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MOTIVATION
• Density forecasts summarize uncertainty surrounding point fore-

casts, hence they facilitate communication between researchers and
decision makers and to the general public (fan charts).

• Combining models’ density forecasts has a similar motivation as in
the point forecasting framework: mitigating model misspecification,
parameter estimation uncertainty (Timmermann, 2006).
• Rich literature on combining point forecasts (Bates and Granger,

1969; Stock and Watson, 2004; Cheng and Hansen, 2015), much less
on density forecasts (Hall and Mitchell, 2007; Geweke and Amisano,
2011; Rossi and Sekhposyan, 2014).

• Most of the literature focuses on evaluating density forecasts (Die-
bold et al., 1998; Corradi and Swanson, 2006; Rossi and Sekhposyan,
2013, 2016) and the combination schemes are often ad-hoc.

CONTRIBUTION
1. Theory: I propose a consistent estimator of combination weights

that minimize the discrepancy between the combined density fore-
cast and the probabilistically calibrated forecast.

2. Monte Carlo: the estimator performs well in finite samples.
3. Empirics: the combination scheme delivers probabilistically cali-

brated density forecasts when predicting US industrial production.

DETECTING (THE LACK OF) PROBABILISTIC CALIBRATION

Predictive densities CDFs of Probability Integral Transforms

• True predictive density: φ∗t+1(yt+1|It
R) = 0.5N (0, 0.52) + 0.5t4

• Incorrect M1: φ1
t+1(yt+1|It

R) = N (0, 0.52)

• Incorrect M2: φ2
t+1(yt+1|It

R) = t4

• Probabilistically calibrated forecast: CDF of PIT is the 45 degree line.
• M1, M2: markedly different tails show up in the CDFs of their PITs.

NOTATION
• Convex combination of M h-period-ahead predictive densities,

conditional on information between t− R + 1 and t:

φC
t+h(yt+h|It

R) ≡
M
∑

m=1
wmφm

t+h(yt+h|It
R)

• Probability Integral Transform (PIT) with realization Yt+h:

PITt+h ≡
∫ Yt+h

−∞
φC

t+h(y|I
t
R)dy = ΦC

t+h(Yt+h|It
R)

• True conditional distribution of yt+h: φ∗t+h(yt+h|It
R).

• Probabilistic calibration (no reference to the true DGP!):

φC
t+h(yt+h|It

R) = φ∗t+h(yt+h|It
R)

PITt+h ∼ U (0, 1) iff probabilistic calibration holds.

PROPOSED ESTIMATOR OF LINEAR COMBINATION WEIGHTS

• Idea: minimize the distance between the empirical CDF of the PIT
and the CDF of the uniform distribution.

• Distance between uniform CDF and combined CDF at r ∈ [0, 1]:

ΨG(r, w) ≡ G−1
t−h

∑
l=t−G+1−h

1 [PITl+h ≤ r]− r

• Three well-known statistics, which differ in how they weigh vertical
differences between the CDF’s over the unit interval:

KG(w) ≡ supr∈[0,1] |ΨG(r, w)| (Kolmogorov–Smirnov)

CG(w) ≡
∫ 1

0
Ψ2

G(r, w)dr (Cramer–von Mises)

AG(w) ≡
∫ 1

0
Ψ2

G(r, w) [r(1− r)]−1 dr (Anderson–Darling)

• Estimator:

ŵ ∈ ∆M−1 s.t. TG(ŵ) ≤ inf
w∈∆M−1

TG(w) + oP(1),

where TG(w) is one of KG(w), CG(w) or AG(w).
• Misspecification allowed: true conditional density does not need to

belong to the span of the individual densities.

Proposed estimation scheme

Estimator is consistent under mild mixing and continuity conditions.

EMPIRICAL APPLICATION: FORECASTING US INDUSTRIAL PRODUCTION ONE MONTH AHEAD

• Autoregressive Distributed Lags (ARDL) models:

IPt+1 = c +
1

∑
j=0

β jIPt−j +
1

∑
j=0

γjXt−j + σεt+1 , εt+1
iid∼ N (0, 1)

• Xt ={Capacity Util. in Mfg., ISM: New Orders Index, S&P’s 500,
Moody’s Baa spread,∅}, one at a time, from FRED-MD.
• Each model estimated by ML in rolling windows of R = 120 months,

forecast target dates 1985:03 – 2016:02 (P = 372 months).
• Weights estimated using G = 180 data points, Anderson–Darling-

type objective function AG.
• Benchmarks:

– equal weights (Kascha and Ravazzolo, 2010),
– maximizing the in-sample log scores, minimizing the KLIC be-

tween the true forecasting density and the combination density
(Hall and Mitchell, 2007),

– AR(2) with normal errors (Del Negro and Schorfheide, 2013).
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Combined density forecasts using optimal weights

Testing the null hypothesis of uniformity:
Rossi and Sekhposyan (2016) test statistics (p-values)

KS CvM

Optimal weights 0.90 (0.38) 0.24 (0.22)
Equal weights 1.39 (0.05) 0.50 (0.04)
KLIC weights 1.28 (0.08) 0.40 (0.09)
AR(2)-N 1.31 (0.08) 0.62 (0.02)

New weight estimation scheme delivers probabilistically calibrated density forecasts, beats equal weighting. Importance of financial variables during/after the Great Recession, extending Ng and Wright (2013).

MONTE CARLO EVIDENCE

• True DGP is a mixture of models M1 and M2 with mixture weights
(w1, w2)

′ = (0.4, 0.6)′, while M3 is irrelevant, w3 = 0:

M1: yt+1 = 1 + 0.9yt + νt+1, νt+1
iid∼ N (0, 12)

M2: yt+1 = 1 + 0.9yt + εt+1, εt+1
iid∼ N (0, 32)

M3: yt+1 = 1 + 0.9yt + ηt+1, ηt+1
iid∼ N (0, 5.8)

• First two moments of the true mixture density and the irrelevant
density (M3) are the same but their shapes differ!

• Specifically, very different tails, implying vastly different predictions
on the range of “extreme” future events.

Predictive densities of M1, M2, M3 and true mixture
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Monte Carlo results
• Monte Carlo simulations using all three objective

functions TG(w) = {KG(w), CG(w), AG(w)} and
sample sizes G = {200, 1000}.
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KS-based estimator performs poorly, while the estimators based on the CvM and the Anderson–Darling statistics perform very well, the latter dominating the other two in the MSE sense.

Disclaimer: The views and opinions expressed herein are those of the author and do not necessarily reflect the views and opinions of the Banco de España or the Eurosystem.


