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Abstract

Expected Shortfall (ES) is the average return on a risky asset conditional on the return being

below some quantile of its distribution, namely its Value-at-Risk (VaR). The Basel III Accord, which

will be implemented in the years leading up to 2019, places new attention on ES, but unlike VaR,

there is little existing work on modeling ES. We use recent results from statistical decision theory

to overcome the problem of �elicitability� for ES by jointly modelling ES and VaR, and propose

new dynamic models for these risk measures. We provide estimation and inference methods for

the proposed models, and con�rm via simulation studies that the methods have good �nite-sample

properties. We apply these models to daily returns on four international equity indices, and �nd the

proposed new ES-VaR models outperform forecasts based on GARCH or rolling window models.
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1 Introduction

The �nancial crisis of 2007-08 and its aftermath led to numerous changes in �nancial market

regulation and banking supervision. One important change appears in the Third Basel Accord

(Basel Committee, 2010), where new emphasis is placed on �Expected Shortfall�(ES) as a measure

of risk, complementing, and in parts substituting, the more-familiar Value-at-Risk (VaR) measure.

Expected Shortfall is the expected return on an asset conditional on the return being below a given

quantile of its distribution, namely its VaR. That is, if Yt is the return on some asset over some

horizon (e.g., one day or one week) with conditional (on information set Ft�1) distribution Ft,

which we assume to be strictly increasing with �nite mean, the �-level VaR and ES are:

ESt = E [YtjYt � VaRt;Ft�1] (1)

where VaRt = F�1t (�) , for � 2 (0; 1) (2)

and YtjFt�1 s Ft (3)

As Basel III is implemented worldwide (implementation is expected to occur in the period

leading up to January 1st, 2019), ES will inevitably gain, and require, increasing attention from

risk managers and banking supervisors and regulators. The new �market discipline� aspects of

Basel III mean that ES and VaR will be regularly disclosed by banks, and so a knowledge of these

measures will also likely be of interest to these banks�investors and counter-parties.

There is, however, a paucity of empirical models for expected shortfall. The large literature on

volatility models (see Andersen et al. (2006) for a review) and VaR models (see Komunjer (2013)

and McNeil et al. (2015)), have provided many useful models for these measures of risk. However,

while ES has long been known to be a �coherent�measure of risk (Artzner, et al. 1999), in contrast

with VaR, the literature contains relatively few models for ES; some exceptions are discussed below.

This dearth is perhaps in part because regulatory interest in this risk measure is only recent, and

perhaps also due to the fact that this measure is not �elicitable.�A risk measure (or statistical

functional more generally) is said to be �elicitable� if there exists a loss function such that the

measure is the solution to minimizing the expected loss. For example, the mean is elicitable using

the quadratic loss function, and VaR is elicitable using the piecewise-linear or �tick�loss function.

2



Having such a loss function is a stepping stone to building dynamic models for these quantities.

We use recent results from Fissler and Ziegel (2016), who show that ES is jointly elicitable with

VaR, to build new dynamic models for ES and VaR.

This paper makes three main contributions. Firstly, we present some novel dynamic models

for ES and VaR, drawing on the GAS framework of Creal, et al. (2013), as well as successful

models from the volatility literature, see Andersen et al. (2006). The models we propose are

semiparametric in that they impose parametric structures for the dynamics of ES and VaR, but are

completely agnostic about the conditional distribution of returns (aside from regularity conditions

required for estimation and inference). The models proposed in this paper are related to the class

of �CAViaR�models proposed by Engle and Manganelli (2004a), in that we directly parameterize

the measure(s) of risk that are of interest, and avoid the need to specify a conditional distribution

for returns. The models we consider make estimation and prediction fast and simple to implement.

Our semiparametric approach eliminates the need to specify and estimate a conditional density,

thereby removing the possibility that such a model is misspeci�ed, though at a cost of a loss of

e¢ ciency compared with a correctly speci�ed density model.

Our second contribution is asymptotic theory for a general class of dynamic semiparametric

models for ES and VaR. This theory is an extension of results for VaR presented in Weiss (1991) and

Engle and Manganelli (2004a), and draws on identi�cation results in Fissler and Ziegel (2016) and

results for M-estimators in Newey and McFadden (1994). We present conditions under which the

estimated parameters of the VaR and ES models are consistent and asymptotically normal, and we

present a consistent estimator of the asymptotic covariance matrix. We show via an extensive Monte

Carlo study that the asymptotic results provide reasonable approximations in realistic simulation

designs. In addition to being useful for the new models we propose, the asymptotic theory we

present provides a general framework for other researchers to develop, estimate, and evaluate new

models for VaR and ES.

Our third contribution is an extensive application of our new models and estimation methods

in an out-of-sample analysis of forecasts of ES and VaR for four international equity indices over

the period January 1990 to December 2016. We compare these new models with existing methods
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from the literature across a range of tail probability values (�) used in risk management. We use

Diebold and Mariano (1995) tests to identify the best-performing models for ES and VaR, and we

present simple regression-based methods, related to those of Engle and Manganelli (2004a) and

Nolde and Ziegel (2017), to �backtest�the ES forecasts.

Some work on expected shortfall estimation and prediction has appeared in the literature,

overcoming the problem of elicitability in di¤erent ways: Engle and Manganelli (2004b) discuss

using extreme value theory, combined with GARCH or CAViaR dynamics, to obtain forecasts of

ES. Cai and Wang (2008) propose estimating VaR and ES based on nonparametric conditional

distributions, while Taylor (2008) and Gschöpf et al. (2015) estimate models for �expectiles�

(Newey and Powell, 1987) and map these to ES. Zhu and Galbraith (2011) propose using �exible

parametric distributions for the standardized residuals from models for the conditional mean and

variance. Drawing on Fissler and Ziegel (2016), we overcome the problem of elicitability more

directly, and open up new directions for ES modeling and prediction.

In recent independent work, Taylor (2017) proposes using the asymmetric Laplace distribution

to jointly estimate dynamic models for VaR and ES. He shows the intriguing result that the negative

log-likelihood of this distribution corresponds to one of the loss functions presented in Fissler and

Ziegel (2016), and thus can be used to estimate and evaluate such models. Unlike our paper, Taylor

(2017) provides no asymptotic theory for his proposed estimation method, nor any simulation

studies of its reliability. However, given the link he presents, the theoretical results we present

below can be used to justify ex post the methods of his paper.

The remainder of the paper is structured as follows. In Section 2 we present new dynamic

semiparametric models for ES and VaR and compare them with the main existing models for ES and

VaR. In Section 3 we present asymptotic distribution theory for a generic dynamic semiparametric

model for ES and VaR, and in Section 4 we study the �nite-sample properties of the asymptotic

theory in some realistic Monte Carlo designs. Section 5 we apply the new models to daily data

on four international equity indices, and compare these models both in-sample and out-of-sample

with existing models. Section 6 concludes. Proofs and additional technical details are presented in

the appendix, and a supplemental web appendix contains detailed proofs and additional analyses.
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2 Dynamic models for ES and VaR

In this section we propose some new dynamic models for expected shortfall (ES) and Value-at-Risk

(VaR). We do so by exploiting recent work in Fissler and Ziegel (2016) which shows that these

variables are elicitable jointly, despite the fact that ES was known to be not elicitable separately,

see Gneiting (2011a). The models we propose are based on the GAS framework of Creal, et al.

(2013) and Harvey (2013), which we brie�y review in Section 2.2 below.

2.1 A consistent scoring rule for ES and VaR

Fissler and Ziegel (2016) show that the following class of loss functions (or �scoring rules�), indexed

by the functions G1 and G2; is consistent for VaR and ES. That is, minimizing the expected loss

using any of these loss functions returns the true VaR and ES. In the functions below, we use the

notation v and e for VaR and ES.

LFZ (Y; v; e;�;G1; G2) = (1 fY � vg � �)
�
G1 (v)�G1 (Y ) +

1

�
G2 (e) v

�
(4)

�G2 (e)
�
1

�
1 fY � vgY � e

�
� G2 (e)

where G1 is weakly increasing, G2 is strictly increasing and strictly positive, and G02 = G2: We will

refer to the above class as �FZ loss functions.�1 Minimizing any member of this class yields VaR

and ES:

(VaRt;ESt) = argmin
(v;e)

Et�1 [LFZ (Yt; v; e;�;G1; G2)] (5)

Using the FZ loss function for estimation and forecast evaluation requires choosing G1 and G2:

We choose these so that the loss function generates loss di¤erences (between competing forecasts)

that are homogeneous of degree zero. This property has been shown in volatility forecasting appli-

cations to lead to higher power in Diebold-Mariano (1995) tests in Patton and Sheppard (2009).

Nolde and Ziegel (2017) show that there does not generally exist an FZ loss function that generates

loss di¤erences that are homogeneous of degree zero. However, zero-degree homogeneity may be
1Consistency of the FZ loss function for VaR and ES also requires imposing that e � v; which follows naturally

from the de�nitions of ES and VaR in equations (1) and (2). We discuss how we impose this restriction empirically

in Sections 4 and 5 below.
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attained by exploiting the fact that, for the values of � that are of interest in risk management

applications (namely, values ranging from around 0.01 to 0.10), we may assume that ESt < 0 a.s.

8 t: The following proposition shows that if we further impose that VaRt < 0 a.s. 8 t; then, up to

irrelevant location and scale factors, there is only one FZ loss function that generates loss di¤er-

ences that are homogeneous of degree zero.2 The fact that the LFZ0 loss function de�ned below is

unique has the added bene�t that there are, of course, no remaining shape or tuning parameters

to be speci�ed.

Proposition 1 De�ne the FZ loss di¤erence for two forecasts (v1t; e1t) and (v2t; e2t) as

LFZ (Yt; v1t; e1t;�;G1; G2) � LFZ (Yt; v2t; e2t;�;G1; G2) : Under the assumption that VaR and ES

are both strictly negative, the loss di¤erences generated by a FZ loss function are homogeneous of

degree zero i¤ G1(x) = 0 and G2(x) = 1=x: The resulting �FZ0� loss function is:

LFZ0 (Y; v; e;�) = �
1

�e
1 fY � vg (v � Y ) + v

e
+ log (�e)� 1 (6)

All proofs are presented in Appendix A. In Figure 1 we plot LFZ0 when Y = �1: In the left

panel we �x e = �2:06 and vary v; and in the right panel we �x v = �1:64 and vary e: (These

values for (v; e) are the � = 0:05 VaR and ES from a standard Normal distribution.) As neither of

these are the complete loss function, the minimum is not zero in either panel. The left panel shows

that the implied VaR loss function resembles the �tick� loss function from quantile estimation,

see Komunjer (2005) for example. In the right panel we see that the implied ES loss function

resembles the �QLIKE�loss function from volatility forecasting, see Patton (2011) for example. In

both panels, values of (v; e) where v < e are presented with a dashed line, as by de�nition ESt is

below VaRt; and so such values that would never be considered in practice. In Figure 2 we plot the

contours of expected FZ0 loss for a standard Normal random variable. The minimum value, which

is attained when (v; e) = (�1:64;�2:06), is marked with a star, and we see that the �iso-expected
2 If VaR can be positive, then there is one free shape parameter in the class of zero-homogeneous FZ loss functions

('1='2; in the notation of the proof of Proposition 1). In that case, our use of the loss function in equation (6) can be

interpreted as setting that shape parameter to zero. This shape parameter does not a¤ect the consistency of the loss

function, as it is a member of the FZ class, but it may a¤ect the ranking of misspeci�ed models, see Patton (2016).
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loss�contours are convex. Fissler (2017) shows that convexity of iso-expected loss contours holds

more generally for the FZ0 loss function under any distribution with �nite �rst moments, unique

�-quantiles, continuous densities, and negative ES.

[ INSERT FIGURES 1 AND 2 ABOUT HERE ]

With the FZ0 loss function in hand, it is then possible to consider semiparametric dynamic

models for ES and VaR:

(VaRt;ESt) = (v (Zt�1;�) ; e (Zt�1;�)) (7)

that is, where the true VaR and ES are some speci�ed parametric functions of elements of the

information set, Zt�1 2 Ft�1: The parameters of this model are estimated via:

�̂T = argmin
�

1

T

XT

t=1
LFZ0 (Yt; v (Zt�1;�) ; e (Zt�1;�) ;�) (8)

Such models impose a parametric structure on the dynamics of VaR and ES, through their rela-

tionship with lagged information, but require no assumptions, beyond regularity conditions, on the

conditional distribution of returns. In this sense, these models are semiparametric. Using theory

for M-estimators (see White (1994) and Newey and McFadden (1994) for example) we establish in

Section 3 below the asymptotic properties of such estimators. Before doing so, we �rst consider

some new dynamic speci�cations for ES and VaR.

2.2 A GAS model for ES and VaR

One of the challenges in specifying a dynamic model for a risk measure, or any other quantity

of interest, is the mapping from lagged information to the current value of the variable. Our �rst

proposed speci�cation for ES and VaR draws on the work of Creal, et al. (2013) and Harvey (2013),

who proposed a general class of models called �generalized autoregressive score�(GAS) models by

the former authors, and �dynamic conditional score�models by the latter author. In both cases

the models start from an assumption that the target variable has some parametric conditional

distribution, where the parameter (vector) of that distribution follows a GARCH-like equation.

The forcing variable in the model is the lagged score of the log-likelihood, scaled by some positive
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de�nite matrix, a common choice for which is the inverse Hessian. This speci�cation nests many

well known models, including ARMA, GARCH (Bollerslev, 1986) and ACD (Engle and Russell,

1998) models. See Koopman et al. (2016) for an overview of GAS and related models.

We adopt this modeling approach and apply it to our M-estimation problem. In this application,

the forcing variable is a function of the derivative and Hessian of the LFZ0 loss function rather

than a log-likelihood. We will consider the following GAS(1,1) model for ES and VaR:264 vt+1
et+1

375 = w +B
264 vt
et

375+AH�1
t rt (9)

where w is a (2� 1) vector and B and A are (2� 2) matrices. The forcing variable in this

speci�cation is comprised of two components, the �rst is the score:3

rt �

264 @LFZ0 (Yt; vt; et;�) =@vt
@LFZ0 (Yt; vt; et;�) =@et

375 =
264 1

�vtet
�v;t

�1
�e2t

(�v;t + ��e;t)

375 (10)

where �v;t � �vt (1 fYt � vtg � �) (11)

�e;t � 1

�
1 fYt � vtgYt � et (12)

The scaling matrix, Ht; is related to the Hessian:

It �

264 @2Et�1[LFZ0(Yt;vt;et)]
@v2t

@2Et�1[LFZ0(Yt;vt;et)]
@vt@et

� @2Et�1[LFZ0(Yt;vt;et)]
@e2t

375 =
264 �ft(vt)

�et
0

0 1
e2t

375 (13)

The second equality above exploits the fact that @2Et�1 [LFZ0 (Yt; vt; et;�)] =@vt@et = 0 under the

assumption that the dynamics for VaR and ES are correctly speci�ed. The �rst element of the

matrix It depends on the unknown conditional density of Yt: We would like to avoid estimating

this density, and we approximate the term ft (vt) as being proportional to v�1t : This approximation

holds exactly if Yt is a zero-mean location-scale random variable, Yt = �t�t, where �t s iid F� (0; 1) ;

as in that case we have:

ft (vt) = ft (�tv�) =
1

�t
f� (v�) � k�

1

vt
(14)

3Note that the expression given for @LFZ0=@vt only holds for Yt 6= vt: As we assume that Yt is continuously

distributed, this holds with probability one.
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where k� � v�f� (v�) is a constant with the same sign as vt. We de�ne Ht to equal It with the

�rst element replaced using the approximation in the above equation.4 The forcing variable in our

GAS model for VaR and ES then becomes:

H�1
t rt =

264 �1
k�
�v;t

�1
� (�v;t + ��e;t)

375 (15)

Notice that the second term in the model is a linear combination of the two elements of the forcing

variable, and since the forcing variable is premultiplied by a coe¢ cient matrix, say ~A; we can

equivalently use

~AH
�1
t rt = A�t (16)

where �t � [�v;t; �e;t]
0

We choose to work with the A�t parameterization, as the two elements of this forcing variable

(�v;t; �e;t) are not directly correlated, while the elements of H�1
t rt are correlated due to the

overlapping term (�v;t) appearing in both elements. This aids the interpretation of the results of

the model without changing its �t.

To gain some intuition for how past returns a¤ect current forecasts of ES and VaR in this

model, consider the �news impact curve�of this model, which presents (vt+1; et+1) as a function

of Yt through its impact on �t � [�v;t; � e;t]0 ; holding all other variables constant. Figure 3 shows

these two curves for � = 0:05; using the estimated parameters for this model when applied to daily

returns on the S&P 500 index (details are presented in Section 5 below). We consider two values

for the �current�value of (v; e): 10% above and below the long-run average for these variables. We

see that for values where Yt > vt; the news impact curves are �at, re�ecting the fact that on those

days the value of the realized return does not enter the forcing variable. When Yt � vt; we see that

ES and VaR react linearly to Y and this reaction is through the �e;t forcing variable; the reaction

through the �v;t forcing variable is a simple step (down) in both of these risk measures.

4Note that we do not use the fact that the scaling matrix is exactly the inverse Hessian (e.g., by invoking the

information matrix equality) in our empirical application or our theoretical analysis. Also, note that if we considered

a value of � for which vt = 0; then v� = 0 and we cannot justify our approximation using this approach. However,

we focus on cases where �� 1=2; and so we are comfortable assuming vt 6= 0; making k� invertible.
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[ INSERT FIGURE 3 ABOUT HERE ]

2.3 A one-factor GAS model for ES and VaR

The speci�cation in Section 2.2 allows ES and VaR to evolve as two separate, correlated, processes.

In many risk forecasting applications, a useful simpler model is one based on a structure with only

one time-varying risk measure, e.g. volatility. We will consider a one-factor model in this section,

and will name the model in Section 2.2 a �two-factor�GAS model.

Consider the following one-factor GAS model for ES and VaR, where both risk measures are

driven by a single variable, �t:

vt = a exp f�tg (17)

et = b exp f�tg , where b < a < 0

and �t = ! + ��t�1 + 
H
�1
t�1st�1

The forcing variable, H�1
t�1st�1; in the evolution equation for �t is obtained from the FZ0 loss

function, plugging in (a exp f�tg ; b exp f�tg) for (vt; et). Using details provided in Appendix B.2,

we �nd that the score and Hessian are:

st � @LFZ0 (Yt; a exp f�tg ; b exp f�tg ;�)
@�

= � 1
et

�
1

�
1 fYt � vtgYt � et

�
(18)

and It � @2Et�1 [LFZ0 (Yt; a exp f�tg ; b exp f�tg ;�)]
@�2t

=
�� k�a�

�
(19)

where k� is a negative constant and a� lies between zero and one. The Hessian, It, turns out to be

a constant in this case, and since we estimate a free coe¢ cient on our forcing variable, we simply

set Ht to one. Note that the VaR score, �v;t = @L=@v, turns out to drop out from the forcing

variable. Thus the one-factor GAS model for ES and VaR becomes:

�t = ! + ��t�1 + 

�1

b exp f�t�1g

�
1

�
1 fYt�1 � a exp f�t�1ggYt�1 � b exp f�t�1g

�
(20)

Using the FZ loss function for estimation, we are unable to identify !; as there exists
�
~!; ~a;~b

�
6=

(!; a; b) such that both triplets yield identical sequences of ES and VaR estimates, and thus identical

values of the objective function. We �x ! = 0 and forfeit identi�cation of the level of the series for
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�t, though we of course retain the ability to model and forecast ES and VaR.5 Foreshadowing the

empirical results in Section 5, we �nd that this one-factor GAS model outperforms the two-factor

GAS model in out-of-sample forecasts for most of the asset return series that we study.

2.4 Existing dynamic models for ES and VaR

As noted in the introduction, there is a relative paucity of dynamic models for ES and VaR, but

there is not a complete absence of such models. The simplest existing model is based on a simple

rolling window estimate of these quantities:

dVaRt = \Quantile fYsgt�1s=t�m (21)

cESt =
1

�m

t�1X
s=t�m

Ys1
n
Ys � dVaRso

where \Quantile fYsgt�1s=t�m denotes the sample quantile of Ys over the period s 2 [t�m; t� 1] :

Common choices for the window size, m; include 125, 250 and 500, corresponding to six months,

one year and two years of daily return observations respectively.

A more challenging competitor for the new ES and VaR models proposed in this paper are those

based on ARMA-GARCH dynamics for the conditional mean and variance, accompanied by some

assumption for the distribution of the standardized residuals. These models all take the form:

Yt = �t + �t�t (22)

�t s iid F� (0; 1)

where �t and �
2
t are speci�ed to follow some ARMA and GARCH model, and F� (0; 1) is some

arbitrary, strictly increasing, distribution with mean zero and variance one. What remains is to

specify a distribution for the standardized residual, �t. Given a choice for F�; VaR and ES forecasts

5This one-factor model for ES and VaR can also be obtained by considering a zero-mean volatility model for Yt,

with iid standardized residuals, say denoted �t: In this case, �t is the log conditional standard deviation of Yt, and

a = F�1� (�) and b = E [�j� � a] : (We exploit this interpretation when linking these models to GARCH models in

Section 2.5.1 below.) The lack of identi�cation of ! means that we do not identify the level of log volatility.
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are obtained as:

vt = �t + a�t, where a = F�1� (�) (23)

et = �t + b�t, where b = E [�tj�t � a]

Two parametric choices for F� are common in the literature:

�t s iid N (0; 1) (24)

�t s iid Skew t (0; 1; �; �)

There are various skew t distributions used in the literature; in the empirical analysis below we

use that of Hansen (1994). A nonparametric alternative is to estimate the distribution of �t using

the empirical distribution function (EDF), an approach that is also known as ��ltered historical

simulation,�and one that is perhaps the best existing model for ES, see the survey by Engle and

Manganelli (2004b).6 We consider all of these models in our empirical analysis in Section 5.

2.5 GARCH and ES/VaR estimation

In this section we consider two extensions of the models presented above, in an attempt to combine

the success and parsimony of GARCH models with this paper�s focus on ES and VaR forecasting.

2.5.1 Estimating a GARCH model via FZ minimization

If an ARMA-GARCH model, including the speci�cation for the distribution of standardized residu-

als, is correctly speci�ed for the conditional distribution of an asset return, then maximum likelihood

is the most e¢ cient estimation method, and should naturally be adopted. If, on the other hand, we

consider an ARMA-GARCH model only as a useful approximation to the true conditional distrib-

ution, then it is no longer clear that MLE is optimal. In particular, if the application of the model

is to ES and VaR forecasting, then we might be able to improve the �tted ARMA-GARCH model

6Some authors have also considered modeling the tail of F� using extreme value theory, however for the relatively

non-extreme values of � we consider here, past work (e.g., Engle and Manganelli (2004b), Nolde and Ziegel (2016)

and Taylor (2017)) has found EVT to perform no better than the EDF, and so we do not include it in our analysis.
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by estimating the parameters of that model via FZ loss minimization, as discussed in Section 2.1.

This estimation method is related to one discussed in Remark 1 of Francq and Zakoïan (2015).

Consider the following model for asset returns:

Yt = �t�t, �t s iid F� (0; 1) (25)

�2t = ! + ��2t�1 + 
Y
2
t�1

The variable �2t is the conditional variance and is assumed to follow a GARCH(1,1) process. This

model implies a structure analogous to the one-factor GAS model presented in Section 2.3, as we

�nd:

vt = a � �t, where a = F�1� (�) (26)

et = b � �t, where b = E [�j� � a]

Some further results on VaR and ES in dynamic location-scale models are presented in Appendix

B.3. To apply this model to VaR and ES forecasting, we also have to estimate the VaR and ES

of the standardized residual, denoted (a; b) : Rather than estimating the parameters of this model

using (Q)MLE, we consider here estimating the via FZ loss minimization. As in the one-factor

GAS model, ! is unidenti�ed and we set it to one, so the parameter vector to be estimated is

(�; 
; a; b). This estimation approach leads to a �tted GARCH model that is tailored to provide

the best-�tting ES and VaR forecasts, rather than the best-�tting volatility forecasts.

2.5.2 A hybrid GAS/GARCH model

Finally, we consider a direct combination of the forcing variable suggested by a GAS structure for

a one-factor model of returns, described in equation (20), with the successful GARCH model for

volatility. We specify:

Yt = exp f�tg �t, �t s iid F� (0; 1) (27)

�t = ! + ��t�1 + 


�
� 1

et�1

�
1

�
1 fYt�1 � vt�1gYt�1 � et�1

��
+ � log jYt�1j

The variable �t is the log-volatility, identi�ed up to scale. As the latent variable in this model is

log-volatility, we use the lagged log absolute return rather than the lagged squared return, so that
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the units remain in line for the evolution equation for �t. There are �ve parameters in this model

(�; 
; �; a; b) ; and we estimate them using FZ loss minimization.

3 Estimation of dynamic models for ES and VaR

This section presents asymptotic theory for the estimation of dynamic ES and VaR models by min-

imizing FZ loss. Given a sample of observations (y1; � � � ; yT ) and a constant � 2 (0; 0:5), we are in-

terested in estimating and forecasting the conditional � quantile (VaR) and corresponding expected

shortfall of Yt. Suppose Yt is a real-valued random variable that has, conditional on information set

Ft�1, distribution function Ft (�jFt�1) and corresponding density function ft (�jFt�1). Let v1(�0)

and e1(�0) be some initial conditions for VaR and ES and let Ft�1 = �fYt�1;Xt�1; � � � ; Y1;X1g;

where Xt is a vector of exogenous variables or predetermined variables, be the information set

available for forecasting Yt. The vector of unknown parameters to be estimated is �0 2 � � Rp.

The conditional VaR and ES of Yt at probability level �; that isVaR� (YtjFt�1) and ES� (YtjFt�1),

are assumed to follow some dynamic model:264 VaR� (YtjFt�1)
ES� (YtjFt�1)

375 =
264 v(Yt�1;Xt�1; � � � ; Y1;X1;�0)
e(Yt�1;Xt�1; � � � ; Y1;X1;�0)

375 �
264 vt(�0)
et(�

0)

375 ; t = 1; � � � ; T; (28)

The unknown parameters are estimated as:

�̂T � argmin
�2�

LT (�) (29)

where LT (�) =
1

T

TX
t=1

LFZ0 (Yt; vt (�) ; et (�) ;�)

and the FZ loss function LFZ0 is de�ned in equation (6). Below we provide conditions under which

estimation of these parameters via FZ loss minimization leads to a consistent and asymptotically

normal estimator, with standard errors that can be consistently estimated.

Assumption 1 (A) L (Yt; vt (�) ; et (�) ;�) obeys the uniform law of large numbers.

(B)(i) � is a compact subset of Rp for p <1: (ii)fYtg1t=1 is a strictly stationary process. Condi-

tional on all the past information Ft�1, the distribution of Yt is Ft (�jFt�1) which, for all t; belongs to
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a class of distribution functions on R with �nite �rst moments and unique �-quantiles. (iii) 8t, both

vt(�) and et(�) are Ft�1-measurable and continuous in �. (iv) If Pr
�
vt(�) = vt(�

0) \ et(�) = et(�0)
�
=

1 8 t, then � = �0:

Theorem 1 (Consistency) Under Assumption 1, �̂T
p! �0 as T !1:

The proof of Theorem 1, provided in Appendix A, is straightforward given Theorem 2.1 of

Newey and McFadden (1994) and Corollary 5.5 of Fissler and Ziegel (2016). Note that a variety of

uniform laws of large numbers (our Assumption 1(A)) are available for the time series applications

we consider here, see Andrews (1987) and Pötscher and Prucha (1989) for example. Zwingmann and

Holzmann (2016) show that if the �-quantile is not unique (violating our Assumption 1(B)(iii)),

then the convergence rate and asymptotic distribution of (v̂T ; êT ) are non-standard, even in a

setting with iid data. We do not consider such problematic cases here.

We next turn to the asymptotic distribution of our parameter estimator. In the assumptions

below, K denotes a �nite constant that can change from line to line, and we use kxk to denote the

Euclidean norm of a vector x:

Assumption 2 (A) For all t, we have (i) vt(�) and et(�) are twice continuously di¤erentiable in

�, (ii) vt(�0) � 0.

(B) For all t, we have (i) Conditional on all the past information Ft�1, Yt has a continuous

density ft (�jFt�1) that satis�es ft(yjFt�1) � K < 1 and jft(y1jFt�1)� ft(y2jFt)j � K jy1 � y2j,

(ii) E
h
jYtj4+�

i
� K <1, for some 0 < � < 1.

(C) There exists a neighborhood of �0, N
�
�0
�
, such that for all t we have (i) j1=et(�)j � K <

1, 8 � 2 N
�
�0
�
; (ii) there exist some (possibly stochastic) Ft�1-measurable functions V (Ft�1),

V1(Ft�1), H1(Ft�1), V2(Ft�1), H2(Ft�1) which satisfy 8� 2 N (�0): jvt(�)j � V (Ft�1), krvt(�)k �

V1(Ft�1), kret(�)k � H1(Ft�1),


r2vt(�)

 � V2(Ft�1), and 

r2et(�)

 � H2(Ft�1).

(D) For some 0 < � < 1 and for all t we have (i) E
�
V1(Ft�1)3+�

�
, E
�
H1(Ft�1)3+�

�
, E
h
V2(Ft�1)

3+�
2

i
,

E
h
H2(Ft�1)

3+�
2

i
� K, (ii) E

�
V (Ft�1)2+�V1(Ft�1)H1(Ft�1)2+�

�
� K,

(iii) E
h
H1(Ft�1)1+�H2(Ft�1) jYtj2+�

i
, E
h
H1(Ft�1)3+� jYtj2+�

i
� K:
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(E) The matrix DT de�ned in Theorem 2 has eigenvalues bounded below by a positive constant

for T su¢ ciently large.

(F) The sequence fT�1=2
PT
t=1 gt(�

0)g obeys the CLT, where

gt(�) =
@L (Yt; vt (�) ; et (�) ;�)

@�
(30)

=rvt(�)0
1

�et(�)

�
1

�
1 fYt � vt(�)g � 1

�
(31)

+ret(�)0
1

et(�)2

�
1

�
1 fYt � vt(�)g (vt(�)� Yt)� vt(�) + et(�)

�
(G) fYtg is �-mixing of size �2q= (q � 2) for some q > 2:

Most of the above assumptions are standard. Assumption 2(A)(i) imposes that the VaR is

negative, but given our focus on the left-tail (� � 0:5) of asset returns, this is not likely a binding

constraint. Assumptions 2(B),(C) and (E) are similar to those in Engle and Manganelli (2004a).

Assumption 2(B)(ii) requires at least 4+ � moments of returns to exist, however 2(D) may actually

increase the number of required moments, depending on the VaR-ES model employed. For the

familiar GARCH(1,1) process, used in our simulation study, it can be shown that we only need to

assume that 4 + � moments exist. Assumption 2(F) allows for some CLT for mixing data to be

invoked, and 2(G) is a standard assumption on the time series dependence of the data.

Theorem 2 (Asymptotic Normality) Under Assumptions 1 and 2, we have

p
TA

�1=2
T DT (�̂T � �0)

d! N(0; I) as T !1 (32)

where

DT = E

"
T�1

TX
t=1

ft
�
vt(�

0)jFt�1
�

�et(�0)�
rvt(�0)0rvt(�0) +

1

et(�
0)2
ret(�0)0ret(�0)

#
(33)

AT = E

"
T�1

TX
t=1

gt(�
0)gt(�

0)0

#
(34)

and gt is de�ned in Assumption 2(F).

An outline of the proof of this theorem is given in Appendix A, and the detailed lemmas

underlying it are provided in the supplemental appendix. The proof of Theorem 2 builds on Huber

(1967), Weiss (1991) and Engle and Manganelli (2004a), who focused on the estimation of quantiles.
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Finally, we present a result for estimating the asymptotic covariance matrix of �̂T ; thereby

enabling the reporting of standard errors and con�dence intervals.

Assumption 3 (A) The deterministic positive sequence cT satis�es cT = o(1) and c�1T = o(T 1=2).

(B)(i) T�1
PT
t=1 gt(�

0)gt(�
0)

0 �AT
p! 0, where AT is de�ned in Theorem 2.

(ii) T�1
PT
t=1

1
et(�

0)2
ret(�0)0ret(�0)� E[T�1

PT
t=1

1
et(�

0)2
ret(�0)0ret(�0)]

p! 0.

(iii) T�1
PT
t=1

ft(vt(�
0)jFt�1)

�et(�0)�
rvt(�0)0rvt(�0)� E[T�1

PT
t=1

ft(vt(�
0)jFt�1)

�et(�0)�
rvt(�0)0rvt(�0)]

p! 0.

Theorem 3 Under Assumptions 1-3, ÂT �AT
p! 0 and D̂T �DT

p! 0, where

ÂT =T
�1

TX
t=1

gt(�̂T )gt(�̂T )
0

D̂T =T
�1

TX
t=1

8<: 1

2cT
1
n���yt � vt ��̂T���� < cTo r0vt

�
�̂T

�
rvt

�
�̂T

�
��et

�
�̂T

� +
r0et

�
�̂T

�
ret

�
�̂T

�
e2t

�
�̂T

�
9=;

This result extends Theorem 3 in Engle and Manganelli (2004a) from dynamic VaR models to

dynamic joint models for VaR and ES. The key choice in estimating the asymptotic covariance

matrix is the bandwidth parameter in Assumption 3(A). In our simulation study below we set this

to T�1=3 and we �nd that this leads to satisfactory �nite-sample properties.

The results here extend some very recent work in the literature: Dimitriadis and Bayer (2017)

consider VaR-ES regression, but focus on iid data and linear speci�cations.7 Barendse (2017)

considers �interquantile expectation regression,�which nests VaR-ES regression as a special case.

He allows for time series data, but imposes that the models are linear. Our framework allows for

time series data and nonlinear models.

4 Simulation study

In this section we investigate the �nite-sample accuracy of the asymptotic theory for dynamic ES

and VaR models presented in the previous section. For ease of comparison with existing studies of

7Dimitriadis and Bayer (2017) also consider a variety of FZ loss functions, in contrast with our focus on the FZ0

loss function, and they consider both M and GMM (or Z, in their notation) estimation, while we focus only on M

estimation.
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related models, such as volatility and VaR models, we consider a GARCH(1,1) for the DGP, and

estimate the parameters by FZ-loss minimization. Speci�cally, the DGP is

Yt = �t�t (35)

�2t = ! + ��2t�1 + 
Y
2
t�1

�t s iid F� (0; 1) (36)

We set the parameters of this DGP to (!; �; 
) = (0:05; 0:9; 0:05) : We consider two choices for the

distribution of �t: a standard Normal, and the standardized skew t distribution of Hansen (1994),

with degrees of freedom and skewness parameters in the latter set to (5;�0:5) : Under this DGP,

the ES and VaR are proportional to �t, with

(VaR�t ;ES
�
t ) = (a�; b�)�t (37)

We make the dependence of the coe¢ cients of proportionality (a�; b�) on � explicit here, as we

consider a variety of values of � in this simulation study: � 2 f0:01; 0:025; 0:05; 0:10; 0:20g : Interest

in VaR and ES from regulators focuses on the smaller of these values of �; but we also consider

the larger values to better understand the properties of the asymptotic approximations at various

points in the tail of the distribution.

For a standard Normal distribution, with CDF and PDF denoted � and �; we have:

a� = ��1 (�) (38)

b� = ��
�
��1 (�)

�
=�

For Hansen�s skew t distribution we can obtain a� from the inverse CDF, but no closed-form

expression for b� is available; we instead use a simulation of 10 million iid draws to estimate it. As

noted above, FZ loss minimization does not allow us to identify ! in the GARCH model, and in our

empirical work we set this parameter to 1. To facilitate comparisons of the accuracy of estimates

of (a�; b�) in our simulation study we instead set ! at its true value. This is done without loss of

generality and merely eases the presentation of the results. To match our empirical application, we

replace the parameter a� with c� = a�=b�; and so our parameter vector becomes [�; 
; b�; c�] :
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We consider two sample sizes, T 2 f2500; 5000g corresponding to 10 and 20 years of daily

returns respectively. These large sample sizes enable us to consider estimating models for quantiles

as low as 1%, which are often used in risk management. We repeat all simulations 1000 times.

Table 1 presents results for the estimation of this model on standard Normal innovations, and

Table 2 presents corresponding results for skew t innovations. The top row of each panel present the

true parameter values, with the latter two parameters changing across �: The second row presents

the median estimated parameter across simulations, and the third row presents the average bias in

the estimated parameter. Both of these measures indicate that the parameter estimates are nicely

centered on the true parameter values. The penultimate row presents the cross-simulation standard

deviations of the estimated parameters, and we observe that these decrease with the sample size and

increase as we move further into the tails (i.e., as � decreases), both as expected. Comparing the

standard deviations across Tables 1 and 2, we also note that they are higher for skew t innovations

than Normal innovations, again as expected.

The last row in each panel presents the coverage probabilities for 95% con�dence intervals

for each parameter, constructed using the estimated standard errors, with bandwidth parameter

cT =
�
T�1=3

�
. For � � 0:05 we see that the coverage is reasonable, ranging from around 0.88 to

0.96. For � = 0:025 or � = 0:01 the coverage tends to be too low, particularly for the smaller

sample size. Thus some caution is required when interpreting the standard errors for the models

with the smallest values of �: In Table S1 of the Supplemental Appendix we present results for

(Q)MLE for the GARCH model corresponding to the results in Tables 1 and 2, using the theory of

Bollerslev and Wooldridge (1992). In Tables S2 and S3 we present results for CAViaR estimation of

this model, using the �tick�loss function and the theory of Engle and Manganelli (2004a).8 We �nd

that (Q)MLE has better �nite sample properties than FZ minimization, but CAViaR estimation

has slightly worse properties than FZ minimization.

[INSERT TABLES 1 AND 2 ABOUT HERE ]

8 In (Q)MLE, the parameters to be estimated are [!; �; 
] : In �CAViaR�estimation, which is done by minimizing

the �tick� loss function, the parameters to be estimated are [�; 
; a�] ; since in this case the parameter ! is again

unidenti�ed. As for the study of FZ estimation, we set ! to its true value to facilitate interpretation of the results.
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In Table 3 we compare the e¢ ciency of FZ estimation relative to (Q)MLE and to CAViaR

estimation, for the parameters that all three estimation methods have in common, namely [�; 
] :

As expected, when the innovations are standard Normal, FZ estimation is substantially less e¢ cient

than MLE, however when the innovations are skew t the loss in e¢ ciency drops and for some

values of � FZ estimation is actually more e¢ cient than QMLE. This switch in the ranking of the

competing estimators is qualitatively in line with results in Francq and Zakoïan (2015). In Panel

B of Table 3, we see that FZ estimation is generally, though not uniformly, more e¢ cient than

CAViaR estimation.

In many applications, interest is more focused on the forecasted values of VaR and ES than

the estimated parameters of the models. To study this, Table 4 presents results on the accuracy

of the �tted VaR and ES estimates for the three estimation methods: (Q)MLE, CAViaR and FZ

estimation. To obtain estimates of VaR and ES from the (Q)ML estimates, we follow common

empirical practice and compute the sample VaR and ES of the estimated standardized residuals.

In the �rst column of each panel we present the mean absolute error (MAE) from (Q)MLE, and

in the next two columns we present the relative MAE of CAViaR and FZ to (Q)MLE. Table

4 reveals that (Q)MLE is the most accurate estimation method. Averaging across values of �;

CAViaR is about 40% worse for Normal innovations, and 24% worse for skew t innovations, while

FZ fares somewhat better, being about 30% worse for Normal innovations and 16% worse for skew

t innovations. The superior performance of (Q)MLE is not surprising when the innovations are

Normal, as that corresponds to (full) maximum likelihood, which has maximal e¢ ciency. Weighing

against the loss in FZ estimation e¢ ciency is the robustness that FZ estimation o¤ers relative to

QML. For applications even further from Normality, e.g. with time-varying skewness or kurtosis,

the loss in e¢ ciency of QML is likely even greater.

[INSERT TABLES 3 AND 4 ABOUT HERE ]

Overall, these simulation results show that the asymptotic results of the previous section provide

reasonable approximations in �nite samples, with the approximations improving for larger sample

sizes and less extreme values of �: Compared with MLE, estimation by FZ loss minimization is
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generally less accurate, while it is generally more accurate than estimation using the CAViaR

approach of Engle and Manganelli (2004a). The latter outperformance is likely attributable to the

fact that FZ estimation draws on information from two tail measures, VaR and ES, while CAViaR

was designed to only model VaR.

5 Forecasting equity index ES and VaR

We now apply the models discussed in Section 2 to the forecasting of ES and VaR for daily returns

on four international equity indices. We consider the S&P 500 index, the Dow Jones Industrial

Average, the NIKKEI 225 index of Japanese stocks, and the FTSE 100 index of UK stocks. Our

sample period is 1 January 1990 to 31 December 2016, yielding between 6,630 and 6,805 observations

per series (the exact numbers vary due to di¤erences in holidays and market closures). In our out-

of-sample analysis, we use the �rst ten years for estimation, and reserve the remaining 17 years for

evaluation and model comparison.

Table 5 presents full-sample summary statistics on these four return series. Average annualized

returns range from -2.7% for the NIKKEI to 7.2% for the DJIA, and annualized standard deviations

range from 17.0% to 24.7%. All return series exhibit mild negative skewness (around -0.15) and

substantial kurtosis (around 10). The lower two panels of Table 5 present the sample VaR and ES

for four choices of �:

Table 6 presents results from standard time series models estimated on these return series over

the in-sample period (Jan 1990 to Dec 1999). In the �rst panel we present the estimated parameters

of the optimal ARMA(p; q) models, where the choice of (p; q) is made using the BIC. The R2 values

from the optimal models never rises above 1%, consistent with the well-known lack of predictability

of these series. The second panel presents the parameters of the GARCH(1,1) model for conditional

variance, and the lower panel presents the estimated parameters the skew t distribution applied

to the standardized residuals. All of these parameters are broadly in line with values obtained by

other authors for these or similar series.

[ INSERT TABLES 5 AND 6 ABOUT HERE ]
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5.1 In-sample estimation

We now present estimates of the parameters of the models presented in Section 2, along with

standard errors computed using the theory from Section 3.9 In the interests of space, we only

report the parameter estimates for the S&P 500 index for � = 0:05. The two-factor GAS model

based on the FZ0 loss function is presented in the left panel of Table 7. This model allows for

separate dynamics in VaR and ES, and we present the parameters for each of these risk measures

in separate columns. We observe that the persistence of these processes is high, with the estimated

b parameters equal to 0.973 and 0.977, similar to the persistence found in GARCH models (e.g.,

see Table 6). The model-implied average values of VaR and ES are -2.001 and -2.556, similar

to the sample values of these measures reported in Table 5. We also observe that in neither

equation is the coe¢ cient on �v statistically signi�cant: the t-statistics on av are both well below

one. The coe¢ cients on �e are both larger, and more signi�cant (the t-statistics are 1.58 and

1.75), indicating that the forcing variable from the ES part of the FZ0 loss function is the more

informative component. However, the overall imprecision of the four coe¢ cients on the forcing

variables is suggestive that this model is over-parameterized.

The right panel of Table 7 shows three one-factor models for ES and VaR. The �rst is the

one-factor GAS model, which is nested in the two-factor model presented in the left panel. We

see a slight loss in �t (the average loss is slightly greater) but the parameters of this model are

estimated with greater precision. The one-factor GAS model �ts slightly better than the GARCH

model estimated via FZ loss minimization (reported in the penultimate column).10 The �hybrid�

model, augmenting the one-factor GAS model with a GARCH-type forcing variable, �ts better

than the other one-factor models, and also better than the larger two-factor GAS model, and we

observe that the coe¢ cient on the GARCH forcing variable (�) is signi�cantly di¤erent from zero

(with a t-statistic of 2.07).

9Computational details on the estimation of these models are given in Appendix C.
10Recall that in all of the one-factor models, the intercept (!) in the GAS equation is unidenti�ed. We �x it at zero

for the GAS-1F and Hybrid models, and at one for the GARCH-FZ model. This has no impact on the �t of these

models for VaR and ES, but it means that we cannot interpret the estimated (a; b) parameters as the VaR and ES of

the standardized residuals, and we no longer expect the estimated values to match the sample estimates in Table 5.
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[ INSERT TABLE 7 ABOUT HERE ]

5.2 Out-of-sample forecasting

We now turn to the out-of-sample (OOS) forecast performance of the models discussed above, as

well as some competitor models from the existing literature. We will focus initially on the results for

� = 0:05; given the focus on that percentile in the extant VaR literature. (Results for other values

of � are considered later, with details provided in the supplemental appendix.) We will consider a

total of ten models for forecasting ES and VaR. Firstly, we consider three rolling window methods,

using window lengths of 125, 250 and 500 days. We next consider ARMA-GARCH models, with the

ARMA model orders selected using the BIC, and assuming that the distribution of the innovations

is standard Normal or skew t; or estimating it nonparametrically using the sample ES and VaR of

the estimated standardized residuals. Finally we consider four new semiparametric dynamic models

for ES and VaR: the two-factor GAS model presented in Section 2.2, the one-factor GAS model

presented in Section 2.3, a GARCH model estimated using FZ loss minimization, and the �hybrid�

GAS/GARCH model presented in Section 2.5. We estimate these models using the �rst ten years

as our in-sample period, and retain those parameter estimates throughout the OOS period.

In Figure 4 below we plot the �tted 5% ES and VaR for the S&P 500 return series, using three

models: the rolling window model using a window of 125 days, the GARCH-EDF model, and the

one-factor GAS model. This �gure covers both the in-sample and out-of-sample periods. The �gure

shows that the average ES was estimated at around -2%, rising as high as around -1% in the mid

90s and mid 00s, and falling to its most extreme values of around -10% during the �nancial crisis

in late 2008. Thus, like volatility, ES �uctuates substantially over time.

Figure 5 zooms in on the last two years of our sample period, to better reveal the di¤erences in

the estimates from these models. We observe the usual step-like movements in the rolling window

estimate of VaR and ES, as the more extreme observations enter and leave the estimation window.

Comparing the GARCH and GAS estimates, we see how they di¤er in reacting to returns: the

GARCH estimates are driven by lagged squared returns, and thus move stochastically each day.

The GAS estimates, on the other hand, only use information from returns when the VaR is violated,
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and on other days the estimates revert deterministically to the long-run mean. This generates a

smoother time series of VaR and ES estimates. We investigate below which of these estimates

provides a better �t to the data.

[ INSERT FIGURES 4 AND 5 ABOUT HERE ]

The left panel of Table 8 presents the average OOS losses, using the FZ0 loss function from

equation (6), for each of the ten models, for the four equity return series. The lowest values in each

column are highlighted in bold, and the second-lowest are in italics. We observe that the one-factor

GAS model, labelled FZ1F, is the preferred model for the two US equity indices, while the Hybrid

model is the preferred model for the NIKKEI and FTSE indices. The worst model is the rolling

window with a window length of 500 days.

While average losses are useful for an initial look at OOS forecast performance, they do not

reveal whether the gains are statistically signi�cant. Table 9 presents Diebold-Mariano t-statistics

on the loss di¤erences, for the S&P 500 index. Corresponding tables for the other three equity

return series are presented in Table S4 of the supplemental appendix. The tests are conducted

as �row model minus column model� and so a positive number indicates that the column model

outperforms the row model. The column �FZ1F� corresponding to the one-factor GAS model

contains all positive entries, revealing that this model out-performed all competing models. This

outperformance is strongly signi�cant for the comparisons to the rolling window forecasts, as well as

the GARCH model with Normal innovations. The gains relative to the GARCH model with skew t

or nonparametric innovations are not signi�cant, with DM t-statistics of 1.48 and 1.16 respectively.

Similar results are found for the best models for each of the other three equity return series. Thus

the worst models are easily separated from the better models, but the best few models are generally

not signi�cantly di¤erent.11

[ INSERT TABLES 8 AND 9 ABOUT HERE ]

11Table S5 in the supplemental appendix presents results analogous to Table 8, but with alpha=0.025, which is the

value for ES that is the focus of the Basel III accord. The rankings and results are qualitatively similar to those for

alpha=0.05 discussed here.
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To complement the study of the relative performance of these models for ES and VaR, we now

consider goodness-of-�t tests for the OOS forecasts of VaR and ES. Under correct speci�cation of

the model for VaR and ES, we know that

Et�1

264 @LFZ0 (Yt; vt; et;�) =@vt
@LFZ0 (Yt; vt; et;�) =@et

375 = 0 (39)

and we note that this implies that Et�1 [�v;t] = Et�1 [�e;t] = 0; where (�v;t; �e;t) are de�ned in

equations (11)-(12). Thus the variables �v;t and �e;t can be considered as a form of �generalized

residual� for this model. To mitigate the impact of serial correlation in these measures (which

comes through the persistence of vt and et) we use standardized versions of these residuals:

�sv;t � �v;t
vt

= 1 fYt � vtg � � (40)

�se;t � �e;t
et

=
1

�
1 fYt � vtg

Yt
et
� 1

These standardized generalized residuals are also conditionally mean zero under correct speci�ca-

tion, and we note that the standardized residual for VaR is simply the demeaned �hit�variable,

which is the focus of well-known tests from the VaR literature, see Christo¤ersen (1998) and Engle

and Manganelli (2004a). We adopt the �dynamic quantile (DQ)� testing approach of Engle and

Manganelli (2004a), which is based on simple regressions of these generalized residuals on elements

of the information set available at the time the forecast was made. Consider, then the following

�DQ�and �DES�regressions:

�sv;t = a0 + a1�
s
v;t�1 + a2vt + uv;t (41)

�se;t = b0 + b1�
s
e;t�1 + b2et + ue;t

We test forecast optimality by testing that all terms (a = [a0; a1; a2]
0 and b = [b0; b1; b2]

0) in these

regressions are zero, against the usual two-sided alternative. Similar �conditional calibration�tests

are presented in Nolde and Ziegel (2017). One could also consider a joint test of both of the above

null hypotheses, however we will focus on these separately so that we can determine which variable

is well/poorly speci�ed.
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The right two panels of Table 8 present the p-values from the tests of the goodness-of-�t of the

VaR and ES forecasts. Entries greater than 0.10 (indicating no evidence against optimality at the

0.10 level) are in bold, and entries between 0.05 and 0.10 are in italics. For the S&P 500 index

and the DJIA, we see that only one model passes both the VaR and ES tests: the one-factor GAS

model. For the NIKKEI we see that all of the dynamic models pass these two tests, while all three

of the rolling window models fail. For the FTSE index, on the other hand, we see that all ten

models considered here fail both the goodness-of-�t tests. The outcomes for the NIKKEI and the

FTSE each, in di¤erent ways, present good examples of the problem highlighted in Nolde and Ziegel

(2017), that many di¤erent models may pass a goodness-of-�t test, or all models may fail, which

makes discussing their relative performance di¢ cult. To do so, one can look at Diebold-Mariano

tests of di¤erences in average loss, as we do in Table 9.

Finally, in Table 10 we look at the performance of these models across four values of �; to

see whether the best-performing models change with how deep in the tails we are. We �nd that

this is indeed the case: for � = 0:01; the best-performing model across the four return series

is the GARCH model estimated by FZ loss minimization, followed by the GARCH model with

nonparametric residuals. These two models are also the (equal) best two models for � = 0:025.

For � = 0:05 and � = 0:10 the two best models are the one-factor GAS model and the Hybrid

model. These rankings are perhaps related to the fact that the forcing variable in the GAS model

depends on observing a violation of the VaR, and for very small values of � these violations occur

only infrequently. In contrast, the GARCH model uses the information from the squared residual,

and so information from the data moves the risk measures whether a VaR violation was observed

or not. When � is not so small, the forcing variable suggested by the GAS model applied to the

FZ loss function starts to out-perform.

[ INSERT TABLE 10 ABOUT HERE ]

26



6 Conclusion

With the implementation of the Third Basel Accord in the next few years, risk managers and

regulators will place greater focus on expected shortfall (ES) as a measure of risk, complementing

and partly substituting previous emphasis on Value-at-Risk (VaR). We draw on recent results from

statistical decision theory (Fissler and Ziegel, 2016) to propose new dynamic models for ES and

VaR. The models proposed are semiparametric, in that they impose parametric structures for the

dynamics of ES and VaR, but are agnostic about the conditional distribution of returns. We also

present asymptotic distribution theory for the estimation of these models, and we verify that the

theory provides a good approximation in �nite samples. We apply the new models and methods

to daily returns on four international equity indices, over the period 1990 to 2016, and �nd the

proposed new ES-VaR models outperform forecasts based on GARCH or rolling window models.

The asymptotic theory presented in this paper facilitates considering a large number of exten-

sions of the models presented here. Our models all focus on a single value for the tail probability

(�) ; and extending these to consider multiple values simultaneously could prove fruitful. For ex-

ample, one could consider the values 0.01, 0.025 and 0.05, to capture various points in the left

tail, or one could consider 0.05 and 0.95 to capture both the left and right tails simultaneously.

Another natural extension is to make use of exogenous information in the model; the models pro-

posed here are all univariate, and one might expect that information from options markets, high

frequency data, or news announcements to also help predict VaR and ES. We leave these interesting

extensions to future research.
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Appendix A: Proofs

Proof of Proposition 1. Theorem C.3 of Nolde and Ziegel (2017) shows that under the

assumption that ES is strictly negative, the loss di¤erences generated by a FZ loss function are

homogeneous of degree zero i¤ G1(x) = '11 fx � 0g and G2(x) = �'2=x with '1 � 0 and '2 > 0.

Denote the resulting loss function as L�FZ0 (Y; v; e;�; '1; '2) ; and notice that:

L�FZ0 (Y; v; e;�; '1; '2) = '1 (1 fY � vg � �) (1 fv � 0g � 1 fY � 0g)

+'2

�
� (1 fY � vg � �) 1

�

v

e
+
1

e

�
1

�
1 fY � vgY � e

�
+ log (�e)

�
= '1 (1 fY � vg � �) (1 fv � 0g � 1 fY � 0g) + '2LFZ0 (y; v; e;�)

= '2LFZ0 (Y; v; e;�) + '1�1 fY � 0g+ '1 (1� �� 1 fY � 0g)1 fv � 0g

Under the assumption that v < 0; the third term vanishes. The second term is purely a function

of Y and so can be disregarded; we can set '1 = 0 without loss of generality. The �rst term is

a¤ected by a scaling parameter '2 > 0; and we can set '2 = 1 without loss of generality. Thus we

obtain the LFZ0 given in equation (6). If v can be positive, then setting '1 = 0 is interpretable as

�xing this shape parameter value at a particular value.

Proof of Theorem 1. The proof is based on Theorem 2.1 of Newey and McFadden (1994).

We only need to show that E[LT (�)] is uniquely minimized at �0, because the other assump-

tions of Newey and McFadden�s theorem are clearly satis�ed. By Corollary (5.5) of Fissler and

Ziegel (2016), given Assumption 1(B)(iii) and the fact that our choice of the objective function

LFZ0 satis�es the condition as in Corollary (5.5) of Fissler and Ziegel (2016), we know that

E [L (Yt; vt (�) ; et (�) ;�) jFt�1] is uniquely minimized at (VaR�(YtjFt�1);ES�(YtjFt�1)) ; which equals�
vt(�

0); et(�
0)
�
under correct speci�cation. Combining this assumption and Assumption 1(B)(iv),

we know that �0 is a unique minimizer of E[LT (�)], completing the proof.

Outline of proof of Theorem 2. We consider the population objective function �T (�) =

T�1
PT
t=1 E [gt(�)] ; and take a mean-value expansion of �T (�̂) around �

0: We show in Lemma 1
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that:

p
T (�̂ � �0) = ���1T (�

0)
1p
T

TX
t=1

gt(�
0) + op(1)

where �T (�
�) = T�1

TX
t=1

@E [gt(�)]
@�

����
�=��

In the supplemental appendix we prove Lemma 1 by building on and extending Weiss (1991), who

extends Huber (1967) to non-iid data. We draw on Weiss�Lemma A.1, and we verify that all �ve

assumptions (N1-N5 in his notation) for that lemma are satis�ed: N1, N2 and N5 are obviously

satis�ed given our Assumptions 1-2, and we show in Lemmas 3 - 6 that assumptions N3 and N4

are satist�ed. Assumption 2(F) allows a CLT to be applied: the asymptotic covariance matrix is

AT = E
h
T�1

PT
t=1 gt(�

0)gt(�
0)0
i
; and we denote �T (�0) as DT ; leading to the stated result.

Proof of Theorem 3. Given Assumption 3B(i) and the result in Theorem 1, the proof that

ÂT �AT
p! 0 is standard and omitted. Next, de�ne

~DT = T
�1

TX
t=1

f(2cT )�11fjyt � vt(�0)j < cT g
1

�et(�0)�
rvt(�0)0rvt(�0) +

1

et(�
0)2
ret(�0)0ret(�0)g

To prove the result we will show that D̂T � ~DT = op(1) and ~DT �DT = op(1). Firstly, consider

kD̂T � ~DT k �


(2TcT )�1

�
TX
t=1

f(1fjyt � vt(�̂T )j < cT g � 1fjyt � vt(�0)j < cT g)
1

�et(�̂T )�
rvt(�̂T )0rvt(�̂T )

+1
�
jyt � vt(�0)j < cT

	 1

�et(�̂T )�

�
rvt(�̂T )�rvt(�0)

�0
rvt(�̂T )

+1fjyt � vt(�0)j < cT g
 

1

��et(�̂T )
� 1

��et(�0)

!
rvt(�0)0rvt(�̂T )

+1fjyt � vt(�0)j < cT g
1

��et(�0)
rvt(�0)0(rvt(�̂T )�rvt(�0))

+
cT � ĉT
cT

1fjyt � vt(�0)j < cT g
1

�et(�0)�
rvt(�0)0rvt(�0)g






+ T�1

TX
t=1






 1

et(�̂T )2
ret(�̂T )0ret(�̂T )�

1

et(�
0)2
ret(�0)0ret(�0)







The last line above was shown to be op(1) in the proof of Theorem 2. The di¢ cult quantity in the

�rst term (over the �rst six lines above) is the indicator, and following the same steps as in Engle
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and Manganelli (2004a), that term is also op(1): Next, consider ~DT�DT :

~DT�DT =
1

2TcT

TX
t=1

�
1
���Yt � vt(�0)�� < cT	� E �1���Yt � vt ��0��� < cT	 jFt�1��

�r
0vt(�

0)rvt(�0)
�et(�0)�

+
1

T

TX
t=1

�
1

2cT
E[1fjYt � vt(�0)j < cT gjFt�1]

1

�et(�0)�
r0vt(�0)rvt(�0)

�E
�
ft(vt(�

0))

�et(�0)�
r0vt(�0)rvt(�0)

��
Following Engle and Manganelli (2004a), assumptions 1-3 are su¢ cient to show ~DT �DT = op(1)

and the result follows.

Appendix B: Derivations

Appendix B.1: Generic calculations for the FZ0 loss function

The FZ0 loss function is:

LFZ0 (Y; v; e;�) = �
1

�e
1 fY � vg (v � Y ) + v

e
+ log (�e)� 1 (42)

Note that this is not homogeneous, as for any k > 0; LFZ0 (kY; kv; ke;�) = LFZ0 (Y; v; e;�) +

log (k), but this loss function generates loss di¤erences that are homogenous of degree zero, as the

additive additional term above drops out.

We will frequently use the �rst derivatives of this loss function, and the second derivatives of

the expected loss for an absolutely continuous random variable with density f and CDF F . These

are (for v 6= y):

rv � @LFZ0 (Y; v; e;�)

@v
= � 1

�e
(1 fY � vg � �) � 1

�ve
�v (43)

re � @LFZ0 (Y; v; e;�)

@e
(44)

=
1

�e2
1 fY � vg (v � Y )� v

e2
+
1

e

=
v

�e2
(1 fY � vg � �)� 1

e2

�
1

�
1 fY � vgY � e

�
� �1

�e2
(�v + ��e)
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where

�v � �v (1 fY � vg � �) (45)

�e � 1

�
1 fY � vgY � e (46)

and

@2E [LFZ0 (Y; v; e;�)]
@v2

= � 1

�e
f (v) (47)

@2E [LFZ0 (Y; v; e;�)]
@v@e

=
1

�e2
(F (v)� �) (48)

= 0, at the true value of (v; e)

@2E [LFZ0 (Y; v; e;�)]
@e2

=
1

e2
� 2

�e3
f(F (v)� �) v � (E [1 fY � vgY ]� �e)g (49)

=
1

e2
, at the true value of (v; e)

Appendix B.2: Derivations for the one-factor GAS model for ES and VaR

Here we present the calculations to compute st and It for this model. Below we use:

@v

@�
=

@2v

@�2
= a exp f�g = v (50)

@e

@�
=

@2e

@�2
= b exp f�g = e (51)

And so we �nd (for vt 6= Yt)

st � @LFZ0 (Yt; vt; et;�)

@�t
(52)

=
@LFZ0 (Yt; vt; et;�)

@vt

@vt
@�t

+
@LFZ0 (Yt; vt; et;�)

@et

@et
@�t

=

�
� 1

�et
(1 fYt � vtg � �)

�
vt

+

�
� 1
e2t

�
1

�
1 fYt � vtgYt � et

�
+
vt
e2t

1

�
(1 fYt � vtg � �)

�
et

= � 1
et

�
1

�
1 fYt � vtgYt � et

�
(53)

� ��et=et (54)

Thus, the �vt term drops out of st and we are left with ��et=et:
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Next we calculate It :

It � @2Et�1 [LFZ0 (Yt; vt; et;�)]
@�2t

(55)

=
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@v2t

�
@vt
@�t

�2
+
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@vt@et

@vt
@�t

+
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@e2t

�
@et
@�t

�2
+
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@vt@et

@et
@�t

+
@Et�1 [LFZ0 (Yt; vt; et;�)]

@vt

@2vt
@�2t

+
@Et�1 [LFZ0 (Yt; vt; et;�)]

@et

@2et
@�2t

But note that under correct speci�cation,

@2Et�1 [L (Yt; vt; et;�)]
@vt@et

=
@Et�1 [L (Yt; vt; et;�)]

@vt
=
@Et�1 [L (Yt; vt; et;�)]

@et
= 0 (56)

and so the Hessian simpli�es to:

It =
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@v2t

�
@vt
@�t

�2
+
@2Et�1 [LFZ0 (Yt; vt; et;�)]

@e2t

�
@et
@�t

�2
(57)

= � 1

�et
ft (vt) v

2
t + 1 (58)

=
�� k�a�

�
, since ft (vt) =

k�
vt
and

vt
et
= a�, for this DGP. (59)

Thus although the Hessian could vary with time, as it is a derivative of the conditional expected

loss, in this speci�cation it simpli�es to a constant.

Appendix B.3: ES and VaR in location-scale models

Dynamic location-scale models are widely used for asset returns and in this section we consider

what such a speci�cation implies for the dynamics of ES and VaR. Consider the following:

Yt = �t + �t�t, �t s iid F� (0; 1) (60)

where, for example, �t is some ARMA model and �2t is some GARCH model. For asset returns

that follow equation (60) we have:

vt = �t + a�t, where a = F�1� (�) (61)

et = �t + b�t, where b = E [�tj�t � a]
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and we we can recover (�t; �t) from (vt; et):264 �t
�t

375 = 1

b� a

264 b �a

�1 1

375
264 vt
et

375 (62)

Thus under the conditional location-scale assumption, we can back out the conditional mean and

variance from the VaR and ES. Next note that if �t = 0 8 t; then vt = c �et, where c = a=b 2 (0; 1).

Daily asset returns often have means that are close to zero, and so this restriction is one that may

be plausible in the data. A related, though less plausible, restriction is that �t = �� 8 t; and in that

case we have the simpli�cation that vt = d+ et, where d = (a� b) �� > 0:

Appendix C: Estimation using the FZ0 loss function

The FZ0 loss function, equation (6), involves the indicator function 1 fYt � vtg and so necessi-

tates the use of a numerical search algorithm that does not rely on di¤erentiability of the objective

function; we use the function fminsearch in Matlab. However, in preliminary simulation analyses

we found that this algorithm was sensitive to the starting values used in the search. To overcome

this, we initially consider a �smoothed� version of the FZ0 loss function, where we replace the

indicator variable with a Logistic function:

~LFZ0 (Y; v; e;�; �) = � 1

�e
� (Yt; vt; �) (v � Y ) +

v

e
+ log (�e)� 1 (63)

where � (Yt; vt; �) � 1

1 + exp f� (Yt � vt)g
, for � > 0 (64)

where � is the smoothing parameter, and the smoothing function � converges to the indicator

function as � ! 1: In GAS models that involve an indicator function in the forcing variable, we

alter the forcing variable in the same way, to ensure that the objective function as a function of �

is di¤erentiable. In these cases the loss function and the model itself are slightly altered through

this smoothing.

In our empirical implementation, we obtain �smart� starting values by �rst estimating the

model using the �smoothed FZ0�loss function with � = 5: This choice of � gives some smoothing

for values of Yt that are roughly within �1 of vt: Call the resulting parameter estimate ~�
(5)
T : Since

this objective function is di¤erentiable, we can use more familiar gradient-based numerical search
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algorithms, such as fminunc or fmincon in Matlab, which are often less sensitive to starting values.

We then re-estimate the model, using ~�
(5)
T as the starting value, setting � = 20 and obtain ~�

(20)
T :

This value of � smoothes values of Yt within roughly �0:25 of vt; and so this objective function is

closer to the true objective function. Finally, we use ~�
(20)
T as the starting value in the optimization

of the actual FZ0 objective function, with no arti�cial smoothing, using the function fminsearch,

and obtain �̂T . We found that this approach largely eliminated the sensitivity to starting values.
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Table 1: Simulation results for Normal innovations

T = 2500 T = 5000
� 
 b� c� � 
 b� c�

� = 0:01
True 0.900 0.050 -2.665 0.873 0.900 0.050 -2.665 0.873

Median 0.901 0.049 -2.615 0.882 0.899 0.049 -2.671 0.877
Avg bias -0.017 0.015 -0.108 0.008 -0.011 0.006 -0.089 0.004
St dev 0.077 0.076 1.095 0.022 0.049 0.033 0.805 0.015

Coverage 0.868 0.827 0.875 0.919 0.884 0.876 0.888 0.937

� = 0:025
True 0.900 0.050 -2.338 0.838 0.900 0.050 -2.338 0.838

Median 0.899 0.047 -2.329 0.842 0.897 0.048 -2.392 0.841
Avg bias -0.017 0.007 -0.137 0.004 -0.011 0.002 -0.111 0.002
St dev 0.066 0.044 0.852 0.017 0.050 0.024 0.656 0.012

Coverage 0.898 0.870 0.911 0.931 0.912 0.888 0.925 0.923

� = 0:05
True 0.900 0.050 -2.063 0.797 0.900 0.050 -2.063 0.797

Median 0.901 0.048 -2.051 0.800 0.899 0.049 -2.094 0.799
Avg bias -0.013 0.005 -0.097 0.002 -0.008 0.002 -0.081 0.001
St dev 0.062 0.046 0.707 0.015 0.041 0.021 0.511 0.010

Coverage 0.913 0.874 0.916 0.947 0.923 0.907 0.927 0.948

� = 0:10
True 0.900 0.050 -1.755 0.730 0.900 0.050 -1.755 0.730

Median 0.900 0.048 -1.769 0.730 0.898 0.048 -1.778 0.730
Avg bias -0.015 0.006 -0.103 0.000 -0.009 0.001 -0.072 0.000
St dev 0.065 0.052 0.623 0.013 0.040 0.020 0.435 0.009

Coverage 0.917 0.883 0.925 0.954 0.922 0.902 0.934 0.960

� = 0:20
True 0.900 0.050 -1.400 0.601 0.900 0.050 -1.400 0.601

Median 0.898 0.048 -1.391 0.602 0.899 0.048 -1.417 0.602
Avg bias -0.017 0.008 -0.091 0.000 -0.010 0.002 -0.064 0.000
St dev 0.078 0.072 0.547 0.014 0.044 0.022 0.374 0.010

Coverage 0.925 0.881 0.934 0.948 0.941 0.923 0.945 0.954

Notes: This table presents results from 1000 replications of the estimation of VaR and ES from
a GARCH(1,1) DGP with standard Normal innovations. Details are described in Section 4. The
top row of each panel presents the true values of the parameters. The second, third, and fourth
rows present the median estimated parameters, the average bias, and the standard deviation (across
simulations) of the estimated parameters. The last row of each panel presents the coverage rates
for 95% con�dence intervals constructed using estimated standard errors.

37



Table 2: Simulation results for skew t innovations

T = 2500 T = 5000
� 
 b� c� � 
 b� c�

� = 0:01
True 0.900 0.050 -4.506 0.730 0.900 0.050 -4.506 0.730

Median 0.893 0.049 -4.376 0.750 0.895 0.048 -4.562 0.741
Avg bias -0.047 0.038 -0.399 0.018 -0.028 0.014 -0.340 0.009
St dev 0.150 0.134 2.687 0.048 0.094 0.065 1.983 0.034

Coverage 0.797 0.797 0.809 0.894 0.837 0.853 0.839 0.936

� = 0:025
True 0.900 0.050 -3.465 0.695 0.900 0.050 -3.465 0.695

Median 0.895 0.047 -3.448 0.705 0.896 0.048 -3.520 0.701
Avg bias -0.028 0.014 -0.254 0.008 -0.017 0.005 -0.198 0.004
St dev 0.101 0.069 1.591 0.034 0.068 0.033 1.192 0.023

Coverage 0.855 0.835 0.877 0.921 0.874 0.893 0.887 0.939

� = 0:05
True 0.900 0.050 -2.767 0.651 0.900 0.050 -2.767 0.651

Median 0.896 0.048 -2.760 0.656 0.898 0.048 -2.795 0.654
Avg bias -0.021 0.007 -0.187 0.005 -0.011 0.003 -0.114 0.003
St dev 0.081 0.049 1.085 0.025 0.053 0.025 0.782 0.017

Coverage 0.906 0.883 0.921 0.937 0.916 0.904 0.922 0.951

� = 0:10
True 0.900 0.050 -2.122 0.577 0.900 0.050 -2.122 0.577

Median 0.897 0.048 -2.121 0.579 0.898 0.048 -2.140 0.578
Avg bias -0.017 0.006 -0.125 0.003 -0.008 0.002 -0.069 0.002
St dev 0.066 0.045 0.745 0.020 0.040 0.022 0.510 0.014

Coverage 0.931 0.900 0.937 0.949 0.926 0.925 0.927 0.947

� = 0:20
True 0.900 0.050 -1.514 0.431 0.900 0.050 -1.514 0.431

Median 0.899 0.050 -1.485 0.432 0.899 0.049 -1.503 0.432
Avg bias -0.019 0.006 -0.089 0.001 -0.008 0.002 -0.049 0.001
St dev 0.089 0.047 0.618 0.018 0.042 0.022 0.380 0.012

Coverage 0.916 0.888 0.922 0.938 0.929 0.916 0.940 0.944

Notes: This table presents results from 1000 replications of the estimation of VaR and ES
from a GARCH(1,1) DGP with skew t innovations. Details are described in Section 4. The top
row of each panel presents the true values of the parameters. The second, third, and fourth rows
present the median estimated parameters, the average bias, and the standard deviation (across
simulations) of the estimated parameters. The last row of each panel presents the coverage rates
for 95% con�dence intervals constructed using estimated standard errors.
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Table 3: Sampling variation of FZ estimation
relative to (Q)MLE and CAViaR

Normal innovations Skew t innovations
T = 2500 T = 5000 T = 2500 T = 5000

� � 
 � 
 � 
 � 


Panel A: FZ/(Q)ML
0.01 1.209 5.940 1.701 3.731 1.577 4.830 2.533 3.723
0.025 1.034 3.394 1.764 2.694 1.055 2.485 1.853 1.905
0.05 0.980 3.576 1.431 2.377 0.850 1.784 1.426 1.458
0.10 1.021 4.074 1.406 2.302 0.698 1.627 1.095 1.250
0.20 1.224 5.558 1.543 2.497 0.939 1.710 1.145 1.242

Panel B: FZ/CAViaR
0.01 0.982 1.162 0.951 0.975 1.062 1.384 0.912 1.465
0.025 0.965 1.139 0.971 1.042 0.976 1.030 0.974 0.997
0.05 0.925 1.238 0.910 0.930 0.885 0.819 0.920 0.903
0.10 0.940 1.283 0.847 0.827 0.831 0.903 0.816 0.819
0.20 0.855 0.671 0.703 0.510 0.736 0.437 0.503 0.515

Notes: This table presents the ratio of cross-simulation standard deviations of parameter es-
timates obtained by FZ loss minimization and (Q)MLE (Panel A), and CAViaR (Panel B). We
consider only the parameters that are common to these three estimation methods, namely the
GARCH(1,1) parameters � and 
: Ratios greater than one indicate the FZ estimator is more
variable than the alternative estimation method; ratios less than one indicate the opposite.
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Table 5: Summary statistics

S&P 500 DJIA NIKKEI FTSE
Mean (Annualized) 6.776 7.238 -2.682 3.987
Std dev (Annualized) 17.879 17.042 24.667 17.730
Skewness -0.244 -0.163 -0.114 -0.126
Kurtosis 11.673 11.116 8.580 8.912
VaR-0.01 -3.128 -3.034 -4.110 -3.098
VaR-0.025 -2.324 -2.188 -3.151 -2.346
VaR-0.05 -1.731 -1.640 -2.451 -1.709
VaR-0.10 -1.183 -1.126 -1.780 -1.193
ES-0.01 -4.528 -4.280 -5.783 -4.230
ES-0.025 -3.405 -3.215 -4.449 -3.295
ES-0.05 -2.697 -2.553 -3.603 -2.643
ES-0.10 -2.065 -1.955 -2.850 -2.031

Notes: This table presents summary statistics on the four daily equity return series studied in
Section 5, over the full sample period from January 1990 to December 2016. The �rst two rows
report the annualized mean and standard deviation of these returns in percent. The second panel
presents sample Value-at-Risk for four choices of �; and the third panel presents corresponding
sample Expected Shortfall estimates.

Table 6: ARMA, GARCH, and Skew t results

SP500 DJIA NIKKEI FTSE
�0 0.0269 0.0287 -0.0106 0.0158
�1 0.6482 -0.0486 � -0.0098
�2 � -0.0407 � -0.0438
�3 � � � -0.0585
�4 � � � 0.0375
�5 � � � -0.0501
�1 -0.7048 � � �
R2 0.0056 0.0039 0.0000 0.0093
! 0.0140 0.0165 0.0657 0.0162
� 0.9053 0.8970 0.8629 0.8932
� 0.0824 0.0875 0.1125 0.0935
� 6.9336 7.0616 7.8055 11.8001
� -0.1146 -0.0997 -0.0659 -0.1018

Notes: This table presents parameter estimates for the four daily equity return series studied in
Section 5, over the in-sample period from January 1990 to December 1999. The �rst panel presents
the optimal ARMA model according to the BIC, along with the R2 of that model. The second
panel presents the estimated GARCH(1,1) parameters, and the third panel presents the estimated
parameters of the skewed t distribution applied to the estimated standardized residuals.
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Table 7: Estimated paramters of GAS models for VaR and ES

GAS-2F GAS-1F GARCH-FZ Hybrid
VaR ES

w -0.046 -0.069 � 0.990 0.908 0.968
(s.e.) (0.010) (0.019) (s.e.) (0.004) (0.072) (0.015)
b 0.977 0.973 
 -0.010 0.030 -0.011

(s.e.) (0.005) (0.007) (s.e.) (0.002) (0.010) (0.002)
av 0.001 0.001 � � � 0.018
(s.e.) (0.092) (0.164) (s.e.) (0.009)
ae 0.007 0.011 a -1.490 -2.659 -2.443
(s.e.) (0.004) (0.007) (s.e.) (0.346) (0.492) (0.473)

b -2.089 -3.761 -3.389
(s.e.) (0.487) (0.747) (0.664)

Avg loss 0.747 0.750 0.762 0.745

Notes: This table presents parameter estimates and standard errors for four GAS models of
VaR and ES for the S&P 500 index over the in-sample period from January 1990 to December
1999. The left panel presents the results for the two-factor GAS model in Section 2.2. The right
panel presents the results for the three one-factor models: a one-factor GAS model (from Section
2.3), and a GARCH model estimated by FZ loss minimization, and �hybrid�one-factor GAS model
that includes a additional GARCH-type forcing variable (both from Section 2.5). The bottom row
of this table presents the average (in-sample) losses from each of these four models.
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Table 9: Diebold-Mariano t-statistics on average out-of-sample loss di¤erences
alpha=0.05, S&P 500 returns

RW125 RW250 RW500 G-N G-Skt G-EDF FZ-2F FZ-1F G-FZ Hybrid
RW125 -2.580 -4.260 2.109 2.693 2.900 2.978 3.978 3.020 2.967
RW250 2.580 -4.015 3.098 3.549 3.730 3.799 4.701 3.921 4.110
RW500 4.260 4.015 4.401 4.783 4.937 5.168 5.893 5.125 5.450
G-N -2.109 -3.098 -4.401 3.670 3.068 1.553 2.248 2.818 0.685
G-Skt -2.693 -3.549 -4.783 -3.670 2.103 0.889 1.475 1.232 -0.403
G-EDF -2.900 -3.730 -4.937 -3.068 -2.103 0.599 1.157 0.024 -0.769
FZ-2F -2.978 -3.799 -5.168 -1.553 -0.889 -0.599 0.582 -0.555 -0.580
FZ-1F -3.912 -4.423 -5.483 -1.986 -1.421 -1.198 -0.582 -1.266 -1.978
G-FZ -3.020 -3.921 -5.125 -2.818 -1.324 -0.024 0.555 1.266 -0.914
Hybrid -3.276 -4.137 -5.272 -1.492 -0.419 0.045 0.580 1.978 0.914

Notes: This table presents t-statistics from Diebold-Mariano tests comparing the average losses,
using the FZ0 loss function, over the out-of-sample period from January 2000 to December 2016, for
ten di¤erent forecasting models. A positive value indicates that the row model has higher average
loss than the column model. Values greater than 1.96 in absolute value indicate that the average
loss di¤erence is signi�cantly di¤erent from zero at the 95% con�dence level. Values along the main
diagonal are all identically zero and are omitted for interpretability. The �rst three rows correspond
to rolling window forecasts, the next three rows correspond to GARCH forecasts based on di¤erent
models for the standardized residuals, and the last four rows correspond to models introduced in
Section 2.
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Table 10: Out-of-sample performance rankings for various alpha

� = 0:01 � = 0:025
S&P DJIA NIK FTSE Avg S&P DJIA NIK FTSE Avg

RW-125 7 8 10 7 8 8 8 8 7 7.75
RW-250 8 9 8 8 8.25 9 9 7 8 8.25
RW-500 10 10 9 9 9.5 10 10 9 9 9.5
G-N 6 6 5 4 5.25 7 6 4 3 5
G-Skt 5 3 2 2 3 5 3 1 1 2.5
G-EDF 4 2 3 1 2.5 2 2 3 2 2.25
FZ-2F 1 4 7 10 5.5 4 5 10 10 7.25
FZ-1F 9 7 6 6 7 3 4 6 4 4.25
G-FZ 3 1 1 3 2 1 1 2 5 2.25
Hybrid 2 5 4 5 4 6 7 5 6 6

� = 0:05 � = 0:10
S&P DJIA NIK FTSE Avg S&P DJIA NIK FTSE Avg

RW-125 8 8 8 7 7.75 8 8 8 8 8
RW-250 9 9 9 8 8.75 9 9 9 9 9
RW-500 10 10 10 9 9.75 10 10 10 10 10
G-N 7 7 5 6 6.25 3 2 5 5 3.75
G-Skt 5 3 4 2 3.5 7 4 4 4 4.75
G-EDF 4 2 2 5 3.25 4 3 3 3 3.25
FZ-2F 2 6 7 10 6.25 2 6 7 7 5.5
FZ-1F 1 1 6 4 3 1 7 2 2 3
G-FZ 3 5 3 3 3.5 6 5 6 6 5.75
Hybrid 6 4 1 1 3 5 1 1 1 2

Notes: This table presents the rankings (with the best performing model ranked 1 and the worst
ranked 10) based on average losses using the FZ0 loss function, for four daily equity return series,
over the out-of-sample period from January 2000 to December 2016, for ten di¤erent forecasting
models. The �rst three rows in each panel correspond to rolling window forecasts, the next three
rows correspond to GARCH forecasts based on di¤erent models for the standardized residuals, and
the last four rows correspond to models introduced in Section 2. The last column in each panel
represents the average rank across the four equity return series.
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Figure 1: This �gure plots the FZ0 loss function when Y = �1 and � = 0:05: In the left panel we
�x e = �2:06 and vary v; in the right panel we �x v = �1:64 and vary e: Values where v < e are
indicated with a dashed line.
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Figure 2: Contours of expected FZ0 loss when the target variable is standard Normal. Only values
where ES<VaR<0 are considered. The optimal value is marked with a star.
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Figure 3: This �gure shows the values of VaR and ES as a function of the lagged return, when the
lagged values of VaR and ES are either low (10% below average) or high (10% above average). The
function is based on the estimated parameters for daily S&P 500 returns.
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Figure 4: This �gure plots the estimated 5% Value-at-Risk (VaR) and Expected Shortfall (ES)
for daily returns on the S&P 500 index, over the period January 1990 to December 2016. The
estimates are based on a one-factor GAS model, a GARCH model, and a rolling window using 125
observations.
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Figure 5: This �gure plots the estimated 5% Value-at-Risk (VaR) and Expected Shortfall (ES)
for daily returns on the S&P 500 index, over the period January 2015 to December 2016. The
estimates are based on a one-factor GAS model, a GARCH model, and a rolling window using 125
observations.
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