A Severity Function Approach to Scenario Selection

Frieder Mokinski (Deutsche Bundesbank)

Workshop on Forecasting, 8-9 September 2017, HV Frankfurt

Disclaimer: The views expressed on this poster are those of the authors and do not necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem.

1 Research Question

How to come up with scenarios for financial sector stress testing that are "severe yet plausible"?

- <u>severe</u> = scenario should be expected to have an adverse stress test impact, should it materialize
- <u>plausible</u> = non-negligible probability of actual materialization

2 Method

- Two inputs to the severity function approach (SFA)
- 1. probabilistic forecasting model \rightarrow used to assess the plausibility of alternative scenarios, and
- 2. user-specified severity function \rightarrow used to measure how well a scenario fits with the user's idea of a severe scenario
- SFA scenario solves maximization problem

$$\widehat{\mathbf{Y}}_{f^*} = \operatorname{argmax}_{\widehat{\mathbf{V}}} s(\widehat{\mathbf{Y}}) \text{ s.t. } f_Y(\widehat{\mathbf{Y}}) = f^*$$

or equivalently

$$\widehat{\mathbf{Y}}_{s^*} = \operatorname{argmax}_{\widehat{\mathbf{Y}}} f_Y(\widehat{\mathbf{Y}}) \text{ s.t. } s(\mathbf{Y}_{T+h}) = s^*,$$

where

- 1. $f_Y(\mathbf{Y}_{T+h})$ is a multivariate & multi-horizon predictive density for the "risk factors" (i.e. scenario variables),
- 2. $\mathbf{Y}_{T+h} := \begin{bmatrix} y'_{T+1} & \dots & y'_{T+h} \end{bmatrix}'$, and
- 3. $s(\mathbf{Y}_{T+h})$ is the severity function that maps each scenario candidate to a scalar measure of its severity
- Interpretation: SFA finds scenario with the highest severity among a set of equally plausible scenarios
- → operationalization of "severe yet plausible".
- Special case with analytical solution to max. problem: linear severity function $(s(\mathbf{Y}_{T+h}) = \mathbf{Y}'_{T+h}\beta)$ & multivariate normal predictive density $(\mathbf{Y}_{T+h} \sim \mathsf{N}(\mu, \Sigma))$

$$\longrightarrow \widehat{\mathbf{Y}}_{s^*} = \mu + \Phi^{-1}(\alpha) (\beta' \Sigma \beta)^{-1/2} \Sigma \beta,$$

where α is implicitly defined through $\Pr[s(\mathbf{Y}_{T+h}) < s^*] = \alpha$.

3 The SFA vs other approaches of selecting scenarios

Purely judgmental scenario generation:

- Anything is possible. Historical experience no constraint as in data-based approaches.
- Severe? Potentially, yes!
- Plausible? It depends.
- \bullet Consistency of scenarios over time is an issue \rightarrowtail rescaling through SFA possible

Conditional forecasting

- What if ... monetary policy would keep the short-term interest rate at 0.0 for the next 8 quarters / an oil supply shock would reduce the global flow volume by 10 percent?
- Severe stress test impact? Unclear.
- Plausible? Depends on conditions.

4 Implementation of approach

- 1. Predictive density $f(Y_{T+h})$ can, for example, come from an empirical time series model or an estimated DSGE model
- 2. Severity function, i.e. mapping from scenarios to a metric of how well a scenario fits with the user's idea of a severe scenario, can be obtained by
 - Guesstimation, i.e. by guessing the parameters;
 - Empirical estimation of the functional relationship between the risk factors and a severity metric;
 - Simulation-based estimation of the functional relationship based on test runs of the stress test.

5 Application

- Stress test scenario for the German banking sector
- Predictive density from a medium-sized BVAR with an informative Litterman prior, assumed multivariate normal
- $\bullet s(\cdot) = \sum_{h=1}^{12} \frac{1}{h^2} (1.5 \text{ I3M}_{T+h} 0.5 \text{ I10Y}_{T+h} \text{RGDP}_{T+h} + \text{UNEMP}_{T+h})$ (in appropriately standardized variables)
 - favors inversion of yield curve & rise in level of interest rates
 - favors depressed real economic activity
 - $-1/h^2$ factor favors early shocks

