RISK TOPOGRAPHY LIQUIDITY MISMATCH

Markus K. Brunnermeier

IMF-Bundesbank Statistics Conference, Nov. 19th, 2015

Challenges in data collection

Existing data sets in US/EU

- Flow of funds Copeland (1947, 1952), Fed
 - Characterizes money flows within economy
- Call reports National Bank Act (1863), FDIC
- SEC filings
- <u>Problems</u>
 - "Level focused" not "risk focused"
 - Old days: risky position was association w/ initial cash flow
 Nowadays: risky position is divorced from initial cash flow
 - Leverage is an outdated concept is risk sensitivities
 - Not focused on systemic interactions (direct, price effects)

- Systemic risk build-up during (credit) bubble
 ... and materializes in a crisis
- 2. Spillovers/contagion externalities

Brunnermeier

- Direct contractual: domino effect (interconnectedness)
- Indirect: price effect (fire-sale externalities) credit crunch, liquidity spirals

- Systemic risk build-up during (credit) bubble 1. ... and materializes in a crisis
 - "dances as long as the music is playing"
 - All are aware that imbalances/bubbles are building up,
 - But going against it alone is risky

Brunnermeier

See e.g. "Bubbles and Crashes" Abreu-Brunnermeier (2003) Everybody is waiting and "riding the bubble" ...

- 1. Systemic risk build-up during (credit) bubble ... and materializes in a crisis
 - "dances as long as the music is playing"
 - All are aware that imbalances/bubbles are building up,
 - But going against it alone is risky
 - Everybody is waiting and "riding the bubble" ...
 - "Volatility Paradox": Low volatility indicates problems
 - Data implications:

Brunnermeier

- Contemporary risk measures are not useful
- Focus on imbalances, Liquidity mismatch concentrations
- Low frequency data is sufficient (monthly), debt/maturity level,
- Less granular (e.g. subsector aggregation possible)

- 1. Systemic risk build-up during (credit) bubble
 - "Volatility Paradox" → contemp. measures inappropriate
 Data: Low frequency, debt/maturity level, ...
- 2. Spillovers/contagion externalities
 - Direct contractual: domino effect (interconnectedness)
 - Network effects
 - Bankruptcy of bank A leads to default of B
 - 1st, 2nd, 3rd round effects
 - Random recovery rate
 - Data implications:
 - Position data
 - High frequency
 - High granularity
 - Indirect: ...

crisis managemen

- 1. Systemic risk build-up during (credit) bubble
 - "Volatility Paradox" _____ontemp. measures inappropriate
 - Data: Low frequency, debt/maturity level, ...
- 2. Spillovers/contagion externalities
 - Direct contractual: domino effect (interconnectedness)
 - Indirect:

- information spillovers
- price effect (fire-sale externalities) credit crunch, liquidity spirals

Absorber vs. amplifier

Direct	Indirect
Contractual links	"Virtual links"
Loss through bankruptcy/default	Similar exposure than other levered players
Position data	Response indicator - expectations/ constraints

- Shock absorber
- Shock amplifier

Absorber vs. amplifier indicator: LMI

Liquidity mismatch – not maturity mismatch

Α		L
Technol. Illiquidity		
 Irreversibility 		
Market illiquidit y	Funding illiquidity	Maturity Rat Race!
 Price impact 	rollover risk/ haircut sensitivity	

	Micro-prudential	Macro-prudential
Market Illiquidity	exogenous	depends on funding structure of other holders

See Brunnermeier, Gorton & Krishnamurthy 2012

Liquidity Mismatch: Aggregate & Distribution

- 1. Aggregate

 Firms/Households
 Financial sector
 Households

 Fabric
 Deposits

 House
 intermediation

 chain/network
 Chain/network
- 2. Distribution: "Risk pockets" mutually inconsistent plans
 - Risk management strategy/response: reduce risk when price moves against them ("cut an run")
 - Example: portfolio insurance in 1987
 - Response indicator to differentiate between
 - Deep pocket rides out liquidity shortage
 - Fickle investor fire-sells

Sendogenous

Response

Liquidity Mismatch Index (LMI)

A

Market liquidity

 Can only sell assets at fire-sale prices

Ease with which one can raise money by selling the asset

Funding liquidity

- Can't roll over short term debt
- Margin-funding is recalled

Ease with which one can raise money by borrowing using the asset as collateral

Liquidity Mismatch Index = liquidity of assets minus liquidity promised through liabilities

Brunnermeier, Gorton, Krishnamurthy Liquidity Mismatch

Liquidity Mismatch Index (LMI)

A

Market liquidity

- Treasuries/bund: $\lambda = 1$
- Overnight repo: $\lambda = .97$
- Agency MBS: $\lambda = .95$
- Private-label MBS: $\lambda = .90$

Funding liquidity

- Overnight debt: $\lambda = 1$
- Long-term debt: $\lambda = .5$
- Equity: $\lambda = .1$

 λ are ideally <u>endogenous</u> and time-varying (<u>depend on stress scenario</u>)

Liquidity Mismatch Index = liquidity of assets minus liquidity promised through liabilities

Basel 3: Net Stable Funding Ratio, Liquidity Coverage Ratios implicitly assign some λ weights

L

LMI Map/Topography

- Aggregate perspective
 - Irreversible investment in
 - Firms
 - Housing investment
 - Financed with short-term debt claims held by Households
- Intermediation chain
- Intermediation network different expertise (e.g. expertise to diversify)
- Identify "shock amplifiers" and "Liquidity SIFIs"

Liquidity Risk

- $\{\lambda^{\omega}\}$ for different macro states ω
- Firm (or sector) liquidity risk:
 - the vector {LMI $^{\omega}$ } LMI for each state ω
- $\{LMI^{\omega}\}$ is the liquidity risk taken by the firm
 - Portfolio decision at date o is over assets/liabilities
 - Asset/liability choices + realization of uncertainty result in {LMI^ω}
- Δ^{LMI} along different risk factors

Liquidity: $\{\lambda\}$ & Liquidity Risk: $\{\lambda^{\omega}\}$

- Example for setting {λ^ω}
 - Take a baseline set of {λ}
 - Consider an ω macro state;
 We know covariance with aggregate liquidity measure
 - Consider percentage deviations in {λ^ω}
 based on moves of aggregate liquidity measure
 - Empirical finance work has documented timeseries variation in aggregate liquidity measures
 - Bond market liquidity spreads
 - Stock market measures of liquidity
 - Covariances with aggregate risk factors

Data collection: 2-Step Approach

- Partial equilibrium response to (orthogonal) stress factors
 - In valueΔValue
 - In liquidity mismatch index ALMI
 - COLLECT LONG-RUN PANEL DATA SET!
 - ... reaction function
- 2. General equilibrium effects
 - Amplification, persistence

financial industry collected by **micro-prudential regulators**

macro-prudential regulators

Data collection – an example

- Direct responses to 5%, 10%, 15%,... drop in factor to
 - ΔValue
 - ΔLiquidity Mismatch Index
- Predict response
 - hold out
 - "fire" sell assets
 - credit crunch (no new loans)

Liquidity Maturity mismatch

Data collection: An example

- Direct responses to 5%, 10%, 15%,... drop in factor to
 - ΔValue
 - ΔLiquidity Mismatch Index
- Predict response
 - hold out "fire" sell assets credit crunch
- Derive likely indirect equilibrium response to
 - this stress factor
 - other factors

Find out whether plans were mutually consistent! (if not → tail risk)

Data collection: An example

- Direct responses to 5%, 10%, 15%,... drop in factor to
 - ΔValue
 - ΔLiquidity Mismatch Index
- Predict response
 - hold out "fire" sell assets credit crunch
- Derive likely indirect equilibrium response to
 - this stress factor
 - other factors *Non-linearities, externalities, multiple equilibria, amplification, mutually inconsistent planes,...*

Find out whether plans were mutually consistent! (if not → tail risk)

Choice of stress scenarios

- Issue 1: Need core data to form panel data set on which to calibrate response functions
 - Orthogonal stress scenarios on baseline set of factors
 - Repeated observations
- Issue 2: Much of the interest at any time t is on special cases
 - Correlated scenarios (cross-scenarios)
 - Tailored scenarios (e.g., Greek default)
- Need both ...

Choice of stress scenarios

- Orthogonal scenarios
 - Market risk scenarios: Interest rate, credit spread, exchange rate, stock price, VIX, commodity prices, commercial and residential real estate
 - Liquidity risk scenarios: Haircut/margin spikes, can't issue debt/sell assets, ...
 - Counterparty risk, …
 - Cross scenarios
 - Participants repot on combination of factors that lead to worst outcome. "Worst vector in ellipse"
 - Informs stress scenario in next round

Conclusion

- 2 components of systemic risk
 - Build-up phase: low frequency, low granularity, LM pockets
 - Crisis/spillover phase:
 - Direct spillovers: granular position data
 - Indirect spillovers: Endogenous response indicator/LMI (not maturity mismatch)
- Data collection
 - LMI construction (from balance sheets & market participants)
 - Distribution of liquidity mismatch impacts amplification
 - Put in General Equilibrium model to identify
 - Mutually inconsistent plans
 - GE amplifications through liquidity spirals (λ are a fixed point)

Difference to repeated stress test

- Risk topography
 - Response to a list of factors
 - GE amplification
 - Core stress factors
 - "Core stress factors" don't change over time
 - Aim: create panel data
 - Future research for GE effects
 - All financial institutions (including hedge funds, insurance companies, ...)

- Repeated stress test
 - Response to a single stress
 scenario
 - No endogenous amplification
 - Interlinked stress scenario
 - Stress scenarios change over time
 - **Aim:** best stress analysis at each point in time
 - Focus on main financial institutions

Data revelation – "financial stability report"

Main tradeoff

- Reveal mutually inconsistent plans, help coordinated corrections
- Outside verification competition for best model
- Avoids regulatory capture
- Creates standard across industry
- Scramble data
 - Aggregation
 - Delay
- Data react (form of Lucas critique)

- Induce a run
 "Opacity breeds stability" ?
- Privacy issues
- Destroys incentives to create info (Grossman-Stiglitz)

Other issues relevant to data collection

- Cross-checks, verification, sum-up conditions
 - Sectorial Liquidity Mismatch vs. Liquidity Chains
- Horizontal cross-check across institutions
 - Compare valuation models
- Complexity/simplicity
 - Standardization more correlation
 - Hiding risks
 - Snapshots versus average (quarter/year end spikes)

Conclusion

- 2 components of systemic risk
 - Build-up phase: low frequency, low granularity, LM pockets
 - Crisis/spillover phase:
 - Direct spillovers: granular position data
 - Indirect spillovers: Endogenous response indicator/LMI (not maturity mismatch)
- Data collection
 - LMI construction (from balance sheets & market participants)
 - Distribution of liquidity mismatch impacts amplification
 - Put in General Equilibrium model to identify
 - Mutually inconsistent plans
 - GE amplifications through liquidity spirals (λ are a fixed point)