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Introduction
• Forecast evaluation of probability forecasts often focuses on certain regions of interest

– Risk management: requires appropriate loss distribution forecasts in the tails.
– Weather forecasts with a focus on extreme conditions.
– Forecasts of environmental variables such as ozone with a focus on concentration levels with

adverse health effects.

• Forecast ranking according to performance within these regions.

• Show how weighted scoring rules can be used to this end

• allow to rank potentially misspecified forecasts objectively with the region of interest in mind.

•Discuss theoretical properties of weighted scoring rules and present construction principles.

Previous work
• [1]: conditional likelihood and censored likelihood score

• [2]: threshold-weighted and quantile-weighted continuous-ranked probability score

• [5]: penalized weighted likelihood score, theoretical properties of weighted scoring rules

• [4]: discuss forecaster’s dilemma, cast doubts on the usefulness of weighted scoring rules

Motivating simulation
Goal: Demonstrate that weighted scoring rules useful for comparing two misspecified forecasts.

•Data: i.i.d., standard normally distributed

• Fhlt: piecewise defined, continuous, scaled t4-distribution on (−∞, 0], standard normal distribu-
tion on (0,∞)

• Fhrt: roles reversed

• Censored likelihood rule (CSL):

SCSL(p, x; r) =

{
− log p(x), if x ≥ r,

− log
(
1−

∫ r
−∞ p(z)dz

)
, if x < r.
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Figure 1: Frequency of rejections in two-sided Diebold-Mariano test in favor of Fhlt for the logarithmic (LogS) and the
censored likelihood (CSL) scoring rules for sample size n = 100.

Conclusion: If region of interest is of form [r,∞) for some r ≥ −1, censored likelihood score can
discriminate between Fhlt and Fhrt.

Weighted scoring rules

Definitions and theoretical properties
•Observational space (X ,F), family of distributionsM, family of weight functionsW consisting

of w : X → [0, 1].

•Weighted scoring rule: a map S :M×X ×W → R such that S(·, ·;w) is a scoring rule for each
w ∈ W .

• S localizing: if for any P1, P2 ∈M,

∀ F ∈ F : P1
(
{w > 0} ∩ F

)
= P2

(
{w > 0} ∩ F

)
=⇒ S(P1, x;w) = S(P2, x;w) for all x ∈ X .

The condition means that the restrictions of Pi to {w > 0} coincide, for i = 1, 2. Then also

∀ Q ∈M : S(P1, Q;w) = S(P2, Q;w) =

∫
X
S(P2, x;w) dQ(x).

• S proper: if S(·, ·;w) proper for each w ∈ W , i.e. S(Q,Q;w) ≤ S(P,Q;w), P,Q ∈M.

• S strictly locally proper: S is localizing and proper and if S(P,Q;w) = S(Q,Q;w), then the
restrictions of P and Q to {w > 0} coincide necessarily.

• S proportionally locally proper: if S(P,Q;w) = S(Q,Q;w) is equivalent to P
(
{w > 0}∩F

)
=

cQ
(
{w > 0} ∩ F

)
, for all F ∈ F and a constant c > 0, which depends on P,Q ∈M.

Construction
Assuming that for all w ∈ W and P ∈M we have

∫
w dP > 0, and set

dPw(x) =
w(x) dP (x)∫

w dP

the probability distribution with density proportional to w w.r.t. P , which is assumed to belong to a
family M̃.

Theorem 1. Let S̃ : M̃ × X → R be a proper scoring rule. Then

S :M×X ×W → R, S(P, x;w) = w(x) S̃(Pw, x)

is a localizing proper weighted scoring rule. Further, if S̃ is strictly proper, then S is proportionally
locally proper.

Examples. Conditional likelihood score from [1].
Weighted version of the Hyvärinen score (also multivariate)

S(p, x;w) = 2
p′′(x)

p(x)
w(x)−

(p′(x)
p(x)

)2
w(x) + 2

p′(x)

p(x)
w′(x).

Weighted version of the CRPS and multivariate energy scores

wCRPS(F, x; r) = 1{x > r}
∫ ∞
r

(F (z)− F (r)
1− F (r)

− 1{x ≤ z}
)2

dz, w(x) = 1{x > r}.

Theorem 2. Let s(α, z) be a strictly proper scoring rule for the success probability α ∈ (0, 1) of a
binary outcome variable z ∈ {0, 1}. Then

Ss(P, x;w) = w(x) s
(∫

w dP, 1
)
+
(
1− w(x)

)
s
(∫

w dP, 0
)

is a localizing proper weighted scoring rule for the probability forecast P .
If additionally S(P, x;w) is a proportionally locally proper weighted scoring rule, then

Ŝ(P, x;w) = Ss(P, x;w) + S(P, x;w)

is strictly locally proper.

Examples. Censored likelihood score (CSL) from [1].
Penalized weighted likelihood score (PWL) from [5].
Strictly locally proper weighted version of CRPS (wsCRPS):

wsCRPS(F, x; r) = 1{x > r}
[
F (r)2 +

∫ ∞
r

(F (z)− F (r)
1− F (r)

− 1{x ≤ z}
)2

dz
]
+ 1{x ≤ r}

(
1− F (r)

)2
.

Relation to hypothesis testing
• P0, P1: two competing (forecast) distributions for i.i.d. observations

• Region of interest A, assuming 0 < P0(A), P1(A) < 1.

• Test composite hypothesis and alternative

H0 : P = P0 on A vs. H1 : P = P1 on A

using score-differences (Diebold-Mariano test) with localizing weighted scoring rule.

• Forecast P is only relevant for the hypotheses through observations x ∈ A. For x 6∈ A only the
total probability 1− P (A) matters.

• Censored likelihood rule: optimal localizing weighted scoring rule in terms of power.

Empirical illustration
•Daily Deutsche Bank log returns yt = ln(Pt/Pt−1), from January 1, 2009 until December 31, 2016.

•GARCH(1,1) model, using normal, t and skew-t distributions for the innovations, one-step-ahead
density forecasts with a rolling window scheme .

w(x) = 1{x ≤ r} w(x) = 1{x ≥ r}
r = −3 r = −1 r = 0 r = 0 r = 1 r = 3

proportion 0.096 0.30 0.50 0.50 0.32 0.092
LogS 2.43 2.43 2.43 2.43 2.43 2.43
CRPS 1.51 1.51 1.51 1.51 1.51 1.51

normal GARCH CSL 1.89 1.71 1.96 1.63 1.73 0.95
vs. t-GARCH PWL 1.85 1.69 1.99 1.66 1.78 0.94

wsCRPS 1.91 0.38 0.51 1.32 1.89 0.70
LogS 2.18 2.18 2.18 2.18 2.18 2.18
CRPS 1.22 1.22 1.22 1.22 1.22 1.22

normal GARCH CSL 2.01 1.97 2.06 0.74 1.12 0.23
vs. skew-t-GARCH PWL 1.96 1.94 2.13 0.83 1.18 0.24

wsCRPS 1.67 1.26 0.63 0.44 0.80 -0.25
LogS -0.61 -0.61 -0.61 -0.61 -0.61 -0.61
CRPS -0.70 -0.70 -0.70 -0.70 -0.70 -0.70

t-GARCH CSL 1.65 2.30 1.31 -2.10 -1.49 -1.76
vs. skew-t-GARCH PWL 1.66 2.20 1.60 -2.03 -1.46 -1.72

wsCRPS 0.53 1.45 0.07 -1.79 -0.96 -0.91

Table 1: t-statistics for Diebold-Mariano test: Positive values indicate superiority of forecasts from the second method.

Conclusions
•A weighted scoring rule allows to objectively decide in favor of a misspecified forecast which is

– superior to a competing forecast on a region of interest,
– even though it may be inferior outside this region.

•General construction principle, also multivariate and without assuming densities.

•Optimal rule for testing: censored likelihood rule.

• Poster based on [3].
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