Large Mixed-Frequency VARs with a Parsimonious Time-Varying Parameter Structure

Thomas B. Götz and Klemens Hauzenberger (Deutsche Bundesbank)

Workshop on Forecasting

Frankfurt am Main, 8 September, 2017

Introduction

To simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural changes, we introduce a time-varying parameter mixed-frequency VAR (MF-VAR). To keep our approach from becoming too complex, we implement time variation parsimoniously: only the intercepts and a common factor in the error variances vary over time. We can therefore estimate moderately large systems in a reasonable amount of time making our modifications appealing for practical use. We further improve upon computational efficiency by exploiting gains from using sparse and block-banded matrix algebra as, for instance, in Chan (2015). Furthermore, we complement the standard Minnesota prior setting to long-run priors as in Giannone et al. (2016). For eleven U.S. variables, we examine the performance of our model (and two intermediate variants), first and foremost with respect to GDP forecasting, and compare them to the time-constant MF-VAR of Schorfheide and Song (2015). Our results demonstrate the feasibility and usefulness of our method.

Motivating Example – Restricting Time Variation

• Our model lies "in-between" the time-constant MF-VAR of Schorfheide and Song (2015) and the fully fledged time-varying model of Cimadomo and D'Agostino (2015), thereby handling the trade-off between model flexibility and complexity

• For an n = 3-dimensional (GDP, CPI, fed funds rate) system we compare our model with a fully time-varying model $\Rightarrow n+1$ instead of $n+n^2p+\frac{n(n+1)}{2}$ time-varying quantities (p - lag length)

$\frac{1}{2}$												
Horizon	-1	0	1	2	3	4	5	6	7	8	9	10
Rel. RMSE	1.02	0.94	0.84	1.01	0.95	0.86	0.95	0.91	0.86	0.92	0.89	0.86
Rel. logPL	-0.64	-0.19	0.04	0.19	0.18	0.23	0.18	0.25	0.14	0.11	0.16	-0.04

Table: Forecast Performance relative to a MF-VAR à la Primiceri (2005)

Note: -1 is a backcast, 0 and 1 are nowcasts, the remaining horizons refer to forecasts. More on forecast horizons later.

• Rarely worse performance than the fully fledged MF-VAR \Rightarrow time variation in the data seems to be sufficiently covered by intercepts and (common) stochastic volatility

Table: Running Time relative to a MF-VAR à la Primiceri (2005)

Empirical Analysis – Data & Setup

• Three models to be compared with the benchmark MF-VAR of Schorfheide and Song (2015):

The "full" one including time-varying intercepts (TVi) & common stochastic volatility (CSV), labelled TVi-MF-VAR-CSV

The "intermediate" models including only one of the two features, i.e., **TVi-MF-VAR** and **MF-CSV-CSV**

Series ID Transf. Pub-Lag		Pub-Lag	Description						
GDP	Log	1 Qrt	Real gross domestic product, sa						
INV	Log	1 Qrt	Real gross private domestic investment, sa						
GOV	Log	1 Qrt	Real government consumption expenditures and gross investment, sa						
UNR	1/100	1 Mth	Civilian unemployment rate, sa						
HRS	Log	1 Mth	Index of aggregate weekly hours, sa						
CPI	Log	1 Mth	Consumer price index for all urban consumers, sa						
IPI	Log	1 Mth	Industrial production index, sa						
PCE	Log	1 Mth	Personal consumption expenditures index, sa						
FF	1/100	./.	Effective federal funds rate, nsa						
ТВ	1/100	./.	10-year treasury constant maturity rate, nsa						

		\boldsymbol{n}	
p	3	4	6
3	42.9	34.4	10.6
6	33.9	16.4	
12	25.0		

• Blank entries indicate the unrestricted model to run into computational problems \Rightarrow moderately large systems like we have in mind (n = 10 to 15) become practically infeasible to run

Our Modeling Framework – Two Blocks • Distinguish between a monthly and a "quarterly" part:

$$egin{split} egin{aligned} x_{m,t}\ x_{q,t} \end{bmatrix} &= egin{bmatrix} \Phi_{mm} & \Phi_{mq} & \Phi_{mc}\ \Phi_{qq} & \Phi_{qc} \end{bmatrix} egin{split} X_{m,t-1}\ X_{q,t-1}\ 1 \end{bmatrix} + egin{bmatrix} \Phi_{mc,t}\ \Phi_{qc,t} \end{bmatrix} + egin{bmatrix} u_{m,t}\ u_{q,t} \end{bmatrix} \ egin{split} egin{split} u_{m,t}\ u_{q,t} \end{bmatrix} &\sim N\left(egin{bmatrix} 0\ 0 \end{bmatrix}, egin{bmatrix} \Sigma_{mm,t} & \Sigma_{mq,t}\ \Sigma_{qm,t} & \Sigma_{qq,t} \end{bmatrix}
ight) \end{split}$$

• $X_{m,t} = (x'_{m,t}, \dots, x'_{m,t-p-1})'$ and $X_{q,t} = (x'_{q,t}, \dots, x'_{q,t-p-1})'$ are $pn_m \times 1$ and $pn_q \times 1$ vectors (potentially latent observations; observable ones denoted $Y_{m,t}$ and $Y_{q,t}$)

• Compactly (i.e., stacked over t), $X = \Phi Z + \Phi_c^T + U$ with $u = \operatorname{vec}(U) \sim N(0, \Omega \otimes \Psi)$, where Ψ governs "usual" cross-sectional and Ω serial structures (Chan, 2015) \Rightarrow this **Kronecker structure** proves quite useful for computational efficiency

• Block I (dealing with the "incomplete" data given Block II):

* For the balanced part of the sample, "reduced" state vector, $S_t = (x'_{a,t}, \ldots, x'_{a,t-p})'$, noting that $Y_{m,t} = X_{m,t}$:

$$S_{t} = \begin{bmatrix} \Phi_{qq} & 0 \\ I_{pn_{q}} & 0 \end{bmatrix} S_{t-1} + \begin{bmatrix} \Phi_{qm} \\ 0 \end{bmatrix} Y_{m,t-1} + \begin{bmatrix} \Phi_{qc,t} \\ 0 \end{bmatrix} + \begin{bmatrix} u_{q,t} \\ 0 \end{bmatrix} \text{ (state equation)}$$
$$\begin{bmatrix} y_{m,t} \\ y_{q,t} \end{bmatrix} = \begin{bmatrix} 0 & \Phi_{mq,1} & \Phi_{mq,2} & \Phi_{mq,3:p} \\ 1/3 & I_{n_{q}} & 1/3 & I_{n_{q}} & 0 \end{bmatrix} S_{t} + \begin{bmatrix} \Phi_{mm} \\ 0 \end{bmatrix} Y_{m,t-1} + \begin{bmatrix} \Phi_{mc,t} \\ 0 \end{bmatrix} + \begin{bmatrix} u_{m,t} \\ 0 \end{bmatrix} \text{ (measurement equation)}$$

For the ragged edge (unbalanced) part, $S_{t} = (x'_{t}, \dots, x'_{t-p})'$, where $x_{t} = (x'_{m,t}, x'_{q,t})'$
$$S_{t} = \begin{bmatrix} \Phi_{mm,1} & \Phi_{mq,1} & \cdots & \Phi_{mm,p} & \Phi_{mq,p} & 0 \\ \Phi_{m-1} & \Phi_{m-1} & \cdots & \Phi_{m-1} & \Phi_{m-1} & 0 \end{bmatrix} S_{t-1} + \begin{bmatrix} \Phi_{mc} + \Phi_{mc,t} \\ \Phi_{m-1} & \Phi_{m-1} & 0 \end{bmatrix} + \begin{bmatrix} u_{m,t} \\ u_{m,t} \end{bmatrix} \text{ (state equation)}$$

SP500 Log

S&P 500 stock index, adjusted close price, nsa

Note: GDP, INV and GOV are available on a quarterly basis, whereby second releases are considered; Data downloaded on the June 1st, 2017.

• p = 6 monthly lags; 1986-1989 used as pre-sample; generally, 10000 draws as burn-in, 2000 retained; forecasts assumed to be computed at the end of each month

Full Sample (1990:M1-2017:M7) Estimation

• Focus on GDP; also consider the monthly targets **UNR** and **FF** whenever possible Conditional means: not fluctuations in the (long-run) growth rates; rather, changes in the intercept's contribution between two points in time

Note: Growth rates of the medians of monthly GDP (including forecasts):

• Much more movement in the monthly series due to

pronounced (common) stochastic volatility

• Computation time: 41min vs. 26min.

$$\begin{bmatrix} I_{p(n_m+n_q)} & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
$$W_t^* \begin{bmatrix} y_{m,t} \\ y_{q,t} \end{bmatrix} = W_t^* \begin{bmatrix} I_{n_m} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{3} I_{n_s} & 0 & \frac{1}{3} I_{n_s} & 0 \end{bmatrix} S_t \text{ (measurement equation)}$$

• **Block II** (estimating the VAR parameters given Block I)

- * Time-varying intercepts evolve as random walks: $(\Phi_{mc,t}, \Phi_{qc,t})' \equiv \Phi_{c,t} = \Phi_{c,t-1} + \nu_t, \quad \nu_t \sim N(0,Q)$
- * Common stochastic volatilities evolve as AR(1) process: $h_t = \rho h_{t-1} + \eta_t$, $\eta_t \sim N(0, \sigma_h^2)$ and resulting model is nested in u by setting $\Omega = \text{diag}\left(\exp(h_1), \ldots, \exp(h_T)\right)$

Priors and Hyperparameters

- Minnesota (natural conjugate MNIW) priors for Φ and Ψ implemented as in ...
 - Banbura et al., 2010 (including prior on sum of coefficients)
 - Giannone et al., 2016 (priors for the long run)

• An initial state S_0 is extracted by running the SSM (in a time-constant fashion) over a pre-sample (4 years)

• Prior for $\Phi_{c,1}$ is $N(0, Q_0^{-1})$; $Q \sim IG(Q_0, k_Q^2 \cdot Q_0 \cdot \Psi)$, where k_Q controls the amount of time variation a-priori allowed for and Q_0 corresponds to the length of the pre-sample (as in Primiceri, 2005)

• $\rho \sim N(0.9, k_V^2) \mathbb{I}(|\rho| < 1); \sigma_h^2 \sim IG(5, k_S(5-1))$ as in Chan (2015)

• We determine suitable values for the hyperparameters $\theta = (\lambda, k_Q, k_V, k_S)'$ by conducting a **preliminary** analysis on a grid of values

Choose the grid point that led to the **best GDP forecast performance** (this is our main goal) over the last *H* months In our application, we set H = 48 (i.e., 4 years), fix $k_V = 0.2$ as well as $k_S = 0.01$ (see Chan, 2015) and let

 $k_Q=\left\{\sqrt{0.001},\sqrt{0.01}
ight\}$

 $\lambda = \{0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 5\}$

 λ controls the tightness of the Minnesota prior, i.e., the relative importance of the prior beliefs w.r.t. the information in the data

$$\Psi|\Phi_c^T, h^T, S_q^T, S^T, y^T \sim IW\left(\hat{\Psi}, \nu_0 + T\right) \text{ and } \operatorname{vec}(\Phi)|\Psi, \Phi_c^T, h^T, S_q^T, S^T, y^T \sim N\left(\operatorname{vec}(\hat{\Phi}), K_{\Phi}^{-1} \otimes \Psi\right)$$

Note: Demeaned medians of the time-varying intercepts; multiplied by 100

Forecast Evaluation Exercise

• Increasing sequence of est. samples: 1990:M1-2006:M5, ..., 1990:M1-2017:M7; pseudo real-time; up to twelve forecasts for each indicator; laws of motion for TVi and CSV imposed over forecast horizon • Forecast horizon: amount of months between a forecast is made and the end of the reference period Thus, for quarterly series $h_Q = -1, 0, \dots, 10$ with $h_Q = -1$ a backcast, $h_Q = 0, 1, 2$ nowcasts and $h_Q \ge 3$ forecasts For the monthly series, publication delays are shorter s.t. $h_M \ge 0$ for some series (e.g., IPI) or $h_M \ge 1$ for others (e.g., FF) • Relative (to MF-VAR) RMSE's and logPL's considered to assess point and density forecast accuracy

• Only results with standard Minnesota priors displayed (work somewhat better than long-run priors)

Table: Forecast performance relative to the MF-VAR of Schorfheide and Song (2015) Horizon 10 GDP

Posterior Analysis	S		0 00	0.00	1 07	0.00	0 00	1 07	0.05	0.07	1 01	0.02	0.02	0.00
• Conditional posterior distributions for S^T , Q , ρ , σ_i^2 and h^T are fairly standard	Ш		0.90	0.99	0.06	0.99	0.90	0.07	0.95	0.97	1.04	0.92	0.93	0.99
• We sample Ψ marginally, and then $\operatorname{vec}(\Phi) \Psi$:	SMS	TVI-ME-VAR-CSV	0.90	0.93	0.90	0.94	0.94	1 00	0.97	0.90	0 99	0.99	0.99	0 99
$\mathbf{T} = \mathbf{T} = $	Г Г Г	TVI-ME-VAR	0.02	0.15	-0 10	0.03	0.22	0.14	0.06	0.34	0.23	0.00	0.16	0.08
$\Psi \Psi_c^-,h^-,S_q^-,S^-,y^- \sim IW\left(\Psi,\nu_0+I\right) \text{ and } \operatorname{vec}(\Psi) \Psi,\Psi_c^-,h^-,S_q^-,S^-,y^- \sim IV\left(\operatorname{vec}(\Psi),K_{\Phi^-}\otimes\Psi\right)$		ME-VAR-CSV	0.00	0.10	0.10	0.00	0.22	0.14	0.00	0.04	0.20	0.00	0.10	0.00
• Conventionally drawing Φ involves (i) the inverse of the $np+1$ square matrix K_{Φ} , and (ii) the Choleski decomposition of the $(mp+1)m$ equare matrix $K^{-1} \otimes W$	log	TVi-MF-VAR-CSV	0.16	0.22	0.10	0.06	0.21	0.22	0.02	0.37	0.26	0.10	0.18	0.13
decomp. Of the $(np+1)n$ square matrix $\mathbf{A}_{\Phi} \otimes \Psi$		UNR												
• Using $D \sim MN\left(0_{m \times n}, I_m \otimes I_n\right) \Rightarrow C_K^{-1}DC_{\Psi} \sim MN\left(0_{m \times n}, (C_K^{-1}I_mC_K^{-1}) \otimes (C_{\Psi}'I_nC_{\Psi})\right)$, we can	N N	TVi-MF-VAR		0.92	0.89	0.87	0.85	0.83	0.85	0.86	0.87	0.87	0.87	0.87
draw Φ more efficiently as	SE	MF-VAR-CSV		1.05	1.09	1.12	1.12	1.11	1.08	1.06	1.05	1.04	1.02	1.01
$\Phi=\Phi+C_{K}^{-1}DC_{\Psi},$	N N N N N N N N N N N N N N N N N N N	TVi-MF-VAR-CSV		0.98	0.97	0.98	0.96	0.93	0.91	0.90	0.88	0.87	0.86	0.85
where $\hat{\Phi} = \left(C_K^{}C_K^{\prime} ight)^{-1}\left(V_{\Phi_0}^{-1}\Phi_0 + Z\Omega^{-1}X^{\prime} ight) = C_K^{\prime}igarangle\left(C_K^{}igarangle\left(V_{\Phi_0}^{-1}\Phi_0 + Z\Omega^{-1} ilde{X}^{\prime} ight) ight)$	logPL's	TVi-MF-VAR		0.07	0.10	0.15	0.24	0.35	0.50	0.80	1.17	1.24	1.29	1.21
• For Φ_c^T , rewrite $\Phi_{c,t} = \Phi_{c,t-1} + \nu_t$ by stacking over t		MF-VAR-CSV		-0.02	-0.01	0.03	0.13	0.25	0.47	0.65	0.94	0.71	0.82	0.75
ΓT γ		TVi-MF-VAR-CSV		0.02	0.06	0.15	0.29	0.42	0.67	0.94	1.42	1.66	1.86	1.85
$\begin{bmatrix} I_n \\ -I_n & I_n \end{bmatrix} (T) \begin{bmatrix} I_n \\ -I_n & I_n \end{bmatrix}$		FF												
$\left[\begin{array}{cc} & n & n \\ & \ddots & \ddots \end{array} \right] \operatorname{vec}(\Phi_c^{*}) = \operatorname{vec}(u^{*}) \left[\sim N(0, I_T \otimes Q) \right],$	Ň	TVi-MF-VAR			0.94	0.95	0.95	0.96	0.96	0.95	0.95	0.95	0.96	0.97
$\begin{bmatrix} & -I_n & I_n \end{bmatrix}$	1SE	MF-VAR-CSV			1.01	0.99	0.99	0.98	0.97	0.96	0.96	0.96	0.96	0.97
	Ч Ч	TVi-MF-VAR-CSV			0.95	0.93	0.93	0.93	0.92	0.91	0.91	0.91	0.92	0.93
and premultiply by H^{-1} to get the prior $vec(\Phi^T) O \sim N(0 (H'(I_{\pi} \otimes O)^{-1}H)^{-1})$ leading to the posterior	gPĽs	TVi-MF-VAR			0.09	0.11	0.08	0.09	0.14	0.08	0.13	0.06	0.14	0.14
$\Phi^T \Phi \Psi h^T O S^T S^T u^T \to N(\hat{\Phi}^T D^{-1})$; a similar "trick" as for K and Ψ then applies to D or abling		MF-VAR-CSV			0.34	0.40	0.36	0.07	-0.24	-0.26	-0.39	-0.45	-0.53	-0.50
$\Psi_c \Psi, \Psi, \Pi, \Psi, \Theta_q, \Theta, \Psi \sim \Pi(\Psi_c, \Gamma_{\Phi_c}), a similar there as its \Lambda_{\Phi} and \Psi then applies to P_{\Phi_c} enabling$	Ŏ	TVi-MF-VAR-CSV			0.37	0.41	0.55	0.48	0.52	0.50	0.50	0.42	0.46	0.53

References

us to efficiently compute $C_{P_{\Phi}}$ and, thereby, Φ_{c}^{T}

- Banbura, M., Giannone, D. and Reichlin, L. (2010), "Large Bayesian vector auto regressions". Journal of Applied Econometrics, 25: 71-92.
- Chan, J. C. (2015), "Large Bayesian VARs: a flexible Kronecker error covariance structure". Mimeo, Australian National University.
- Cimadomo, J. and D'Agostino, A. (2016), "Combining time variation and mixed frequencies: an analysis of government spending multipliers in Italy". Journal of Applied Econometrics, 31(7): 1276-1290.
- Giannone, D., Lenza, M. and Primiceri, G. E. (2016), "Priors for the long run". CEPR Discussion Paper No. 11261.
- Primiceri, G. E. (2005), "Time varying structural vector autoregressions and monetary policy", Review of Economic Studies, 72, 821-852.
- Schorfheide, F. and Song, D. (2015), "Real-time forecasting with a mixed-frequency VAR", Journal of Business & Economic Statistics, 33(3), 366-380.