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Abstract

Often, interest in forecast evaluation focuses on certain regions of the whole potential

range of the outcome, and forecasts should mainly be ranked according to their perfor-

mance within these regions. A prime example is risk management, which relies on fore-

casts of risk measures such as the value-at-risk or the expected shortfall and hence requires

appropriate loss distribution forecasts in the tails. Further examples include weather fore-

casts with a focus on extreme conditions, or forecasts of environmental variables such as

ozone with a focus on concentration levels with adverse health effects.

In this paper we show how weighted scoring rules can be used to this end, and in par-

ticular that they allow to rank several potentially misspecified forecasts objectively with

the region of interest in mind. This is demonstrated in various simulation scenarios. We

introduce desirable properties of weighted scoring rules and present general construction

principles based on conditional densities or distributions and on scoring rules for proba-

bility forecasts. In our empirical application to log-return time series all forecasts seem to

be slightly misspecified, as is often unavoidable in practice, and no method performs best

overall. However, using weighted scoring functions the best method for predicting losses

can be identified, which is hence the method of choice for the purpose of risk management.

Keywords. financial time series, predictive performance, probabilistic forecast, locally proper weighted

scoring rule, misspecified forecast, rare and extreme events, risk management

1 Introduction

Generating and evaluating forecasts is a central task in many scientific disciplines such as macroeco-

nomics and finance (Elliott and Timmermann, 2016) or climate and weather research (Casati et al.,

∗Corresponding author. Prof. Dr. Hajo Holzmann, Fachbereich Mathematik und Informatik, Philipps-

Universität Marburg, Hans-Meerweinstr., 35043 Marburg, Germany
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2008). While point forecasts for parameters such as the mean or a quantile are more frequently issued

(Gneiting, 2011), probabilistic forecasts in the form of predictive distributions are most informative

and generally preferable (Dawid, 1984). Comparisons of distinct forecasts should be based on proper

scoring rules (Gneiting and Raftery, 2007), which encourage the forecaster to be honest and make

careful assessments according to her true believes.

Often, interest focuses on certain regions of the whole potential range of the outcome. As a conse-

quence, forecasts should mainly or even exclusively be ranked according to their performance within

these regions, while outside they are only of minor or no interest.

A prime example is short-term risk management, which relies on forecasts in the form of risk measures

such as value-at-risk or expected shortfall (Nolde and Ziegel, 2017; McNeil, Frey and Embrechts, 2005)

that summarize tail properties of the loss distribution. Hence forecasts of risk measures typically

are preceded by forecasts of the profit-and-loss distribution, the quality of which should therefore

be assessed in its lower tail. For regulatory purposes and in particular the evaluation of capital

requirements, it is finally the value of the risk measure itself that matters. However, the overall

quality of the forecast of the profit-and-loss distribution, in particular in its lower tail, is also of

interest, and rankings of distinct forecasting schemes that rely directly on the loss distribution thus

do not depend on the choice of the risk measure, be it VaR, expected shortfall or expectile (Holzmann

and Klar, 2017b).

Examples for the use of weighted scoring rules in a risk-management context are De Nicolò and

Lucchetta (2017), who evaluate the performance of multi-period forecasts of indicators of real and

financial risks over the left tail, as well as Opschoor et al. (2017), who use focused scoring rules in the

context of measuring downside risk in equity markets.

In our empirical application we consider daily log-returns of the S&P 500 index as well as the Deutsche

Bank stock over the period from January 1, 2009 until December 31, 2016. During this time span, for

the Deutsche Bank series about 10% of the log-returns are below −3%. Fig. 1 shows the series from

2009 - 2011, which includes the volatile period after the financial crisis with large negative, but also

large positive returns. For the purpose of risk management and the computation of risk measures,

accurate forecasts of the lower tail of the distribution below say −3% are paramount. Choosing the

forecasting method directly based on the loss distribution with emphasis on the lower tail allows

flexibility concerning the subsequent specification of the risk measure.

Another economic example is the evaluation of inflation forecasts (Gneiting and Ranjan, 2011) when

taking into account inflation targets. For example, the Bank of England sets the inflation target at 2%,

in case of inflation rates below 1% as well as above 3% it must write an open letter to the Chancellor

of the Exchequer (Bank of England, 2017). Thus, if emphasis in inflation forecast evaluation is on

missing the target by more than 1%, it is natural to focus on the two-sided range outside the interval

from 1% to 3%.

As for GDP growth, China sets a minimum of 6.5% in its 13th five-year plan from 2015 (Giesbergen,

2017), whereas most developed countries do not fix formal targets for GDP growth rates. However,

nominal GDP targeting is discussed as a potential policy rule in the popular press, where sometimes

rates between 2% and 4% are considered ideal for sustained growth in developed countries. Markedly

lower growth rates indicate recessions, while much higher rates may indicate some kind of bubble.
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Figure 1: Log returns of Deutsche Bank shares, January 1, 2009 - December 31, 2010

Moreover, nominal GDP targeting has recently gained attention among academics, as can be seen in

Gaŕın et al. (2016) or Billi (2016). Thus, there may be reasons for evaluating GDP forecasts with

focus on specific regions.

There is also an interest in evaluating weather forecasts with a focus on severe weather conditions like

extreme winds, temperatures or rainfall. For example, Haiden et al. (2014) consider 10-metre wind

speeds above the 98% quantile of the climatology corresponding to a threshold of 16 m/s.

Further, in environmental science, Pisoni et al. (2011) state that “over-threshold event forecasting

is of paramount importance in the monitoring of environmental variables, such as those related to

air pollution”. For example, for Ozone gas concentrations at ground level the threshold is set as

the maximum daily eight-hour average, with a target value of 120 µg/m3 by EU Directive 2008/50.

Formally, the target value should not be exceeded on more than 25 days a year, but evidently the

magnitude of exceedance should also be taken into account to judge the effects on human health.

To accommodate forecast comparisons with scoring rules by including regions of interest, Amisano

and Giacomini (2007) introduced a weighted version of the logarithmic score S(p, x) = −w(x) log p(x),

where w(x) is the weight function such as w(x) = 1{x ∈ A} for some set A, and p(x) is the forecast

density. However, as observed in Diks et al. (2011) and Gneiting and Ranjan (2011), this is not a

proper scoring rule. Indeed, it favors forecasts which put more mass into the region of interest than

does the true conditional distribution. As a remedy, Diks et al. (2011) proposed the conditional and

the censored likelihood rules, which depend on weight functions but are proper scoring rules, while

Gneiting and Ranjan (2011) developed weighted versions of the continuous ranked probability score

(CRPS). Pelenis (2014) defined and discussed relevant theoretical properties of weighted scoring rules.

In this paper we propose a general construction principle for strictly locally proper weighted scoring

rules based on conditional densities or distributions and on scoring rules for probability forecasts. We

show how the likelihood-based weighted scoring rules from Diks et al. (2011) and Pelenis (2014) fit

this framework and how they are related. Further, our method gives rise to strictly locally proper

weighted versions of the continuous ranked probability score and more general potentially multivariate

energy scores (for the latter, see the supplementary material Holzmann and Klar (2017a)).
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We further argue that weighted scoring rules are mainly useful for comparing distinct misspecified

forecasts. If interest focuses on a region A, a weighted scoring rule allows to ignore possible problems

or advantages of the density forecast outside of A. Thus, even if a density forecast performs poorly

outside of A but well on A, it is useful to us if we only focus on the region A, indeed as useful as another

density forecast which performs well overall. Slightly misspecified forecasts are certainly the rule rather

than the exception (Patton, 2017). For example, in our empirical study we use GARCH(1,1)-models

for the log-return series with normal, t and skew-t innovation distributions, all of which seem to be

slightly misspecified. In this simple situation it might be possible to achieve better fits and predictions

with more sophisticated models, but in more complex settings one is typically confined to a small

set of benchmark models. When focusing on regions of interest such misspecified models can still be

ranked in a reasonable way for the application at hand.

On a more formal level, for hypothesis testing based on score differences (Diebold and Mariano, 1995),

we argue that using a weighted scoring rule introduces a censoring mechanism, in which the form of the

density is irrelevant outside the region of interest. For the resulting testing problem with composite

null - and alternative hypotheses based on i.i.d. observations, the optimal test uses score differences

based on the censored likelihood rule of Diks et al. (2011), see Holzmann and Klar (2016).

The paper is organised as follows. After a motivating illustration, in Section 2 we present our theoretical

results on the construction of weighted scoring rules, and briefly discuss the relation to censoring and

hypothesis testing. Section 3 illustrates the findings in a simulation study, while Section 4 gives

an empirical application to financial time series data. Section 5 concludes. Some proofs are given

in an Appendix, while further technical details, examples and simulation results are deferred to the

supplementary material Holzmann and Klar (2017a).

2 Weighted scoring rules

2.1 Motivation

Let us first illustrate the use of weighted scoring rules in Diebold-Mariano tests for equal forecast

performance (for details, see Subsection 2.4), and how they allow to focus interest on subregions

{x ≥ r}, r > 0 some fixed threshold, of the whole potential domain of the outcome variable x. For

example, observations could correspond to losses, and an investment bank or financial corporation

wants to predict losses or extreme losses in their portfolio for regulatory purposes. Consider the

following stylized scenario, where the aim is to distinguish between two competing forecasts.

Scenario A: Forecast 1: Fhlt vs. Forecast 2: Fhrt.

Here, Fhlt denotes a piecewise defined distribution with continuous density and heavy left tail, consist-

ing of a scaled t4-distribution on (−∞, 0] and a standard normal distribution on (0,∞). Conversely,

Fhrt denotes a piecewise defined distribution with continuous density and heavy right tail, consisting of

a standard normal distribution on (−∞, 0] and a scaled t4-distribution on (0,∞). The data-generating

process is given by independent standard normally distributed observations with sample size n. We

apply the two-sided Diebold-Mariano test of equal predictive performance, nominal level α = 0.05,

based on the following scoring rules. If p denotes the predictive density, we employ first the standard
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Figure 2: Scenario A. The null hypothesis of equal predictive performance of Fhlt and Fhrt is tested

under a standard normal population. The plot shows the frequency of rejections in two-sided Diebold-

Mariano test in favor of Fhlt for the likelihood and the censored likelihood scoring rule for sample size

n = 100.

logarithmic score Sl(p, x) = − log p(x), which of course does not depend on any threshold. Second we

use the censored likelihood rule from Diks et al. (2011) at threshold r, that is, with weight function

w(x) = 1{x ≥ r}, so that

SCSL(p, x; r) =

{
− log p(x), if x ≥ r,

− log
(
1−

∫ r
−∞ p(z)dz

)
, if x < r.

Note that SCSL(p, x; r) takes into account the form of the density p only for observations x ≥ r above

the threshold, below it relies on the total mass
∫ r
−∞ p(z)dz.

Fig. 2 shows the proportion of rejections of the null hypothesis of equal predictive performance in favor

of Fhlt as a function of the threshold value r. Without restricting attention to a subregion of interest,

i.e. for r = −∞, by symmetry both forecasts equally strongly deviate from the (true) standard normal

distribution, and neither of them should be rejected in favor of the other. However, for r > 0, Forecast

1 coincides with the standard normal distribution, and Forecast 2 should be rejected. The rejection

frequencies in favor of Fhlt of the logarithmic scoring rule is around 0.025, as this is the proportion

of tests that reject the null hypothesis at the 5% level and that additionally have a test statistic that

indicates that Fhlt is better. Clearly, the rejection frequency of 0.025 for the logarithmic scoring rule

does not depend on r.

In contrast, the rejection frequencies of the censored likelihood rule increase for threshold values larger

than -2.5, and reach a plateau for values larger than -0.5 at a rejection level of about 0.6. The censored

likelihood rule thus allows to focus on the region of interest {x ≥ r}, where for r close to or greater

than zero the forecast Fhlt is evidently preferable over Fhrt. We will take a closer look at this example

in section 3.
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2.2 Weighted scoring rules for density forecasts

In economic applications, point forecasts such as mean or quantiles are most prominent, but if the

target is a complete forecast distribution, it is issued in the form of a density forecast (Elliott and

Timmermann, 2016).

Thus, in this section we investigate weighted scoring rules for density forecasts, and consider the general

case in the next subsection. We shall work over an abstract measurable space (X ,F), endowed with

a σ-finite measure µ and consider a family P of probability densities w.r.t. µ on (X ,F). Continuous

observations are the main example, where X corresponds to the real numbers or to Rd, and where µ is

the Lebesgue measure. However, an at most countable set X formally endowed with counting measure

also fits this framework.

In terms of density forecasts, a scoring rule is a map S : P × X → R, where we denote R = R ∪ {∞},
for which for every p ∈ P the map x 7→ S(p, x) is quasi-integrable for every q ∈ P, and for which

S(p, q) =

∫
X
S(p, x) q(x) dµ(x) > −∞ and S(q, q) ∈ R

for every p, q ∈ P. A scoring rule is called proper if

S(p, q) ≥ S(q, q), q, p ∈ P, (1)

and it is called strictly proper if it is proper and if there is equality in (1) if and only if p = q µ-almost

everywhere. Note the normalization: S(p, x) denotes the loss, and we aim to minimize the expected

loss.

We shall consider scoring rules which depend on weight functions, i.e. measurable functions w : X →
[0, 1], and use notation and terminology which is closely related to that of Pelenis (2014). Write

S(p, x;w), so that a weighted scoring rule is a map S : P × X × W → R such that S(·, ·;w) is a

scoring rule for each w ∈ W, where W is a set of weight functions. The weighted scoring rule is called

localizing if

S(h, x;w) = S(p, x;w) for µ− a.e. x ∈ X if p = h µ− a.e. on {w > 0}, p, h ∈ P, (2)

where we use the notation {w > 0} = {x ∈ X : w(x) > 0}. Thus, a localizing weighted scoring rule

only depends on the values of the forecast densities on the set {w > 0} for each w ∈ W. Integrating

(2) we find that

S(h, q;w) = S(p, q;w) if p = h µ− a.e. on {w > 0}, p, q, h ∈ P.

In particular, if the localizing weighted scoring rule S is also proper, i.e. S(·, ·;w) is proper for each

w ∈ W, it is called a localizing proper weighted scoring rule, implying

S(h, q;w) ≥ S(q, q;w) = S(p, q;w) if p = q µ− a.e. on {w > 0}, p, q, h ∈ P. (3)

Further, a localizing proper weighted scoring rule is called strictly locally proper if S(p, q;w) =

S(q, q;w) implies p = q on {w > 0} µ-a.e., p, q ∈ P, and it is called proportionally locally proper

if S(p, q;w) = S(q, q;w) if and only if p = c q on {w > 0} µ-a.e., for some constant c > 0 which
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depends on p, q ∈ P. Let us stress that strictly locally proper is not a special case of proportionally

locally proper, these properties for a localizing proper weighted scoring rule are mutually exclusive.

Note that Pelenis (2014) does not use the pointwise concept of a localizing weighted scoring rule as

in (2), but rather takes (3) as starting point. Our requirement (2) is natural, however, and is indeed

satisfied for the rules discussed below.

Next we shall construct weighted scoring rules which satisfy the properties defined above. To this end,

assume that the class of densities P and the class of weight functions w ∈ W are such that∫
X
p(x)w(x) dµ(x) =:

∫
pw > 0.

For p ∈ P, w ∈ W we let

pw(x) =
w(x) p(x)∫

w p

denote the renormalized density of p w.r.t. w. For formulating the next result, let P̃ be another class

of densities such that pw ∈ P̃ for every w ∈ W, p ∈ P. We show how to construct proportionally

locally proper weighted scoring rules from strictly proper scoring rules. Gneiting (2011), Theorem 5,

has a version of this result for scoring functions for evaluating forecasts of certain functionals. This

connection is further discussed in Example 2.

Theorem 1. Let S̃ : P̃ × X → R be a proper scoring rule. Then

S : P × X ×W → R, S(p, x;w) = w(x) S̃(pw, x)

is a localizing proper weighted scoring rule. Further, if S̃ is strictly proper, then S is proportionally

locally proper.

The reason why the scoring rule S can be at most proportionally locally proper is that the weighted

density pw depends on p only up to proportionality on the set {w > 0}.

Example 1. If applied to the logarithmic score Sl(p, x) = − log p(x), Theorem 1 yields

Sl(p, x;w) = −w(x) log pw(x)

= −w(x) log p(x) + w(x) log
( ∫

pw
)
− w(x) logw(x)

= SCL(p, x;w)− w(x) logw(x),

(4)

the conditional likelihood rule suggested by Diks et al. (2011) up to a normalizing term which does

not depend on the forecast density p. Here, we set 0 log(0) = 0 log(∞) = 0. It is remarkable that

even though evaluation of the conditional likelihood rule SCL requires evaluation of the integral
∫
pw,

which in case of w(x) = 1{x ∈ A} amounts to the probability P (A) under p, this scoring rule is only

proportionally locally proper and thus insensitive to this probability. Theorem 1 can also be applied

to the Hyvärinen score from Hyvärinen (2005), see the supplementary material Holzmann and Klar

(2017a) for details. �

In the following example we relate Theorem 1 to the evaluation of point forecasts.
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Example 2. Suppose that the aim is to predict a functional T : P → R, such as the mean. A scoring

function S(t, x) is consistent for T if

S
(
T (p), p

)
≤ S

(
t, p
)

for all t ∈ T (P), p ∈ P,

and it is strictly consistent if it is consistent and there is equality only if t = T (p). Gneiting (2011),

Theorem 3, points out that if S is consistent for T , then ST (p, x) = S
(
T (p), x

)
is a proper scoring

rule for the density forecast p. In this fashion, Theorem 1 can also be applied to scoring functions, the

formal result being Theorem 5 in Gneiting (2011).

This construction amounts to applying the original functional T not to p but to the weighted density

pw. For example, if T is the mean and w(x) = 1{x ≥ r} we would focus interest still on the mean,

but of the conditional distribution above the threshold r. Apparently, for point forecasts, this does

not properly resolve the issue of focusing on a region of interest in the evaluation, since it is unclear

whether the forecaster was required to report T (p) or rather T (pw) and in contrast to the situation

with probabilistic forecasts, T (pw) cannot be determined from T (p) (as can pw from p). �

Proportionally locally proper weighted scoring rules do not evaluate the normalization constant
∫
pw.

However, they can be turned into strictly locally proper weighted scoring rules by adding a weighted

scoring rule based on probability forecasts, as shown in the following theorem.

Theorem 2. Let s(α, z) be a strictly proper scoring rule for the success probability α ∈ (0, 1) of a

binary outcome variable z ∈ {0, 1}. Then

Ss(p, x;w) = w(x) s

(∫
pw, 1

)
+ (1− w(x)) s

(∫
pw, 0

)
(5)

is a localizing proper weighted scoring rule for the density forecast p. Further, if S(p, x;w) is a pro-

portionally locally proper weighted scoring rule, then

Ŝ(p, x;w) = Ss(p, x;w) + S(p, x;w)

is strictly locally proper.

Selecting different scoring rules s(α, z) in Theorem 2 yields various ways to turn a proportionally

locally proper weighted scoring rule such as the conditional likelihood rule SCL into a strictly locally

proper weighted scoring rule. Let us illustrate the choices used in the literature to modify SCL.

Example 3. The scoring rule for a binary outcome defined by

s̄(α, z) = −z
(

logα+ 1
)

+ α, α ∈ (0, 1), (6)

is strictly proper. To see this, let

s̄(α, β) = β s̄(α, 1) + (1− β) s̄
(
α, 0

)
, β ∈ (0, 1).

Then, we have that

s̄(α, β)− s̄(β, β) = β
(α
β
− 1− log(α/β)

)
≥ 0,
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since log x ≤ x− 1, with equality if and only if x = 1, that is α = β. Moreover,

Ss̄(p, x;w) = −w(x)
(

log

∫
wp
)
− w(x) +

∫
w p,

and a simple computation shows that

Ss̄(p, x;w) + SCL(p, x;w) = SPWL(p, x;w)

where

SPWL(p, x;w) = −w(x) log p(x)− w(x) +

∫
pw,

the penalized weighted likelihood rule by Pelenis (2014). It has the attractive property of being linear

in the weight function. Hence, if density forecasts p, q are compared and p is preferred over q in terms

of the PWL score for both weight functions w1 and w2, then it is also preferred for the weight function

w1 + w2. This is coined preference preserving by Pelenis (2014). �

Example 4. For the logarithmic scoring rule sl(α, z) = −z logα − (1 − z) log(1 − α) for a binary

outcome we have that

sl(α, z) = s̄(α, z) + s̄(1− α, 1− z),

where s̄(α, z) is defined in (6), and one obtains the censored likelihood rule of Diks et al. (2011),

SCL(p, x;w) + Ssl(p, x;w) = SPWL(p, x;w) + Ss̄(p, x; 1− w)

= −w(x) log p(x)−
(
1− w(x)

)
log
(
1−

∫
wp
)

= SCSL(p, x;w). (7)

The penalized likelihood rule by Pelenis (2014) is “between” the conditional and the censored likelihood

rules in terms of average score differences, as follows. Let p, q, h ∈ P, and assume that p = q µ a.e. on

{w > 0}. Then

SCSL(h, q;w)− SCSL(p, q;w) ≥SPWL(h, q;w)− SPWL(p, q;w)

≥SCL(h, q;w)− SCL(p, q;w),

where both inequalities are strict if and only if
∫
pw 6=

∫
hw. We shall further compare their behaviour

in the simulation section. �

2.3 Weighted scoring rules: The general case and applications to the con-

tinuous ranked probability score

The continuous ranked probability score (CRPS) is a strictly proper scoring rule which uses distribution

function forecasts rather then density forecasts. It has become a widely used tool in climatological

and weather forecasting, e.g. for statistical postprocessing of forecast ensembles (Gneiting et al., 2005;

Thorarinsdottir and Gneiting, 2010). See also Casati et al. (2008) for an overview.
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In order to develop and discuss weighted versions of the CRPS and more general energy scores (Gneiting

and Raftery, 2007), we introduce a framework which considers forecast distributions rather than just

density forecasts.

To this end, let M be a family of distributions, e.g. probabilities on the observational space (X ,F).

Call a scoring rule a map S : M× X → R, for which for every P ∈ M the map x 7→ S(P, x) is

quasi-integrable for every Q ∈M, and for which

S(P,Q) =

∫
X
S(P, x) dQ(x) > −∞ and S(Q,Q) ∈ R

for every P,Q ∈ M. It is proper if S(P,Q) ≥ S(Q,Q), P,Q ∈ M, and strictly proper if there is

equality if and only if P = Q. Once again, for a family of weight functions W, a weighted scoring rule

is a map S :M×X ×W → R such that S(·, ·;w) is a scoring rule for each w ∈ W. In this context,

and slightly deviating from (2), we call S localizing if for any P,Q ∈M,

∀ F ∈ F : P
(
{w > 0} ∩ F

)
= Q

(
{w > 0} ∩ F

)
=⇒ S(P, x;w) = S(Q, x;w) for all x ∈ X , (8)

the condition meaning that the restrictions of P and Q to {w > 0} coincide.

A localizing proper weighted scoring rule is called strictly locally proper if S(P,Q;w) = S(Q,Q;w)

already implies that the restrictions of P and Q to {w > 0} coincide, P,Q ∈ M, and it is called

proportionally locally proper if S(P,Q;w) = S(Q,Q;w) if and only if for all F ∈ F , P
(
{w > 0}∩F

)
=

cQ
(
{w > 0} ∩ F

)
for some constant c > 0 which depends on P,Q ∈M.

In this more general framework, the statements of Theorem 1 and its application to functionals as in

Example 2, as well as the second part of Theorem 2 remain valid. To formulate the result, assume

that for all w ∈ W and P ∈M we have that
∫
w dP > 0, and set

dPw(x) =
w(x) dP (x)∫

w dP
,

the probability distribution with density proportional to w w.r.t. P , which is assumed to belong to

the family M̃.

Theorem 3. (i) Let S̃ : M̃ × X → R be a proper scoring rule. Then

S :M×X ×W → R, S(P, x;w) = w(x) S̃(Pw, x)

is a localizing proper weighted scoring rule. Further, if S̃ is strictly proper, then S is propor-

tionally locally proper.

(ii) Let s(α, z) be a strictly proper scoring rule for the success probability α ∈ (0, 1) of a binary

outcome variable z ∈ {0, 1}. Then

Ss(P, x;w) = w(x) s
(∫

w dP, 1
)

+
(
1− w(x)

)
s
(∫

w dP, 0
)
. (9)

is a localizing proper weighted scoring rule for the probability forecast P .

(iii) If Ss(P, x;w) is as in (9) and if S(P, x;w) is a proportionally locally proper weighted scoring

rule, then

Ŝ(P, x;w) = Ss(P, x;w) + S(P, x;w)

is strictly locally proper.
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The proof of this theorem is deferred to the supplementary material Holzmann and Klar (2017a).

Example 5. On the real line we identify probability distributions P with the associated distribution

functions F (x) = P
(
(−∞, x]

)
, x ∈ R. Now, for a family of distribution functions P on the real line

with finite first moment, the continuous ranked probability score (CRPS) is given by

CRPS(F, x) =

∫ ∞
−∞

(
F (z)− 1{x ≤ z}

)2
dz, F ∈ P, (10)

see Matheson and Winkler (1976), and it can be evaluated as

CRPS(F, x) = EF
∣∣x−X∣∣− 1

2
EF
∣∣X ′ −X∣∣, (11)

where X,X ′ are independent copies distributed according to F (Gneiting and Raftery, 2007). There

is an obvious interest in evaluating weather forecasts with a focus on severe weather conditions like

extreme winds or temperatures. For example, the weighted version of the CRPS as introduced in

Gneiting and Ranjan (2011) is mentioned as a possible means to do so by Haiden et al. (2014) in the

newsletter of the European Centre for Medium - Range Weather Forecasts.

Thus, let us discuss weighted versions of the CRPS. Given r ∈ R, for the weight function w(x) =

1{x > r} the weighted CRPS from Theorem 3, (i), is

wCRPS(F, x; r) = 1{x > r}
∫ ∞
r

(F (z)− F (r)

1− F (r)
− 1{x ≤ z}

)2

dz (12)

=
1{x > r}
1− F (r)

(
EF
(∣∣x−X∣∣ 1{X > r}

)
− 1

2(1− F (r))
EF
(∣∣X ′ −X∣∣ 1{min(X ′, X) > r}

))
.

If we complement it as described in Theorem 3, (ii), with the Brier score, then we obtain the strictly

locally proper version

wsCRPS(F, x; r) (13)

= 1{x > r}
[
F (r)2 +

∫ ∞
r

(F (z)− F (r)

1− F (r)
− 1{x ≤ z}

)2

dz
]

+ 1{x ≤ r}
(
1− F (r)

)2
.

Explicit forms in terms of the original distribution function are also possible when taking other indi-

cators of intervals as weight functions.

Theorem 3 also allows to obtain weighted versions of general, possibly multivariate energy scores,

which are defined in analogy to (11), but for which a representation in terms of Brier scores (10) does

not exist. Details can be found in the supplementary material Holzmann and Klar (2017a).

For the CRPS, Gneiting and Ranjan (2011) introduced different weighted versions than those proposed

in (13). Motivated by its representation in (10) as an integral over Brier scores, they proposed

twCRPS(F, x;w) =

∫ ∞
−∞

(
F (z)− 1{x ≤ z}

)2
w(z) dz (14)

for a measurable weight function 0 ≤ w(z) ≤ 1. This scoring rule remains proper for every w. Pelenis

(2014) shows that it is not a localizing weighted scoring rule if the class of weight functions contains

indicators of compact intervals w(x) = 1{a ≤ x ≤ b}, a < b.

However, we have the following result, which is hinted at in Pelenis (2014, p.16).
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Theorem 4. For the class of one-sided weight functions

Wos =
{
w(x) = 1{x > r}, r ∈ R

}
∪
{
w(x) = 1{x < r}, r ∈ R

}
,

the weighted CRPS in (14) is a localizing and strictly locally proper scoring rule.

Note that the weight functions w(x) = 1{x ≥ r} and w(x) = 1{x > r} yield the same weighted scoring

rule in (14), but not necessarily in (13) (e.g. Theorem 3). Let us also point out that Pelenis (2014)

proposes a variant of the weighted CRPS in (14) called incremental CRPS. When well-defined, it is

localizing and actually strictly locally proper, but the defining integral is infinite for one-sided weight

functions w(x) = 1{x ≥ r}.

Finally, let us mention that for continuous distribution functions F , the CRPS can also be written in

terms of quantile forecasts as

CRPS(F, x) =

∫ 1

0

QSα
(
F−1(α), x

)
dα, QSα(q, x) = 2

(
1x<q − α

)
(q − x),

and where F−1 is the quantile function of F . For a weight function v : (0, 1) → [0, 1], Gneiting and

Ranjan (2011) define the quantile-weighted version of the CRPS as

QCRPS(F, x; v) =

∫ 1

0

QSα
(
F−1(α), x

)
v(α) dα.

This is not a weighted scoring rule and hence cannot be localizing in the sense of this paper, since the

weight function is not defined on the sample space R but rather on (0, 1). However, it satisfies another

interesting property. Assume that the distribution functions are strictly increasing on their support,

so that quantiles are unique and the quantile curve is continuous. If we choose v(α) = 1[r,1)(α),

r ∈ (0, 1), then QCRPS(G,F ; v) = QCRPS(F, F ; v) if and only if F−1(α) = G−1(α) for all α ∈ [r, 1).

Equivalently, F−1(r) = G−1(r), and the probability distributions associated with F and G coincide

on
[
F−1(r),∞). Thus, the quantile-weighted CRPS evaluates the forecast F on a forecast-dependent

region of interest. �

2.4 Weighted scoring rules and tests of equal forecast performance

Statistical testing of forecast equality with the so-called Diebold-Mariano test (Diebold and Mariano,

1995; Giacomini and White, 2006; Diebold, 2015), is based on normalized score differences as test

statistic. In a serially dependent setting with h-step ahead forecasts, one has time-dependent proba-

bilistic forecasts Ft and Gt for the observation xt+h. The Diebold-Mariano test statistic based on the

scoring rule S is then given by

T =

√
n
(
S̄F − S̄G

)
σ̂

, (15)

where S̄F = 1/n
∑n
t=1 S(Ft, xt+h), S̄G = 1/n

∑n
t=1 S(Gt, xt+h) and σ̂2 is an estimator of the long-run

asymptotic variance of the score differences. One possible choice for σ̂2 is

σ̂2 =

{
γ̂0 if h = 1,

γ̂0 + 2
∑h−1
j=1 γ̂j if h ≥ 2,

(16)
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where γ̂j denotes the lag j sample autocovariance of the sequence of score differences (Gneiting and

Ranjan, 2011; Lerch et al., 2017). Under the null hypothesis of a vanishing expected score difference

and some further regularity conditions, the test statistic T in (15) is asymptotically standard normally

distributed. When the null hypothesis is rejected in a two-sided test, F is preferred if the test statistic

T is negative, and G is preferred if T is positive.

Following Lerch et al. (2017) we interpret the Diebold-Mariano test when using weighted scoring

rules, and cast it into a framework in which two distributions (i.e. constant forecasts) are compared

for the special case of independent observations. Lerch et al. (2017) argue that if one density is the

true data-generating distribution, the optimal test is given by the Neyman-Pearson test. In terms

of score differences, this corresponds to the ordinary logarithmic score, which therefore is optimal in

this sense. Improvement by using weighted scoring rules can hence only be expected when comparing

two misspecified densities. However, in their simulations Lerch et al. (2017) find no such systematic

improvement.

Here we argue that for weight functions w(x) = 1{x ∈ A}, the aim is to ignore possible problems or

advantages of the forecast outside the region of interest A. Thus, even if a forecast distribution P

performs poorly outside of A but well on A, it is useful to us, indeed as useful as another forecast which

performs well overall. Further, if the focus is on the region A, such a forecast P is to be preferred to

a forecast Q which performs well ouside of A but poorly on A. This intended use of weighted scoring

rules is not brought to light in the simulations of Lerch et al. (2017): In their setting, interest focuses

on the right tail but all density forecasts compared are correctly specified in the left tail, and ignoring

that region does not result in an increased power.

Let P0, P1 be two competing forecast distributions with densities p0, p1 w.r.t. µ, and assume that

0 < P0(A), P1(A) < 1. The property (8) of localizing weighted scoring rules implies that the forecasts

are only relevant through their values on A. Thus testing using score differences with weight function

w(x) = 1{x ∈ A} amounts to testing

H0 : p = p0 µ− a.e. on A vs. H1 : p = p1 µ− a.e. on A (17)

for the unknown true density p. Hence, we have composite null and alternative hypotheses arising from

a censoring of the forecasting distributions. The density forecast p is only relevant for the hypotheses

through observations x ∈ A, for x 6∈ A only the total probability 1− P (A) matters.

Such hypotheses can be tested by score differences based on a localizing weighted scoring rule with

weight function w(x) = 1{x ∈ A}, and it can be shown that the weighted scoring rule leading to

optimal power properties in this framework is the censored likelihood rule of Diks et al. (2011), see

Holzmann and Klar (2016) for formal statements and proofs. The testing performance will be further

investigated in the subsequent section.

3 Simulations

In this section, we consider simulation settings similar to those in Diks et al. (2011) and Lerch et al.

(2017). Suppose that at time t = 1, . . . , n, the observations xt are independent standard normally
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scoring rule proper strictly localizing strictly proportionally

proper locally proper locally proper

unweighted
CRPS yes yes no - -

LogS yes yes no - -

weighted

CSL yes - yes yes no

PWL yes - yes yes no

CL yes - yes no yes

twCRPS yes - no (yes) no (yes) no

wCRPS yes - yes no yes

wsCRPS yes - yes yes no

Table 1: Summary of properties of unweighted and weighted scoring rules. The entry no (yes) for

twCRPS indicates that it is localizing and strictly locally proper for the one-sided weight functions

used in the simulations, but not in general.

distributed. We apply the two-sided Diebold-Mariano test of equal predictive performance, nominal

level α = 0.05, using the variance estimate in (16) with h = 1. As nonparametric alternative, we also

apply the two-sided Wilcoxon signed-rank test, nominal level α = 0.05, but defer those results to the

supplementary material Holzmann and Klar (2017a), to save space and also since the Wilcoxon test is

not easily transferred to dependent data. All results in this section are based on 10 000 replications.

We use the logarithmic score (LogS) and the continuous ranked probability score (CRPS) as typical

examples of unweighted scoring rules. As weighted scoring rules, we apply three likelihood based

scoring rules, namely, the censored likelihood rule (CSL), the penalized weighted likelihood rule (PWL),

and the conditional likelihood rule (CL). Further, we use the following CRPS based weighted scoring

rules: the threshold weighted continuous ranked probability score (twCRPS) defined in (14), wCRPS

defined in (12) and wsCRPS defined in (13). Table 1 gives a summary of the properties of these scoring

rules.

Suppose that we are only interested in the forecast quality on a subset of the support of the underlying

distribution. For example, interest may center on the positive real numbers or on the right tail of the

distribution. Hence, the tests under the weighted scoring rules are based on the indicator weight

function w(x) = 1{x ≥ r} in all simulations. Furthermore, we use sample size n = 100 throughout all

simulations.

Scenario A: As first example, we reconsider the scenario introduced in Section 2.1. In this scenario,

Forecast 1 is a piecewise defined distribution Fhlt with heavy left tail, whereas Forecast 2 is a piecewise

defined distribution Fhrt with heavy right tail.

Fig. 3 shows the proportion of rejections of the null hypothesis of equal predictive performance in

two-sided Diebold-Mariano tests as a function of the threshold value r in the weight function. The

upper (lower) panels show rejections in favor of Fhlt (in favor of Fhrt). In these and the following

plots, the left panels show rejections for likelihood based scoring rules, whereas the right panels show
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Figure 3: Scenario A. The null hypothesis of equal predictive performance of Fhlt and Fhrt is tested

under a standard normal population. The panels show the frequency of rejections in two-sided Diebold-

Mariano tests for likelihood based (left) and CRPS based (right) scoring rules. The upper (lower)

panels show rejections in favor of Fhlt (in favor of Fhrt).

rejections for CRPS based rules.

For r = −∞, both forecasts have the same distance from the (true) standard normal distribution, and

neither of them should be rejected in favor of the other. However, for r > 0, Forecast 1 coincides with

Φ, and Forecast 2 should be rejected.

As one would expect, the rejection frequencies in favor of Fhlt and in favor of Fhrt for the two non-

weighted scoring rules are around 0.025 (be aware of the different scaling of the lower panels!). Under

the likelihood based weighted scoring rules, CL and PWL have a very similar behavior for negative

values of r. They show a faster increase of the rejection frequencies in favor of Fhlt compared to CSL.

However, CL decreases to zero for large positive values of r. This is due to the fact that the effective

sample size, i.e. the number of observations exceeding r becomes very small with increasing threshold.

Concerning the CRPS based weighted rules, wCRPS and wsCRPS behave quite similarly for negative

and moderately positive values of r. Their rejection frequencies in favor of Fhlt have a first modal

value around r = −3, decrease until -2, and increase again. However, like CL, wCRPS decreases to

zero for large positive values of r.
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In this scenario, generally speaking the likelihood-based rules have higher power than the CRPS-based

rules. At least for r ≥ 0 this is certainly a desirable property.

Scenario B: A potential objection against Scenario A may be that Forecast 1 coincides exactly with

the data generating distribution for positive values of r which is rather unrealistic in applications.

Hence, we also consider the following modification, a smoothed version of Scenario A: denote the cdf

of a normal distribution with mean µ and standard deviation σ by Φµ,σ. Let

G(x) = Φ0,1/2(x) Φ(x) +
(
1− Φ0,1/2(x)

)
F4(x),

H(x) =
(
1− Φ0,1/2(x)

)
Φ(x) + Φ0,1/2(x)F4(x),

where F4 denotes the distribution function of the t-distribution with 4 degrees of freedom.

In Scenario B, we consider Forecast 1: G vs. Forecast 2: H.

In this scenario, both forecasts are different from the (true) standard normal distribution on each

observation window [r,∞). As in Scenario A, both forecasts have the same overall distance from the

standard normal for r = −∞, and neither of them should be rejected in favor of the other. However,

if one is only interested in the region [r,∞) for larger positive values of r, forecast G is close to Φ;

hence, H should be rejected.

Qualitatively, the results of all simulations for this scenario parallel the findings for Scenario A. Hence,

details are deferred to the supplementary material Holzmann and Klar (2017a).

Scenario C: Forecast 1: Φ vs. Forecast 2: Fhlt.

Here, Φ denotes the cumulative distribution function (cdf) of the standard normal distribution, and

Fhlt is defined as in Scenario A. Clearly, for positive values of r, Φ and Fhlt coincide.

Fig. 4 shows the proportion of rejections of the null hypothesis of equal predictive performance in

two-sided Diebold-Mariano tests as a function of the threshold value r in the weight function. The

upper (lower) panels show rejections in favor of Φ (in favor of Fhlt).

For r < 0, rejections in favor of the standard normal distribution represent true power, but if one is

interested in the region [r,∞) for positive r, both forecasts are identical, and neither of them should

be rejected.

Let us first look at the non-weighted scoring rules. They have rather different rejection frequencies in

favor of Φ when using the Diebold-Mariano test, with LogS well above CRPS.

Clearly, for large negative values of r, the rejection frequencies in favor of Φ of CSL, PWL and CL

coincide with those of LogS, but those of CL and PWL, which are nearly identical, decrease faster

to zero than for CSL. Similarly, for large negative values of r, the rejection frequencies in favor of Φ

of twCRPS, wCRPS and wsCRPS coincide with those of CRPS, but those of wCRPS and wsCRPS

decrease faster to zero than for twCRPS.

The rejection frequencies in favor of Fhlt have a peculiar and undesirable peak to the left of zero for

all likelihood based weighted scoring rules This is not the case for the CRPS based weighted rules.

Scenario D: Forecast 1: Φ vs. Forecast 2: G.

This scenario is a smoothed version of Scenario C. Here, G, defined in Scenario B, nowhere equals Φ

exactly, but is more similar to Φ for positive values of the threshold r than for negative ones.
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Figure 4: Scenario C. The null hypothesis of equal predictive performance of Φ and Fhlt is tested under

a standard normal population. The panels show the frequency of rejections in two-sided Diebold-

Mariano tests for likelihood based (left) and CRPS based (right) scoring rules. The upper (lower)

panels show rejections in favor of Φ (in favor of Fhlt).

Fig. 5 shows the proportion of rejections of the null hypothesis of equal predictive performance in

two-sided Diebold-Mariano tests as a function of the threshold value r in the weight function. The

upper (lower) panels show rejections in favor of Φ (in favor of G).

Formally, rejections in favor of the standard normal distribution represent true power, but if one is

interested in the region [r,∞) for positive r, both forecasts are quite similar. Qualitatively, most

results for this scenario parallel the findings for Scenario C, but the likelihood-based rules do no longer

have a much higher undesirable peak in the rejection frequency in favour of G for small, negative

values of r than the CRPS-based rules.

As general conclusion, we can state that the overall power of the likelihood based rules is higher than

that of the CRPS based rules in all scenarios. The faster increase in power of PWL and CL compared to

CSL in Scenarios A and B occurs for values of r for which nearly no observation is below the threshold.

Hence, this increase seems to be rather an artefact due to differences of the distribution functions at the

threshold. Furthermore, the undesirable behaviour of the CSL in Scenario C concerning the rejections

in favour of Fhlt vanishes under the more realistic Scenario D. Hence, the CSL is the overall preferable
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Figure 5: Scenario D. The null hypothesis of equal predictive performance of Φ and Fhlt is tested under

a standard normal population. The panels show the frequency of rejections in two-sided Diebold-

Mariano tests for likelihood based (left) and CRPS based (right) scoring rules. The upper (lower)

panels show rejections in favor of Φ (in favor of G).

scoring rule under the Diebold-Mariano test. Using the Wilcoxon signed-rank test the results are

overall comparable, but differ in some details. Except for the twCRPS, the CRPS-based rules show

some erratic behaviour in Scenarios A and B. The twCRPS has the undesirable spike for small negative

values of r in Scenario C, but not in D. In terms of power, the twCRPS is now competitive with

the likelihood-based rules, and has best overall performance under the Wilcoxon signed-rank test.

However, the Wilcoxon signed-rank test does not seem to be generally recommendable for testing for

equal forecast quality based on score differences. First, it may severely fail under temporal dependence

(Diebold and Mariano, 1995), second it sometimes reacts strongly to certain effects. For example, there

are sometimes larges spikes around zero due to the fact that F and G coincide in zero.

4 Empirical application

We apply the proposed forecasting rules to two time series of daily log returns xt = ln(Pt/Pt−1), where

Pt is the closing price on day t, adjusted for dividends and splits. We consider S&P 500 and Deutsche
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Figure 6: Empirical and theoretical density functions of the residuals of a GARCH(1,1)-model fitted to

the Deutsche Bank return series. For better visibility, left tail, center and right tail of the distribution

are displayed in separate panels.

Bank AG log-returns for a sample period running from January 1, 2009 until December 31, 2016,

giving a total of 2013 and 2033 observations. The data is publicly available and has been downloaded

from http://finance.yahoo.com. Since Yahoo finance data for Deutsche Bank partially includes

holidays, we removed all days with zero trading volume.

We define three forecast methods based on the following GARCH(1,1) model,

xt = µ+ σtzt, σ2
t = ω + α1(xt−1 − µ)2 + β1σ

2
t−1, (18)

using normal, t and skew-t distributions for the innovations to account for leptokurtosis and/or skew-

ness. Since a typical finding in empirical applications of GARCH models is that a normal distribution

for zt does not fully account for the kurtosis observed in stock returns, we may expect that the forecast

with t-distributed innovations gives better density forecasts.

To illustrate that all three methods are slightly misspecified, we start with a goodness-of-fit type

residual analysis on the full time series of Deutsche Bank log-returns. The GARCH residuals are

given by et = (xt− µ̂)/σ̂t, where µ̂ is the estimated mean, and σ̂t denotes the fitted volatility process.

Since the estimates for µ, ω, α1 and β1 are very similar for the three models, the resulting empirical

distributions of the residuals are visually nearly indistinguishable.

Hence, Fig. 6 only shows the kernel density estimate (created by the R function density) of the

residuals, when the GARCH parameters and hence the conditional standard deviations σ̂t are esti-

mated under normality assumption. Additionally, Fig. 6 shows the densities of a standard normal

distribution, the t-distribution with shape parameter 8.4 as obtained in the estimation process, and

the fitted skew-t-distribution with shape and skewness parameter 8.5 and 0.94, respectively.

At first sight, the empirical density looks fairly symmetric, and all three distributions seem to fit the

tails quite well, whereas the normal density is not sufficiently peaked in the center. Looking more
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Figure 7: Histograms of the probability integral transforms for the three models applied to the Deutsche

Bank returns.

closely, one actually finds regions in the right tail where the normal distribution fits better than t and

skew-t; thus, the advantage of the latter diminishes. In the center, the skew-t seems to yield a better

fit than the t distribution for values smaller than zero, and vice versa for positive values.

To evaluate the forecasting performance of the three methods, we use one-step-ahead density forecasts

with a rolling window scheme for parameter estimation done by maximum likelihood method using

R and the R package rugarch (Ghalanos (2014), R Core Team (2016)). The length of the estimation

window is set to be 500 observations, so that the number of out-of-sample observations equals 1513 and

1533. The histograms of the probability integral transforms (Diebold et al., 1998) for the Deutsche

Bank returns shown in Fig. 7 also indicate that all three forecasting mechanisms are somewhat

misspecified.

For comparing the density forecasts’ accuracy we apply the Diebold-Mariano test based on several

weighted and unweighted scoring rules. Localizing weighted scoring rules are particularly suitable for

comparing forecasts which are misspecified to a varying degree in distinct regions of interest. We

use the threshold weight function w(x) = 1{x ≤ r}, r = −1, 0, and w(x) = 1{x ≥ r}, r = 0, 1, and

additionally r = 3 and r = −3 for the Deutsche Bank returns. Hence we concentrate either on losses

or on gains when using the weighted scoring rules. The score difference is computed by subtracting

the score of the normal GARCH density forecast from the score of the t-GARCH density forecast,

so that positive values indicate better predictive ability of the forecast method based on Student-t

innovations, and similarly for normal vs. skew-t and t vs. skew-t innovations. The results for the S&P

500 and Deutsche Bank AG can be found in Tables 2 and 3, respectively.

On the whole, forecasts for the S&P 500 returns using a t or skew-t GARCH model are superior to

a normal GARCH model; using weighted scoring rules, we see that this holds especially for losses,

but only to a lesser extent for gains. In particular, the t GARCH model seems to be inferior to the

normal GARCH for the threshold weight function 1{x ≥ 1}. As can be seen in the lower panel of

Table 2, results are less clear cut between t and skew-t GARCH density forecasts depending on the
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w(x) 1{x ≤ −1} 1{x ≤ 0} 1{x ≥ 0} 1{x ≥ 1}
proportion 0.12 0.46 0.54 0.14

LogS 3.06 3.06 3.06 3.06

CRPS 1.07 1.07 1.07 1.07

normal GARCH CSL 2.13 2.72 0.51 -1.55

vs. t-GARCH PWL 2.15 2.85 1.00 -1.82

twCRPS -0.08 0.02 2.52 0.06

wsCRPS 2.12 -0.62 1.58 -1.26

LogS 3.25 3.25 3.25 3.25

CRPS 1.60 1.60 1.60 1.60

normal GARCH CSL 2.58 2.99 0.30 0.52

vs. skew-t-GARCH PWL 2.57 3.15 0.85 0.42

twCRPS 1.26 0.88 1.67 0.42

wsCRPS 2.19 -0.05 0.84 0.31

LogS 1.06 1.06 1.06 1.06

CRPS 0.87 0.87 0.87 0.87

t-GARCH CSL 1.82 1.27 -0.22 2.65

vs. skew-t-GARCH PWL 1.84 1.40 0.04 2.79

twCRPS 1.59 1.39 -0.62 0.78

wsCRPS 1.32 0.69 -0.99 1.53

Table 2: t-statistics for Diebold-Mariano test for equal predictive accuracy for S&P 500. Positive val-

ues indicate superiority of forecasts from the second method, while negative values indicate superiority

of forecasts from the first method.

weight function, with an overall advantage for the skew-t GARCH model.

For the Deutsche Bank returns, t and skew-t GARCH density forecasts are generally superior to a

normal GARCH model for all (weighted and unweighted) scoring functions, but again this holds to a

lesser extent for gains, as can be seen in Table 3. The lower panel shows that there is no significant

overall difference between t and skew-t GARCH density forecasts; however, the skew-t GARCH model

is significantly better for predicting losses whereas the t GARCH model is clearly superior for predicting

gains. As discussed in the introduction, the skew-t model is the model of choice for risk management

applications, independent of the specific risk measure.

In Holzmann and Klar (2017b) we further illustrate benefits of a semiparametric, extreme-value based

modeling of the distribution of the GARCH innovations, and also include rankings based on the

QCRPS from Section 2.3 as well as on quantile scores for various levels.

5 Discussion and conclusions

Lerch et al. (2017) discuss the so-called forecasters dilemma, in that forecasts are often only evaluated

in case that extreme events actually occur. They point out that such a restriction of forecast evaluation

to subsets of the available observations has highly unwanted effects, and it discredits even the best
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w(x) = 1{x ≤ r} w(x) = 1{x ≥ r}
r = −3 r = −1 r = 0 r = 0 r = 1 r = 3

proportion 0.096 0.30 0.50 0.50 0.32 0.092

LogS 2.43 2.43 2.43 2.43 2.43 2.43

CRPS 1.51 1.51 1.51 1.51 1.51 1.51

normal GARCH CSL 1.89 1.71 1.96 1.63 1.73 0.95

vs. t-GARCH PWL 1.85 1.69 1.99 1.66 1.78 0.94

twCRPS 1.34 0.89 0.65 1.08 1.21 0.83

wsCRPS 1.91 0.38 0.51 1.32 1.89 0.70

LogS 2.18 2.18 2.18 2.18 2.18 2.18

CRPS 1.22 1.22 1.22 1.22 1.22 1.22

normal GARCH CSL 2.01 1.97 2.06 0.74 1.12 0.23

vs. skew-t-GARCH PWL 1.96 1.94 2.13 0.83 1.18 0.24

twCRPS 1.55 1.25 0.84 0.48 0.66 0.25

wsCRPS 1.67 1.26 0.63 0.44 0.80 -0.25

LogS -0.61 -0.61 -0.61 -0.61 -0.61 -0.61

CRPS -0.70 -0.70 -0.70 -0.70 -0.70 -0.70

t-GARCH CSL 1.65 2.30 1.31 -2.10 -1.49 -1.76

vs. skew-t-GARCH PWL 1.66 2.20 1.60 -2.03 -1.46 -1.72

twCRPS 0.25 1.22 1.11 -1.88 -1.49 -1.11

wsCRPS 0.53 1.45 0.07 -1.79 -0.96 -0.91

Table 3: t-statistics for Diebold-Mariano test for equal predictive accuracy for Deutsche Bank AG.

Positive values indicate superiority of forecasts from the second method, while negative values indicate

superiority of forecasts from the first method.

possible forecast, i.e. the true conditional distribution.

Weighted scoring rules which remain proper are a valid decision-theoretic tool for emphasizing regions

of interest. We give a general construction method for such rules, and apply it in particular to the

continuous-ranked probability score, thus obtaining a novel weighted version of this popular scoring

rule.

Weighted scoring rules are particularly useful for ranking misspecified forecasts. Indeed, if a forecast,

although misspecified, works well on the region of interest A (but potentially very poorly outside of A),

it will be found superior to another forecast with poor performance on A (but potentially very good

performance outside of A). These considerations are confirmed for basically all the proper weighted

scoring rules that we use in our simulations.

Concerning the specific choice of the weighted scoring rule, the censored likelihood rule from Diks et al.

(2011) is preferable in terms of power properties. If stability is also an issue, or if forecast distributions

are given in terms of Monte Carlo output (Krüger et al., 2017), the twCRPS from Gneiting and Ranjan

(2011) as well as the wsCRPS proposed in this paper can also be recommended.

In our empirical illustration all forecasts are slightly misspecified, as is often unavoidable in practice.

While it is inferior to normal and t distributions for gains, the skew-t distribution works best for

predicting losses, and hence is the method of choice for the purpose of risk management.
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Appendix A Proofs

Proof of Theorem 1. By Definition, S(p, x;w) depends on p only through pw, and hence on p only on

{w > 0}, thus, S(p, x;w) is localizing. Further, we have

S(p, q;w) =

∫
qw(x) S̃(pw, x) dµ(x)

∫
qw

= S̃(pw, qw)

∫
qw.

Since S̃ is proper, S(p, q;w) is minimal in p for given q if pw = qw, which is implied by p = q. Hence

S(p, x;w) is proper. Further, S(p, q;w) = S(q, q;w) implies that S̃(pw, qw) = S̃(qw, qw). Hence, if S̃ is

strictly proper, this implies that pw = qw µ-a.e. But this holds if and only if the densities p and q are

proportional on {w > 0} µ-a.e. This concludes the proof.

Proof of Theorem 2. The rule Ss is localizing w.r.t. p since it depends only on
∫
pw. Further, it is

proper since

Ss(p, q;w)− Ss(q, q;w) = s
(∫

pw,

∫
qw
)
− s
(∫

qw,

∫
qw
)
≥ 0, (19)

where we used the notation

s(α, β) = βs(α, 1) + (1− β)s
(
α, 0

)
.
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Now, as a sum of two locally proper scoring rules the rule Ŝ is also a locally proper scoring rule.

Further, if

Ŝ(q, q;w) = Ŝ(p, q;w),

then necessarily S(q, q;w) = S(p, q;w) and Ss(q, q;w) = Ss(p, q;w) since both rules S(·, ·;w) and

Ss(·, ·;w) are proper. By assumption on S(·, ·;w), S(q, q;w) = S(p, q;w) implies that p = c q on w > 0.

From Ss(q, q;w) = Ss(p, q;w), (19) and the fact that s is strictly proper we get that
∫
pw =

∫
qw.

Since we assume
∫
qw 6= 0 and

∫
pw 6= 0, we get for the proportionality constant that c = 1 and hence

p = q µ-a.e. on w > 0, so that Ŝ is strictly locally proper.

Proof of Theorem 4. Consider a weight function w(x) = 1{x > r}, the other case is similar. Given two

distribution functions F,G ∈M we denote by µF and µG the corresponding probability measures. The

restriction µ̃F of µF to (r,∞), a sub-probability measure, has the sub-distribution function F̃ (x) =

F (x)− F (r), x ≥ r, and F̃ (x) = 0 otherwise, which uniquely determines this restriction. As x→∞,

we recover F (r) and hence F (x), x ≥ r from µ̃F . On the other hand, F̃ and hence F (x) for x ≥ r

uniquely determine µ̃F .

Thus if the restrictions of µF and µG to (r,∞) are equal, F (x) = G(x) for all x ≥ r, so that for all x,

twCRPS(F, x;w) =

∫ ∞
r

(
F (z)− 1{x ≤ z}

)2
dz =

∫ ∞
r

(
G(z)− 1{x ≤ z}

)2
dz = twCRPS(G, x;w),

and the weighted CRPS is localizing.

A computation shows that

twCRPS(F,G;w)− twCRPS(F, F ;w) =

∫ ∞
r

(
F (z)−G(z)

)2
dz.

Thus if twCRPS(F,G;w) = twCRPS(F, F ;w), F (x) = G(x) for Lebesgue-almost all x ≥ r, and by

right continuity of F and G, the equality holds for all x ≥ r. From the discussion above, this implies

that the restrictions of µF and µG to (r,∞) are equal.

26


