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DETECTING (THE LACK OF) PROBABILISTIC CALIBRATION

e Density forecasts summarize uncertainty surrounding point fore- Predictive densities CDFs of Probability Integral Transforms
casts, hence they facilitate communication between researchers and
decision makers and to the general public (fan charts). 0.8 (\ Tr
. , . L. . . . == = True mixture == = PIT true mixture “"'/
e Combining models” density forecasts has a similar motivation as in 0.7 L ——M1 N(0,0.52) 09 _pIT M1 N(0,0.52) R
the point forecasting framework: mitigating model misspecification, | | | =" M2 ¢4 sl PIT M2 t, R4
parameter estimation uncertainty (Timmermann, 2006). 0.6 ~| = = Uniform CDF R4
e Rich literature on combining point forecasts (Bates and Granger, 0.71
1969; Stock and Watson, 2004; Cheng and Hansen, 2015), much less 0.5 06|
on density forecasts (Hall and Mitchell, 2007; Geweke and Amisano,
2011; Rossi and Sekhposyan, 2014). 04 0.5}
e Most of the literature focuses on evaluating density forecasts (Die- 04l
bold et al., 1998; Corradi and Swanson, 2006; Rossi and Sekhposyan, 03
2013, 2016) and the combination schemes are often ad-hoc. - 03T
| 02f
CONTRIBUTION 0.1 011
1. Theory: I propose a consistent estimator of combination weights 0 e 0 .
that minimize the discrepancy between the combined density fore- 5 4 3 2 10 1 2 3 4 5 1
cast and the probabilistically calibrated forecast. e True predictive density: ¢, , (Y417 %) = 0.5N (0, (),52) + 0.5¢4
2. Monte Carlo: the estimator performs well in finite samples. e Incorrect M1: ‘Pt1+1 (Ves1]7%) = N(0,0.52) e Probabilistically calibrated forecast: CDF of PIT is the 45 degree line.

3. Empirics: the combination scheme delivers probabilistically cali-
brated density forecasts when predicting US industrial production.

o Incorrect M2: 4’t2+1 (es1|Th) = t4 e M1, M2: markedly different tails show up in the CDFs of their PITs.

PROPOSED ESTIMATOR OF LINEAR COMBINATION WEIGHTS

e Convex combination of M h-period-ahead predictive densities, e Idea: minimize the distance between the empirical CDF of the PIT e Estimator:
conditional on information between t — R + 1 and t: and the CDF of the uniform distribution.
M e Distance between uniform CDF and combined CDF atr € [0, 1]: wc MM st Tg(w) < inf Tg(w)+op(1),
C ( |jt ) = m( |jt ) weAM-1
PrinYernlVR) = Z Wiy Ye+n R t—h
m=1 Yo(r,w)=Gt Y 1[PIT,, <r]—r
I—t—Ct1—h where T (w) is one of Kg(w), Cg(w) or Ag(w).

* Probability Integral Transform (PIT) with realization ¥, .- e Misspecification allowed: true conditional density does not need to

e Three well-known statistics, which differ in how they weigh vertical b o
belong to the span of the individual densities.

(Yo c ; C ; differences between the CDF’s over the unit interval:
PIT;p, = N P (ylIR) dy = Dy, (Yegn|IR)

_ Kg(w) = SUP,c(1] Yo (r,w)| (Kolmogorov-Smirnov) Proposed estimation scheme
o S . Lok t 1 t-G+1 t-R+1 t t+h
e True conditional distribution of v, 4: ¢}, (Vesn|TR)- Co(w) = / ¥2 (1, w) dr (Cramer—von Mises)
e Probabilistic calibration (no reference to the true DGP!): 01 i L
_ , |
Ac(w) = | Y2 1-7r)]'d Anderson-Darl |
‘Ptc+h (thw%) _—— (yt+h|3§<) c(w) /0 c(r,w) [r(1—r7)] r (Anderson-Darling) : | Rk
G
PIT,.; ~ U(0,1) iff probabilistic calibration holds. Estimator is consistent under mild mixing and continuity conditions.

MONTE CARLO EVIDENCE

e True DGP is a mixture of models M1 and M2 with mixture weights ~ Predictive densities of M1, M2, M3 and true mixture
(w,wr) = (0.4,0.6), while M3 is irrelevant, ws = 0:

047 wuunne Normal component (M1)
= = Normal component (M2) E
== True density (M1, M2)

031 ~—*Irrelevant density (M3)
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M1: Yir1 = 1+ Og}/f + Vi1, Vi1 ifig N(O, 12>

G —

M2: yiq =1+ 09y + €141, €141 5 N(0,32)

.
M3y = 14+0.9y; + 17141, 1041 ~ N(0,5.8)

o
o F1rst.two moments of the true mixture denglty and the irrelevant Monte Carlo results §
density (M3) are the same but their shapes differ! e Monte Carlo simulations using all three objective ||
e Specifically, very different tails, implying vastly different predictions functions Tg(w) = {Kg(w),Cg(w), Ag(w)} and O
on the range of “extreme” future events. sample sizes G = {200, 1000}.
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KS-based estimator performs poorly, while the estimators based on the CvM and the Anderson-Darling statistics perform very well, the latter dominating the other two in the MSE sense. ]

EMPIRICAL APPLICATION: FORECASTING US INDUSTRIAL PRODUCTION ONE MONTH AHEAD

e Autoregressive Distributed Lags (ARDL) models: | T Combined density forecasts using optimal weights
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o X; ={Capacity Util. in Mfg., ISM: New Orders Index, S&P’s 500, 0.1
Moody’s Baa spread, @}, one at a time, from FRED-MD. 1987 1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 I
e Each model estimated by ML in rolling windows of R = 120 months, ©or
forecast target dates 1985:03 — 2016:02 (P = 372 months). oe 60 1 ‘I-g‘?% band BB 70% band MEBIS0% band — P growth |
° Welghts estimated us1ng G — 180 data pOintS, AnderSOH—Darling' 0.8 1987 1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015
type objective function Ag. o 07
be ¢ £ o
e Benchmarks: 2P : Testing the null hypothesis of uniformity:
- | igch h d 1 S 050 Housing i ..
equal weights (Kascha and Ravazzolo, 2010), 2 . ; —te Rossi and Sekhposyan (2016) test statistics (p-values)
_ . - . BENORLY —
maximizing the in sample log scores, minimizing thg KLIC l?e =N , B s&P 500 KS CuM
tween the true forecasting density and the combination density 4 8 Spread
(Hall and MltCheH, 2007), 02F - - l o AR(2)-N ](E)ptllf;lal weﬁghts (1)28 Eggg; 8;3 Egéi;
. . 0.1F - _— ] qual weights : : . .
— AR(2) with normal errors (Del Negro and Schortheide, 2013). ) | - — A . . . KLIC weights 1.28 (0.08) 0.40 (0.09)
1987 1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 AR(2)-N 1.31 (0.08) 0.62 (0.02)

New weight estimation scheme delivers probabilistically calibrated density forecasts, beats equal weighting. Importance of financial variables during/after the Great Recession, extending Ng and Wright (2013).
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