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Measures of market risk

The simplest and most widely-used measure of risk is variance:

�2t � Et�1
h
(Yt � �t)

2
i

In the 1990s, in part prompted by Basel I and II, attention in risk
management moved to Value-at-Risk:

VaRt � F�1t (�)) Prt�1 [Yt � VaRt ] = �

The Basel III accord pushes banks to move from Value-at-Risk towards
Expected Shortfall:

ESt � Et�1 [Yt jYt � VaRt ]
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Why the move from VaR to ES?

Academic work has highlighted some problems with VaR (see McNeil, et al.
2015 for a summary):

Value-at-Risk has some positive attributes:

Focuses on the left tail of returns, so more relevant for risk mgmt

Easy to interpret (�the loss that is only exceeded on 5% of days�)

Is well-de�ned even for fat-tailed distributions; is a robust statistic

But VaR su¤ers from important drawbacks (Artzner et al. 1999, MathFin):

Not �sub-additive:� diversi�cation may make VaR look worse

No information about losses beyond the VaR

Expected Shortfall addresses both of these drawbacks

But it is not a robust statistic, and does require moment assumptions
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Why aren�t there more models for Expected Shortfall?

To answer this, consider how we estimate and model Value-at-Risk.

For a given sample fYtgTt=1 ; VaR can be obtained as

dVaRT = argmin
v

1
T

XT

t=1
L (Yt ; v ;�)

where L (y ; v ;�) = (1 fy � vg � �) (v � y)

The loss function here is the �tick�or �lin-lin� loss function

Given this loss function, it is possible to consider models like �CAViaR�
(Engle and Manganelli, 2004, JBES):

�̂T = argmin
�

1
T

XT

t=1
L (Yt ; v (Zt�1;�) ;�)

and VaRt = v (Zt�1;�)
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The �lin-lin� loss function
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Why aren�t there more models for Expected Shortfall?

Given an estimator of VaR, sample Expected Shortfall can be computed as:

cEST = 1
�T

XT

t=1
Yt1 fYt � VaRtg

But there does not exist an objective function such that ES is the solution:

@ L� s.t. cEST = argmin
e

1
T

XT

t=1
L� (Yt ; e;�)

Expected Shortfall is �non-elicitable�(Gneiting 2011, JASA). This explains,
perhaps, the lack of models for Expected Shortfall:

F We exploit recent results in statistics and decision theory which shows that
while ES is not elicitable, it is jointly elicitable with Value-at-Risk.

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 6 �



Why aren�t there more models for Expected Shortfall?

Given an estimator of VaR, sample Expected Shortfall can be computed as:

cEST = 1
�T

XT

t=1
Yt1 fYt � VaRtg

But there does not exist an objective function such that ES is the solution:

@ L� s.t. cEST = argmin
e

1
T

XT

t=1
L� (Yt ; e;�)

Expected Shortfall is �non-elicitable�(Gneiting 2011, JASA). This explains,
perhaps, the lack of models for Expected Shortfall:

F We exploit recent results in statistics and decision theory which shows that
while ES is not elicitable, it is jointly elicitable with Value-at-Risk.

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 6 �



Why aren�t there more models for Expected Shortfall?

Given an estimator of VaR, sample Expected Shortfall can be computed as:

cEST = 1
�T

XT

t=1
Yt1 fYt � VaRtg

But there does not exist an objective function such that ES is the solution:

@ L� s.t. cEST = argmin
e

1
T

XT

t=1
L� (Yt ; e;�)

Expected Shortfall is �non-elicitable�(Gneiting 2011, JASA). This explains,
perhaps, the lack of models for Expected Shortfall:

F We exploit recent results in statistics and decision theory which shows that
while ES is not elicitable, it is jointly elicitable with Value-at-Risk.

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 6 �



Why aren�t there more models for Expected Shortfall?

Given an estimator of VaR, sample Expected Shortfall can be computed as:

cEST = 1
�T

XT

t=1
Yt1 fYt � VaRtg

But there does not exist an objective function such that ES is the solution:

@ L� s.t. cEST = argmin
e

1
T

XT

t=1
L� (Yt ; e;�)

Expected Shortfall is �non-elicitable�(Gneiting 2011, JASA). This explains,
perhaps, the lack of models for Expected Shortfall:

F We exploit recent results in statistics and decision theory which shows that
while ES is not elicitable, it is jointly elicitable with Value-at-Risk.

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 6 �



Related literature

A lot of work has been done on models for risk management, mostly VaR:

McNeil, Frey and Embrechts (2015, Quantitative Risk Mgmt)

Daníelsson (2011, Financial Risk Forecasting )

Komunjer (2010, Handbook of Economic Forecasting )

This paper is closest to Engle and Manganelli (2004, JBES) who propose
time series models for conditional quantiles, and establish conditions for
estimation and inference

We extend their paper to consider ES (jointly with VaR)

We draw on two distinct recent advances in the literature:

Statistical decision theory: Fissler and Ziegel (2016, AoS)

Parameter-driven time series models: Creal, Koopman and Lucas (2013, JAE )
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Joint estimation of VaR and Expected Shortfall

Fissler and Ziegel (2016, AoS) show that while ES is not elicitable, it is
jointly elicitable with VaR, using the class of �FZ� loss functions.

We will use a homogeneous of degree zero FZ loss function, as for the values
of � of interest we know ESt < 0: There is only one such FZ loss:

LFZ 0 (Y ; v ; e;�) = �
1
�e
1 fY � vg (v � Y )� 1

e
(e � v) + log (�e)

where Y is the (future) return, v is the VaR forecast, and e is the ES forecast.

This loss function yields loss function di¤erences (between two competing sets
of VaR and ES forecasts) thare homogeneous of degree zero.

Minimizing this loss function yields VaR and ES:

[VaRt ;ESt ] = arg min
(v ;e)

Et�1 [LFZ 0 (Yt ; v ; e;�)]
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The FZ0 loss function
The implied VaR loss is the familiar �tick� loss function; the implied ES loss resembles �QLIKE�
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The expected FZ0 loss function
for a N(0,1) target variable. Contours are convex.
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Dynamic models for ES and VaR

With a loss function available, it is possible to consider dynamic models for
ES and VaR:

VaRt = v (Zt�1;�)
ESt = e (Zt�1;�)

The parameters of this model can then be obtained as:

�̂T = argmin
�

1
T

XT

t=1
L (Yt ; v (Zt�1;�) ; e (Zt�1;�))

We propose some new models for ES (and VaR), drawing on recent research,
and then provide theory for estimation and inference for these models.
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GAS models for dynamic ES and VaR I

Creal et al. (2013, JAE ) proposed �generalized autoregressive score�models
for time-varying density models:

Yt jFt�1 s F (�t)

�t = w + B � �t�1 + A � St�1
@ log f (yt�1;�t�1)

@�

Using the score (@ log f =@�) as the �forcing variable� enables them to nest
many existing models, including ARMA and GARCH models.

The �scale�matrix, St�1, is often set to the inverse Hessian.

This choice of forcing variable can be motivated as the Newton-Raphson step
in a numerical optimization algorithm.
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GAS models for dynamic ES and VaR II

We adopt this modeling approach, and apply it to our M-estimation problem.

Consider the following GAS(1,1) speci�cation for VaR and ES:�
vt+1
et+1

�
= w + B

�
vt
et

�
+ A

�
@2Et�1 [L (Yt ; vt ; et)]

@ (ve) @ (ve)0

��1
@L (Yt ; vt ; et)

@ (ve)

= w + B
�
vt�1
et�1

�
+ A

�
�v ;t�1
�e;t�1

�
where the �forcing variables� are given by

�v ;t = �vt (1 fYt � vtg � �)

�e;t = �
�
1
�
1 fYt � vtgYt � et

�
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Competing models I

While there are relatively few dynamic models for ES, there are some. We
consider the following models as competition:

1 Rolling window:

dVaR t = \Quantile fYsgts=t�m+1

cES t =
1
�m

tX
s=t�m+1

Ys1
n
Ys � dVaR so

m 2 f125; 250; 500g
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Competing models II

2 ARMA-GARCH models

Yt = �t + �t�t
�t s ARMA (p; q) , �2t s GARCH (p; q)

a. �t s iid N (0; 1)

b. �t s iid Skew t (0; 1; �; �)

c. �t s iid F (0; 1) (estimated by the EDF)

Model 2(c) is also known as ��ltered historical simulation,�and is probably the
best existing model for ES (see survey by Engle and Manganelli (2004, book)).
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Pros and cons of directly modeling ES and VaR

Consider a generic model:

VaRt = v (Zt�1;�)
ESt = e (Zt�1;�)

Such a model is a semiparametric model for returns:

We assume parametric dynamics for ES and VaR

We make no assumptions about the distribution of returns (beyond
regularity conditions required for estimation and inference)

By eliminating the need for assumptions about the distribution of returns, we
hopefully obtain a more robust model. But:

There may be e¢ ciency losses. We will study this carefully in our OOS
forecasting analysis.

This is not a complete probability model: further assumptions are needed to
draw simulations, for example.
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A one-factor model

Consider a case where there is only one latent factor driving VaR and ES:

vt = a exp f�tg
et = b exp f�tg , where b < a < 0

where �t = ! + ��t�1 + 
H
�1
t�1st�1

If we derive the GAS dynamics for �t we �nd

H�1t�1st�1 =
�1
et�1

�
1
�
1 fYt�1 � vt�1gYt�1 � et�1

�
� ��e;t�1

et�1

The intercept, !; is not identi�ed here so we �x it at zero.
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GARCH with FZ estimation

Next consider GARCH dynamics for the latent factor, but estimate using the
FZ0 loss function rather than QML:

Yt = �t�t ; �t s iid F�
so vt = a � �t

et = b � �t , with b < a < 0
and �2t = ! + ��2t�1 + 
Y

2
t�1

As above, the intercept, !; is not identi�ed here and we �x it at one.

If the GARCH model is correct, this is consistent but almost certainly less
e¢ cient than QML

If the model is misspeci�ed, estimating this way yields the parameters that
lead to the best possible VaR and ES forecasts.
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A hybrid GAS+GARCH model

Finally, consider a �hybrid�model, where as before we have:

Yt = exp f�tg �t ; �t s iid F�
so vt = a exp f�tg

et = b exp f�tg , with b < a < 0

We augment the GAS dynamics for �t with a �GARCH�term:

�t = ! + ��t�1 + 

��e;t�1
et�1

+ � log jYt�1j
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Data

We study daily returns on four equity indices

S&P 500

Dow Jones Industrial Average

NIKKEI 225

FTSE 100.

Sample period is January 1990 to December 2016

Number of observations (T ) is 6630 to 6805.

We use the �rst 10 years (R � 2500) for estimation, and the last 17 years
(P � 4250) for out-of-sample forecast comparison.
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Daily returns on the S&P 500 index
Rolling window estimates of the 5% VaR and ES
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Summary statistics

S&P 500 DJIA NIKKEI FTSE

Mean (Annualized) 6.776 7.238 -2.682 3.987
Std dev (Annualized) 17.879 17.042 24.667 17.730
Skewness -0.244 -0.163 -0.114 -0.126
Kurtosis 11.673 11.116 8.580 8.912

VaR-0.01 -3.128 -3.034 -4.110 -3.098
VaR-0.025 -2.324 -2.188 -3.151 -2.346
VaR-0.05 -1.731 -1.640 -2.451 -1.709

ES-0.01 -4.528 -4.280 -5.783 -4.230
ES-0.025 -3.405 -3.215 -4.449 -3.295
ES-0.05 -2.697 -2.553 -3.603 -2.643
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ARMA-GARCH-Skew t models for these returns

S&P 500 DJIA NIKKEI FTSE

Mean ARMA(1,1) AR(2) AR(0) AR(4)
R2 0.006 0.004 0.000 0.009

! 0.014 0.017 0.066 0.016
� 0.905 0.897 0.863 0.893
� 0.082 0.088 0.113 0.094

� 6.934 7.062 7.806 11.800
� -0.115 -0.100 -0.066 -0.102
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One-factor models for ES and VaR
SP500, alpha=0.05. Preferred model is the �hybrid� model

GAS-1F GARCH-FZ Hybrid

� 0:990
(0:004)

0:908
(0:072)

0:968
(0:015)


 �0:010
(0:002)

0:030
(0:010)

�0:011
(0:002)

� � � 0:018
(0:009)

a �1:490
(0:346)

�2:659
(0:492)

�2:443
(0:473)

b �2:089
(0:487)

�3:761
(0:747)

�3:389
(0:664)

Avg Loss 0:750 0:762 0:745
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Dynamic Expected Shortfall: 1990-2016
ES ranges from around -1.5% in mid 90s, to -10% in �nancial crisis
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Dynamic Expected Shortfall: 2015-2016
The di¤erence between the GAS and GARCH forcing variables is apparent here
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The models used for in OOS forecast comparison

� Rolling Window, with m 2 f125; 250; 500g

� GARCH(1,1) with Normal, Skew t, or EDF for the residuals

F GAS(1,1) dynamics, 2 factors

F GAS(1,1) dynamics, 1 factor

F GARCH-FZ: estimating the GARCH model using the FZ loss function

F Hybrid model: one-factor GAS model, with GARCH forcing variable included

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 30 �



Evaluating and comparing out-of-sample forecasts

We estimate the models using data only from the estimation sample (up until
Dec 1999)

R � 2500; P � 4250

Forecasts of VaR and ES are then produced for each day in the OOS period

No look-ahead bias in the forecasts

We compare the forecasts using the FZ loss function:

1 Rankings by average loss in the OOS period(s)

2 Diebold-Mariano tests on average losses from these forecasts

3 Goodness-of-�t tests
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OOS forecast comparison results: Average loss
SP500, alpha=0.05. 1-factor GAS model, w/wo �hybrid� forcing variable, is best.

SP500 DJIA NIKKEI FTSE

RW-125 0.914 0.864 1.290 0.959
RW-250 0.959 0.909 1.294 1.002
RW-500 1.023 0.976 1.318 1.056
GARCH-N 0.876 0.808 1.170 0.871
GARCH-Skt 0.866 0.796 1.168 0.863
GARCH-EDF 0.862 0.796 1.166 0.867
FZ-2F 0.856 0.798 1.206 1.098
FZ-1F 0.853 0.784 1.191 0.867
GARCH-FZ 0.862 0.797 1.167 0.866
Hybrid 0.869 0.797 1.165 0.862
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OOS forecast comparison results : Diebold-Mariano t-stats
SP500, alpha=0.05. FZ-1F beats all. Not signif better than GARCH-EDF/Skew t

A positive entry indicates the Column model is better than the Row model

RW125 G-EDF FZ-2F FZ-1F G-FZ Hybrid

RW125 � 2.900 2.978 3.978 3.020 2.967
RW250 2.580 3.730 3.799 4.701 3.921 4.110
RW500 4.260 4.937 5.168 5.893 5.125 5.450
G-N -2.109 3.068 1.553 2.248 2.818 0.685
G-Skt -2.693 2.103 0.889 1.475 1.232 -0.403
G-EDF -2.900 � 0.599 1.157 0.024 -0.769
FZ-2F -2.978 -0.599 � 0.582 -0.555 -0.580
FZ-1F -3.912 -1.198 -0.582 � -1.266 -1.978
G-FZ -3.020 -0.024 0.555 1.266 � -0.914
Hybrid -3.276 0.045 0.580 1.978 0.914 �
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Avg OOS forecast rankings across all alphas
The best model for each alpha is always one of the proposed new models

Ranking models by OOS average loss, for di¤erent tail probabilities

0.01 0.025 0.05 0.10

RW-125 8 7.75 7.75 8
RW-250 8.25 8.25 8.75 9
RW-500 9.5 9.5 9.75 10
G-N 5.25 5 6.25 3.75
G-Skt 3 2.5 3.5 4.75
G-EDF 2.5 2.25 3.25 3.25
FZ-2F 5.5 7.25 6.25 5.5
FZ-1F 7 4.25 3 3
G-FZ 2 2.25 3.5 5.75
Hybrid 4 6 3 2

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 34 �

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight



Goodness-of-�t tests for VaR and ES

Under correct speci�cation of the models for VaR and ES, we have

Et�1
�
@LFZ 0 (Yt ; vt ; et ;�) =@vt
@LFZ 0 (Yt ; vt ; et ;�) =@et

�
= 0, Et�1

�
�v ;t
�e;t

�
= 0

�v ;t and �e;t can thus be considered as �generalized forecast errors.�

To reduce the impact of heteroskedasticity, we consider standardized versions,
which also have mean zero:

�sv ;t � �v ;t
vt

= 1 fYt � vtg � �

�se;t � �e;t
et

=
1
�
1 fYt � vtg

Yt
et
� 1

We adopt the �dynamic quantile� regression-based test of Engle and
Manganelli (2004) for VaR, and propose its natural analog for ES:

�sv ;t = a0 + a1�
s
v ;t�1 + a2vt + "v ;t

�se;t = b0 + b1�
s
e;t�1 + b2et + "e;t

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 35 �



OOS goodness-of-�t tests: VaR and ES
alpha=0.05. FZ-1F performs best

GoF p-values: VaR GoF p-values: ES
S&P DJIA NIK FTSE S&P DJIA NIK FTSE

RW-125 0.021 0.013 0.000 0.000 0.029 0.018 0.006 0.000
RW-250 0.001 0.001 0.007 0.000 0.043 0.014 0.018 0.002
RW-500 0.001 0.001 0.000 0.000 0.012 0.011 0.001 0.000
GCH-N 0.031 0.139 0.532 0.000 0.001 0.006 0.187 0.000
GCH-Skt 0.003 0.085 0.114 0.000 0.003 0.085 0.282 0.000
GCH-EDF 0.003 0.029 0.583 0.000 0.014 0.098 0.527 0.000
FZ-2F 0.000 0.000 0.258 0.000 0.061 0.195 0.247 0.000
FZ-1F 0.242 0.248 0.317 0.019 0.313 0.130 0.612 0.003
GCH-FZ 0.005 0.001 0.331 0.000 0.018 0.011 0.389 0.000
Hybrid 0.001 0.069 0.326 0.000 0.010 0.159 0.518 0.000
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Summary and conclusions

The new Basel Accord will generate demand for models for Expected Shortfall

Existing models for volatility and VaR do not seem to do well for ES

We exploit a recent result from decision theory that shows that ES is jointly
elicitable with VaR

The �Fissler-Ziegel� loss function

We propose new models and adaptations of old models, for forecasting ES

For � = 0:01 and 0:025; the best models are GARCH estimated via FZ loss
minimization and GARCH with nonparametric residuals.

For � = 0:05 and 0:10; the best models are the one-factor GAS model, and
the hybrid one-factor GAS/GARCH model.
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Appendix
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Basel Committee on Banking Supervision
Consultative document: A revised market risk framework, October 2013

�The �nancial crisis exposed material weaknesses in the overall design of the
framework for capitalising trading activities.�

�A number of weaknesses have been identi�ed with using Value-at-Risk for
determining regulatory capital requirements, including its inability to capture
�tail risk.� For this reason, the Committee proposed in May 2012 to replace
Value-at-Risk with Expected Shortfall.�

�Risk reporting: the desk must produce, at least once a week... risk measure
reports, including desk VaR/ES, desk VaR/ES sensitivities to risk factors,
backtesting and p-value.�

) Expected shortfall is going to become an important part of risk management,
complementing past emphasis on VaR.
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Joint estimation of VaR and Expected Shortfall

Fissler and Ziegel (2016, AoS) show that while ES is not elicitable, it is
jointly elicitable with VaR, using the following class of loss functions:

L (Y ; v ; e;�) = (1 fY � vg � �)
�
G1 (v)� G1 (Y ) +

1
�
G2 (e) v

�
�G2 (e)

�
1
�
1 fY � vgY � e

�
� G2 (e)

where

G1 is weakly increasing

G2 is strictly positive and increasing, and G02 = G2:

Minimizing this loss function yields VaR and ES:

[VaRt ;ESt ] = arg min
(v ;e)

Et�1 [L (Yt ; v ; e;�)]
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Expected Shortfall and VaR in location-scale models

For intuition, assume that returns follow a conditional location-scale model
(eg, ARMA-GARCH)

Yt = �t + �t�t , �t s iid F� (0; 1)

In this case, we have

VaRt = �t + a�t , where a = F�1� (�)

ESt = �t + b�t , where b = E [�t j�t � a]

and we we can recover (�t ; �t) from (VaRt ;ESt) :

If �t = �� 8 t; then ESt = c + VaRt , where c = (b � a) ��

If �t = 0 8 t; then ESt = d � VaRt , where d = b=a
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Location-scale restrictions on the GAS model

Baseline speci�cation:�
vt+1
et+1

�
= w + B

�
vt
et

�
+ A

�
�v ;t
�e;t

�

Motivated by the familiarity of location-scale models, where
Yt = �t + �t�t ; we consider the following versions of this model

1 �t = 0 8 t: This implies:

H0 :
we
wv

=
aev
avv

=
aee
ave

\ be = bv

2 �t = �� 8 t: This implies:

H0 :
aev
avv

=
aee
ave

\ be = bv

3 �t = �� 8 t: This implies:

H0 : aev = avv \ aee = ave \ be = bv
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Statistical inference on models for ES and VaR

The models we consider �t in the general framework of M-estimation for time
series models:

�̂T = argmin
�

1
T

XT

t=1
L (Yt ; v (Zt�1;�) ; e (Zt�1;�) ;�)

Our loss function is non-di¤erentiable, but if we assume that Yt is
continuously distributed, this is easily handled.

Under some regularity conditions, we obtain consistency and
asymptotic Normality:

p
T
�
�̂T � ��

�
d�! N

�
0;H�1GH�1

�
G is the usual covariance matrix of the scores (easy to estimate)

H is the Hessian, which is a bit trickier to obtain
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Consistency

Assumption 1: See paper for details. Key parts of this assumption:

Need �nite �rst moments (unlike VaR estimation)

Need unique �-quantiles (see Zwingmann and Holzmann (2016) for results
when this condition is violated).

Theorem 1: Under Assumption 1, �̂T
p! �0 as T !1:

Proof is straightforward given Theorem 2.1 of Newey and McFadden (1994)
and Corollary 5.5 of Fissler and Ziegel (2016).

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 45 �



Asymptotic normality

Assumption 2: See paper for details. Key parts of this assumption:

Need 2 + � moments of returns

Theorem 2: Under Assumptions 1 and 2, we have
p
TA�1=2T DT (�̂T � �0)

d! N(0; I ) as T !1

where

AT = E

"
T�1

TX
t=1

gt(�
0)gt(�

0)0

#
, gt(�

0) =
@L
�
yt ; vt

�
�0
�
; et
�
�0
�
;�
�

@�

DT = E

"
T�1

TX
t=1

(
r0vt(�0)

ft
�
vt(�

0)
�

�et(�0)�
rvt(�0) +

r0et(�0)ret(�0)
et(�

0)2

)#

The proof builds on Huber (1967), Weiss (1991), Engle-Manganelli (2004).
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Estimation of the asymptotic covariance matrix

Assumption 3: See paper for details. Key parts of this assumption:

Bandwidth (cT ) satis�es cT ! 0 and cT
p
T !1.

Theorem 3: Under Ass�ns 1�3, ÂT � AT
p! 0 and D̂T �DT

p! 0, where

ÂT =T�1
TX
t=1

gt(�̂T )gt(�̂T )0

D̂T =T�1
TX
t=1

8<: 1
2ĉT

1
n���yt � vt ��̂T���� < ĉTo r0vt

�
�̂T

�
rvt

�
�̂T

�
�et

�
�̂T

�
�

+
r0et

�
�̂T

�
ret

�
�̂T

�
et
�
�̂T

�2
9>=>;

This extends Engle and Manganelli (2004) from dynamic VaR models to
dynamic joint models for VaR and ES.
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Simulation study

For comparability with the existing literature, we simulate a GARCH process:

Yt = �t�t

�t s iid F� (0; 1)

�2t = ! + ��2t�1 + 
Y
2
t�1

[vt ; et ] = [a; b]�t

[!; �; �] = [0:05; 0:9; 0:05] :

F� 2 f N (0; 1) ; Skewt (5;�0:5) g :

� 2 f 0:01 ; 0:025 ; 0:05 ; 0:1 ; 0:2g :

For std errors, we use cT = T�1=3:

T 2 f 2500 ; 5000 g ; and reps = 1000:
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Finite-sample properties of the estimator
Estimator is approximately unbiased, and 95% con�dence intervals have reasonable coverage

Normal innovations, � = 0:05

T = 2500 T = 5000

� 
 b� c� � 
 b� c�

True 0.900 0.050 -2.063 0.797 0.900 0.050 -2.063 0.797
Median 0.901 0.048 -2.051 0.800 0.899 0.049 -2.094 0.799
Bias -0.013 0.005 -0.097 0.002 -0.008 0.002 -0.081 0.001

St dev 0.062 0.046 0.707 0.015 0.041 0.021 0.511 0.010
Cov�age 0.913 0.874 0.916 0.947 0.923 0.907 0.927 0.948
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Finite-sample properties of the estimator
Std dev goes up for skew t errors, coverage remains reasonable

T=5000, � = 0:05

Normal Skew t

� 
 b� c� � 
 b� c�

True 0.900 0.050 -2.063 0.797 0.900 0.050 -2.767 0.651
Median 0.899 0.049 -2.094 0.799 0.898 0.048 -2.795 0.654
Bias -0.008 0.002 -0.081 0.001 -0.011 0.003 -0.114 0.003

St dev 0.041 0.021 0.511 0.010 0.053 0.025 0.782 0.017
Cov�age 0.923 0.907 0.927 0.948 0.916 0.904 0.922 0.951
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Estimation of VaR and ES
FZ estimation dominates CAViaR, but QMLE performs best here

Skew t innovations, T = 5000

VaR ES

MAE MAE ratio MAE MAE ratio
� QML CAViaR FZ QML CAViaR FZ

0.01 0.138 1.369 1.375 0.245 1.256 1.248
0.025 0.087 1.245 1.234 0.145 1.197 1.185
0.05 0.061 1.184 1.143 0.101 1.164 1.119
0.10 0.041 1.155 1.067 0.071 1.158 1.069
0.20 0.024 1.316 1.066 0.048 1.409 1.089
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Finite-sample properties of the estimator
Std dev higher for smaller alpha, and coverage worse for smaller alpha

T=5000, Normal

� = 0:01 � = 0:10

� 
 b� c� � 
 b� c�

True 0.900 0.050 -2.665 0.873 0.900 0.050 -1.755 0.730
Median 0.899 0.049 -2.671 0.877 0.898 0.048 -1.778 0.730
Bias -0.011 0.006 -0.089 0.004 -0.009 0.001 -0.072 0.000

St dev 0.049 0.033 0.805 0.015 0.040 0.020 0.435 0.009
Cov�age 0.884 0.876 0.888 0.937 0.922 0.902 0.934 0.960
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For comparison: Finite-sample properties of QMLE
Estimator is approximately unbiased, and 95% con�dence intervals have reasonable coverage

Skew t innovations

T = 2500 T = 5000

! � 
 ! � 


True 0.500 0.950 0.500 0.500 0.950 0.500
Median 0.052 0.895 0.049 0.052 0.897 0.050
Bias 0.017 -0.023 0.005 0.006 -0.008 0.002

St dev 0.077 0.095 0.028 0.026 0.037 0.017
Cov�age 0.899 0.907 0.897 0.913 0.907 0.903
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OOS forecast comparison results : Diebold-Mariano t-stats
S&P 500 returns, alpha=0.025. G-FZ beats all, not signif better than G-EDF.

A positive entry indicates the Column model is better than the Row model

RW125 G-EDF FZ-2F FZ-1F G-FZ Hybrid

RW125 � 3.125 1.972 3.599 3.212 2.642
RW250 2.035 3.472 2.637 4.240 3.613 3.447
RW500 3.587 4.731 3.966 5.605 4.879 4.968
G-N -1.100 3.522 1.645 2.346 3.835 1.963
G-Skt -2.728 2.393 0.093 0.738 2.850 -0.447
G-EDF -3.125 � -0.595 -0.198 1.482 -1.500
FZ-2F -1.972 0.595 � 0.348 1.111 0.368
FZ-1F -3.599 0.198 -0.348 � 0.739 -1.406
G-FZ -3.212 -1.482 -1.111 -0.739 � -2.300
Hybrid -2.642 1.500 -0.368 1.406 2.300 �
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Dynamic Value-at-Risk: 1990-2016
VaR ranges from around -1% in mid 90s, to -6% in �nancial crisis

Jan90 Jan93 Jan96 Jan99 Jan02 Jan05 Jan08 Jan11 Jan14 Dec16
­8

­7

­6

­5

­4

­3

­2

­1

0

Va
R

5% VaR forecasts for S&P 500 daily returns

One­factor GAS
GARCH­EDF
RW­125
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Dynamic Value-at-Risk: 2015-2016
The di¤erence between the GAS and GARCH forcing variables is apparent here

Jan15 Apr15 Jul15 Oct15 Jan16 Apr16 Jul16 Oct16 Dec16
­4

­3.5

­3

­2.5

­2

­1.5

­1

­0.5

0

Va
R

5% VaR forecasts for S&P 500 daily returns

One­fac tor GAS
GARCH­EDF
RW­125
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OOS forecast rankings across various alphas: a=0.01
GARCH estimated by FZ loss is best on average

Ranking models by OOS average loss, for di¤erent tail probabilities

S&P DJIA NIK FTSE Avg

RW-125 7 8 10 7 8
RW-250 8 9 8 8 8.25
RW-500 10 10 9 9 9.5
G-N 6 6 5 4 5.25
G-Skt 5 3 2 2 3
G-EDF 4 2 3 1 2.5
FZ-2F 1 4 7 10 5.5
FZ-1F 9 7 6 6 7
G-FZ 3 1 1 3 2
Hybrid 2 5 4 5 4
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OOS forecast rankings across various alphas: a=0.025
GARCH-EDF and GARCH-FZ are best on average

Ranking models by OOS average loss, for di¤erent tail probabilities

S&P DJIA NIK FTSE Avg

RW-125 8 8 8 7 7.75
RW-250 9 9 7 8 8.25
RW-500 10 10 9 9 9.5
G-N 7 6 4 3 5
G-Skt 5 3 1 1 2.5
G-EDF 2 2 3 2 2.25
FZ-2F 4 5 10 10 7.25
FZ-1F 3 4 6 4 4.25
G-FZ 1 1 2 5 2.25
Hybrid 6 7 5 6 6

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 58 �

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight



OOS forecast rankings across various alphas: a=0.05
FZ-1F, with and without �hybrid� term, is best

Ranking models by OOS average loss, for di¤erent tail probabilities

S&P DJIA NIK FTSE Avg

RW-125 8 8 8 7 7.75
RW-250 9 9 9 8 8.75
RW-500 10 10 10 9 9.75
G-N 7 7 5 6 6.25
G-Skt 5 3 4 2 3.5
G-EDF 4 2 2 5 3.25
FZ-2F 2 6 7 10 6.25
FZ-1F 1 1 6 4 3
G-FZ 3 5 3 3 3.5
Hybrid 6 4 1 1 3
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OOS forecast rankings across various alphas: a=0.10
FZ-1F with �hybrid� term is best

Ranking models by OOS average loss, for di¤erent tail probabilities

S&P DJIA NIK FTSE Avg

RW-125 8 8 8 8 8
RW-250 9 9 9 9 9
RW-500 10 10 10 10 10
G-N 3 2 5 5 3.75
G-Skt 7 4 4 4 4.75
G-EDF 4 3 3 3 3.25
FZ-2F 2 6 7 7 5.5
FZ-1F 1 7 2 2 3
G-FZ 6 5 6 6 5.75
Hybrid 5 1 1 1 2

Patton (Duke) Dynamic Models for ES (and VaR) September 2017 � 60 �

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight

ap172
Highlight



OOS goodness-of-�t tests: VaR and ES
alpha=0.025. GARCH-EDF and FZ-1F performs best

GoF p-values: VaR GoF p-values: ES
S&P DJIA NIK FTSE S&P DJIA NIK FTSE

RW-125 0.022 0.003 0.000 0.000 0.009 0.004 0.001 0.001
RW-250 0.005 0.007 0.002 0.000 0.023 0.039 0.010 0.005
RW-500 0.001 0.000 0.004 0.000 0.019 0.011 0.007 0.000
GCH-N 0.000 0.002 0.172 0.000 0.000 0.000 0.048 0.000
GCH-Skt 0.005 0.057 0.789 0.000 0.010 0.076 0.736 0.001
GCH-EDF 0.164 0.149 0.789 0.000 0.237 0.379 0.588 0.000
FZ-2F 0.000 0.117 0.000 0.000 0.001 0.341 0.000 0.000
FZ-1F 0.343 0.314 0.043 0.028 0.393 0.334 0.047 0.045
GCH-FZ 0.095 0.358 0.608 0.000 0.188 0.419 0.473 0.000
Hybrid 0.002 0.082 0.700 0.000 0.007 0.064 0.629 0.000
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