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Abstract
Existing tests for proper calibration of multivariate density forecasts based on Rosenblatt probability integral transforms

can be manipulated by by a change in the ordering of variables in the forecasting model. We derive tests that do not depend
on the ordering of variables. The new tests are applicable to densities of arbitrary dimensions and can deal with parameter
estimation uncertainty and dynamic misspecification. Monte Carlo simulations show that they have superior power relative
to existing approaches. We use the tests to evaluate forecasts from multivariate GARCH models for stock market returns and
from a macroeconomic Bayesian VAR model.

Motivation
•More and more application use multivariate models to form predictive densities.
•Often, the joint predictive density is of primary interest (e.g., when multiple input variables enter a decision

problem)
• Existing tests for proper forecast calibration in multivariate setups have serious limitations:

– Sensitive to the ordering of variables⇒ “Prone to cheating”.
– Focus only on bivariate case.
• Issue of dependence of test statistic on ordering of variables not yet addressed in literature.

Research Questions
•How can we design order invariant tests of whether a multivariate predictive density coincides with the

true (conditional) density function? In other words: How can we design tests which do not depend on the
ordering of variables in the forecast model?
•Which tests for proper calibration of density forecasts perform best in large dimensional settings?
•How can we take dynamic misspecification and estimation uncertainty into account?

Main Contributions
•We generalize existing tests for proper calibration of multivariate density forecasts to settings of arbitrary

dimension.
•We derive new tests which are order invariant in general.
•We develop versions of our tests that account for estimation uncertainty and dynamic misspecification.
•We analyze size and power (against various deviations from H0) of different tests in MC studies.
•We present two applications (forecasting financial returns/macroeconomic variables) that demonstrates the

usefulness of our new tests.

Theory
Background
Basic question: Does (predictive) distribution Ft(Yt+h|Ωt−1, θ0) coincide with the true (conditional) distribu-
tion Gt(Yt+h|It−1)?

– We allow for dynamic misspecification (Ωt−1 ⊂ It−1)
– Potentially, θ0 can be replaced by an estimate θ̂.
– Sample {Yt,Ωt−1}nt=1, of which the first R observations can be used to estimate θ0 and remaining P

observations are for evaluation.

Testable implication is that of proper calibration: Statistical consistency between Ft and realized observa-
tions.

In the univariate case, if Ft = Gt, then so-called probability integral transforms (PITs) are uniformly dis-
tributed:

Ut =

∫ Yt

−∞
ft(Y )dY = Ft(Yt) ∼ U(0, 1)

Any appropriate test (e.g., Neyman smooth test, NST) can be used to test uniformity.

Problem in the multivariate case: distribution of Ut under H0 is unknown.

Solution is based on the Rosenblatt transformation:

U1
t = FY1(Y1,t), U

2|1
t = FY2|Y1(Y2,t), . . . , U

d|d−1,...,1
t = FYd|Yd−1,...,Y1(Yd,t)

Under H0, all terms are U(0, 1) and independent of each other.

Test of H0 is possible by transforming multivariate problem into a univariate one, i.e., aggregating the d
components into a single one with known distribution and applying any goodness-of-fit test (we use NST).

Existing Tests
•Diebold et al. (1999), stack all PITs: St = [U

d|d−1,...,1
t , . . . , U1

t ]′

• Clements and Smith (2000, 2002), multiply all PITs: CSt = g(Yt) =
∏d
i=1U

i|1:i−1
t

•Ko and Park (2013), multiply location adjusted PITs: KPt = g(Yt) =
∏d
i=1(U

i|1:i−1
t − 0.5)

Order Invariance
Definition 1. Denote the d! possible permutations of the variables by πk for k = 1, . . . , d!. Let T (πk) be
a test statistic based on {Yt}nt=R+1 under permutation πk. We call a test statistic T (πk) order invariant if
T (πk) = T (πj), ∀ k 6= j.

New Tests
Alternative transformation I: Z2

t =
∑d
i=1

(
Φ−1

(
U
i|1:i−1
t

))2

H0 implies that Z2
t,d ∼ χ2

d ⇒ Test uniformity of UZ
2

t = Fχ2
d
(Z2
t ). In Gaussian settings this is equal to the

transformation proposed by Ishida (2005).

Alternative transformation II: Z2
t
∗

=
∑d
i=1

∑2d−1

k=1

(
Φ−1

(
U
i|γki
t

))2

This is the sum of squares of all distinct “inverse PITs” for all possible permutations. In general, terms are
not independent of each other → no χ2 distribution under H0. Instead, distribution follows a mixture of χ2

distributions.

Alternative transformation III: Z2
t
†

=
∑d
i=1

(
Φ−1

(
U
i|−i
t

))2

Similar to Z2
t
∗ but considers only the terms which are conditional on all but one variable. Distribution follows

directly from distribution of Z2
t
∗.

S P P ∗ Z2 Z2∗ Z2†

Reference DHT (1999) CS (2000) KP (2013)
Order invariant?

Independence X X X X X X
Gaussianity X X X
In general X X

Feasible for large d? X X X X X

Dynamic misspecification and estimated parameters: NST can be adjusted to account for both features
relying on results in West (1996) and West and McCracken (1998).

Results
Monte Carlo Simulations
•Order-dependence offers much room for distortion of rejection frequencies if researcher wants to “cheat”.
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•New tests perform equally well or better in terms of power than existing tests against various alternatives
and for all dimensions.

•Dynamic misspecification and parameter uncertainty lead to severe size distortions if not accounted for -
modified tests are well sized.

Macroeconomic BVAR
• TVP-BVAR by Primiceri (2005) for unemployment rate, inflation, and short-term interest rate.

• PITs are based on-parametric methods/approximated based on Normal distribution and we take potential
dynamic misspecification and estimation uncertainty into account.

Normal approximations Non-parametric densities
h = 1 S CS KP Z2 Z2∗ Z2† S CS KP Z2 Z2∗ Z2†

ut −∆pt − it 0.032 0.110 0.058 0.001 0.001 0.000 0.374 0.667 0.022 0.006 0.230 0.107
ut − it −∆pt 0.027 0.116 0.154 0.552 0.216 0.769 0.158
∆pt − ut − it 0.032 0.125 0.021 0.402 0.644 0.005 0.004
∆pt − it − ut 0.007 0.150 0.005 0.385 0.184 0.055 0.083
it − ut −∆pt 0.005 0.166 0.009 0.366 0.314 0.366 0.112
it −∆pt − ut 0.009 0.149 0.008 0.484 0.556 0.271 0.164

h = 4 DHT CS KP Z2
t Z2

t
∗

Z2
t
†
DHT CS KP Z2

t Z2
t
∗

Z2
t
†

ut −∆pt − it 0.164 0.058 0.692 0.060 0.058 0.140 0.493 0.006 0.730 0.593 0.442 0.531
ut − it −∆pt 0.310 0.449 0.396 0.413 0.302 0.063 0.516
∆pt − ut − it 0.167 0.080 0.685 0.346 0.015 0.319 0.562
∆pt − it − ut 0.598 0.625 0.731 0.262 0.000 0.346 0.551
it − ut −∆pt 0.680 0.020 0.508 0.595 0.001 0.850 0.553
it −∆pt − ut 0.662 0.016 0.667 0.501 0.081 0.565 0.440

Notes: The table shows the p-values for NST for different transformations and all possible permutations of the data. For those
transformations that yield order-invariant test statistics, we only report one p-value.

Conclusions
•New tests are order invariant, applicable to high-dimensional problems, they can be adjusted to account for

dynamic misspecification and parameter uncertainty, and have better power than existing tests.

• Issue of “cheating” can be very relevant in practice; in both applications, existing test results not unambigu-
ous (across permutations).

•Many potential applications: DSGE forecasts, electricity demand on connected markets, . . .
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