Probability forecasts of deflation for the Euro area and Japan: an evaluation using scoring rules for binary outcomes

Inske Pirschel (Swiss National Bank), Christian Schumacher (Deutsche Bundesbank)

Motivation

Why do we care about deflation?

- In light of the debate on deflation risks after the Great Recession in the Euro area, there is a renewed interest in deflation phenomenon
- Academic literature is relatively silent on this matter

How can we measure deflation?

Definition by Cogley and Sargent (2015) identifies a deflationary period, if the cumulative rate of price changes over the forecast horizon is negative, i.e. $\pi_{T+h}^h = ln(HICP_{T+h}/HICP_T) = \sum_{i=1}^h \pi_{T+i} < 0$

Our contribution

We forecast HICP changes and core inflation in the Euro area and Japan using inflation forecast models from the recent literature We provide estimated probabilities of future deflation based on individual and pooled density forecasts

Forecasting models

Identifier	Description
AR	Univariate, constant-parameter AR(4)
BVAR	Constant-parameter BVAR(4) in inflation and GDP growth
UCSV	Univariate unobserved component model with time-varying trend and stoch. volatility (SV), Chan (2013) variant of Stock and Watson (2007)
biUC	Bivariate Trend-Cycle Model in inflation and GDP growth with SV, Chan, Koop, Potter (2016)
TVPSVBVAR	Time-varying-parameter VAR(4) in inflation and GDP growth with SV, Primiceri (2005)
EqW	Pooled density from the above models with equal weights

- Out-of sample path forecast densities are computed
- ► We use scoring rules for binary outcomes to evaluate the probability forecasts

Data

- We use quarterly data for HICP rates of change, core inflation and real GDP for the Euro area and Japan from 1980Q1 until 2017Q2
- In the Euro area, there are very few short-lived deflation observations for HICP rates of change and no deflation observations at all for core inflation
- In Japan, several deflationary periods are visible in both measures
- Time series properties of headline and core inflation are quite different in the Euro area and in Japan

Main results

Estimated deflation probabilities

1990 1995 2000 2005 2010 2015 2020

Computation of deflation probabilities

- For "deflation" event \mathcal{D} , define binary variable $y_{\mathcal{D}} = 1$ if \mathcal{D} occurs and $y_{\mathcal{D}} = 0$ if \mathcal{D} does not occur
- In period T, we make prediction $P(\mathcal{D})$, i.e. we forecast the probability that \mathcal{D} occurs between period T + 1 and T + h given observations $Y_{1:T}^o$: $P(\mathcal{D}) = P(\pi_{T+h}^h < 0 | Y_{1:T}^o)$
- We can use the sample-based estimator
- $P(\pi_{T+h}^h < 0 | Y_{1:T}^o) = \frac{1}{R} \sum_{R}^{r=1} \mathcal{I}(\pi_{T+h}^{h(r)} < 0 | Y_{1:T}^o)$ given samples from the predictive density $\pi_{T+h}^{h^{(r)}} \sim p(\pi_{T+h}^{h})$
- After period T + h, we have an observed value y_D^o that can be used to evaluate $P(\mathcal{D})$

Evaluation using scoring rules for binary outcomes

▶ Note: shaded areas show observed values $y_{\mathcal{D}}^o$, i.e. a bar in period T indicates that $\sum_{i=1}^{h} \pi_{T+i}^o < 0$

Scores for binary outcomes

Headline inflation

	Euro area		Japan		Euro area		Japan		Euro area		Japan	
horizon	h = 1 h	= 4	<i>h</i> = 1	<i>h</i> = 4	<i>h</i> = 1	<i>h</i> = 4	<i>h</i> = 1	<i>h</i> = 4	<i>h</i> = 1	<i>h</i> = 4	<i>h</i> = 1	<i>h</i> = 4
	Log Score				Brier Score				Asymmetric Score			
AR	-0.32 -0	0.26	-0.76	-0.95	-0.09	-0.06	-0.28	-0.36	-0.21	-0.21	-0.37	-0.49
BVAR	-0.30 -0	0.27	-0.73	-0.91	-0.08	-0.07	-0.27	-0.34	-0.20	-0.20	-0.36	-0.46
UCSV	-0.31 -0	0.26	-0.72	-0.70	-0.09	-0.06	-0.26	-0.25	-0.20	-0.20	-0.34	-0.33
biUC	-0.29 -0	0.21	-0.73	-0.74	-0.09	-0.05	-0.26	-0.27	-0.19	-0.16	-0.35	-0.35
TVPSVBVAR	-0.31 -0	0.22	-0.72	-0.69	-0.10	-0.05	-0.26	-0.25	-0.20	-0.17	-0.34	-0.32
EqW	-0.28 -0	0.22	-0.71	-0.74	-0.09	-0.05	-0.26	-0.27	-0.18	-0.17	-0.34	-0.35

Core inflation

	Euro area		Japan		Euro area		Japan		Euro area		Japan	
horizon	<i>h</i> = 1	<i>h</i> = 4	<i>h</i> = 1	<i>h</i> = 4	<i>h</i> = 1	<i>h</i> = 4						
		Log S	Score			Brier	Score		Asymmetric Score			
AR	-0.02	-0.03	-0.62	-0.80	0.00	0.00	-0.21	-0.30	-0.02	-0.03	-0.25	-0.34
BVAR	-0.02	-0.03	-0.60	-0.75	0.00	0.00	-0.21	-0.28	-0.02	-0.03	-0.25	-0.31
UCSV	-0.02	-0.01	-0.53	-0.45	0.00	0.00	-0.18	-0.15	-0.02	-0.01	-0.24	-0.19
biUC	-0.01	-0.01	-0.54	-0.48	0.00	0.00	-0.18	-0.16	-0.01	-0.01	-0.23	-0.19
	0 02	0 02	0 5 9	0 40			0.20	0 16	0 02	0 02	0.27	0.20

- Evaluation period starts in 2000Q1 and ends in 2017Q2
- To evaluate $P(\mathcal{D})$, we employ the logarithmic score (*LogS*), the Brier score (*BrS*) and an asymmetric score (*As*) from Elliott, Ghanem and Krüger (2016):
 - $LogS = y_{\mathcal{D}}^{o}logP(\mathcal{D}) + (1 y_{\mathcal{D}}^{o})log(1 P(\mathcal{D}))$ $BrS = y_{\mathcal{D}}^{o}[-(1 - P(\mathcal{D}))^{2}] + (1 - y_{\mathcal{D}}^{o})[-P(\mathcal{D})^{2}] = -(y_{\mathcal{D}}^{o} - P(\mathcal{D}))^{2}$ As $= y_{\mathcal{D}}^{o}[logP(\mathcal{D}) - P(\mathcal{D}) + 1] + (1 - y_{\mathcal{D}}^{o})[-P(\mathcal{D})]$
- While BrS and LogS are indifferent between false negatives and false positives, As implies stronger losses for deflation events that were not predicted

IVPSVBVAR -0.03 -0.03 -0.58 -0.49 0.00 0.00 -0.20 -0.16 -0.03 -0.03-0.27 -0.20 -0.02 -0.02 EqW -0.02 -0.02 -0.55 -0.54 0.00 0.00 **-0.18** -0.18 **-0.23** -0.21

Summary & conclusions

- Deflation is a rare event in the Euro area and difficult to forecast, deflation probabilities are lower and less volatile than in Japan
- In the Euro area, deflation probabilities for core inflation are negligible compared to headline inflation
- In Japan, deflation probabilities for core inflation are much higher than for headline inflation
- Time-varying-parameter models and density pool generally outperform constant-parameter models; gains are more pronounced for higher forecast horizons

The views expressed are those of the authors and not necessarily those of the SNB or the Bundesbank