 1 summarizes the partial impact of funding choices on the bankruptcy thresh-
old.

Corollary 1. The bankruptcy threshold S∗ decreases in asset encumbrance and the face
value of secured and unsecured funding but increases in the amount of covered bond fund-
ing:

∂S∗

∂α
= −R(1−ψ)(1+E0) < 0,

∂S∗

∂Db

= −B0 < 0,
∂S∗

∂Du

= −κ < 0,
∂S∗

∂B0

= R−Db ≥ 0.

Proof See Appendix A. �

The intuition is as follows. First, greater asset encumbrance reduces both the amount
of unencumbered assets available to meet withdrawals by fund managers and the net claim
of covered bond holders under dual recourse. The overall effect of greater encumbrance
is that fund managers withdraw deposits for a larger range of shocks. Second, more
costly secured funding raises the dual recourse claims of covered bond holders. It induces
withdrawals of unsecured debt at t = 1 to prevent a dilution of their claims. Third, more
costly unsecured funding exacerbates the degree of strategic complementarity among fund
managers, which induces them to withdraw unsecured debt more often. Fourth, more
secured funding increases both the amount of unencumbered assets and the claims of
covered bond holders under dual recourse. The former effect dominates since Db ≤ R.

3.2 Secured funding and asset encumbrance

We derive the banker’s objective function in the secured round of funding, taking as
given the face value of unsecured funding. For values of the shock below the bankruptcy
threshold, S ≤ S∗, the equity value is positive and equal to the value of investments net of
the shock and total debt repayments to investors, E(S) = R(1+E0+B0)−S−B0Db−Du >
0. For shocks above the threshold, the value of equity is zero because of limited liability.

We derive the participation constraint of infinitely risk-averse investors. The expected
utility from holding a covered bond is no smaller than the return on storage. Each
covered bond has face value Db, backed by an equal share of the liquidated cover pool,
αψR 1+E0

B0
, along with dual recourse on the bank’s unencumbered assets in bankruptcy. If

the shock wipes out unencumbered assets, S > Smax ≡ R[B0+(1−α)(1+E0)], bankruptcy
occurs and dual recourse has zero value. However, covered bonds remain safe because of
bankruptcy-remoteness.9 Taken together, the banker’s problem in the secured funding

9In general, the value of the covered bond to an infinitely risk-averse investor is

min
S

{
Db, αRψ

1 + E0

B0
+ max

{
0,

Db

B0Db + (1− `∗(S))Du
ψ

(
R
[
B0 + (1− α)(1 + E0)

]
− S − `∗(S)Du

ψ

)}}
,

where `∗(S) = IS>S∗ . At S = Smax, it is a strictly dominant action to withdraw, `∗(Smax) = 1.
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round is

max
{α,B0,Db}

π ≡
∫
E(S)dF (S) = F (S∗)

[
R
(
1 + E0 +B0

)
−Du −B0Db

]
−
∫ S∗

0

SdF (S)

s.t. r ≤ min

{
Db,

αRψ(1 + E0)

B0

}
. (3)

Critically, the dual recourse provision is never called upon in equilibrium. This result is
consistent with Wandschneider (2014), who notes that the dual recourse clause has never
been invoked in the history of covered bonds.

Lemma 1. Bank funding channel. If risk-averse investors are abundant, ω ≥ ω, the
face value of covered bonds is D∗b = r and its issuance volume is B∗0 = α∗(1 + E0)ψz,
where the relative return is z ≡ R

/
r.

Proof See Appendix B. �

Lemma 1 states the bank funding channel. Encumbering more assets allows the banker
to issue more covered bonds. As more secured funding is attracted, the banker expands
its balance sheet via more investment and increases its expected equity value. By encum-
bering all existing assets, the banker can, at most, issue ω ≡ ψz(1+E0) of covered bonds.
If the mass of risk-averse investors exceeds ω, then the total issuance volume is absorbed.

Lemma 2. Risk concentration channel. Encumbering more assets increases fragility:

dS∗

dα
=
∂S∗

∂α
+
∂S∗

∂B∗0

dB∗0
dα

= −R (1− ψz) (1 + E0) < 0. (4)

Proof See Appendix B. �

Lemma 2 states the risk-concentration channel. Issuing covered bonds concentrates
the shock on unsecured debt holders. Dynamic replenishment of the cover pool makes
covered bonds effectively senior to unsecured debt. While greater asset encumbrance
leads to more secured funding that increases unencumbered assets, the effect of dynamic
replenishment dominates because of over-collateralization. Therefore, the net effect of
greater asset encumbrance is a higher incidence of unsecured debt runs on the bank
(higher bank fragility).

As Figure 2 illustrates, the banker’s optimal choice of asset encumbrance takes both
the bank funding and the risk-concentration channels into account.

Proposition 2. Optimal asset encumbrance. There exists a unique privately optimal
level of asset encumbrance α∗ ∈ [0, 1]. There exist unique bounds on investment profitabil-
ity R and R such that the encumbrance level is interior for R < R < R and implicitly
given by:

F (S∗ (α∗))

f (S∗ (α∗))
=

(1− ψz)

ψ (z − 1)

[
(κ− 1)Du + α∗(1− ψ)R(1 + E0)

]
. (5)

9
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Figure 2: Expected value of equity as a function of the level of asset encumbrance. In
this example, we set R = 1.1, r = 1, E0 = 1.1, ψ = 0.7, γ = 0.025, Du = 1.05, and the
balance sheet shock follows an exponential distribution with rate λ = 1.1.

Proof See Appendix C. �

To obtain an interior solution, we require two conditions. First, the expected profit
function satisfies dπ

dα

∣∣
α=0

> 0, whereby the banker is strictly better off encumbering some
assets. This condition yields the lower bound on asset profitability R. Second, the
expected profit function satisfies dπ

dα

∣∣
α=1

< 0, whereby the banker is strictly better off
not encumbering all assets. This condition yields the upper bound on asset profitability
R.

Focusing on the interior solution, Proposition 3 describes how the privately optimal
level of asset encumbrance varies with parameters and the face value of unsecured funding.

Proposition 3. Determinants of asset encumbrance. The privately optimal level of
asset encumbrance α∗ increases in the liquidation value ψ. It decreases in the conservatism
of fund managers γ, the return on storage r, and the face value of unsecured funding Du.
If the return on storage satisfies r < r, then α∗ increases in initial bank capital E0 and in
investment profitability R. If the shock distribution F̃ stochastically dominates F according
to the reverse hazard rate, the corresponding levels of asset encumbrance satisfy α̃∗ ≥ α∗.

Proof See Appendix D. �

These results highlight the trade-off between profitability and fragility associated with
asset encumbrance. A higher liquidation value lowers the degree of strategic complemen-
tarity among fund managers, for any given level of encumbrance. Withdrawals by some
managers, and the resulting liquidation of assets, cause less damage to others. Therefore,
the bank is less fragile and bankruptcy occurs for a smaller range of shocks. As a result,
the banker encumbers more assets to increase investment and its expected equity value.
Overall, there are fewer but more-liquid unencumbered assets on the bank’s balance sheet.
By the same logic, a decrease in the face value of unsecured debt increases the level of
asset encumbrance.

As the degree of conservatism increases, fund managers roll over less often and the
bank is more fragile, for any given level of encumbrance. The banker responds to height-
ened fragility in a precautionary manner by reducing the level of encumbrance. It forgoes
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profitable investment via the issuance of covered bonds, in return for more stable unse-
cured debt. A higher outside option for investors increases the face value of covered bonds
and correspondingly decreases their issuance volume, which reduces unencumbered assets
and heightens fragility, for any given level of encumbrance. As before, the banker re-
sponds by reducing encumbrance. Similarly, a more favorable distribution of the balance
sheet shock, F̃ , reduces fragility for a given encumbrance level and induces the banker to
encumber more.

An increase in initial bank capital has the following effects. First, greater capital
allows the banker to scale up its balance sheet, encumber more assets, and issue more
covered bonds. Second, greater capital also allows for the absorption of higher losses,
which has two opposing effects. On the one hand, this reduces bank fragility and induces
greater asset encumbrance. On the other hand, the expected equity value is lower, which
reduces encumbrance. If the return on storage is sufficiently low relative to the return on
investment, the bank funding channel is sufficiently strong and the banker unambiguously
encumbers more assets. Likewise, an increase in investment profitability leads to a similar
ambiguous effect on the privately optimal level of asset encumbrance. The same sufficient
condition on the upper bound of the return on storage arises. Tighter predictions on how
private choices of asset encumbrance vary with bank capital and investment profitability
can be obtained for specific distributions of the balance sheet shock.

Corollary 2. Uniform shock distribution. Suppose the shock is uniformly distributed,
S ∼ U [0, R(1 + E0 + ω)]. If interior, the privately optimal level of asset encumbrance is

α∗ =
R(1 + E0)ψ (z − 1)− (κ− 1 + ψ (z − κ))Du

R(1 + E0) [ψ2 (2− z)− 2z + 1]
, (6)

which ambiguously increases in initial bank capital and in investment profitability.

Proof See Appendix D. �

3.3 Unsecured funding

Having established the equilibrium in the secured funding round, we turn to the unsecured
funding round. We solve for the equilibrium face value of unsecured funding.

Figure 3 shows how the repayment of unsecured debt depends on the size of the shock.
If the bank is solvent, S < S∗∗ ≡ S∗(α∗), unsecured debt holders receive the promised
payment Du. For intermediate shocks, they receive an equal share of the liquidated
unencumbered assets. Investors receive zero by limited liability for a large shock, S >
S∗max ≡ Smax(α

∗) = R(1+E0)[1−α∗(1−ψz)]. In sum, for small and intermediate shocks,
the unsecured debt claim pays min

{
Du, ψ

(
S∗max − S

)}
.

In the unsecured funding round, the banker sets the face value of unsecured debt Du to
maximize its expected value of equity, subject to the participation of risk-neutral investors.
The expected equity value decreases in the face value of unsecured debt, dπ(α∗)

/
dDu =

−F (S∗∗) − κf(S∗∗))E(S∗∗)) < 0. Hence, the banker chooses the smallest face value
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Figure 3: The size of the shock determines the payment to unsecured debt holders.

consistent with satisfying the participation constraint of risk-neutral investors:

r = F (S∗∗)D∗u + ψ

∫ S∗
max

S∗∗
[S∗max − S] dF (S) ≡ V (D∗u), (7)

where V (Du) is the value of the unsecured debt claim when the face value is Du.

Proposition 4. Unsecured funding. There exists a unique face value of unsecured
debt, D∗u > r, if the investment return is sufficiently low, R ≤ R̃, and if investors always
accept unsecured debt when promised the investment return.

Proof See Appendix E. �

The first sufficient condition, R ≤ R̃, ensures that the value of the debt claim increases
in the face value of unsecured debt, dV

dDu
> 0, so, at most, one solution D∗u exists. The

second sufficient condition ensures the existence of D∗u. Since V (Du = r) < r, a solution
D∗u exists if risk-neutral investors accept unsecured debt when promised the investment
return, V (Du = R) > r. Since default occurs with positive probability, the face value is
D∗u > r.

Corollary 3. Secured funding is cheaper than unsecured funding, D∗b = r < D∗u.

Corollary 3 follows immediately from comparing the results of Proposition 4 and
Lemma 1. While dynamic replenishment and bankruptcy-remoteness make covered bonds
a cheap source of funding, these features also make unsecured funding more costly.

Proposition 5. Tail risk and unsecured funding costs. Consider two distributions,
F and F̂ . If F̂ first-order stochastically dominates F in that F̂ (S) = F (S) for S ≤
R(1 +E0 +ω)− κr and F̂ (S) < F (S) for R(1 +E0 +ω)− κr < S < R(1 +E0 +ω), then
D̂∗u < D∗u.

Proof See Appendix F. �

Proposition 5 links tail risk to the face value of unsecured funding. Both distributions,
F and F̂ , assign the same probability to small and intermediate shocks, S ≤ R(1+E0+ω)−
κr > S∗, so the privately optimal encumbrance choice is the same, α̂∗ = α∗. However,
these distributions differ for large shocks, which are less likely under F̂ than under F
(lower tail risk). Under F̂ , unencumbered assets have a higher expected liquidation value
in bankruptcy, inducing risk-neutral investors to accept a lower face value of unsecured
debt.
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4 Public Guarantees

In many jurisdictions, unsecured debt holders enjoy the benefits of explicit (or perhaps
implicit) public guarantee schemes. Such schemes, which usually apply to retail deposits,
often extend to unsecured wholesale depositors during times of crisis. But deposit insur-
ance schemes do not typically incorporate the effects of collateralized bank balance sheets.
A bank with a large deposit base may, therefore, find it optimal to issue secured funding
in order to shift risks to the deposit guarantee scheme. Guaranteed unsecured debt hold-
ers do not factor in the consequences of increased asset encumbrance and the benefits of
public guarantees are externalized. As a result, prudential safeguards are required to limit
excessive encumbrance and bank fragility. These safeguards include caps on asset encum-
brance (Australia and New Zealand), ceilings on the amount of secured funding (Canada
and the United States), and the inclusion of encumbrance levels in deposit insurance
premiums (Canada).

Our model provides a natural framework with which to examine these normative issues.
We focus on the secured funding round at t = 0 and show how prudential safeguards — a
cap on asset encumbrance or, equivalently, on covered bond issuance; a surcharge for asset
encumbrance; and minimum capital requirements — establish constrained efficiency.

Let a fraction 0 < m < 1 of unsecured debt be guaranteed and the guarantor (e.g., the
government) be deep-pocketed. Guaranteed debt holders have no need to withdraw at
t = 1. If Dg denotes the face value of guaranteed debt, the bankruptcy condition becomes

R
[
(1−α)(1+E0)+B0

]
−S−`(1−m)Du

ψ
< (1−`)(1−m)Du+mDg+

[
DbB0−αRψ(1+E0)

]
.

(8)
The value of unencumbered assets at t = 2 is again the left-hand side of equation (8). At
t = 1, a fraction ` of the (1−m) non-guaranteed unsecured debt is withdrawn, resulting in
costly liquidation. Therefore, guarantees reduce the amount of liquidation that the banker
has to make in order to meet interim-date withdrawals. The remaining non-guaranteed
unsecured debt is rolled over, so the banker at t = 2 must meet these, (1− `)(1−m)Du,
along with guaranteed unsecured claims, mDg, and the claims of covered bond holders due
to dual recourse. Applying the global games method, the bankruptcy threshold changes
to

S∗m = R [(1− α)(1 + E0) +B0]−mDg − (1−m)κDu −
[
DbB0 − αRψ(1 + E0)

]
. (9)

We assume that the face value of non-guaranteed unsecured debt exceeds that of
guaranteed unsecured debt, Du ≥ Dg.

10 As a result, κDu > Dg, and the bankruptcy
threshold increases in the coverage of the guarantee, ∂S∗m

/
∂m > 0. This reduction in the

incidence of runs is a consequence of the lower cost and greater stability of guaranteed
funding, since guaranteed unsecured funding is not associated with rollover risk, κ > 1.

The equilibrium in the secured funding market at t = 0 yields D∗b = r and B∗0 =
αzψ(1 + E0), as before. The risk-concentration channel remains unchanged, dS∗m

/
dα =

−R(1−zψ)(1+E0) < 0. In establishing the privately optimal choice of asset encumbrance,

10While this result arises endogenously at the unsecured funding round, our focus on the secured
funding round keeps the normative analysis simple and offers sharp predictions.

13



α∗m, the banker ignores the guarantee cost but takes into account the stabilizing influence
of guaranteed unsecured debt on rollover behavior. The banker’s problem can be reduced
to:

max
α

πm ≡ F (S∗m)
[
R(1 + E0)(1 + α(z − 1)ψ)−mDg − (1−m)Du

]
−
∫ S∗

m

0

SdF (S)

s.t. S∗m = R(1 + E0) [1− α (1− ψz)]−mDg − (1−m)κDu. (10)

Proposition 6 states the privately optimal choice of asset encumbrance with public guar-
antees. We focus on the interior solution, which arises under similar constraints on in-
vestment profitability as in Proposition 2.

Proposition 6. Public guarantees and the privately optimal encumbrance level.
There exists a unique privately optimal level of asset encumbrance with public guarantees.
An interior solution α∗m ∈ (0, 1) is implicitly given by:

F (S∗m(α∗m))

f(S∗m(α∗m))
=

1− ψz
ψ(z − 1)

[(κ− 1)(1−m)Du + α∗m(1− ψ)R(1 + E0)]. (11)

An increase in the coverage of the guarantee induces greater asset encumbrance, dα∗
m

dm
> 0.

Proof See Appendix G. �

The intuition for Proposition 6 relates to the cost and stability of funding. For any
given level of encumbrance, as the fraction of guaranteed unsecured debt increases, there
is less rollover risk, and the bankruptcy threshold S∗m increases, which reduces the range
of shocks to which the bank is susceptible. Consequently, the banker encumbers more
assets in order to expand its balance sheet and to increase the expected value of bank
equity.

Unlike the banker, the planner accounts for the expected costs of guaranteeing a
fraction m of unsecured debt, denoted by C. Suppose that guaranteed debt is senior to
non-guaranteed claims. In bankruptcy, the value of unencumbered assets is ψ(Smax−S).
Since the face value of guaranteed debt is mDg, the bank has sufficient resources to service
guaranteed debt as long as ψ(Smax − S) ≥ mDg. We can express this condition as an

upper bound on the balance sheet shock, S ≤ Smax − mDg
ψ

.11 Partial default, and thus

costs to the guarantor, occur for Smax − mDg/ψ < S ≤ Smax. Full default occurs for
larger shocks, Smax < S. Taken together, the expected cost to the guarantor is:

C ≡
∫ Smax

Smax−
mDg
ψ

[
mDg − ψ

(
Smax − S

)]
dF (S) +mDg

∫ ∞
Smax

dF (S). (12)

Lemma 3. Guarantee cost. The expected cost to the guarantor increases in both the
level of asset encumbrance and in the fraction of guaranteed unsecured debt; it is also

11To ensure that the guarantor always repays guaranteed debt if solvent, we impose Smax− mDg

ψ > S∗
m,

for which an upper bound on the fraction of guaranteed debt, m < m ≡ ψ+γ(1−ψ)
1+γ(1−ψ) ∈ (0, 1), suffices.

14



weakly convex in the level of encumbrance and has a positive cross-derivative:

∂C

∂α
> 0,

∂C

∂m
> 0,

∂2C

∂α2
≥ 0,

∂2C

∂α∂m
> 0. (13)

Proof See Appendix H. �

Lemma 3 summarizes the key features of the cost of guaranteeing unsecured debt.
First, as more assets are encumbered, the upper bound Smax decreases, so the guarantor
pays out for a larger range of shocks. Second, an increase in the fraction of guaranteed
debt has two effects: (i) a decrease in the lower bound Smax−mDg

ψ
and thereby an increase

in the range of shocks over which the guarantee is paid; and (ii) an increase in the coverage
of the guarantee. Third, greater coverage increases the expected costs of the guarantee.

The planner chooses the level of asset encumbrance to maximize the expected equity
of the banker net of the expected costs of the guarantor (investors break even). Formally,
the constrained efficient level of asset encumbrance, αP , solves the planner’s problem:

max
α

W ≡ πm(α)−
(
1 + ξ

)
C(α) (14)

s.t. S∗m = R(1 + E0) [1− α (1− ψz)]−mDg − (1−m)κDu ,

where ξ ≥ 0 measures the dead-weight loss of raising the funds to back the guarantee,
for example, due to distortionary taxation. We again focus on interior solutions.

Proposition 7. Public guarantees and constrained inefficiency. The privately
optimal level of asset encumbrance is excessive, α∗m > αP . This gap increases in the

coverage of the guarantee,
d(α∗

m−α∗
P )

dm
> 0, and in the dead-weight loss, d(α∗

m−αP )
dξ

> 0. The

privately optimal level of bank fragility is excessive, S∗∗m ≡ S∗m(α∗m) < S∗m(αP ) ≡ SP , and

the gap increases in the coverage of the guarantee, d(SP−S∗∗
m )

dm
> 0 and in the dead-weight

loss, d(SP−S∗∗
m )

dξ
> 0.

Proof See Appendix I. �

The expected cost of the guarantee drives a wedge between the privately optimal
and constrained efficient levels of asset encumbrance. Greater coverage makes a larger
proportion of unsecured bank funding cheap and stable, pushing up the privately optimal
level of encumbrance. However, the expected cost of the guarantee also increases, so the
wedge increases in coverage. Moreover, a higher dead-weight loss of the funds that back
the guarantee reduces the constrained efficient level of encumbrance without affecting the
privately optimal level. Finally, the excessive fragility of the bank and the associated
comparative statics are a direct consequence, since a higher level of encumbrance leads to
more fragility.

Proposition 7 clarifies why policy-makers (e.g., CGFS, 2013) have emphasized the
importance of prudential safeguards to mitigate the risks of heavy asset encumbrance. In
what follows, we consider three schemes that a regulator can introduce before the secured
funding round at t = 0 in order to influence the banker’s choice of asset encumbrance.
These include (i) caps on asset encumbrance (or, equivalently, on covered bond issuance);
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(ii) minimum capital requirements; and (iii) surcharges based on asset encumbrance. Let
α∗∗m denote the constrained privately optimal level of asset encumbrance.

We start with the cap on asset encumbrance. The formal constrained problem for the
banker is given in (10) with the additional constraint of an encumbrance limit, α ≤ α.

Proposition 8. Caps on asset encumbrance. A cap on asset encumbrance α <
α ≡ αP attains the constrained efficient allocation (αP , SP ) as the constrained private
optimum.

Proof See Appendix J. �

The privately optimal level of encumbrance is constrained efficient, α∗∗m = αP , which
also results in a constrained efficient level of bank fragility, S∗∗m = SP . Intuitively, the
bank funding channel still dominates the risk-concentration channel at α = αP , so the
banker wishes to encumber more assets but is limited by the regulatory cap, as shown in
Figure 4.
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Figure 4: Expected value of equity and welfare as functions of the level of asset encum-
brance. In this example, we set R = 1.1, r = 1, E0 = 1.1, ψ = 0.7, γ = 0.025, m = 0.2,
Du = 1.05, Dg = 1.0, ξ = 0.01 and the shock follows an exponential distribution with
rate λ = 1.1.

Second, we consider minimum capital requirements. Let e denote the bank’s un-
weighted capital ratio at t = 0. It is given by the ratio of the bank’s own funds, E0,
and its total assets, 1 + E0 + B0. Using the equilibrium relation B0 = αzψ(1 + E0),
we can express the bank’s capital ratio as a function of its asset encumbrance level and
parameters:

e(α) ≡ E0

(1 + E0)(1 + αψz)
, (15)

whereby greater asset encumbrance expands the balance sheet with debt-funded invest-
ment and therefore strictly decreases the capital ratio, de

eα
< 0.

Proposition 9. Minimum capital requirements. A minimum capital ratio, e(α) ≥
e ≡ e(αP ), attains the constrained efficient allocation as the constrained private optimum.
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Proof See Appendix J. �

Encumbering more assets attracts more covered bond funding and thus allows the
banker to invest more, for a constant amount of initial capital. Therefore, by imposing a
lower bound e on the bank’s capital ratio, the regulator indirectly influences the privately
chosen level of asset encumbrance. In particular, setting e ≡ e(αP ), the constrained
efficient level of asset encumbrance is achieved, also resulting in the constrained efficient
level of bank fragility. In sum, if appropriately tailored, both a cap on asset encumbrance
and a minimum capital ratio attain the constrained efficient level of asset encumbrance
and bank fragility. This equivalence result requires encumbered assets to have positive
risk weights. If encumbered assets had zero risk weights, however, the capital ratio would
be insensitive to encumbrance.

Third, we consider the surcharge for encumbering assets ∆(α) paid by the banker at
t = 0. This surcharge is similar to the deposit insurance premium paid to a deposit insur-
ance fund. We consider schedules for which there is no surcharge without encumbrance,
∆(0) = 0, and where the surcharge is weakly increasing in the level of asset encumbrance,
∆α ≥ 0. In contrast with the two previous regulatory tools, no additional constraint is
added to the banker’s problem, but the objective function and the bankruptcy threshold
change:

max
α

F (S∆
m)
[
R
(
(1 + E0)(1 + α(z − 1)ψ)−∆(α)

)
−mDg − (1−m)Du

]
−
∫ S∆

m

0

SdF (S)

s.t. S∆
m ≡ R [(1 + E0)(1− α(1− ψz))−∆(α)]−mDg − (1−m)κDu. (16)

Since asset encumbrance surcharges impose a private cost on the banker, they may
be a useful tool to curb the private incentives to excessively encumber assets. But there
may be a tension between attaining the constrained efficient levels of encumbrance and
fragility. Since surcharges reduce unencumbered assets, a higher surcharge can heighten
bank fragility. Proposition 10 states two results about the design of asset encumbrance
surcharges.

Proposition 10. Asset encumbrance surcharge. There exists no continuous schedule
of asset encumbrance surcharges that attains constrained efficiency. However, a schedule
that is discontinuous at αP can attain constrained efficiency.

Proof See Appendix J. �

Our first result suggests that surcharge schedules that are continuous, for example,
linear in the level of asset encumbrance, cannot attain constrained efficiency. Intuitively,
the surcharge must be sufficiently large for high levels of encumbrance, α > αP , to deter
excessive encumbrance and obtain the constrained efficient level of encumbrance. By
continuity, the surcharge is also positive at αP . But this reduces unencumbered assets,
heightens rollover risk, and adds to bank fragility. In other words, a continuous surcharge
schedule can attain the constrained efficient level of asset encumbrance, but leads to
excessive fragility.

Our second result suggests that constrained efficiency can be attained if the schedule of
asset encumbrance surcharges has a discontinuity at αP . Consider the following example.
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No surcharge is applied as long as the level of asset encumbrance is less than αP . The bank
can encumber assets up to the constrained efficient level without generating excessive
fragility. To encumber assets beyond αP , however, the surcharge is so high that all
unencumbered assets are wiped out. An unsecured debt run would follow, leading to
bankruptcy where the bank’s equity value is zero. As a result, the bank always chooses
a level of encumbrance α∗∗m ≤ αP . Since the bank funding channel again dominates the
risk-concentration channel for any α ∈ [0, αP ], the banker’s constrained privately optimal
choice of asset encumbrance is α∗∗m = αP and results in the constrained efficient level of
bank fragility. An example of a discontinuous surcharge schedule that achieves constrained
efficiency is:

∆̂(α) = R(1 + E0 + ω)Iα>αP
. (17)

5 Conclusion

This paper presents a model of bank funding with covered bonds and explores some im-
plications for financial stability. To date, there has been no theoretical analysis of covered
bonds and our work fills that gap. We find that asset encumbrance has two distinct
balance sheet effects. First, covered bond issuance funds more profitable investment and
increases the expected value of bank equity (bank funding channel). Second, because
of dynamic replenishment of the cover pool, balance sheet shocks are asymmetrically
shifted to unsecured debt holders, resulting in greater fragility (risk-concentration chan-
nel). The bank’s choice of asset encumbrance balances this trade-off between profitability
and fragility.

Covered bonds are safe assets and a cheap source of bank funding, but they exacerbate
the riskiness and fragility of unsecured debt and render it more costly. This is a conse-
quence of the replenishment and bankruptcy-remoteness of the cover pool that protects
covered bond holders from balance sheet shocks and the dilution of their claims on cover
pool assets in bankruptcy. Financial stability implications arise from the interaction of
the rollover risk of unsecured debt and these two features of secured debt. Similar insights
may apply to term repos, where safe harbor arrangements ensure bankruptcy-remoteness
and the right to substitute collateral or variation margins is economically similar to re-
plenishment.

We derive normative implications about asset encumbrance in the context of guaran-
teed unsecured debt. The privately optimal level of encumbrance and bank fragility are
excessive because the banker does not internalize the effect of encumbrance on the cost
of providing the guarantee. Absent prudential safeguards, banks have strong incentives
to issue covered bonds in order to shift risk to the guarantor. Accordingly, proposals that
emphasize covered bonds as a means of reviving mortgage finance need to be accompanied
by prudential regulation.

We study three forms of regulation aimed at curbing excessive asset encumbrance
by banks. First, a limit on the level of asset encumbrance may be imposed to restore
constrained efficiency. This is consistent with measures taken in some jurisdictions such
as Australia, Canada, New Zealand, and the United States. Second, since a bank’s capital
ratio is typically sensitive to the level of encumbrance, minimum capital requirements can
be used to the same effect. Finally, we consider a surcharge for asset encumbrance paid

18



to a deposit insurance fund or a contribution to a bailout fund. Our results suggest that
a surcharge schedule has to be discontinuous in the level of asset encumbrance in order
to restore constrained efficiency.

Our model generalizes to other settings. In practice, the mix of assets that back cov-
ered bonds are often heterogeneous, including mortgages and public debt. Following a
balance sheet shock, the replenishment of the cover pool not only affects the amount of un-
encumbered assets, but also its risk profile. Since lower-risk assets would be swapped into
the asset pool first, the risk-concentration effect would be exacerbated, raising fragility
and reducing asset encumbrance. If investment was subject to decreasing marginal re-
turns, the bank funding channel of asset encumbrance would be attenuated, reducing the
incentives to issue covered bonds. Even with constant returns as in our model, however,
the risk-concentration effect limits the private incentives to encumber assets.

Finally, our model assumes that the guarantor of the bank’s unsecured debt is deep-
pocketed and always willing to pay. Doubts about the regulator in this regard could
heighten the bank’s fragility. This, in turn, may reduce the incentives of the bank to
encumber assets and issue covered bonds. We leave a full treatment of this case for future
work.
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A Proof of Proposition 1

In each rollover subgame, it is sufficient to establish the existence of a unique Bayesian
equilibrium in threshold strategies for sufficiently precise private information. Morris and
Shin (2003) show that only threshold strategies survive the iterated deletion of strictly
dominated strategies; see also Frankel, Morris, and Pauzner (2003). Specifically, we con-
sider the limiting case of vanishing private noise, ε → 0. Each fund manager i uses a
threshold strategy, whereby unsecured debt is rolled over if and only if the private signal
suggests that the balance sheet shock is small, xi < x∗. Hence, for a given realization
S ∈ [S, S], the proportion of fund managers who do not roll over debt is:

`
(
S, x∗

)
= Prob

(
xi > x∗

∣∣S) = Prob (εi > x∗ − S) = 1−G
(
x∗ − S

)
. (18)

A critical mass condition states that bankruptcy occurs when the balance sheet shock
equals a threshold S∗, where the proportion of managers not rolling over is evaluated at
S∗:

R
[
B0 +(1−α)(1+E0)

]
−S∗−`

(
S∗, x∗

)Du

ψ
=
(
1−`

(
S∗, x∗

))
Du+

(
B0Db−αRψ(1+E0)

)
The posterior distribution of the balance sheet shock conditional on the private signal is
derived using Bayes’ rule. The indifference condition states that the manager who receives
the critical signal xi = x∗ is indifferent between rolling and not rolling over unsecured
debt:

γ = Pr (S < S∗|xi = x∗) . (19)

Using the definition of the private signal xj = S + εj of the indifferent fund manager,
we can state the conditional probability as follows:

1− γ = Pr (S ≥ S∗|xi = x∗) = Pr (S ≥ S∗|xi = x∗ = S + εj) (20)

= Pr (x∗ − εj ≥ S∗) = Pr (εj ≤ x∗ − S∗) = G
(
x∗ − S∗

)
(21)

The indifference condition implies that x∗−S∗ = G−1
(

1−γ
)

. Inserting the indifference

condition into `
(
S∗, x∗

)
, the proportion of managers who do not roll over when the balance

sheet shock is at the critical level S∗ is perceived by the indifferent manager to be:

`
(
S∗, xi = x∗

)
= 1−G

(
x∗ − S∗

)
= 1−G

(
G−1

(
1− γ

))
= γ. (22)

Therefore, the bankruptcy threshold S∗ stated in Proposition 1 follows. For vanishing
private noise, the signal threshold also converges to this value, x∗ → S∗, allowing us
to concentrate solely on the bankruptcy threshold. The partial derivatives of S∗ are
immediate.
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B Proof of Lemma 1 and Lemma 2

We prove that B∗0 = α∗ψR(1+E0)
D∗
b

and D∗b = r in any equilibrium. We also derive the

total effect of asset encumbrance on the bankruptcy threshold. We guess and verify that
D∗b < R. The partial derivatives of the objective function with respect to B0 and Db are

∂π

∂B0

= (R−Db) [F (S∗) + f(S∗)E(S∗)] > 0 (23)

∂π

∂Db

= −B0 [F (S∗) + f(S∗)E(S∗)] < 0, (24)

where the equity value at S∗ is E(S∗) = (κ− 1)Du + α(1− ψ)R(1 + E0) > 0.

We prove B∗0 = α∗ψR(1+E0)
D∗
b

by contradiction. First, suppose that D∗b >
α∗ψR(1+E0)

B∗
0

.

Because of bankruptcy remoteness, infinitely risk-averse investors value the covered bond
claim at α∗ψR(1+E0)

B∗
0

, but the claims from dual recourse are worthless since bankruptcy

occurs with positive probability. This violates the supposed optimality of D∗b , since low-
ering the face value would raise the objective function ( ∂π

∂Db
< 0) without affecting the

constraint. Contradiction. Thus, D∗b ≤
α∗ψR(1+E0)

B∗
0

. Second, suppose D∗b <
α∗ψR(1+E0)

B∗
0

.

Infinitely risk-averse investors value the covered bond claim at Db since the bank is solvent
with positive probability. This violates the supposed optimality of B∗0 , since raising the
issuance volume of covered bonds would raise the objective function ( ∂π

∂B0
> 0) without

affecting the constraint. Contradiction. Thus, D∗b ≥
α∗ψR(1+E0)

B∗
0

. Taken together, we have

B∗0 = α∗ψR(1+E0)
D∗
b

. Thus, the problem of the banker reduces to

max
{α,B0}

π(α,B0) ≡ F (S∗)
[
R
(
1 + E0 +B0)− αRψ(1 + E0)−Du

]
−
∫ S∗

0

SdF (S)

s.t. (25)

S∗ = S∗(α,B0) = R[1 + E0 +B0]− αR(1 + E0)− κDu

r ≤ αψR(1 + E0)

B0

.

Since ∂π(α,B0)
∂α

< 0, and ∂π(α,B0)
∂B0

> 0, the participation constraint of risk-averse investors
binds in equilibrium, B∗0 = α∗ψR(1 + E0), which yields D∗b = r < R, verifying the
supposition. This link between the encumbrance level and the amount of covered bond
funding constitutes the bank funding channel. As a result, the bankruptcy threshold
becomes S∗(α) = R(1+E0)[1−α(1− ψR

r
)]−κDu. The total effect of encumbrance on this

threshold is dS∗(α)
dα

= −R(1 + E0)
(
1− ψR

r

)
< 0, which constitutes the risk concentration

channel.

C Proof of Proposition 2

This proof continues from the proof of Lemma 1 and Lemma 2. Using D∗b = r and
B∗0 = α∗ ψR

r
(1 + E0), we obtain at a simple unconstrained optimization problem in which
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both the risk concentration and the bank funding channels are taken into account:

max
α∈[0,1]

π(α) ≡ F (S∗(α))

[
R(1 + E0)

(
1 + αψ

(
R

r
− 1

))
−Du

]
−
∫ S∗(α)

0

SdF (S)

s.t. (26)

S∗(α) = R(1 + E0)

[
1− α

(
1− ψR

r

)]
− κDu.

Using the risk concentration channel, the first and second derivative of the objective
function value with respect to the level of asset encumbrance are:

1

R(1 + E0)

dπ

dα
≡ F (S∗)ψ

(
R

r
− 1

)
−
(

1− ψR

r

)
f(S∗)E(S∗(α)) (27)

1

R(1 + E0)

d2π

dα2
≡ dS∗(α)

dα

[
ψ

(
R

r
− 1

)
f(S∗(α))−

(
1− ψR

r

)
f ′(S∗(α))E(S∗(α))

]
−
(

1− ψR

r

)
(1− ψ)R(1 + E0)f(S∗(α)) < 0 (28)

The sign of the second-order derivative is ensured by f ′ ≤ 0 and ψR < r. Therefore, the
objective function is globally concave and there exists at most one solution. If a solution
exists, it is a (global) maximum. By continuity of the objective function π, and the closed
set [0, 1] over which the banker maximizes, a solution α∗ exists. This establishes the
existence and uniqueness of a global maximum. We use the notation dπ

dα
≡ πα etc.

We next study whether this solution is interior. First, we require α∗ > 0. Rewriting
dπ
dα

∣∣
α=0

> 0 and using S∗(α = 0) = R(1 + E0)− κDu yields:

F [R(1 + E0)− κDu]

f [R(1 + E0)− κDu]
>

(1− ψR
r

)

ψ
(
R
r
− 1
)(κ− 1)Du. (29)

Focusing on the left-hand side of the expression above, we note that F (.)
f(.)

is strictly increas-
ing. The argument itself increases in R. The right-hand side decreases in R. Consequently,
α∗ > 0 for any R > R, which is implicitly defined by

F [R(1 + E0)− κDu]

f [R(1 + E0)− κDu]
≡

(1− ψR
r

)

ψ
(
R
r
− 1
)(κ− 1)Du. (30)

Note that R ∈
(
r, r

ψ

)
, since the right-hand side of condition (30) goes to positive infinity

for R→ r and to zero for R→ r
ψ

, while the left-hand side is positive but finite.

Second, we require α∗ < 1. Rewriting dπ
dα

∣∣
α=1

< 0 and using S∗(α = 1) = RψR
r

(1 +
E0)− κDu yields:

F [R(1 + E0)ψR
r
− κDu]

f [R(1 + E0)ψR
r
− κDu]

<
(1− ψR

r
)

ψ
(
R
r
− 1
)[(κ− 1)Du + (1− ψ)R(1 + E0)

]
.

The argument of the left-hand side increases in R, while he right-hand side decreases in
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R. Thus, α∗ < 1 for any R < R implicitly defined by

F [R(1 + E0)ψR
r
− κDu]

f [R(1 + E0)ψR
r
− κDu]

≡
(1− ψR

r
)

ψ
(
R
r
− 1
)[(κ− 1)Du + (1− ψ)R(1 + E0)

]
. (31)

Since the right-hand side of this expression again goes to positive infinity for R→ r
ψ

, and

since the left-hand side remains positive but finite, an upper bound R < r
ψ

exists.

Next, we show that R > R for any given Du. Since the bankruptcy threshold S∗

decreases in asset encumbrance α (Lemma 2), the left-hand side in condition (31) is smaller
than the left-hand side in condition (30). Moreover, the right-hand side in condition (31)
is larger than the right-hand side in condition (30) because of the additional term. As a
result, R > R, which justifies our labels. In sum, α∗ ∈ (0, 1) for any R ∈

(
R,R

)
.

D Proof of Proposition 3 and Corollary 2

We compute comparative statics of α∗ with respect to y ∈ {R, γ, ψ, r, E0, Du} and the
distribution of the balance sheet shock. We focus on intermediate investment profitability,
R ∈

(
R,R

)
, in order to guarantee an interior solution α∗ ∈ (0, 1). The implicit function

theorem yields dα∗

dy
= − παy

παα
. To derive the partial derivatives, we use the bankruptcy

threshold in equation (26) together with the derivative of the expected profit with respect
to asset encumbrance, πα, in equation (27).

First, we report the partial derivatives of the threshold S∗∗ ≡ S∗(α∗), where the
relative return is z = R

r
:

∂S∗∗

∂α
= −R(1 + E0)(1− ψz) < 0 (32)

∂S∗∗

∂Du

= −κ < 0 (33)

∂S∗∗

∂R
= (1 + E0)[1− α∗(1− 2ψz)] > 0 (34)

∂S∗∗

∂γ
= −

(
1

ψ
− 1

)
Du < 0 (35)

∂S∗∗

∂r
= −α∗ψz2(1 + E0) < 0 (36)

∂S∗∗

∂E0

= R[1− α∗(1− ψz)] > 0 (37)

∂S∗∗

∂ψ
= Rzα∗ +

γDu

ψ2
> 0. (38)
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Second, we report the partial derivatives of the implicit function defined by πα(α∗) = 0:

παα = (ψ(z − 1)f(S∗∗)− (1− ψz)E(S∗∗)f ′(S∗∗))
∂S∗∗

∂α
(39)

−(1− ψz)f(S∗∗)(1− ψ)R(1 + E0) < 0

παDu = −f(S∗∗)[ψz + (1− ψ)κ− 1] + κ(1− ψz)f ′(S∗∗)E(S∗∗) < 0 (40)

παγ = [(1− ψ)f(S∗∗)− (1− ψz)f ′(S∗∗)E(S∗∗)]
∂S∗∗

∂γ
< 0 (41)

παr = −ψR
r2

[F (S∗∗) + f ′(S∗∗)E(S∗∗)] + ψ(z − 1)f(S∗∗)
∂S∗∗

∂r
(42)

−(1− ψz)f ′(S∗∗)E(S∗∗)
∂S∗∗

∂r
< 0

παψ = (z − 1)F (S∗∗) + ψ(z − 1)f(S∗∗)
∂S∗∗

∂ψ
+ zf(S∗∗)E(S∗∗) (43)

−(1− ψz)f ′(S∗∗)
∂S∗∗

∂ψ
E(S∗∗) + (1− ψz)f(S∗∗)

[
α∗R(1 + E0) +

γDu

ψ2

]
> 0.

Third, by the implicit function theorem, we obtain the first four comparative statics
reported in Proposition 3: dα∗

dψ
> 0, dα∗

dγ
< 0, dα∗

dr
< 0, and dα∗

dDu
< 0.

Fourth, suppose that the balance sheet shock distribution F̃ stochastically dominates
the distribution F according to the reverse hazard rate. This implies that

f̃

F̃
≥ f

F
, (44)

or, equivalently, F/f ≥ F̃ /f̃ . Let π̃α(α̃∗) = 0 denote the implicit function defining the
privately optimal level of asset encumbrance, α̃∗, under the balance sheet shock distribu-
tion F̃ . Therefore, we have that π̃α ≤ πα for all levels of encumbrance. Since π̃αα < 0 and
παα < 0, it follows that the privately optimal levels of encumbrance satisfies α̃∗ ≥ α∗.

Finally, we consider the comparative statics of the privately optimal level of asset
encumbrance with respect to initial bank capital and investment profitability:

παE0 =

[
ψ(z − 1)

∂S∗∗

∂E0

− (1− ψz)α∗R(1− ψ)

]
f(S∗∗)− (1− ψz)f ′(S∗∗)E(S∗∗)(45)

παR =
ψ

r
F (S∗∗)− (1− ψz)E(S∗∗)f ′(S∗∗) (46)

+f(S∗∗)

[
ψ(z − 1)

∂S∗∗

∂R
+
ψ

r
E(S∗∗)− (1− ψz)α∗(1− ψ)(1 + E0)

]
.

Since f ′(S∗∗) ≤ 0, a sufficient condition for παE0 > 0 is g(z) ≡ z2 + 1−2ψ
ψ
z − 1−ψ

ψ2 > 0.

Let the two roots be z1 < z2 such that g(z) > 0 for z < z1 and z > z2. One can show
that z1 < 1, which is not a valid solution. However, one can show that z2 <

1
ψ

, the upper
bound on z, where

z2 ≡
2ψ − 1 +

√
4(1− ψ)2 + 1

2ψ
. (47)
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Thus, z ∈
(
z2,

1
ψ

)
suffices for παE0 > 0. Let r ≡ R

z2
, such that g(z) > 0 ∀ r < r, so

παE0 > 0 and dα∗

dE0
> 0 by the implicit function theorem. One can also show that g(z) > 0

is sufficient for παR > 0, which yields dα∗

dR
> 0.

Consider the special case of a uniform distribution, S ∼ U [0, R(ω+1+E0)], where the
upper bound is designed to always exceed Smax. The first-order condition of the privately
optimal level of asset encumbrance is linear. Rewriting yields the expression stated in
Corollary 2, and differentiation with respect to E0 yields

dα∗

dE0

=
[ψz + (1− ψ)κ− 1]Du

R(1 + E0)2[1− 2ψ − ψ2z(z − 2)]
> 0, (48)

since the numerator is unambiguously positive and the denominator is positive between
the two roots, 2ψ−1

ψ
< z < 1

ψ
, which includes the full support of the relative return.

Similarly,
dα∗

dR
=

[ψz + (1− ψ)κ− 1]Du

R2(1 + E0)[1− 2ψ − ψ2z(z − 2)]
> 0, (49)

which is unambiguously positive for the same reason.

E Proof of Proposition 4

The equilibrium face value of unsecured debt D∗u is implicitly defined by the binding
participation constraint of risk-neutral investors, V (D∗u) = r. The proof of existence and
uniqueness of D∗u is in four steps. First, for any given Du, the value of the unsecured debt
claim decreases in the level of asset encumbrance:

∂V

∂α∗
= Du[1− κψ]f(S∗∗)

dS∗∗

dα∗
− ψR(1 + E0)(1− ψz)

∫ S∗
max

S∗∗
dF (S) < 0. (50)

Intuitively, more asset encumbrance reduces both the pool of unencumbered assets and
the range of balance sheet shocks for which unsecured debt holders are repaid in full, so
the overall effect on the value of the unsecured debt claim is negative.

Second, risk-neutral investors never accept a debt claim with face value Du = r:

V (Du = r) = rF (S∗∗) + ψ

∫ S∗
max

S∗∗
(S∗max − S)dF (S) (51)

< r
(
F (S∗∗) + ψκ[F (S∗max)− F (S∗∗)]

)
< r. (52)

Third, the value of the unsecured debt claim changes with its face value according to
dV
dDu

= ∂V
∂α∗

∂α∗

∂Du
+ ∂V

∂Du
, where ∂S∗∗

∂Du
= −κ and

∂V

∂Du

= F (S∗∗)− κ(1− ψκ)Duf(S∗∗) (53)

= f(S∗∗)
1− ψz
ψ(z − 1)

[(κ− 1)Du + α∗(1− ψ)R]− κ(1− ψκ)Duf(S∗∗), (54)

where we used the first-order condition for α∗. Since the indirect effect via α∗ is positive,
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∂V
∂α∗

∂α∗

∂Du
> 0, and since α∗(1−ψ)Rf(S∗∗) ≥ 0, a sufficient condition for dV

dDu
> 0 is that the

term multiplying f(S∗∗)Du is non-negative, −κ(1 − ψκ) + 1−ψz
ψ(z−1)

(κ − 1) ≥ 0. Rewriting
yields an upper bound on investment profitability relative to the return on storage:

z ≤ z ≡ κ− 1 + κψ(1− κψ)

ψ(κ− 1) + κψ(1− κψ)
∈
(

1,
1

ψ

)
, (55)

which can be written as R ≤ R̃. This condition ensures the monotonicity of the unsecured
debt claim in its face value, dV

dDu
> 0, and suffices for uniqueness of D∗u (if it exists).

Fourth, existence requires that risk-neutral investors accept the debt claim for a feasi-
ble face value. Since the banker can promise at most Du = R, we require V (Du = R) > r
because of monotonicity. Since S∗∗(R) = R[(1 + E0)(1− α∗(1− ψz))− κ]:

r < RF (S∗∗(R)) + ψ

∫ S∗
max

S∗∗(R)

(S∗max − S)dF (S). (56)

Since greater asset encumbrance dilutes the unsecured debt claim, as shown in the first
point, a sufficient condition in terms of exogenous parameters of the model can be obtained
by evaluating this inequality at α∗ = 1:

r ≤ RF (R[(1 + E0)ψz − κ]) + ψ

∫ Rψz(1+E0)

R[(1+E0)ψz−κ]

(R[(1 + E0)ψz − κ]− S)dF (S). (57)

This condition suffices for the existence of D∗u. Figure 5 illustrates.
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Figure 5: Unsecured debt claim: its value increases in the face value.

F Proof of Propositions 5

The bound S̆ = R(1 + E0 + ω) − κr is constructed to always ensure S̆ > S∗ (because
α∗ ≥ 0 and D∗u > r). By Proposition 2, which defines the privately optimal level of
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asset encumbrance, α∗ = α̂∗ because both F and F̂ are identical for any S < S̆. Thus,
the difference in distribution affects the value of the unsecured debt claim only via the
liquidation value in bankruptcy, but not via changes in asset encumbrance. Next, observe
that V (Du|F̂ ) > V (Du|F ), for any given Du, because of the lower tail risk under F̂ .
Since risk-neutral investors always receive their outside option in expectation, we have
V (D̂∗u|F̂ ) = r = V (D∗u|F ). Since dV

dDu
> 0 as showed before, it follows that D̂∗u < D∗u.

G Proof of Proposition 6

The first-order condition is a straightforward extension of the model without public guar-
antees and follows directly from the problem in (10). The comparative static dα∗

m

dm
> 0

follows from the implicit function theorem, since dα∗
m

dm
= −παm

παα
> 0. The sign arises

from f ′ ≤ 0, S∗∗m ≡ S∗m(α∗m), ∂S∗
m

∂α
= −R(1 + E0)(1 − ψz) < 0, ∂S∗

m

∂m
= κDu − Dg > 0,

E(S∗∗m ) = (κ− 1)(1−m)Du + α∗m(1− ψ)R(1 + E0) > 0 as well as

παα ≡ R2(1 + E0)2(1− ψz)
[
E(S∗∗m )(1− ψz)f ′(S∗∗m )−

{
ψ(z − 1) + 1− ψ

}
f(S∗∗m )

]
< 0

παm ≡ R(1 + E0)
[
f(S∗∗m )ψ(z − 1)(κDu −Dg)− (1− ψz)

{
f ′(S∗∗m )E(S∗∗m ) [κDu −Dg]

− f(S∗∗m )(κ− 1)Du

}]
> 0

H Proof of Lemma 3

The partial derivatives of the expected cost to the guarantor with respect to the level of
asset encumbrance and the coverage of the guarantee are:

∂C

∂α
≡ Cα = ψ(1− ψz)R(1 + E0)

[
F
(
Smax

)
− F

(
Smax −

mDg

ψ

)]
> 0 (58)

∂2C

∂α2
≡ Cαα = −ψ(1− ψz)2R2(1 + E0)2

[
f
(
Smax

)
− f

(
Smax −

mDg

ψ

)]
≥ 0(59)

∂C

∂m
≡ Cm = Dg

[
1− F

(
Smax −

mDg

ψ

)]
> 0 (60)

∂2C

∂α∂m
≡ Cαm = (1− ψz)R(1 + E0)Dgf

(
Smax −

mDg

ψ

)
> 0 (61)

I Proof of Proposition 7

As for preliminaries, we have Wαα ≡ παα−(1+ξ)Cαα < 0 and [0, 1] is a closed set, so there
exists a unique global welfare maximum at the constrained efficient level of encumbrance,
αP . If interior, this level solves the first-order condition πα(αP ) = (1 + ξ)Cα(αP ). The
associated level of fragility is SP ≡ S∗m(αP ).

To establish constrained inefficiency of the privately optimal level of asset encum-
brance, note that Wα(α∗m;m) = −Cα(α∗m;m) < 0. Since αP solves Wα(αP ;m) = 0,
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and the objective function of the planner is globally concave, Wαα < 0, it follows that
αP < α∗m.

We turn to the comparative statics of the gap between the privately optimal and
constrained efficient encumbrance levels. Since Wαξ = −Cα < 0, dαP

dξ
= −Wαξ

Wαα
< 0 by the

implicit function theorem (IFT), which yields the second comparative static, d(α∗
m−αP )
dξ

> 0

(α∗m is independent of ξ). Similarly, the first comparative static obtains if dαP
dm

< dα∗
m

dm
. Let

Wαm ≡ παm − Cαm. By the IFT for both αP and α∗m, this inequality requires −Wαm

Wαα
<

−παm
παα
⇔ −παm−(1+ξ)Cαm

παα−(1+ξ)Cαα
< −παm

παα
⇔ Cαmπαα < παmCαα, which always holds.

Turning to bank fragility, excessive fragility and the comparative statics of the bank-
ruptcy threshold w.r.t. guarantee coverage arise from α∗m > αP , d(α∗

m−αP )
dm

> 0, and
dS∗
m

dα
< 0. Similarly, the comparative static on the dead-weight loss follows from dαP

dξ
< 0

and dα∗
m

dξ
= 0.

J Proof of Propositions 8 – 10

We consider the cap on asset encumbrance and Proposition 8 first. From Proposition 7,
we know that the bank’s unconstrained choice of asset encumbrance, α∗m, is greater than
the constrained efficient level, αP . Moreover, because of the global concavity of π, πα > 0
for α < α∗m. Therefore, introducing the constraint α ≤ αP into the bank’s program at the
secured funding round at t = 0 implies that the constraint will always bind, α∗∗m = αP .

Second, we consider a minimum capital requirement and Proposition 9. The mini-
mum capital ratio, e(α) ≥ e ≡ E0

(1+E0)(1+ψzαP )
, can be re-written as a cap on the level of

asset encumbrance, α ≤ αP . As before, introducing a minimum capital ratio as an addi-
tional constraint in the bank’s program at the secured funding round yields constrained
efficiency.

Third, we consider the encumbrance surcharge and Proposition 10. We show by contra-
diction that there exists no continuous schedule of asset encumbrance surcharge. Suppose
such a schedule exists and call it ∆̃. To ensure that the constrained privately optimal
level of asset encumbrance does not exceed αP , it must be true that ∆̃(α) > 0 for any
α > αP . (Intuitively, the surcharge is high enough to prevent the banker from increasing
the asset encumbrance level beyond αP , as is optimal without constraint; see Propositions
6 and 7.) By continuity, ∆̃(αP ) > 0. Using the expression for the bankruptcy threshold
in (16), we obtain S∆

m(αP ) < SP , contradicting the supposed constrained efficiency of the
schedule ∆̃.

Finally, we show by example that there exists a schedule that is sufficiently discontin-
uous at αP and attains constraint efficiency. Consider the example in the main text, ∆̂.
The surcharge wipes out all unencumbered assets if α > αP is chosen, but does not affect
the problem if α ≤ αP . Therefore, we can effectively write the discontinuous schedule
of asset encumbrance surcharges as a constraint α ≤ αP on the banker’s problem. We
have already shown that this constraint attains constrained efficiency, which concludes
the proof.
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