Time-varying uncertainty and predictability of exchange rates

Knut Are Aastveit Norges Bank Bl Norwegian Business School

Francesco Ravazzolo Free University of Bozen/Bolzano

Herman van Dijk Erasmus University Rotterdam Norges Bank

Motivation - Exchange rates are difficult to predict!

- Meese and Rogoff (1983) identified that exchange rate fluctuations are difficult to predict using standard economic models
 - Random walk (RW) is frequently found to generate better exchange rate forecasts than economic models (Meese and Rogoff puzzle).
- Rossi (2013) surveys the literature and points out that exchange rate predictability is affected by:
 - Choice of the predictor
 - Forecast horizon
 - Forecasting model
 - Methods for forecast evaluation
- The predictive power is specific to some countries in certain periods.
- Signals the presence of instability in the models' forecasting performance

Contribution of this paper - What we do

- We propose a density combination approach to exchange rate models which accounts for several sources of uncertainty
 - Time-varying weights
 - Model set incompleteness
 - Combination weight uncertainty and learning
- In an empirical exercise forecasting exchange rates for 7 countries we find
 - Large relative gains in terms of both point and density forecasting performance from our combination approach
 - Outperforms RW, all individual models and alternative combination approaches.
 - Accounting for model incompleteness and weight uncertainty is important.

Combined Exchange Rate Forecast

 $\mathbf{w}_{t+h} \equiv (w_{1,t+h}, \ldots, w_{N,t+h})',$

We assume that at a generic point in time t, the forecaster has available Ndifferent models to predict exchange rate at time t + h, each model producing a predictive density $p(s_{t+h}|M_i, \mathcal{D}^t)$, i = 1, ..., N.

The composite predictive density $p(s_{t+h}|\mathcal{D}^t)$ is given by:

$$p(s_{t+h}|\mathcal{D}^t) = \left[\int p(s_{t+h}|\widetilde{\mathbf{s}}_{t+h}, \mathbf{w}_{t+h}, \mathcal{D}^t) p(\mathbf{w}_{t+h}|\widetilde{\mathbf{s}}_{t+h}, \mathcal{D}^t) p(\widetilde{\mathbf{s}}_{t+h}|\mathcal{D}^t) d\widetilde{\mathbf{s}}_{t+h} d\mathbf{w}_{t+h} \right]$$
(1)

- $p(s_{t+h}|\widetilde{\mathbf{s}}_{t+h},\mathbf{w}_{t+h},\mathcal{D}^t)$ denotes the combination scheme based on the Npredictions $\widetilde{\mathbf{s}}_{t+h}$ and the combination weights
- $p(\mathbf{w}_{t+h}|\widetilde{\mathbf{s}}_{t+h}, \mathcal{D}^t)$ denotes the posterior density of the combination weights
- We aggregate the N predictive densities $\{p(s_{t+h}|M_i, \mathcal{D}^t)\}_{i=1}^N$ into the pdf $p\left(\widetilde{\mathbf{s}}_{t+1}|\,\mathcal{D}^{t}\right).$

Norges Bank 7 / 12

ARVD (Norges Bank)

Norges Bank

(9)

(10)

Norges Bank 9 / 12

Combination scheme

ARVD (Norges Bank)

Gaussian combination that allows for model incompleteness:

 $p(s_{t+h}|\widetilde{\mathbf{s}}_{t+h},\mathbf{w}_{t+h},\sigma_{\kappa}^{-2}) \propto \exp\left\{-\frac{1}{2}\left(s_{t+h}-\widetilde{\mathbf{s}}_{t+h}'\mathbf{w}_{t+h}\right)'\sigma_{\kappa}^{-2}\left(s_{t+h}-\widetilde{\mathbf{s}}_{t+h}'\mathbf{w}_{t+1}\right)\right\}$

where \mathbf{w}_{t+h} is a vector containing the N values for the combination weights and $\widetilde{\mathbf{s}}_{t+h}$ contains the N predicted values from a distribution with density $p\left(\widetilde{\mathbf{s}}_{t+h}|\mathcal{D}^{t}\right)$

The combination disturbances, defined as κ_{t+h} , are estimated and their distribution provide a probabilistic measure of the incompleteness of the model set. The model in equation (2) is:

$$s_{t+h} = \widetilde{\mathbf{s}}'_{t+h} \mathbf{w}_{t+h} + \kappa_{t+h} \tag{3}$$

with $\kappa_{t+h} \sim \mathcal{N}(0, \sigma_{\kappa}^2)$.

Combination weights and individual models

Combination Weights have a probabilistic distribution in the unit interval and they are nonlinear/logistic transforms for all N models, given as

$$w_{i,t+h} = \frac{\exp\{z_{i,t+h}\}}{\sum_{l=1}^{N} \exp\{z_{l,t+h}\}}, \quad i = 1, \dots, N$$

where $\mathbf{z}_{t+h} \equiv (z_{1,t+h}, \dots, z_{N,t+h})'$, is a vector of latent processes.

Dynamics of Weights

$$\mathbf{z}_{t+h} \sim p(\mathbf{z}_{t+h}|\mathbf{z}_{t},\Lambda)$$

$$\propto |\Lambda|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} \left(\mathbf{z}_{t+h} - \mathbf{z}_{t}\right)' \Lambda^{-1} \left(\mathbf{z}_{t+h} - \mathbf{z}_{t}\right)\right\}$$
with Λ an $(N \times N)$ diagonal matrix. (5)

General Linear Model

ARVD (Norges Bank)

ARVD (Norges Bank)

ARVD (Norges Bank)

$$s_{t+h} = \Delta e_{t+h} = \mu + \beta x_t + \varepsilon_{t+h}, \quad \tau = 1, ..., t-1,$$
 (6)
$$\varepsilon_{t+h} \sim N(0, \sigma_{\varepsilon}^2),$$

$$x_t = \Omega_t - e_t.$$

 x_t measures the disequilibrium between the exchange rate's spot value and the level of the fundamentals.

Menu of predictors

Uncovered Interest Rate Parity (UIP)

$$x_{t,UIP} = i_t - i_t^* + e_t \tag{7}$$

Purchasing Power Parity (PPP)

$$x_{t,PPP} = p_t - p_t^* \tag{8}$$

Monetary Model (MM), Mark (1995)

 $x_{t.MM} = (m_t - m_t^*) - (y_t - y_t^*)$

$$x_{t,TR_1} = 1.5(\pi_t - \pi_t^*) + 0.5(y_t - y_t^*) + e_t$$

- Asymmetric Taylor Rule (TR2), Li et al (2015)
 - $x_{t,TR_2} = 1.5(\pi_t \pi_t^*) + 0.1(y_t y_t^*) + 0.1(e_t + p^* p_t) + e_t$

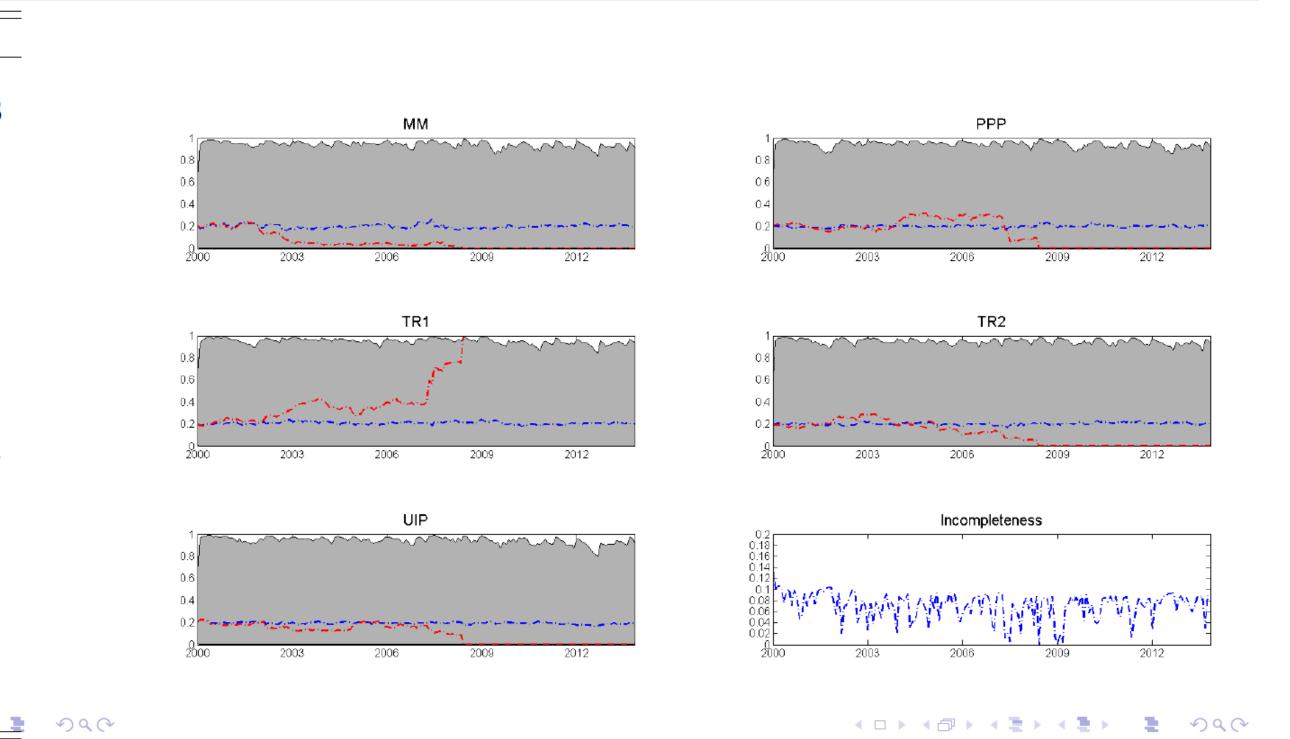
Empirical exercise

ARVD (Norges Bank)

ARVD (Norges Bank)

Model

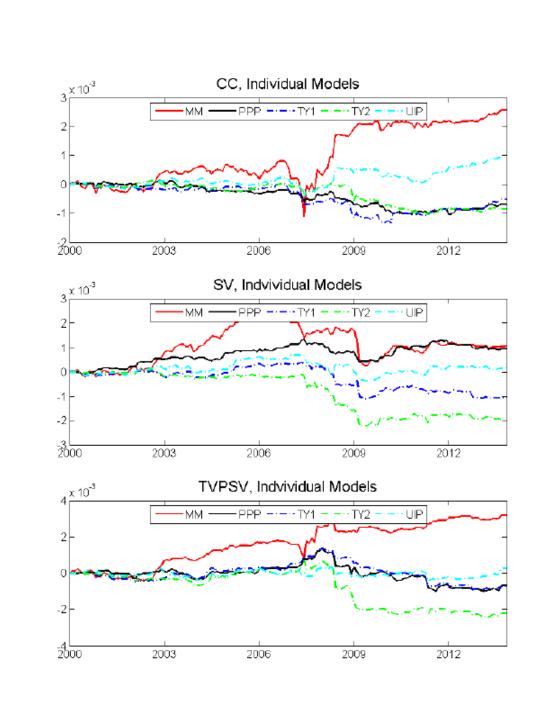
- Forecast monthly exchange rates for 7 countries
 - Britain. • Exchange rates measured as end-of-month exchange rate to USD

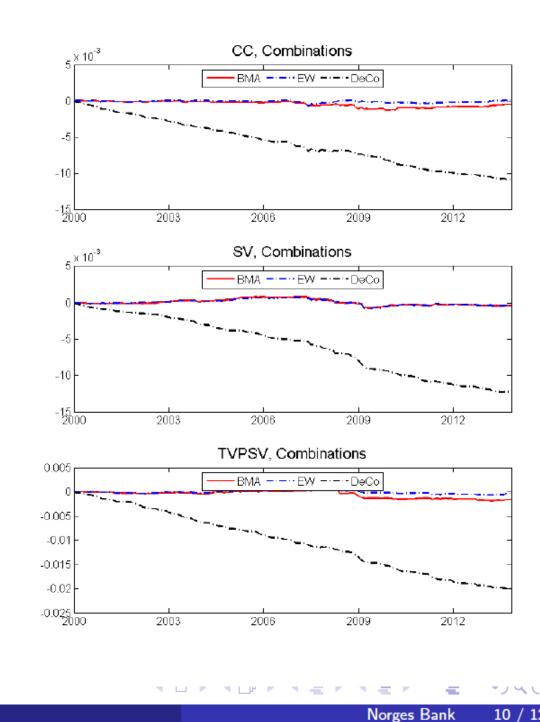

Countries: Australia, Canada, Norway, Euro, Japan, Switzerland and Great

- Forecast evaluation: RMSE, LPS, CRPS
- Evaluation sample: 2000:M5-2014:M3 • Forecast horizons: h = 1, 3
- Consider forecasts from 5 different fundamentals-based empirical models
 - Consider models with constant coefficients, stochastic volatility and time-varying parameters with stochastic volatility.
- Consider model 5 different model combinations
 - DeCo, BMA and equal weights

Results relative to RW, H=1

Model	AUS	CAN	NOR	EUR	JPN	CHE	GBP
MSPE							
DeCo	0.938	0.845	0.863	0.827	0.787	0.824	0.793
BMA	0.998	1.000	0.997	0.994	0.999	1.001	0.996
EW	0.998	1.000	0.997	0.994	0.999	1.001	0.996
MM	1.019	1.032	1.051	1.039	1.034	1.046	1.018
PPP	1.011	1.001	0.981	0.992	1.032	0.999	1.014
TR1	1.001	1.000	1.020	0.980	1.017	0.994	1.010
TR2	0.993	0.988	1.003	0.988	1.010	0.999	1.014
UIP	1.007	1.008	1.020	1.002	1.010	1.010	0.993
CRPS							
DeCo	0.818	0.649	0.674	0.648	0.591	0.642	0.601
BMA	1.004	1.019	1.008	1.001	0.984	1.003	0.974
EW	1.012	1.022	1.037	1.016	0.998	1.014	0.987
MM	1.020	1.048	1.058	1.068	1.087	1.072	1.088
PPP	1.017	1.039	1.028	1.049	1.078	1.050	1.084
TR1	1.008	1.036	1.040	1.043	1.073	1.041	1.080
TR2	1.005	1.030	1.038	1.043	1.069	1.049	1.082
UIP	1.013	1.038	1.045	1.052	1.066	1.055	1.075


Time-varying weights and model incompleteness, CAN


Cumulative SPE differentials, CAN

The importance of incompleteness and weight uncertainty

Relation between range volatility and incompleteness

ARVD (Norges Bank)

Model	AUS	CAN	NOR	EUR	JPN	CHE	GBP
MSPE							
DeCo	0.923	0.912	0.910	0.884	0.821	0.871	0.834
No Inc	0.970	0.974	0.962	0.953	0.948	0.957	0.926
No Inc and TVW	1.002	0.999	0.999	0.987	1.002	0.998	0.987
CRPS							
DeCo	0.819	0.800	0.778	0.727	0.647	0.710	0.664
No Inc	0.903	0.902	0.875	0.847	0.800	0.841	0.800
No Inc and TVW	1.013	1.018	1.006	0.988	0.979	0.990	0.982

- For each draw we regress contemporaneous range volatility on the standard deviation of incompleteness (computed across particles)
- Report median and 95% credible interval for regression coefficients
- Results: Incompleteness is related to range volatility (which is not observed at the time of forecast)

Country	Median	95% CI
AUS	-0.285	[-0.426, -0.092]
CAN	-0.196	[-0.301 , -0.086]
NOR	-0.217	[-0.338 , -0.060]
EUR	-0.201	[-0.320 , -0.036]
JPN	-0.116	[-0.234 , 0.010]
CHE	-0.173	[-0.301 , -0.028]
GBP	-0.126	[-0.241 , 0.019]

Norges Bank 8 / 12

ARVD (Norges Bank)

ARVD (Norges Bank)