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1. Introduction

A rapidly growing transdisciplinary literature uses Bayesian
inference to produce posterior predictive distributions. The
posterior predictive CDF is of the generic form

F0(x) =

∫
Θ
Fc(x|θ) dPpost(θ) (1)

where Ppost is the posterior distribution of the parameter, θ,
and Fc(·|θ) is the conditional predictive CDF given θ ∈ Θ.
Frequently, the posterior predictive CDF must be approxi-
mated in some way, typically using some form of Markov
chain Monte Carlo (MCMC); see, e.g., Gelfand and Smith
(1990).
A generic MCMC algorithm designed to sample from F0 can
be sketched as follows.
• Fix θ0 ∈ Θ at some arbitrary value.
• For i = 1, 2, . . . iterate as follows:

– Draw θi ∼ K(θi|θi−1), where K is a transition kernel that
specifies the conditional distribution of θi given θi−1.

– Draw Xi ∼ Fc(·|θi).
This generic MCMC algorithm allows for two options for
estimating the posterior predictive distribution F0 in (1),
namely,
•Option A: Based on parameter draws (θi)

m
i=1,

•Option B: Based on a sample (Xi)
m
i=1.

We provide a systematic assessment of how to make and
evaluate probabilistic forecasts based on such simulation
output.

2. Proper scoring rules

Scoring rules are functions

S : F × R→ R ∪ {∞},

where F denotes a class of probability distributions on R. A
scoring rule is called proper if

EY∼GS(G, Y ) = S(G,G) ≤ S(F,G) = EY∼GS(F, Y )

for all F,G ∈ F (Gneiting and Raftery, 2007). The score
divergence associated with the scoring rule S is given by

dS(F,G) = S(F,G)− S(G,G).

Examples include
• the logarithmic score,

LogS(f, y) = − log(f (y)), (2)

with dLogS (F,G) =
∫
g(z) log

(
g(z)
f (z)

)
dz,

• the continuous ranked probability score

CRPS(F, y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2 dz (3)

with dCRPS (F,G) =
∫

(F (z)−G(z))2 dz.

3. Approximation methods

To compute LogS or CRPS for F0, simulated samples (θi)
m
i=1

and (Xi)
m
i=1 must be used to estimate F0. The following ap-

proximation methods are frequently used in the literature.

Approximations based on (θi)
m
i=1

•Mixture-of-parameters estimator : Approximate F0 by

F̂MP
m (x) =

1

m

m∑
i=1

Fc(x|θi). (4)

Approximations based on (Xi)
m
i=1

•Gaussian approximation

F̂GA
m (x) = Φ

(
x− µ̂m
σ̂m

)
, (5)

where µ̂m and σ̂m are the empirical mean and standard
deviation of (Xi)

m
i=1.

• Empirical CDF : Estimate CDF F0 by

F̂ECDF
m (x) =

1

m

m∑
i=1

1{x ≥ Xi}. (6)

• Kernel density estimation: Estimate PDF f0 by

f̂KD
m (x) =

1

mhm

m∑
i=1

K

(
x−Xi
hm

)
(7)

Occurrences in 53 recently published articles from eco-
nomics, environmental sciences and other disciplines:

LogS CRPS

Mixture-of-parameters estimator 25 3

Kernel density estimation 6 1
Gaussian approximation 7 2
Empirical CDF n/a 16

4. Theoretical consistency results

How to assess the adequacy of approximation methods
from a theoretical perspective?

4.1 Consistency and score divergences
An approximation method is consistent relative to scoring
rule S at distribution F0 ∈ F if F̂m ∈ F for all sufficiently
large m, and

dS(F̂m, F0) −→ 0

or, equivalently, S(F̂m, F0) → S(F0, F0) almost surely as
m→∞.
Note that
• properties of dS(F̂m, F0) and required convergence of F̂m

to F0 strongly depend on S,
• consistency is independent of forecast quality.

4.2 Consistency results
We investigate sufficient conditions for consistency of the
aforementioned approximation methods. Assumptions:

(A) The process (θi)i=1,2,... is stationary and ergodic with in-
variant distribution Ppost.

(B) F0 is supported on some bounded interval Ω, admits a
continuous and strictly positive density, f0. Further, fc(·|θ)
is continuous for every θ ∈ Θ.

Mixture-of-parameters approximation
Under assumption (A), the MP approximation is consistent
relative to the CRPS.
Under assumptions (A) and (B), the MP approximation is
consistent relative to the logarithmic score.

Gaussian approximation
Can only be consistent if F0 is Gaussian – unlikely to hold
in many applications.

Empirical CDF-based approximation
Under assumption (A), the empirical CDF technique is con-
sistent relative to the CRPS.

Kernel density estimation
Requires stringent assumptions on mixing coefficients and
bandwidth as tail properties of kernel K and f0 need to be
carefully matched (e.g., Hall, 1987).

5. Simulation study

Investigate approximation methods in a setup that emulates
realistic MCMC behavior with dependent samples. Here, F0
is known by construction, and we can compare the different
approximations to the true forecast distribution.

• For simulation run k = 1, . . . , K:

– Draw MCMC samples (θ
(k)
i )mi=1 and (X

(k)
i )mi=1

– Compute F̂
(k)
m and dS(F̂

(k)
m , F0) for the approximation

methods and scoring rules under consideration.

• For each approximation method and scoring rule, sum-
marize the distribution of dS(F̂

(1)
m , F0), . . . , dS(F̂

(K)
m , F0).

Data-generating process
Generate sequences (θi)

m
i=1 and (Xi)

m
i=1 such that

F0(x) =

∫
(0,∞)

Φ
(x
θ

)
dH0(θ2),

is a compound Gaussian distribution.
To mimic a realistic MCMC scenario with dependent draws,
we use the Fox and West (2011) model for θ2 that im-
plies autoregressive-type dependence, and an uncondi-
tional Student t distribution F0.

Results

Logarithmic score CRPS
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The MP estimator dominates the other methods by a wide
margin with divergences very close to zero, and little varia-
tion across replicates.

6. Case study

Markov switching AR model for one quarter ahead forecasts
of quarterly growth rates of U.S. GDP, 1996-2014,

Yt = ν + αYt−1 + εt, (8)

where εt ∼ N (0, η2
st) and st ∈ {1, 2} is a discrete state vari-

able. Conditional on θi, the predictive distribution in (8) is
Gaussian, but F0 is not.
As F0 is unknown, we are unable to compute dS(F̂m, F0).
Instead, we compare predictive performance of approxima-
tion methods across multiple chains.

Logarithmic score CRPS
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MP approximated scores display the smallest variation
across chains for all sample sizes. KDE performs poorly
for small sample sizes, and is dominated by the empirical
CDF-based approximation in case of the CRPS.

7. Discussion

Theoretical and practical implications:

•We derive conditions for consistency of various approxi-
mation methods.

•CRPS requires less stringent regularity assumptions
compared to LogS.

•MPE works best, KDE is problematic for LogS, Gaussian
approximations are generally problematic.

All details are available in Krüger et al. (2016). Consid-
erations presented here have been implemented in the R
package scoringRules (Jordan et al., 2017) that provides
functions to efficiently compute scoring rules for many para-
metric distributions, and forecasts given as simulated sam-
ples.
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