

Small scale "big data" in the Finnish pharmaceutical product index compilation

Ottawa Group –conference / Eltville, Germany Kristiina Nieminen 10th May 2017

Content

- 1. Background and introduction of the data
- The practices
 - 1. Define the index compilation strategy
 - 2. Standardise data collection with metadata
- The test calculations and the results
 - Results from current calculation
 - Index formula tests by Vartia & Suoperä
 - 3. The chain-drift —test
- 4. Conclusions

1. Background

- First attempt to utilise the transaction data in year 2000
 - Daily products from selected commodity groups
- Eurostat's venture on "Modernisation of price collection and compilation"
 - Recommendations for obtaining and processing the scanner data
 - Facilitates the EU-members in the introduction of scanner-data
- New project in 2014-2016
 - Re-design of data collection >> scanner-data and web-scraping
 - Re-design of the index compilation
- Results of the project
 - Pharmaceutical products data implemented into production in the beginning of year 2017
 - Test calculations with superlative index formulas

1. Introduction of the data

- Source: Pharmaceutical Information Centre
- Pharmaceutical products for eCOICOP-groups >>
- Medicine prices are regulated
 - No discounts
- All products are identified with VNRcode
 - No relaunches
- Monthly delivery of prices, quantities and descriptive information by product
 - 10 000 individual product in a month, 32 variables
- Aim is to utilise as much of the data as possible

F		
06	HEALTH	
06.1	Medical products, appliances and equipment	
06.1.1	Pharmaceutical products	
06.1.1.0	Pharmaceutical products	
06.1.1.0.1	Prescription medicines	
06.1.1.0.1.1	Refundable prescription medicines	
06.1.1.0.1.2	Non-refundable prescription medicines	
06.1.1.0.2	Over-the-counter medicines	
06.1.1.0.2.1	Over-the-counter medicines	
06.1.1.0.3	Nicotine replacement therapy preparations	
06.1.1.0.3.1	Nicotine gum	
06.1.1.0.4	Vitamins	
06.1.1.0.4.1	Multivitamins	
06.1.1.0.5	Oral contraceptives	
06.1.1.0.5.1	Oral contraceptives	

2.1 Practices: The definition of compilation strategy

The purpose for using the index:

- 1. the characterisation of the commodities >> described in slide 4
- 2. the reference group of economic actors >> consumers
- 3. the length of the time periods >> *one month*

The technical problems of index calculation:

- 4. the classification applied to the commodities >> COICOP
- 5. the collection method >> complete microdata collected
- 6. the appropriate weight structure >> relative value shares of the previous year by commodity

The index calculation methods should be decided by specifying:

- 7. the index formula >> Log-Laspeyres (elementary aggregates)
- 8. the strategy for constructing the index series >> Chain method where relative price changes of consecutive months are calculated for each VNR-commodity. These changes are aggregated together with value share weights. Price comparison is made for those commodities that belong to the two year panel data

The special challenges

- 9. Quality changes in commodities >> no quality change
- New and disappearing commodities >> price for disappearing commodities is estimated by calculating the average change by strata >> new commodities are introduced in the next update of panel data

2.2 Practices: The utilisation of metadata in data collection

VNR; Date; status; PriceNoTax; PriceTax; PriceWholeSale; SubstitutionGroup; SubstitutionCode; ReferencePrice; PriceUpperLimit; 421180; 2017-02-01; 5; 8, 61; 9, 47; 5, 94; ;; ;; 207; 1; AEK, PK; 1
137340; 2017-02-01; 5; 2, 25; 2, 48; 1, 55; 0849; 0008490100; 3, 48; 3, 48; 110; 1; PK, YEK; 1
521789; 2017-02-01; 5; 8, 61; 9, 47; 5, 94; 1082; 0010820100; 8, 32; 8, 32; 110; 1; PK, YEK; 1
558709; 2017-02-01; 5; 17, 31; 19, 04; 12, 14; 1069; 0010690001; 19, 04; 19, 04; 1; PK; 1
421495; 2017-02-01; 5; 3, 81; 4, 19; 2, 63; 0322; 0003220020; 4, 69; 4, 69; 115, 116, 117, 128, 130; 1; PK, YEK; 1
520647; 2017-02-01; 5; 23, 44; 25, 78; 16, 68; 1069; 0010690003; 25, 79; 25, 79; 1; PK; 1
421636; 2017-02-01; 4; 120, 65; 132, 72; 92, 09; 0224; 0002240100; ;; 0; ; 1

Take original data and 173653; 2017-02-01; 5; 567, 95; 624, 75; 483, 00; ;; ;; 0; EK; 1

information in design of Hinnat ja kustannukset /Kuluttajahintaindeksi Dataset format Delimiter data processing. Tiedoston formaatti Erotinmerkki Tiedoston nimi Dataset name /TKSAS/SASDATA/Tilastot/khi/Import//DWFIN Prices.csv sequential Tiedostokommentti Variable quantity Muuttuiia: Observation quantity Havaintoja Puuttuva Puuttuvi Technical name Label Muuttujan nimi Data type Tietotyyppi Min Max Values Length Group Muuttujaryhmät Format Esitysmu Maksimia Arvot-list Pituus Alkupo tieto Tekninen nimi Minimiary tietojen (sallittu) lkm 6 Product ID-number Register; Prices; character no Date Date Register; Prices; Quantities;; dateandtime ▼ yymmdd10. 10 no Status Prices; 8 Status numeric no PriceNoTax • Price without VAT 8 Prices: numeric no Price Tax Price with VAT 8 Prices: numeric \downarrow PriceWholeSale Wholesaleprice Prices: numeric 8 no Substitution Group

complement it with

metadata. Utilise this

Pre-analysis report

Source Data: /TKSAS/SASDATA/Tilastot/khi/Import//DWFIN_Prices.csv Pre-analysis report based on the data description:

Observation count

10 106

Key figures for numerical variables

Obs variable	e variablename in Finnis	sh obs	missing	mean
1 date	Tietueen päivämäärä	10 106	0	20 910.00
2 pricenot	ax Vähittäismyyntihinta, verd	oton 9 998	108	237.03
3		9 998	108	260.74
10 substitu	tiongroup Substituutioryhmä	5 582	4 524	968.79

Character variable frequencies

Obs	s variable	variablename in Finnish	obs	missing
•	compensation	Tieto korvattavuudesta Kela-korvattavien läkkeiden	10 106	0
:	2 reimbursementcodes	korvausnumerot koodeina Kela-korvattavien läkkeiden	9 788	318
;	reimbursementnumber	korvausnumerot	3 513	6 593
4	1 vnr	Tuotteen yksilöintitunnus	10 106	0

Check of classification values

		Compensation code		
			Cumulative	Cumulative
reimbursementcodes	Frequency	Percent	Frequency	Percent
AEK. LRPK	38	0.39	38	0.39
AEK. PK	1372	14.helmi	1410	14.41
AEK. PK. YEK	86	0.88	1496	15.28
EK	4805	49.09	6301	64.37

3.1 Results from current calculation

Compilation of elementary indices

- According to the strategy definition (slide 5)
 - Two year panel
 - Paired comparison of the prices of base and comparison periods
 - relative change in prices is estimated for each commodity
 - Laspeyres used in aggregation
- Results:
 - over-the-counter medicine prices have grown by almost 12.5 per cent between 2009/1 and 2016/12
 - comparison between new index series and the published index series tells another story

3.1 Results from current calculation

3.2 Index formula tests by Vartia & Suoperä

- Tests were accomplished in joint-work of professor Yrjö Vartia and methodologist Antti Suoperä
- Most popular index numbers were analysed
 - At first comparison between old and new weights:
 Laspeyreys, Paasche etc.
 >> so called Fisher-Five-tined fork
 - Then superlative index formulas : Fisher, Törnqvist, Stuvel,
 Diewert, Sato & Vartia, and Montgomery & Vartia
- Aim was to treat new and disappearing commodities in systematic and simple way
- Before calculations data was split in two groups:
 - 5S commodities with larger relative change in values
 - 5N commodities where values stay constant

3.2 Index formula tests by Vartia & Suoperä

3.2 Index formula tests by Vartia & Suoperä

3.3 The test of chain-drift

- Aim was to analyse existence of the chain-drift and to construct new method that eliminates the chain drift phenomenon
- Following strategies were used:

Formula	Sample strategy
$t_{Base}^{t/0} = exp\left\{\sum_{i=1}^{\infty} \frac{1}{2}(w_i^0 + w_i^t)\log(\vec{p}_i^t/\vec{p}_i^0)\right\}$	commodity set $\{a_1, a_2,, a_n\}$ excluding new and disappearing commodities
$t_{Chain}^{t/(t-1)} = exp\left\{ \sum_{i=1}^{t} \frac{1}{2} (w_i^{t-1} + w_i^t) \log(p_i^t/p_i^{t-1}) \right\}$	commodity set $\{a_1, a_2,, a_n\}$ excluding new and disappearing commodities
$t_{Proper\ chain}^{t/(t-1)} = exp\left\{\sum_{i=1}^{t} (w_i^{t-1} + w_i^t) \log(p_i^t/p_i^{t-1})\right\}$	Maximum number of matched pairs in base and observation periods
In next row, below	All commodities except new and disappearing (base Törnqvist) + new and disappearing (price ratio)
	$t_{Base}^{t/0} = exp\left\{\sum \frac{1}{2}(w_i^0 + w_i^t)\log(p_i^t/p_i^0)\right\}$ $t_{Chain}^{t/(t-1)} = exp\left\{\sum \frac{1}{2}(w_i^{t-1} + w_i^t)\log(p_i^t/p_i^{t-1})\right\}$ $t_{Proper\ chain}^{t/(t-1)} = exp\left\{\sum \frac{1}{2}(w_i^{t-1} + w_i^t)\log(p_i^t/p_i^{t-1})\right\}$

3.3 Existence of chain-drift -test

Comparison between alternative methods used

Conclusions

A lot of experience and competence achieved

When complete datasets (e.g. scanner-data) are available

- new approaches in CPI compilation may be taken
- accuracy and reliability of CPI is improved
- superlative index formulas produce more accurate index series
 - chain-drift must be controlled

Pharmaceutical products were implemented into CPI-production in the beginning of year 2017

Finland continues the tests with new data sources:

- 1) the daily products data obtained from the major retail chain,
- 2) the alcoholic beverages obtained from monopoly owner and
- 3) the hardware store data obtained by web-scraping

Thank you for your attention

Kristiina Nieminen / Statistics Finland, CPI-team Kristiina.nieminen@stat.fi