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Introduction
To simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural changes, we introduce a time-varying parameter mixed-frequency VAR (MF-VAR). To keep our approach from becoming
too complex, we implement time variation parsimoniously: only the intercepts and a common factor in the error variances vary over time. We can therefore estimate moderately large systems in a reasonable amount of
time making our modifications appealing for practical use. We further improve upon computational efficiency by exploiting gains from using sparse and block-banded matrix algebra as, for instance, in Chan (2015).
Furthermore, we complement the standard Minnesota prior setting to long-run priors as in Giannone et al. (2016). For eleven U.S. variables, we examine the performance of our model (and two intermediate variants), first
and foremost with respect to GDP forecasting, and compare them to the time-constant MF-VAR of Schorfheide and Song (2015). Our results demonstrate the feasibility and usefulness of our method.

Motivating Example – Restricting Time Variation
Our model lies “in-between” the time-constant MF-VAR of Schorfheide and Song (2015) and the fully
fledged time-varying model of Cimadomo and D’Agostino (2015), thereby handling the trade-off between
model flexibility and complexity
For an n = 3-dimensional (GDP, CPI, fed funds rate) system we compare our model with a fully
time-varying model⇒ n+ 1 instead of n+ n2p+ n(n+1)

2
time-varying quantities (p - lag length)

Table: Forecast Performance relative to a MF-VAR à la Primiceri (2005)

Horizon -1 0 1 2 3 4 5 6 7 8 9 10
Rel. RMSE 1.02 0.94 0.84 1.01 0.95 0.86 0.95 0.91 0.86 0.92 0.89 0.86
Rel. logPL -0.64 -0.19 0.04 0.19 0.18 0.23 0.18 0.25 0.14 0.11 0.16 -0.04
Note: -1 is a backcast, 0 and 1 are nowcasts, the remaining horizons refer to forecasts. More on forecast horizons later.

Rarely worse performance than the fully fledged MF-VAR⇒ time variation in the data seems to be
sufficiently covered by intercepts and (common) stochastic volatility

Table: Running Time relative to a MF-VAR à la Primiceri (2005)

n
p 3 4 6
3 42.9 34.4 10.6
6 33.9 16.4
12 25.0

Blank entries indicate the unrestricted model to run into computational problems⇒ moderately large
systems like we have in mind (n = 10 to 15) become practically infeasible to run

Our Modeling Framework – Two Blocks
Distinguish between a monthly and a “quarterly” part:[
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(potentially latent observations; observable ones denoted Ym,t and Yq,t)
Compactly (i.e., stacked over t), X = ΦZ + ΦT

c +U with u = vec(U) ∼ N (0,Ω⊗Ψ), where Ψ governs
“usual” cross-sectional and Ω serial structures (Chan, 2015)⇒ this Kronecker structure proves quite
useful for computational efficiency
Block I (dealing with the “incomplete” data given Block II):
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Block II (estimating the VAR parameters given Block I)
* Time-varying intercepts evolve as random walks: (Φmc,t,Φqc,t)

′ ≡ Φc,t = Φc,t−1 + νt, νt ∼ N (0, Q)
* Common stochastic volatilities evolve as AR(1) process: ht = ρht−1 + ηt, ηt ∼ N

(
0, σ2

h

)
and resulting model is nested

in u by setting Ω = diag (exp(h1), . . . , exp(hT ))

Priors and Hyperparameters
Minnesota (natural conjugate MNIW ) priors for Φ and Ψ implemented as in ...
I Banbura et al., 2010 (including prior on sum of coefficients)
I Giannone et al., 2016 (priors for the long run)

An initial state S0 is extracted by running the SSM (in a time-constant fashion) over a pre-sample (4 years)
Prior for Φc,1 is N(0, Q−1

0 ); Q ∼ IG
(
Q0, k

2
Q ·Q0 ·Ψ

)
, where kQ controls the amount of time variation

a-priori allowed for and Q0 corresponds to the length of the pre-sample (as in Primiceri, 2005)
ρ ∼ N

(
0.9, k2

V

)
I (|ρ| < 1); σ2

h ∼ IG (5, kS(5− 1)) as in Chan (2015)
We determine suitable values for the hyperparameters θ = (λ, kQ, kV , kS)′ by conducting a preliminary
analysis on a grid of values
I Choose the grid point that led to the best GDP forecast performance (this is our main goal) over the last H months
I In our application, we set H = 48 (i.e., 4 years), fix kV = 0.2 as well as kS = 0.01 (see Chan, 2015) and let

kQ =
{√

0.001,
√

0.01
}

λ = {0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 5}
I λ controls the tightness of the Minnesota prior, i.e., the relative importance of the prior beliefs w.r.t. the information in the data

Posterior Analysis
Conditional posterior distributions for ST , Q, ρ, σ2

h and hT are fairly standard
We sample Ψ marginally, and then vec(Φ)|Ψ:
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Empirical Analysis – Data & Setup
Three models to be compared with the benchmark MF-VAR of Schorfheide and Song (2015):
I The “full” one including time-varying intercepts (TVi) & common stochastic volatility (CSV), labelled TVi-MF-VAR-CSV
I The “intermediate” models including only one of the two features, i.e., TVi-MF-VAR and MF-CSV-CSV

Table: Data and Stylized Release Calendar

Series ID Transf. Pub-Lag Description
GDP Log 1 Qrt Real gross domestic product, sa
INV Log 1 Qrt Real gross private domestic investment, sa
GOV Log 1 Qrt Real government consumption expenditures and gross investment, sa
UNR 1/100 1 Mth Civilian unemployment rate, sa
HRS Log 1 Mth Index of aggregate weekly hours, sa
CPI Log 1 Mth Consumer price index for all urban consumers, sa
IPI Log 1 Mth Industrial production index, sa
PCE Log 1 Mth Personal consumption expenditures index, sa
FF 1/100 ./. Effective federal funds rate, nsa
TB 1/100 ./. 10-year treasury constant maturity rate, nsa
SP500 Log ./. S&P 500 stock index, adjusted close price, nsa
Note: GDP, INV and GOV are available on a quarterly basis, whereby second releases are considered; Data downloaded on the June 1st, 2017.

p = 6 monthly lags; 1986-1989 used as pre-sample; generally, 10000 draws as burn-in, 2000 retained;
forecasts assumed to be computed at the end of each month

Full Sample (1990:M1-2017:M7) Estimation

Focus on GDP; also consider the monthly targets
UNR and FF whenever possible
Conditional means: not fluctuations in the
(long-run) growth rates; rather, changes in the
intercept’s contribution between two points in
time

Figure: Time-Varying Intercepts

Note: Demeaned medians of the time-varying intercepts; multiplied by 100

Figure: Common Stochastic Volatility

Note: Medians of the common stochastic volatility in standard deviations

Figure: Monthly vs. Quarterly GDP Growth

Note: Growth rates of the medians of monthly GDP (including forecasts);
scaled by 3 to make them comparable to quarter-on-quarter rates

Much more movement in the monthly series due to
pronounced (common) stochastic volatility
Computation time: 41min vs. 26min.

Forecast Evaluation Exercise
Increasing sequence of est. samples: 1990:M1-2006:M5, . . ., 1990:M1-2017:M7; pseudo real-time; up
to twelve forecasts for each indicator; laws of motion for TVi and CSV imposed over forecast horizon
Forecast horizon: amount of months between a forecast is made and the end of the reference period
I Thus, for quarterly series hQ = −1, 0, . . . , 10 with hQ = −1 a backcast, hQ = 0, 1, 2 nowcasts and hQ ≥ 3 forecasts
I For the monthly series, publication delays are shorter s.t. hM ≥ 0 for some series (e.g., IPI) or hM ≥ 1 for others (e.g., FF)

Relative (to MF-VAR) RMSE’s and logPL’s considered to assess point and density forecast accuracy

Only results with standard Minnesota priors displayed (work somewhat better than long-run priors)

Table: Forecast performance relative to the MF-VAR of Schorfheide and Song (2015)

Horizon -1 0 1 2 3 4 5 6 7 8 9 10
GDP

R
M

S
E

’s TVi-MF-VAR 0.98 0.99 1.07 0.99 0.98 1.07 0.95 0.97 1.04 0.92 0.93 0.99
MF-VAR-CSV 0.96 0.93 0.96 0.94 0.94 0.97 0.97 0.98 1.00 0.99 0.99 1.01
TVi-MF-VAR-CSV 0.92 0.89 0.95 0.95 0.91 1.00 0.95 0.94 0.99 0.96 0.94 0.99

lo
gP

L’s TVi-MF-VAR 0.06 0.15 -0.10 0.03 0.22 0.14 0.06 0.34 0.23 0.08 0.16 0.08
MF-VAR-CSV 0.13 0.19 0.09 0.03 0.21 0.22 0.02 0.30 0.19 0.01 0.07 0.05
TVi-MF-VAR-CSV 0.16 0.22 0.10 0.06 0.25 0.23 0.06 0.37 0.26 0.10 0.18 0.13

UNR

R
M

S
E

’s TVi-MF-VAR 0.92 0.89 0.87 0.85 0.83 0.85 0.86 0.87 0.87 0.87 0.87
MF-VAR-CSV 1.05 1.09 1.12 1.12 1.11 1.08 1.06 1.05 1.04 1.02 1.01
TVi-MF-VAR-CSV 0.98 0.97 0.98 0.96 0.93 0.91 0.90 0.88 0.87 0.86 0.85

lo
gP

L’s TVi-MF-VAR 0.07 0.10 0.15 0.24 0.35 0.50 0.80 1.17 1.24 1.29 1.21
MF-VAR-CSV -0.02 -0.01 0.03 0.13 0.25 0.47 0.65 0.94 0.71 0.82 0.75
TVi-MF-VAR-CSV 0.02 0.06 0.15 0.29 0.42 0.67 0.94 1.42 1.66 1.86 1.85

FF

R
M

S
E

’s TVi-MF-VAR 0.94 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.96 0.97
MF-VAR-CSV 1.01 0.99 0.99 0.98 0.97 0.96 0.96 0.96 0.96 0.97
TVi-MF-VAR-CSV 0.95 0.93 0.93 0.93 0.92 0.91 0.91 0.91 0.92 0.93

lo
gP

L’s TVi-MF-VAR 0.09 0.11 0.08 0.09 0.14 0.08 0.13 0.06 0.14 0.14
MF-VAR-CSV 0.34 0.40 0.36 0.07 -0.24 -0.26 -0.39 -0.45 -0.53 -0.50
TVi-MF-VAR-CSV 0.37 0.41 0.55 0.48 0.52 0.50 0.50 0.42 0.46 0.53
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