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Abstract

Research into predictive accuracy testing remains at the forefront of the forecasting field. One

reason for this is that rankings of predictive accuracy across alternative models, which under misspec-

ification are loss function dependent, are universally utilized to assess the usefulness of econometric

models. A second reason, which corresponds to the objective of this paper, is that researchers are

currently focusing considerable attention on so-called big data, and on new (and old) tools that are

available for the analysis of this data. One of the objectives in this field is the assessment of whether

big-data leads to improvement in forecast accuracy. In this survey paper, we discuss some of the lat-

est (and most interesting) methods currently available for analyzing and utilizing big data when the

objective is improved prediction. Our discussion includes a summary of various so-called dimension

reduction, shrinkage, and machine learning methods, as well as a summary of recent tools that are

useful for ranking prediction models associated with the implementation of these methods. We also

provide a brief empirical illustration of big-data in action, in which we show that big data are indeed

useful when predicting the term structure of interest rates.
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1 Introduction

Methods for analyzing “big data” have received considerable attention by economists in recent years.

This is not surprising, given that applied practitioners now have an incredible amount of data available

to them, and given that a whole host of new methods have been developed in various disciplines over the

last 20 years or so for processing these big data. Two key questions that economists continue to pose are,

correspondingly, what are the forecasting gains associated with using big data, and which new methods

should we use in our analyses? A third question, which is related, concerns which tools, such as predictive

accuracy tests, to use for model selection with big data. In the context of forecasting, this third question

is relevant because many critical advances have recently been made in the field of model selection and

testing. In this paper, we address all three questions. First, we discuss select state of the art methods for

big data analysis. These include dimension reduction and shrinkage approaches that are currently being

utilized not only in economics, but also in a whole host of other fields ranging from aerospace engineering

to neuroscience. Second, we discuss recent advances in predictive accuracy testing and model selection,

from the perspective of picking the “best” forecasting model. Finally, we tie our discussions together by

considering the usefulness of big data when forecasting the term structure of interest rates.

In its inception, machine learning was a field of computer science concerned with designing computers

(and computer programs) with the ability to learn, without the need for further programming. Many

types of machine learning have been developed in recent years. For example, in computer science,

key areas now include deep learning, shrinkage, and recall. Neural networks are perhaps the most

ubiquitous variety of machine learning method that economists have, up until recently, been interested

in. However, the landscape has changed dramatically in recent years, largely because of the explosion

in big data. One strand of research in big data analysis uses dimension reduction methods, two main

examples of which are principal components analysis (PCA) and partial least squares. A closely related

strand considers shrinkage (penalized regression) methods, including the likes of ridge regression, the

least absolute shrinkage selection operator (lasso), the elastic net, and the non-negative garrote. These

and other shrinkage related methods are discussed in Bai and Ng (2008,2009), Schumacher (2009), Stock

and Watson (2012), Kim and Swanson (2014,2016), and Hirano and Wright (2017), for example. Broadly

speaking, the number of such methods available to empiricists is now immense.

In the first part of this paper, we discuss a very few of the latest such techniques, and suggest where

we might go from here. For example, we discuss PCA and sparse PCA, in which the lasso is applied

to PCA in order to induce sparseness in the number of observable variables utilized in the construction

of latent factors or diffusion indexes resulting from application of PCA. We also discuss a related latent

factor dimension reduction technique called independent component analysis, that takes the orthogonality

condition imposed by PCA one step further by imposing statistically independence. Finally, we discuss

ridge regression, the lasso, and the elastic net, in the context of penalized regression, where the number
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of regressors can be larger than the number of observations in a dataset.

In the second part of this paper, we discuss out-of-sample predictive accuracy testing, given the

importance of accuracy assessment when comparing the many new “big data” methods available for

constructing forecasts. There is now a rich literature on predictive accuracy testing. One of the most

important contributions in the last 25 years is the seminal paper of Diebold and Mariano (1995, hereafter

DM), in which tests of equal predictive accuracy between two competing models are proposed. Tests

that generalize DM-type tests in order to account for parameter estimation error include West (1996)

and West and McCracken (1998), McCracken (2000), and Corradi and Swanson (2007). Conditional

predictive accuracy tests are developed in Giacomini and White (2006), in which the “estimated” model

is conditioned on. Tests allowing for integrated and cointegrated variables are discussed in Clements

and Hendry (1999,2001) and Corradi, Swanson and Olivetti (2001). The important issue of the joint

comparison of more than two competing models is addressed in Sullivan, Timmermann and White (1999),

White (2000), Hansen (2005), Romano and Wolf (2005), and Corradi and Distaso (2011). Papers that

consider predictive accuracy testing via the use of encompassing and related tests include Phillips (1996),

Harvey, Leybourne and Newbold (1997), Chao, Corradi and Swanson (2001), Clark and McCracken

(2001), Corradi and Swanson (2002), and Giacomini and Komunjer (2005). Broadly speaking, predictive

accuracy is assessed by comparing point measures such as mean square forecast error (MSFE) and mean

absolute forecast error deviation (MAFD) in the above papers. The notion of considering predictive

(error) densities rather than point error loss, model evaluation using predictive intervals, conditional

quantiles, and predictive densities is addressed by Christoffersen (1998), Giacomini and Komunjer (2005),

and Corradi and Swanson (2005,2006a,b). For comprehensive surveys of this burgeoning literature, see

West (2006), Clark and McCracken (2013), Corradi and Swanson (2013), and Diebold (2014).1

Recently, a new type of predictive accuracy tests have been devised that generalize the tests in all

of the above papers, in one key dimension. In order to understand how this is done, note that most of

the above papers consider forecast comparison based upon the examination of moments or conditional

moments of the forecast errors, and researchers must specify the objective function (say, loss function or

likelihood function) used in test formulation. As mentioned above, examples of relevant loss functions

include MSFE and mean absolute forecast error MAFD. Unfortunately, the forecast superiority of one

model, relative to other models, is dependent on the loss function that is specified. To circumvent this

issue, Granger (1999a) proposes the use of generalized loss functions, L(·), with the following properties:

(1) L(e) = 0, if the forecast error e = 0; (2) L(e) ≥ 0 and MineL(e) = 0; and (3) L(e) is monotonically

non-decreasing as e moves away from zero (this means that L(e1) ≥ L(e2) if e1 > e2 ≥ 0 or e1 < e2 ≤ 0).

1Alternatives to the use of traditional moment-based forecast evaluation methods include decision based approaches. For

example, Granger and Pesaran (2000) argue in favor of a close link between the decision and the forecast evaluation problems.

Pesaran and Skouras (2002) discuss a decision-based approach for evaluation and comparison of forecasts. Granger and

Machina (2006) propose a class of realistic decision-based loss functions for forecast evaluation.
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Corradi, Jin and Swanson (2017, hereafter CJS) term the class of loss functions that satisfy the above

three properties as general loss (GL or LG) functions. A second class of loss functions are defined as

convex loss (CL or LC) functions, if in addition to satisfying the above three properties, they are convex.

Examples of convex functions include MSFE and MAFD, as well as asymmetric functions including lin-lin

and linex functions (see Elliott and Timmermann (2004) for further discussion). In CJS, it is supposed

that there are l sets of forecasts, with corresponding sequences of one-step-ahead forecast errors, {e1t},
{e2t}..., {elt}, and the objective is to rank forecast sequences (or models), regardless of loss function.

They establish links between tests for GL (CL) forecast superiority and tests for first (second) order

stochastic dominance. This allows them to develop a forecast evaluation procedure that is based on

an out-of-sample generalization of the stochastic dominance tests introduced by Linton, Maasoumi and

Whang (2005, hereafter LMW), which is robust not only to the choice of loss function, but also to the

possible presence of outliers. In addition to summarizing DM and related tests, the CJS test is discussed

in detail below.2

In our empirical illustration, we show how important big data can be. This is done in a series of

simple prediction experiments where the objective is to predict the term structure of interest rates, and

models used include benchmark econometric models, dynamic Nelson Siegel (DNS) models, diffusion

index models, and hybrids of the three. The diffusion indexes in our experiments are estimates of the

latent factors from principle component analysis of a macroeconomic dataset including 103 U.S. variables.

Although the experimental setup that we utilize is limited in its scope, it is nevertheless interesting that

the vast majority of mean square forecast error “best” models are hybrid DNS models that include

diffusion indexes. Moreover, these hybrid models generally outperform standard econometric models, as

well as various forecast combinations.

The rest of the paper is organized as follows. Section 2 summarizes recent advances in dimension

reduction and penalized regression - both of which are key areas in machine learning. In Section 3,

forecast evaluation is discussed, with emphasis on what the latest methods are, and where we need to

go. An empirical illustration based on predicting the term structure of interest rates is given in Section

4. Finally, concluding remarks are gathered in Section 5.

2 Dimension Reduction and Penalized Regression

Dimension reduction and variable selection has never been more important in economics, given recent

massive increases in the amount of data available to forecasters.3 A key objective, given big data, is

2The approach of using stochastic dominance to rank distributions of forecast errors was first introduced in Corradi

and Swanson (2013), although they provide no theory, and their proposed tests are loss function specific. An alternative

somewhat related measure called stochastic error loss is discussed in Diebold and Shin (2015).
3See the 2015 issue of the Journal of Econometrics entitled High Dimensional Problems in Econometrics.
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to remove redundant and irrelevant information from datasets. This problem has historically been be

tackled via step-wise regression, for example. However, variables are typically highly correlated in time

series applications. Hence, statistical significance tests used in many regression type algorithms suffer

from severe size distortion issues. Ghysels, Hill, and Motegi (2017) address this issue by examining

multiple parsimonious regressions, each with one key regressor, while jointly accounting for sequential

testing problems.

A second solution to the dimension reduction problem with correlated regressors is the use of partial

least squares (PLS), which was originally proposed by Herman Wold in the mid 1960s. Broadly speaking,

PLS is a latent variable approach to modeling the covariance structure between two sets of variables.

One set might be a target variable or variables to be predicted (say Y ), while the other might be a very

large set of correlated predictor variables, say X. More precisely, the model underlying PLS has

Y = F1L1 + E1

X = F2L2 + E2,

where F1 and F2 are projection matrices of X and Y ; and L1and L2 are so-called factor loading matrices

that operate on the latent factors F1 and F2. Additionally, the error terms, E1 and E2 are assumed to be

identically and independently distributed, and all matrices are conformably defined, given the dimensions

of X and Y . In this setup, the decompositions of X and Y maximize the covariance between the latent

factors F1 and F2.

A third solution uses principle components analysis (PCA), in which latent factors (often called

diffusion indexes) are again estimated, but this time via use of an eigenvalue-eigenvector decomposition

of the covariance or correlation matrix of the data, for example. Just as in PLS, the objective is to

“explain” the data” using a reduced set of (latent) explanatory variables, with the idea being that the

useful information in a large set of predictors is often contained in a (much smaller) set of latent factors,

which are themselves simply linear combinations of the original variables. A key difference between PCA

and PLS is that PLS directly attempts to account for correlation between the target variable and the

predictors, while PCA is “unsupervised”, in the sense that correlation with any given target variable

is not emphasized in the construction of the latent factors. Rather, overall explanation of the entire

dataset is the focus of PCA. Needless to say, this particular feature of PCA is of potential concern when

targeting (predicting) a specific variable or variables. For this reason, many supervised versions of PCA

have been developed. For example, Carrasco and Rossi (2016) use cross validation methods to supervise

PCA, while Bai and Ng (2008) consider targeted forecasting using subsets of X (see also Armah and

Swanson (2010a,b)) and Cheng, Swanson, And Yang (2017). Given its ease of application as well as

recent empirical evidence on its usefulness, PCA (which is the oldest of the methods discussed in this

paper; see Spearman (1904) and the discussion in Swanson (2016) for further details), has received the
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most attention in economics recently, and hence will be discussed in considerably more detail below.

Penalized regression or shrinkage methods, which reduce or shrink redundant or irrelevant variables

are also important in big data analysis. Key examples include ridge regression, the lasso, and the elastic

net. When viewed through the lens of multivariate regression analysis, all of these methods involve

shrinking the magnitude of coefficients in regression models. When the “penalty functions” are carefully

designed, and when the “regularization parameters” used to regulate the strength of the penalties in these

functions are of sufficient magnitude, then substantial dimension reduction can be achieved. For example,

when shrinkage is used in conjunction with PCA, factor loading matrices can be induced to be sparse,

in the sense that certain coefficients in the linear combinations of the predictor variables are identically

zero. This nice feature imposes parsimony on the number of variables used to form latent factors in PCA,

whereas under standard PCA; all predictors receive non-zero weight in each latent factor. Just as in the

case of PLS, the number of predictors may be greater than the number of observations in the dataset

being analyzed using PCA.

To fix ideas, let’s consider the “original” shrinkage estimator. Namely, assume that we are interested

in the model:

Y = Xθ + ε,

where Y contains data on a single variable, there are many (possibly highly correlated) variables rep-

resented in the data matrix, X, and ε is an error term. Later, we shall introduce the ridge estimator

slightly differently, but for now, note that the ridge estimator can be expressed as:

θ̂ridge = (X ′X + λI)−1X ′Y.

The “ridge” down the diagonal in this estimator is equivalent to adding a penalty of λ
∑N
i=1 θ̂

2
i to the

usual residual sum of squares term that is minimized in least squares estimation, where N is the number

of predictors in X. Here, as λ→ 0, θ̂ridge → θ̂ols, and as λ→∞, θ̂ridge → 0. Evidently, applying the ridge

penalty shrinks parameter estimates towards zero, which increase bias and reduces estimator variance.

One very important feature of ridge regression is that invertibility problems associated with X ′X when

the number of predictors is too large relative to the number of observations are no longer an issue, and

there is always a unique solution (i.e., θ̂ridge). Other shrinkage estimators that shall be discussed in the

sequel include one where the penalty function is λ
∑N
i=1

∣∣∣θ̂i∣∣∣ (the lasso) and another that combines both

of the above penalty functions (the elastic net).

Another shrinkage estimator is based on bootstrap aggregation (bagging), and was introduced by

Breiman (1996). Stock and Watson (2012) note that predictions of Y , at a point in time, T+1, conditional

on information available up through period T, say yfT+1|T can be constructed as follows:

yfT+1|T =

N∑
i=1

ψ(λtθ̂(i))θ̂(i)XT (i),
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where XT (i) is the datum on the ith variable in X for period T , θ̂(i) is the least squares estimator

from regressing XT−1(i) on YT , and ψ(λtθ̂(i)) is a regularized (through λ) function of the t-statistic

associated with the aforementioned regression.4 For bagging λ = 1, while various Bayesian predictors,

including Bayesian model averaging and empirical Bayes can also be formulated in this manner, by

setting λ appropriately. Interestingly, Hirano and Wright (2017) show that forecasting models constructed

using out-of-sample or split sample schemes perform well only when combined with other methods, such

as bagging. Broadly speaking, their results offer a glimpse into the benefits of using state of the art

(asymptotic) statistical analysis in order to examine new methods that combine conventional out-of-

sample approaches to model selection and estimation with algorithmic approaches such as bagging. In

their paper, they show that out-of-sample schemes so regularly used for model selection (and estimation

are inefficient when applied in the conventional manner. This finding is reversed when bagging or other

risk reduction methods are combined with conventional out-of-sample schemes, however.

2.1 Static and Dynamic Factor Augmented Forecasting Models

Some of the most highly touted recent developments in forecasting center around estimation and asymp-

totic properties of diffusion indexes based on PCA; and the use of diffusion indexes in the construction

of forecasting models. Following the discussion of Stock and Watson (2002a,b) and Armah and Swanson

(2010a,b), we summarize key features of recent developments by considering static and dynamic factor

models in order to motivate the use of diffusion indexes in forecasting.

Let yt+h be the scalar target forecast variable and Xt be an N -dimensional vector of predictor vari-

ables, for t = 1, . . . , T . Assume that (yt+1, Xt) has a dynamic factor model representation with r common

dynamic factors, ft, which can be written as:

yt+h = β′Wt + α(L)ft + εt+h (2.1)

and

xit = λi(L)ft + eit, (2.2)

for i = 1, 2, . . . , N , where Wt is an l× 1 vector of observable variables with l << N, including lags of yt;

α(L) =
∑q
j=0 αjL

j and λi(L) =
∑q
j=0 λijL

j are finite order lag polynomials in nonnegative powers of L;

and h > 0 is the forecast horizon. Thus, all variables in Xt can be expressed as a linear function of the

dynamic factors (and an idiosyncratic shock, eit). This dimension reducing feature of the model is the

4In their setup, Stock and Watson (2012) assume that the predictors are zero mean random orthonormal variables. Also,

Yt is assumed to be zero mean, and the underlying model is assumed to be:

Yt = θ′Xt−1 + εt,

where εt is an error term with fixed variance.
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key feature worth noting. Now, we can write (2.1) and (2.2) in static form as:

yt+h = β′Wt + α′Ft + εt+h (2.3)

and

xit = Λ′iFt + eit, (2.4)

where Ft = (f ′t , . . . , f
′
t−q)

′ is an r × 1 vector of static factors, with r = (q + 1)r, α is an r × 1 vector,

and Λi = (λ′i0, . . . , λ
′
iq)
′ is a vector of factor loadings on the static factors, where λij is an r × 1 vector

for j = 0, . . . , q and β = (β1, . . . , βl)
′. The model in (2.3) is the “factor augmented forecasting model”

presented in the diffusion index forecasting framework of Stock and Watson (2002a,b), and discussed

further in Bai and Ng (2007). The static factor in (2.4) is thus named because the contemporaneous

relationship between xit and Ft. One major advantage of the static representation of the dynamic

factor model is it enables us to use principal component analysis to estimate the factors. This involves

estimating Ft using an eigenvalue-eigenvector decomposition of the sample covariance matrix of the data,

after standardizing said data. Moreover, an important theoretical feature of the model in (2.3) is that

consistent estimation of the factors in Ft, which can be achieved via simple application of PCA, allows

for subsequent
√
T consistent estimation of α and β in (2.3) using quasi-maximum likelihood, as long

as
√
T/N → 0, as N,T → ∞. Thus, as shown in Bai and Ng (2006), Ft, when estimated using the

PCA method outlined in Stock and Watson (2002a,b), can be treated as a vector of observed regressors,

eschewing the need to address the generated regressor problem that often arises in applied econometrics.

For a discussion of alternative methods for factor forecasting based on estimation of generalized dynamic

factor (GDF) models, see Forni, Hallin, Lippi and Reichlin (2005) and Forni, Hallin, Lippi and Zaffaroni

(2015). For further discussion of consistent estimation of factors in static as well as GDF models, see

Ding and Hwang (1999), Forni, Hallin, Lippi and Reichlin (2000), Stock and Watson (2002b), Bai and

Ng (2002) and Bai (2003), who show that the space spanned by both the static and dynamic factors can

be consistently estimated when N and T are both large.

For forecasting purposes, little is gained from a clear distinction between static and dynamic factors

(see Schumacher (2007) for a comparison of forecasts based on the use of factors estimated using static,

dynamic, and other estimation methods). Moreover, Boivin and Ng (2005) compare alternative factor

based forecast methodologies, and conclude that when the dynamic structure is unknown and the model

is characterized by complex dynamics, the approach of Stock and Watson performs favorably.

Many important issues have been addressed in recent papers on diffusion index forecasting. For ex-

ample, Bai and Ng (2006a), stress that the regressors (factors) in the diffusion index model are estimated,

which substantially increases forecast error variances. In a related paper, Bai and Ng (2006b) examine

whether observable economic variables can serve as proxies for the underlying unobserved factors. In

particular, they use a variety of statistics to determine whether a group of observed variables yields the
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same information as that contained in the latent factors. Stock and Watson (2002a) have also attempted

to link factors to observed variables. Armah and Swanson (2010) argue that if individual observable

economic variables are indeed good proxies of the unobserved factors, then these proxies can be used in

place of the factors in the diffusion index model for prediction. Once the set of factor proxies is fixed,

one effectively eliminates the incremental increase in forecast error variance (i.e., uncertainty) associated

with the use of estimated factors. Along these lines, they consider “smoothed” versions of the Bai and

Ng (2006b) statistics that pre-select a set of factor proxies prior to the ex-ante construction of a sequence

of predictions. Stock and Watson (1998,2009) demonstrate that when PCA is used in estimation, factors

remain consistent even when there is some time variation in factor loadings and small amounts of data

contamination, so long as the number of variables in the panel dataset or the number of predictors is very

large (i.e., N >> T ). The usefulness of factor augmented models that include cointegration restrictions

is discussed in Banerjee, Marcellino and Marsten (2014). The importance of assessing and testing for

structural breaks in these models is discussed in Banerjee, Marcellino and Marsten (2008), Stock and

Watson (2009), and Chen, Dolado and Gonzalo (2014). Factor loading and parameter stability testing is

addressed in Corradi and Swanson (2014), Breitung and Eickmeier (2011), Goncalves and Perron (2014),

and Han and Inoue (2014). Finally, the empirical and theoretical properties of factor augmented VARMA

models are investigated in Dufour and Stevanovic (2013).

For readers interested in estimation of factors used in (2.3), we close this section by outlining further

details, drawing directly on Armah and Swanson (2010a,b). Let k (k < min{N,T}) be an arbitrary

number of factors, Λk be N × k factor loadings matrix, (Λk1 , . . . ,Λ
k
N )′, and F k be the T × k matrix

of factors (F k1 , . . . , F
k
T )′. From (2.4), estimates of Λki and F kt are obtained by solving the optimization

problem:

V (k) = min
Λk,Fk

(NT )−1
N∑
i=1

T∑
t=1

(xit − Λk′i F
k
t )2. (2.5)

Let F̃ k and Λ̃k be the minimizers of equation (2.5). Since Λk and F k are not separately identifiable, if

N > T , a computationally expedient approach would be to concentrate out Λ̃k and minimize (2.5) subject

to the normalization F k′F k/T = Ik. Minimizing (2.5) is equivalent to maximizing tr[F k′(XX ′)F k]. This

optimization is solved by setting F̃ k to be the matrix of the k eigenvectors of XX ′ that correspond to

the k largest eigenvalues of XX ′. Note that tr[·] represents the matrix trace. Let D̃ be a k × k diagonal

matrix consisting of the k largest eigenvalues of XX ′. The estimated factor matrix, denoted by F̃ k, is
√
T times the eigenvectors corresponding to the k largest eigenvalues of the T × T matrix XX ′. Given

F̃ k and the normalization F k′F k/T = Ik, Λ̃k′ = (F̃ k′F̃ k)−1F̃ k′X = F̃ k′X/T is the corresponding factor

loadings matrix.

The solution to the optimization problem in (2.5) is not unique. If N < T , it becomes computationally

advantageous to concentrate out F
k

and minimize (2.5) subject to Λ
k′

Λ
k
/N = Ik. This minimization is

the same as maximizing tr[Λk′X ′XΛk], the solution of which is to set Λ
k

equal to the eigenvectors of the
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N ×N matrix X ′X that correspond to its k largest eigenvalues. One can thus estimate the factors as

F
k

= X ′Λ
k
/N . F̃ k and F

k
span the same column spaces, hence for forecasting purposes, they can be

used interchangeably. Given F̃ k and Λ̃k, let V̂ (k) = (NT )−1
N∑
i=1

T∑
t=1

(xit − Λ̃k′i F̃
k
t )2 be the sum of squared

residuals from regressions of Xi on the k factors, ∀i. A penalty function for over fitting, g(N,T ), is chosen

such that the loss function

IC(k) = log(V̂ (k)) + kg(N,T ) (2.6)

can consistently estimate r. Let kmax be a bounded integer such that r ≤ kmax. Bai and Ng

(2002) propose three versions of the penalty function g(N,T ), namely, g1(N,T ) =
(
N+T
NT

)
log
(
NT
N+T

)
,

g2(N,T ) =
(
N+T
NT

)
logC2

NT , and g3(N,T ) =
(

log(C2
NT )

C2
NT

)
, all of which lead to consistent estimation of r.

Additional details on the estimation of r are contained in Bai and Ng (2002). Alternative methods for

selecting r are discussed in Chen, Huang, and Tu (2010), Onatski (2015), Carrasco and Rossi (2016), and

the references cited therein.

For further reading in the area of factor models, including high dimensional covariance matrix esti-

mation in approximate factor models and projected principal components analysis in factor models, see

Fan, Liao and Wang (2016) and Fan, Laio and Mincheva (2011).

2.2 New Directions in Diffusion Index Estimation

As discussed earlier, ongoing research efforts in the study of factor augmented forecasting models include

the analysis of problems associated with the “selection” of diffusion indexes that are most useful for

predicting yt+1. For example, see Bai and Ng (2008,2009) and Schumacher (2009), who discuss using

targeted predictors based on quadratic principal components and thresholding rules for variable subset

selection to estimate diffusion indexes. Armah and Swanson (2010a,b) also discuss this issue. Further,

Carrasco and Rossi (2016) propose cross validation methods for selecting the “best” diffusion index for

use in forecasting). A related area of research, which is the subject of this subsection, is the development

of alternative diffusion index estimators, important examples of which use shrinkage methods in order

to impose sparseness on the factor loadings used in the construction of diffusion indexes. Two of the

many interesting new estimators in this context include sparse principal components analysis (SPCA)

and independent component analysis (ICA).

Zou, Hastie, and Tibshirani (2006) note that diffusion indexes estimated using PCA are linear com-

binations of all underlying predictor variables, and factor loadings are hence all nonzero, which adversely

affects the parsimony of forecasting models, a property known to be important in time series forecasting.

Moreover, they stress that diffusion indexes are thus difficult to interpret. In light of this, they propose

SPCA, in which the least absolute shrinkage selection operator (lasso) or the related shrinkage estimator

called the elastic net is utilized in order to construct principal components with sparse loadings. This
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is done this by first reformulating PCA as a regression type optimization problem, and then by using a

lasso (elastic net) on the coefficients in a suitably constrained regression model.

Before further discussing SPCA, it is worth noting that the lasso and elastic net are important

techniques for big data analysis in and of themselves, and are related to the venerable ridge regression

estimator. Using the above notation, say that

yt = X ′tθ + εt.

Here, penalized (shrinkage type) regression is carried out as follows: For the ridge estimator, construct:

θ̂ridge = arg min
θ

{∥∥y − ΣNi=1Xiθi
∥∥2

+ λ2ΣNi=1θ
2
i

}
,

where y is the Tx1 target variable, X = [X1, ..., XN ], i = 1, ..., N is the TxN predictor matrix, with

Xi = (X1,i, ..., XT,i)
′, and λ > 0 is the tuning parameter. Notice that this is an alternative formulation

of θ̂ridge to that given earlier. The more recently developed lasso and the elastic net estimators involve

imposition of L1 (lasso) and L1+L2 −norm penalties on parameter magnitudes, and are formulated as:

θ̂lasso = arg min
θ

{∥∥y − ΣNi=1Xiθi
∥∥2

+ λ1ΣNi=1 |θi|
}
,

and

θ̂elastic net = (1 + λ2) arg min
θ

{∥∥y − ΣNi=1Xiθi
∥∥2

+ λ1ΣNj=1 |θj |+ λ2ΣNj=1θ
2
j

}
.

Interestingly, SPCA follows directly by formulating PCA as a regression-type optimization problem,

and then by subsequently imposing lasso (elastic net) constraints on the regression coefficients in the

optimization problem. Put simply, factor loading can be recovered by regressing principal components

on the N variables in Xt, as shown in Zou, Hastie, and Tibshirani (2006). Here, imposition of the L2

−norm penalty in ridge regression allows for N > T. Moreover, when the lasso or elastic net is utilized

in this context, then large enough λ1 yields sparse θ̂. In this sense, SPCA is a natural data reduction

method. Since the important paper by Zou et al., many authors have proposed modifications to SPCA,

as discussed in Kim and Swanson (2017).

Broadly speaking, the lasso and elastic net constitute two of the most important penalized regression

methods currently available, in which all predictor variables are retained in a model, but are constrained

(regularized) by shrinking them towards zero. For important descriptions of these methods, see Tibshirani

(1996), Zou and Hastie (2005), and Zou (2006).

All of the above penalized regression or shrinkage type methods are examples of machine learning.

Other machine learning algorithms have also recently been explored in economics. Two examples are bag-

ging and boosting. Bagging (also called bootstrap aggregation) involves first drawing bootstrap samples

from an in-sample training dataset, and then constructing predictions, which are later combined. This

algorithm is discussed above. Boosting is another so-called machine learning ensemble meta-algorithm
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algorithm that utilizes a supervised and user-determined set of functions or learners (e.g., least square

estimators), and uses the set repeatedly on filtered data, which are typically outputs from previous it-

erations of the learning algorithm. Broadly speaking, boosting isolates which variables, from amongst a

large group of variables, are useful for predicting a target variable. More specifically, boosting estimates

an unknown function (e.g., the conditional mean) using sequential step-wise forward regression, with

learners that may not only be least squares estimators, but may also be smoothing splines and kernel

regressions, for example. For further discussion of boosting, see Freund and Schapire (1997), Bai and Ng

(2009), Kim and Swanson (2014), and the references therein.

Two further examples include the non-negative garrote (see Breiman (1995) and Yuan and Lin (2007))

and least angle regression (see Efron, Hastie, Johnstone and Tibshirani (2004) and Bai and Ng (2008)),

both of which are closely related to the elastic net.

Returning to the main subject of this section, we now discuss independent component analysis, which

is predicated on the idea of “opening” the black box in which principal components often reside, and is

an alternative to PCA and SPCA. ICA is used in many applications, from brain imaging to stock price

return modeling. In all cases, there is a large set of observed individual signals, and it is assumed that

each signal depends on several factors, which are unobserved. In this sense, the motivation is exactly the

same as that used to justify PCA.

The starting point for ICA is the very simple assumption that the components, say F, are statistically

independent in equation (2.3). This assumption is potentially much stronger than the orthogonality

imposed under PCA. The key issue in ICA is the measurement of the “level” of independence between

components. More specifically, ICA begins with statistically independent (and unobserved) source data,

S, which are mixed according to an unknown “mixing matrix”, Ω; and X, which is observed, is a mixture

of S, weighted by Ω. For simplicity, we assume that the unknown mixing matrix, Ω, is square, although

this assumption can be relaxed. Thus, it is assumed that X = SΩ. Stated differently, assume that:

X1 = ω11S1 + · · ·+ ω1NSN (2.7)

X2 = ω21S1 + · · ·+ ω2NSN
...

XN = ω1NS1 + · · ·+ ωNNSN ,

where ωij is the (i, j) element of Ω. Since Ω and S are unobserved, one must estimate the “demixing

matrix”, Ψ, which transforms the observed X into the independent components, F . That is, F = XΨ,

or F = SΩΨ. As detailed in Kim and Swanson (2017), if Ω is square, then so is Ψ, and Ψ = Ω−1,

so that F is exactly the same as S, and perfect separation occurs. In general, it is only possible to

find Ψ such that ΩΨ = PD, where P is a permutation matrix and D is a diagonal scaling matrix.

The independent components, F are latent variables, and are analogous to the principal components
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discussed in the case of PCA. In summary, upon estimation of Ω and S, it is feasible to estimate the

demixing matrix Ψ, and the independent components, F. However (2.7) is not identified unless several

assumptions are made. The first assumption is that the sources, S, are statistically independent. Since

various sources of information (for example, consumer’s behavior, political decisions, etc.) may have an

impact on the values of macroeconomic variables, this assumption is not strong. The second assumption

is that the signals are stationary. For further details, see Tong, Liu, Soon, Huan (1991). ICA maps the

N components of X into the rank N matrix, F . However, we can simply construct factors using up to

r (< N) components, without loss of generality, for comparability with PCA. Alternatively, one might

carry out ICA using r principal components, hence further filtering diffusion indexes constructed using

PCA in order to obtain statistically independent variants thereof (see Stone (2004) for further details).

In general, the above model would be more realistic if there were noise terms added. See Hyvärinen and

Oja (2000) for a detailed discussion of the noise-free model, and Hyvärinen (1998,1999) for a discussion

of the model with noise added.

For a detailed comparison of ICA with PCA, see Kim and Swanson (2016), who note that the main

difference between ICA and PCA is in the properties of the factors obtained. Principal components are

uncorrelated and have descending variance so that they are naturally ordered in terms of their variances.

While setting the diffusion index in equation (2.1) equal to the highest variance (correlation) principal

components may well not equate with the specification of the indexes that are most useful for forecasting a

given variable, say yt, it is certainly the case that components explaining the largest share of the variance

are often assumed to be the “relevant” ones. For simplicity, consider two observables, X = (X1, X2) .

PCA finds a matrix which transforms X into uncorrelated components F = (F1, F2) , such that the

uncorrelated components have a joint probability density function, pF (F ) with:

E (F1F2) = E (F1)E (F2) . (2.8)

On the other hand, ICA finds a demixing matrix which transforms the observed X = (X1, X2) into

independent components F ∗ = (F ∗1 , F
∗
2 ) , such that the independent components have a joint pdf pF∗ (F ∗)

with:

E
[
F ∗p1 F ∗q2

]
= E

[
F ∗p1

]
E
[
F ∗q2

]
, (2.9)

for every positive integer value of p and q. Evidently, ICA is more restrictive, and it should thus not be

surprising that implementation is much more difficult than PCA, in which estimation is much simpler,

since it just involves finding a linear transformation of components which are uncorrelated. Moreover,

there is no natural ordering of latent factors in ICA. This is perhaps a blessing in disguise. Namely,

as stated above, there is no a priori reason why the ordinal (correlation) ranking of diffusion indexes

corresponds to a ranking of their usefulness for predicting yt (see Kim and Swanson (2014), Bai and Ng

(2008) and Carrasco and Rossi (2016) for further discussion of this issue).
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Even given all of the recent progress in the area, much remains to be done. There are innumerable

possible estimators and algorithms than can potentially be utilized for machine learning (indeed we

have touched in our discussion on only a very few of those already available). What will probably

differentiate the “good methods” from the “not so good” is their ability to properly marry the latest

tools in statistical inference with the latest algorithmic techniques. For example, step-wise methods

now often rely on learning functions and thresholding variables (such as t-statistics) centered around

conditional mean type prediction, while there is a clearly a need to fully incorporate conditional or

predictive density type prediction in new methods. As another example, recall our earlier discussion on

the use of asymptotic analysis to examine the combination of conventional out-of-sample schemes with

bootstrap aggregation. Many of these sorts of analyses remain to be done in the context of combining

conventional forecasting approaches with state of the art dimension reduction, machine learning, and

penalized regression algorithms.

3 Forecast Evaluation

One of the reasons why machine learning has taken so long to “catch on” in economics is the problem

of over-fitting. This issue is made very clear by considering the case of neural networks. We know,

from Hornik, Stinchcombe, and White (1989) that neural networks are universal approximators, in the

sense that properly designed neural networks with numbers of parameters that grow appropriately, as

the sample grows, can approximate an arbitrary function arbitrarily well. However, we also know, from

numerous empirical experiments, that more heavily parameterized models often tend to be outperformed,

in a predictive sense, by more parsimonious models. The reasons for this are many, and include the effect

of specifying models that are crude approximations of reality, and the fact that structural change is

prevalent in time series models. Loosely speaking, then, it was the poor predictive accuracy of models

that have been too heavily parameterized, or over-fitted, that led economists to eschew adopting machine

learning and related big data methods. This is all changing, though, in part because a plethora of

new tests for assessing predictive accuracy which account for over-fitting, have recently been developed.

However, just as is the case in machine learning, much remains to be done in the area of predictive

accuracy testing.

We begin this section by discussing standard predictive accuracy tests that are used every day by

applied practitioners. Thereafter, we discuss novel new tests currently being developed that allow for

model forecast comparison without specification of a loss function.
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3.1 Loss Function Dependent Model Evaluation and Selection

As previously, assume that the objective is to predict yt.The null hypothesis of equal predictive accuracy

between two models of yt, say model 0 and model 1, is specified as:

H0 : E(L(u0,t+h)− L(u1,t+h)) = 0

and

HA : E(L(u0,t+h)− L(u1,t+h)) 6= 0,

where L(·) is a loss function. In practice, we do not observe u0,t+h and u1,t+h, which are assumed to

be out-of-sample h-step ahead forecast errors, but only estimates thereof (i.e., say û0,t+h and û1,t+h,

respectively). When P/R→ π = 0, as P,R→∞ (asymptotically negligible parameter estimation error),

where P is the number of forecast errors that we have constructed for each model being compared, and R

is the initial “in-sample” estimation period (i.e., P + R = T ), under recursive or rolling estimation, say,

then we can construct the standard version of DM predictive accuracy test in order to test H0. Namely:

DMP =
dt
σ̂dt

d→ N(0, 1),

where

dt =
1

P

T∑
t=R+1

dt, dt = L(û0,t+h)− L(û1,t+h), and σ̂dt =
σ̂dt√
P
.

In the above test, for which a heteroscedasticity and autocorrelation consistent estimator of σ̂dt is utilized

whenever h > 1, the assumption that parameter estimation error is asymptotically negligible allows for

the use of any loss function, L(·), including one that is non-differentiable. However, if accounting for

parameter estimation error, one can consider only differentiable loss functions (see Corradi and Swanson

(2006b) for complete details). Moreover, regardless of loss function, the normal limiting distribution does

not obtain if models 0 and 1 are nested; in which case non-standard critical values must be used, as

outlined in McCracken (2000) and Clark and McCracken (2001,2013). An alternative test, which does

not require correct dynamic specification and/or conditional homoskedasticity, and which is robust to

nonnestedness is proposed by Chao, Corradi, and Swanson (2001). The test statistic is:

mP = P−1/2
T∑

t=R+1

û0,t+hXt, (3.1)

where û0,t+1 and Xt is some (possibly vector values) set of variables, possibly including lags. More

complex versions of this test that are consistent against generic nonlinear alternatives are discussed in

Corradi and Swanson (2002). In this test, the hypotheses of interest are:

H̃0 : E(u0,t+hXt−j) = 0, j = 0, 1, . . . k.

H̃A : E(u0,t+hXt−j) 6= 0 for some j, j = 0, 1, . . . k.

14



As an example, note that if the model being tested does not include a variable, say Zt, then inclusion of

Zt in Xt is equivalent to testing for out-of-sample Granger causality from Zt to yt. Notice also that this

test is a variety of the well known Bierens specification test, rather than a test which directly compares

two models, such as the DM test. When P/R → π = 0, as P,R →∞, then m′pŜ11mP
d→ χ2

k, where k is

the number of new variables in Xt, and Ŝ11 is an estimator of a k × k matrix S11, with:

S11 =

∞∑
j=−∞

E ((Xtu0,t+h − µ1)(Xt−ju0,t+h−j − µ1)′) ,

where µ1 = E(Xtut+h). In empirical applications, one estimates S11 as follows:

Ŝ11 =
1

P

T−1∑
t=R

(û0,t+hXt − µ̂1)(û0,t+hXt − µ̂1)′

+
1

P

lT∑
t=τ

wτ

T−1∑
t=R+τ

(û0,t+hXt − µ̂1)(û0,t+h−τXt−τ − µ̂1)′

+
1

P

lT∑
t=τ

wτ

T−1∑
t=R+τ

(û0,t+h−τXt−τ − µ̂1)(û0,t+hXt − µ̂1)′,

where µ̂1 = 1
P

∑T−1
t=R û0,t+1Xt.

Alternatively, when comparing multiple different models, Sullivan, Timmermann and White (1999)

and White (2000) proposes using the following test statistic:

SP = max
k=1,...,m

SP (1, k),

where

SP (1, k) =
1√
P

T∑
t=R+1

(L(û0,t+h)− L(ûk,t+1)) , k = 1, ...,m.

The hypotheses are formulated as

H0 : max
k=1,...,m

E(L(u0,t+1)− L(uk,t+1)) ≤ 0.

HA : max
k=1,...,m

E(L(u0,t+1)− L(uk,t+1)) > 0.

Thus, under the null hypothesis, no competitor model, amongst the set of the m alternatives, can

provide a more (loss function specific) accurate prediction than the benchmark model (i.e., model 0). On

the other hand, under the alternative, at least one competitor (and in particular, the best competitor)

provides more accurate predictions than the benchmark. Critical values for this test can be constructed

using the block bootstrap, as discussed in Corradi and Swanson (2007). An interesting extension of

this test, in which rolling data windows are used in model estimation and all estimated parameters

are conditioned on, is discussed in Giacomini and White (2006). For extensions of the above tests to

predictive density evaluation, see Corradi and Swanson (2005,2006a,b).

15



3.2 Loss Function Free Model Evaluation and Selection

In this section we summarize new developments in forecast evaluation which is valid under generalized

loss functions, and which is based directly on the evaluation of F (u), the CDF of the forecast error. In

particular, note that Corradi, Jin, and Swanson (2017) discuss testing for GL and CL forecast superiority.

Their tests allow for parameter estimation error, data dependence, and comparison of multiple models,

but require the underlying processes to be strictly stationary. To start, assume that the loss function

(L) is defined such that L : R→ R+ is continuously differentiable, except for finitely many points, with

derivative L′, such that L′(z) ≤ 0, for all z ≤ 0, and L′(z) ≥ 0, for all z ≥ 0.

Definition (Forecast Superiority): u1 General-Loss (GL) outperforms u2, denoted as u1 �G u2,

if and only if E(L(u1)) ≤ E(L(u2)), for all L ∈ LG; and u1 Convex-Loss (CL) outperforms u2, denoted

as u1 �C u2, if and only if E(L(u1)) ≤ E(L(u2)), for all L ∈ LC .

Here, u1 and u2 are sequences of forecast errors, as above. In order to connect the notion of forecast

superiority to that of stochastic dominance, CJS establish a mapping between GL forecast superiority

and first order stochastic dominance. They also establish linkages between CL forecast superiority and

second order stochastic dominance. They then derive direct tests for GL/CL forecast superiority. Define:

G(x) = (F2(x)− F1(x))sgn(x), (3.2)

where sgn(x) = 1 if x ≥ 0, and = −1 if x < 0; and

C(x) =

∫ x

−∞
(F1(t)− F2(t))dt1(x < 0) +

∫ ∞
x

(F2(t)− F1(t))dt1(x ≥ 0), (3.3)

where 1(·) denotes the indicator function, which takes the value 1 if the condition is met, and 0 otherwise.

CJS show that E(L(u1)) ≤ E(L(u2)), for all L ∈ LG, if and only if G(x) ≤ 0, for all x ∈ X , where X is

the union of the supports of all forecast errors; and E(L(u1)) ≤ E(L(u2)), for all L ∈ LC , if and only if

C(x) ≤ 0 for all x ∈ X .
Before implementing GL forecast superiority tests, one can construct a graph that contains a plot of

G(x) against x. When u1 �G u2, we expect all points to lie below or on the zero line. In other words, a

crossing of the zero line in the graph indicates a violation of GL forecast superiority. Similarly, one can

construct a graph that contains a plot of C(x) against x. When u1 �C u2, we expect all points to lie

below or on the zero line. In other words, a crossing of the zero line in the graph indicates a violation of

CL forecast superiority.

Now, suppose that there are m sets of forecast errors u1, ..., um, resulting from m forecasting models.

For k = 1, ...,m, define:
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Fk (x) = P (uk,t ≤ x) and

F k,n (x) = P−1
T∑
t=R

1 (uk,t ≤ x) ,

The statistics discussed by CJS (2017) for testing the null of no forecast superiority are constructed

by calculating:

TG+
n = max

k=2,..,m
sup
x∈X+

√
nGk,n(x) and TG−n = max

k=2,..,m
sup
x∈X−

√
nGk,n(x)

and

TC+
n = max

k=2,..,m
sup
x∈X+

√
nCk,n(x) and TC−n = max

k=2,..,m
sup
x∈X−

√
nCk,n(x),

where Gk,n(x) =
(
F k,n (x)− F 1,n (x)

)
sgn(x)

and

Ck,n(x) =
{∫ x
−∞

(
F 1,n (s)

−F k,n (s)
)
ds1(x < 0) +

∫∞
x

(
F k,n (s)− F 1,n (s)

)
ds1(x ≥ 0)

}
.

For discussion of computation of the suprema in these statistics, as well as discussion of more general

versions of the test statistics that explicitly account for parameter estimation error and different model

estimation schemes (e.g., rolling versus recursive model estimation), see CJS (2017). Critical values can

easily be constructed by using bootstrap methods, as discussed in CJS (2017). One appealing feature

of the testing procedure discussed in this subsection is that it can be adapted to forecast combination,

although such an extension remains the subject of future research. This is relevant because it has become

an attractive strategy to combine competing professional forecasts or survey predictions, to aggregate

crowd wisdom collected from different sources, and to combine forecasts generated by econometric models,

for example. The reason for this is that combined forecasts often outperform the “best” individual

forecasts, see Timmermann (2006) for a detailed discussion. In standard procedures used in the literature,

optimal forecast weights are generally loss function dependent, see Elliott and Timmermann (2004). In

the current context, one can evaluate different forecast combinations and select combination weights

based on GL and CL forecast superiority.

Although CJS make a substantial contribution in loss function robust forecast evaluation, their tests

are not uniformly valid, as they have correct asymptotic size only under the least favorable case under the

null hypothesis. It remains to develop tests that are uniformly asymptotically valid. Many theoretical

questions of this sort remain unanswered in the predictive accuracy and model selection literature, and

as new and increasingly complex machine learning methods are developed, theorists will have their hands

full keeping up. For a key example of the type of analytically sophisticated analysis that is necessary in

order to continue advancing our understanding of model selection, see Hirano and Wright (2017).
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4 Empirical Illustration: Predicting Interest Rates Using Big

Data versus Small Data Methods

In order to fix some of the ideas discussed in this paper, we carry out a small empirical investigation

that utilizes a subset of the leading methods discussed above. Our objective is to predict U.S. Treasury

yields of various maturities (i.e., the term structure of interest rates). Predictions will be made using

“small data” models, including autoregressive, vector autoregressive, and dynamic Nelson-Siegel models,

and “big data” models that utilize diffusion indexes estimated from a largescale macroeconomic dataset.

4.1 Experimental Setup

All models in all experiments are re-estimated prior to the construction of each new prediction, using

rolling 120 month windows of data; and estimation is carried out using least squares and principal com-

ponents analysis. Monthly yield forecasts for horizons h = 1−, 3−, and 12− steps ahead are constructed

for a variety of bond maturities, and these are aggregated using mean square forecast error (MSFE)

criteria, and evaluated using the DMP predictive accuracy test discussed above. The development of

a more exhaustive set of experiments is left to future research, and all conclusions made based on our

experiments should thus be viewed with caution.

A summary of the models used in our prediction experiments is given below.

Small Data Models
Autoregressive (AR) and Vector Autoregressive (VAR) Models:

(Models in this section are summarized in Table 1, and include: AR(1), VAR(1), AR(SIC), and VAR(SIC))

We utilize a number of benchmark time series models, specified as follows:

yt+h(τ) = c+ β′Wt + εt+h, (4.1)

where τ denotes the maturity of a bond (bill) for which the scalar, yt+h(τ), measures the annual yield.

Additionally, Wt contains lags of yt+h(τ) in autoregressive specifications, and contains lags of yt+h(τ)

and additional explanatory variables in vector autoregressive specifications, with β a conformably defined

coefficient vector.5 In AR and VAR specifications, up to 5 lags of yt+h(τ) are included in our models, with

the number of lags selected using the Schwarz information criterion (SIC). In addition to AR(SIC) and

VAR(SIC) models, straw-man AR(1) and VAR(1) models are estimated. Additionally, in our unrestricted

VAR models, Wt includes bonds of five different maturities (i.e. 1 year, 2 years, 3 years, 5 years, 10 years).

5When specifying VAR models, equation (4.1) constitutes only one (τ -maturity) equation in the VAR. As the same set

of explanatory variables is utilized in each equation in the VAR, the SUR (seemingly unrelated regression) result ensures

that consistent and efficient parameter estimates can be obtained via application of equation by equation least squares.
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Dynamic Nelson Siegel (DNS) Models:

(Models in this section are summarized in Table 1, and include: DNS(1), DNS(2), DNS(3), DNS(4),

DNS(5), and DNS(6))

The DNS model introduced by Li and Diebold (2006) is a dynamic version of the term structure based

upon Nelson and Siegel (1987), where the cross-sectional movement of the term structure is summarized

by the dynamics of three underlying latent factors interpreted as “level”, “slope”, and “curvature” factors.

We refer to the three latent factors as “Nelson-Siegel factors”, and in our prediction experiments, both

AR(1) and VAR(1) DNS type models are specified in order to predict these factors for subsequent use

in the prediction of yt+h(τ). For a detailed discussion of yield curve modeling using the DNS models,

see Diebold and Rudebusch (2013). For detailed discussions comparing arbitrage free dynamic latent

factor models, arbitrage free DNS models, and DNS models, refer to Ang and Piazzesi (2003), Diebold,

Rudebusch and Aruoba (2006), Christensen, Diebold, and Rudebusch (2011), Duffie (2011), and the

references cited therein. For a discussion of the usefulness of survey information in related term structure

modeling, see Altavilla, Giacomini, and Ragusa (2016).

In the DNS model, estimates of the Nelson-Siegel factors are constructed at each point in time by

regressing {1, [ 1−exp(−λtτ)
λtτ

], [ 1−exp(−λtτ)
λtτ

−exp(−λtτ)]} on yt(τ). Namely, in a first step:

yt(τ) = β1,t + β2,t[
1− exp(−λtτ)

λtτ
] + β3,t[

1− exp(−λtτ)

λtτ
− exp(−λtτ)] + εt, (4.2)

is fitted at each point in time, t, yielding sequences of estimates, β̂1,t, β̂2,t, and β̂3,t, for t = 1, ..., T. Note

that in this step, 3 model variants are considered. One variant defines:

y10
t (τ) = [yt(12) yt(24) yt(36) yt(48) yt(60) yt(72) yt(84) yt(96) yt(108) yt(120)]′.

In a second variant,

y6
t (τ) = [yt(12) yt(24) yt(36) yt(60) yt(84) yt(120)]′,

and in a third variant

y4
t (τ) = [yt(12) yt(36) yt(60)yt(120)]′.

Predictions of yt+h are constructed using the model:

yt+h(τ) = β̂f1,t+h + β̂f2,t+h[
1− exp(−λtτ)

λtτ
] + β̂f3,t+h[

1− exp(−λtτ)

λtτ
− exp(−λtτ)], (4.3)

where yt+h(τ) is a scalar, and β̂f1,t+h, β̂f2,t+h, and β̂f3,t+h and predictions constructed by specifying simple

AR or VAR models for β̂1,t, β̂2,t, and β̂3,t, including:

β̂fi,t+h = ĉi + γ̂iiβ̂i,t, for i = 1, 2, 3, (4.4)

where β̂fi,t+h, β̂i,t, ĉi and γ̂ii are scalars. We also construct predictions by using the following VAR(1)

model:

β̂ft+h = ĉ+ γ̂β̂t, (4.5)
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where β̂ft+h =
(
β̂f1,t+h, β̂

f
2,t+h, β̂

f
3,t+h

)′
, ĉ is 3x1 vector, and γ̂ = (γ̂1, γ̂2, γ̂3) , with γ̂j a 3x1 vector, for

j = 1, 2, 3. Note that the loading on β̂1,t is one, so it is often interpreted as the “level” factor. Also, β̂2,t

decreases as maturity increases, resulting in an increase in the “slope” of bond yield curve. Finally, β̂3,t

has initial loading zero, on the short end of yield curve, and reaches its peak at around the 30 month of

maturity (when the rate of decay, λt, is fixed to 0.0609, as discussed by Diebold and Li (2006), as is done

in our implementation), and gradually decays to zero as the maturity goes to infinity. Since an increase

in β̂3t has a larger effect on medium-term yields than on short- and long-term yields, it is often called a

“curvature” factor.

DNS Models with Macroeconomic Variables:

(Models in this section are summarized in Table 1, and include: DNS(1)+MAC, DNS(2)+MAC, DNS(3)+MAC,

DNS(4)+MAC, DNS(5)+MAC, and DNS(6)+MAC)

DNS models of the variety discussed above are also estimated, where latent factor prediction models

include macroeconomic variables. Namely, we consider predictions constructed using:

β̂fi,t+h = ĉi + γ̂iiβ̂i,t + α̂′iMt, for i = 1, 2, 3,

where Mt includes selected key macroeconomic variables discussed in Diebold and Li (2006), and α̂ is a

3x1 vector. Here, Mt includes manufacturing capacity utilization, the federal funds rate, and the annual

personal consumption expenditures price deflator. Analogous to the VAR(1) model given in (4.5), we

additionally construct predictions according to:

β̂ft+h = ĉ+ γ̂β̂i,t + α̂Mt, for i = 1, 2, 3,

where α̂ = (α̂1, α̂2, α̂3) , with α̂j a 3x1 vector, for i = 1, 2, 3.

Diffusion Index Models:

(Models in this section are summarized in Table 1, and include: DIF(1), DIF(2), DIF(3))

We construct predictions using the diffusion index model discussed extensively above, where latent

factors, F st are estimated using PCA with a set of 10 yields given by y10
t (τ),

yt+h(τ) = c+ β′Wt + α′F st + εt+h, (4.6)

where F st includes either 1, 2, or 3 latent factors corresponding to the largest eigenvalues of the eigen-

value/eigenvector decomposition of a small (standardized) yield dataset consisting of our 10-dimensional

yield dataset, and Wt includes only one lag of the yield. This simple model is included in order to facili-

tate direct comparison with the DNS models given in equations (4.4) and (4.5).
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Big Data Models
Diffusion Index Models:

(Models in this section are summarized in Table 1, include: DIF(4), DIF(5), DIF(6), VAR(1)+FB1,

VAR(1)+FB2, VAR(SIC)+FB1, VAR(SIC)+FB2 (1st eq.) and DIF(1)+FB1, DIF(2)+FB1, DIF(3)+FB1,

DIF(1)+FB2, DIF(2)+FB2, DIF(3)+FB2)

We utilize the prediction model given in equation (4.6), but with latent factors, say F bt , estimated

using PCA with a set of 103 macroeconomic variables (see below data description for a discussion of the

variables used). In particular, we estimate variants of the following factor augmented forecasting model:

yt+h(τ) = c+ β′Wt + α′F bt + εt+h,

where setting β = 0 yields “pure” diffusion index models, and Wt is defined as above, yielding AR and

VAR variants of these models. Inclusion of the lagged yield in Wt allows for direct comparison of our

diffusion index models with our pure econometric AR and VAR models discussed at the beginning of this

section. Here, F bt includes either 1, 2, or 3 latent factors, and α and β are conformably defined vectors

of coefficients. For a related discussion of so-called unspanned macroeconomic factors in the yield curve,

see Bauer and de los Rios (2012) and Coroneo, Giannone and Modugno (2016).

Additionally, we construct predictions using diffusion index models of the following variety:

yt+h(τ) = c+ β′Wt + α′2F
b
t + α′2F

s
t + εt+h.

Note that although multiple yield lags were tried when specifying Wt, “MSFE-best” models always in-

cluded only the first lag of the yield(s). For this reason all empirical results discussed in the sequel use

one lag.

DNS Models with Diffusion Indexes:

(Models in this section are summarized in Table 1, and include: DNS(1)+FB1, DNS(2)+FB1, DNS(3)+FB1,

DNS(4)+FB1, DNS(5)+FB1, DNS(6)+FB1, DNS(1)+FB2, DNS(2)+FB2, DNS(3)+FB2, DNS(4)+FB2,

DNS(5)+FB2, DNS(6)+FB2)

The DNS model discussed above is augmented to include diffusion indexes. Namely, we considered

DNS type predictions constructed using:

β̂fi,t+h = ĉi + γ̂iβ̂i,t + α̂′F bt , for i = 1, 2, 3,

where F bt again includes either 1, 2 or 3 latent factors, and so is a scalar or a 3x1 vector. All other terms

are conformably defined. Analogous to our above discussion of DNS models, we also construct predictions

by using the following VAR(1) variant of this model:

β̂ft+h = ĉ+ Γ̂β̂t + Ξ̂F bt ,
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where β̂ft+h =
(
β̂f1,t+h, β̂

f
2,t+h, β̂

f
3,t+h

)′
, ĉ is 3x1 vector, and Γ̂ = (γ̂1, γ̂2, γ̂3) , γ̂j is a 3x1 vector, for

j = 1, 2, 3, and Ξ̂ is a 3x1 vector (if F bt is a scalar), or is a 3x2 matrix (if F bt is a 2x1 vector).

Forecast Combination
In our prediction experiments, we also construct and analyze a select set of forecast combinations.

The particular combinations are detailed in Table 7. Although the focus of this paper is not forecast

combination, there are two reasons why we include at least a small set of combinations. First, it is

well known that forecast combination is useful in time series prediction. More importantly, inclusion

of combinations in our empirical illustration serves to stress that an important area for future research

involves combination of classical econometric and machine learning methods. Just as shown in Kim and

Swanson (2014), Carrasco and Rossi (2016), and Hirano and Wright (2017), much can be gained via

combination not only of forecasts, but also of methodologies.6

4.2 Data

Our term structure data are U.S. zero-coupon (end of month) yield curve data reported by the Federal

Reserve Board (see https://www.quandl.com/data/FED/SVENY-US-Treasury-Zero-Coupon-Yield-Curve

and Gurkaynak, Sack and Wright (2006)). In particular, we utilize monthly data for the period January

1982 through July 2016, for 1 through 10 year maturities. Hence, we analyze a panel of dataset containing

N = 10 variables and T = 415 monthly observations. All yields are standardized to mean zero unit

variance series before principle component analysis.

Macro factors are constructed using a balanced panel of 103 macroeconomic variables obtained from

the FRED-MD dataset recently developed by the Federal Reserve Bank of St. Louis. A detailed expla-

nation on how the data set is collected and adjusted is given in McCracken and Ng (2016). FRED-MD

is maintained by FRED, is updated on a monthly basis, and can be accessed at

https://research.stlouisfed.org/econ/mccracken/fred-databases/. Our version of this dataset contains

observations for the period January 1982 through July 2016.

4.3 Empirical Findings

Tables 2A - 2D contain relative MSFEs for yield forecasts constructed using the models listed in Table

1, for h = 1, for 1, 2, 3, 5, and 10 year maturities, and for 4 different forecasting periods, including:

1992:1-1999:12 (Subsample 1), 2000:1-2007:12 (Subsample 2), 2008:1-2016:7 (Subsample 3), and 1992:1-

2016:7 (Subsample 4). The benchmark model used in the construction of relative MSFEs is the AR(1)

forecasting model. Tabulated entries denoted in bold are the lowest (relative) point-MSFEs, for each

6For a discussion of forecast combination using the types of factor augmented regressions discussed in this paper, see

Cheng and Hansen (2015).
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maturity. Starred entries indicate rejection of the (DMP test) null hypothesis of no difference between the

benchmark and the alternative model listed in column 1 of the tables, in favor of the alternative model.7

Tables 3A-D and 4A-D collect analogous results, but for h = 3 and h = 12, respectively. Additionally,

the “MSFE-best” models for each bond maturity, each forecast horizon, and each subsample (i.e., the

models denoted in bold in Tables 2A-4D) are given in Table 5; and Table 6 is an analogous table, but with

two alternative subsamples (i.e., expansionary and recessionary periods). Finally, the results of forecast

combination experiments utilizing all of the models are summarized in Tables 7 and 8A-C.

Turning to the results based on Tables 2A through 4D, a number of clearcut conclusions emerge.

First, inspection of the results in Tables 2A-2D indicates that for Subsamples 1 and 2, the MSFE-best

model is usually a DNS model with added “big data” diffusion indexes. Namely, DNS+FB models usually

“win”. In particular, for forecast horizons of 1- and 3-steps ahead, this is true in 17 of 20 maturity/horizon

permutations, across Subsamples 1 and 2. Interestingly, in the most recent subsample (i.e., Subsample 3),

DNS+FB type models instead “win” in only 2 of 10 cases, for forecast horizons of 1- and 3-steps ahead.

Thus, the post Great-recession period appears to have “confused” our models. Nevertheless, when results

based on the entire prediction period (i.e., Subsample 4) are examined, it is noteworthy that DNS models

with added “big data” diffusion indexes still “win” in 7 of 10 cases, for h = 1 and 3. For our longest

forecast horizon (i.e., h = 12), the evidence in favor of using “big data” is not so clearcut, as baseline

DNS models without diffusion indexes and straw-man AR and VAR models almost always “win”.

Additionally, it is always 1 or 2 “big data” diffusion indexes that are included in MSFE-best models.

This finding is not surprising, given the preponderance of current empirical evidence pointing to the fact

that most of the useful predictive information is contained in 1, or at most 2, diffusion indexes.

Second, even cursory examination of Tables 2A-4D indicates that models listed as MSFE-best in Table

5 are almost always significantly better than our benchmark AR(1) model, based upon application of the

DMP test.

Third, the DNS type models that “win” in our experiments are usually the vector variety (i.e., DNS(4),

DNS(5) and DNS(6)). This suggests that the factors in the DNS model do not evolve independently of

one another. Thus, not only can the factors (i.e., the “betas”) be better predicted by utilizing “big

data” diffusion indexes, as discussed above, but they can also be better predicted by modeling their

cross-correlation dynamics.

Fourth, the evidence in favor of DNS+FB type models is both stronger and weaker when our prediction

periods are broken into two alternative subsamples defined as “expansionary” and “recessionary”, based

upon application of NBER dating. In particular, in recessionary times, DNS+FB models win in 13 of

15 maturity/horizon permutations, including maturities of 1, 3, 5, and 10 years and horizons of h = 1, 3,

and 12 months ahead. Thus, in recessionary times our DNS+FB models even “win” for h = 12, which

7*** entries indicate rejection at the 1% level, while ** and * denote rejection at the 5% and 10% levels, respectively.
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was not the case based upon our earlier analysis of Subsamples 1-4. On the other hand, in expansionary

times, DNS+FB models win in only 7 of 15 maturity/horizon permutations, and none of these wins occur

when h = 12.

Finally, note that Table 7 lists a small number of different forecast combinations that were utilized in

order to construct alternative predictions. The “MSFE-best” combination models are usually preferred

to the AR(1) benchmark, based on application of the DMP test, as might be expected, given our above

discussion. However, it is noteworthy that point MSFEs associated with the best combination models

are usually higher than point MSFEs associated with out best individual models. Indeed, combination

models fail to “win” in 15 of 20 cases, for h = 1, Subsamples 1-4, and across all 5 bond maturities (see

Table 8A). For h = 3, the case against forecast combination is even stronger, with combination models

failing to “win” in 18 of 20 cases, for Subsamples 1-4 and across all 5 bond maturities (see Table 8B).

Similarly, for h = 12, combination models fail to “win” in 17 of 20 cases (see Table 8C). Evidently, a

richer set of combination models needs to be entertained if the usual result that combination works is to

be found. Examination of this is left to future research.

5 Concluding Remarks

This paper discusses recent advances in the analysis of big data using latent factor type dimension

reduction methods as well as various other machine learning and shrinkage approaches. It is suggested that

much remains to be learned regarding the ways in which extant econometric methods can be combined

with dimension reduction methods in order to achieve improvements in prediction. We show how readily

standard econometric models can be augmented to include predictive error reducing information from big

datasets, in an illustration in which the term structure of interest rates is predicted. Finally, we address

predictive accuracy testing in the context of big data, and outline new loss function free methods that

may be useful for forecast accuracy and model selection assessment.
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Table 1: Models Used in Forecast Experiments∗

Model Description

AR(1) Autoregressive model with one lag

VAR(1) Five-dimensional vector autoregressive model with one lag

VAR(1)+FB1 VAR(1) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

VAR(1)+FB2 VAR(1) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

AR(SIC) Autoregressive model with lag(s) selected by the Schwarz information criterion

VAR(SIC) Five-dimensional vector autoregressive model with lag(s) selected by the Schwarz information criterion

VAR(SIC)+FB1 VAR(SIC) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

VAR(SIC)+FB2 VAR(SIC) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(1) Dynamic Nelson-Siegel (DNS) model with underlying AR(1) factor specifications fitted with ten-dimensional yields: maturity τ = 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 months

DNS(2) DNS model with underlying AR(1) factor specifications fitted with six-dimensional yields: maturity τ = 12, 24, 36, 60, 84, 120 months

DNS(3) DNS model with underlying AR(1) factor specifications fitted with four-dimensional yields: maturity τ = 12, 36, 60, 120 months

DNS(4) DNS model with underlying VAR(1) factor specifications fitted with ten-dimensional yields: maturity τ = 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 months

DNS(5) DNS model with underlying VAR(1) factor specifications fitted with six-dimensional yields: maturity τ = 12, 24, 36, 60, 84, 120 months

DNS(6) DNS model with underlying VAR(1) factor specifications fitted with four-dimensional yields: maturity τ = 12, 36, 60, 120 months

DNS(1)+FB1 DNS(1) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(2)+FB1 DNS(2) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(3)+FB1 DNS(3) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(4)+FB1 DNS(4) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(5)+FB1 DNS(5) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(6)+FB1 DNS(6) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DNS(1)+FB2 DNS(1) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(2)+FB2 DNS(2) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(3)+FB2 DNS(3) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(4)+FB2 DNS(4) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(5)+FB2 DNS(5) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(6)+FB2 DNS(6) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DNS(1)+MAC DNS(1) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(2)+MAC DNS(2) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(3)+MAC DNS(3) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(4)+MAC DNS(4) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(5)+MAC DNS(5) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DNS(6)+MAC DNS(6) model with three key macroeconomic variables added: manufacturing capacity utilization, the federal funds rate, and annual price inflation

DIF(1) Diffusion index model with one principle component estimator based on all ten-dimensional yields

DIF(2) Diffusion index model with two principle component estimators based on all ten-dimensional yields

DIF(3) Diffusion index model with three principle component estimators based on all ten-dimensional yields

DIF(4) Diffusion index model with one principle component estimator based on all 103 macroeconomic variables

DIF(5) Diffusion index model with two principle component estimators based on all 103 macroeconomic variables

DIF(6) Diffusion index model with three principle component estimators based on all 103 macroeconomic variables

DIF(1)+FB1 DIF(1) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DIF(2)+FB1 DIF(2) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DIF(3)+FB1 DIF(3) model with one principle component added, principle component analysis based on all 103 macroeconomic variables

DIF(1)+FB2 DIF(1) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DIF(2)+FB2 DIF(2) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

DIF(3)+FB2 DIF(3) model with two principle components added, principle component analysis based on all 103 macroeconomic variables

* Notes: This table summarizes the models utilized in all forecasting experiments.
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Table 2A: 1-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 1: 1992:1-1999:12)∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.089 1.098 1.093 1.095 1.142

VAR(1)+FB1 0.809** 0.857** 0.883* 0.921 1.045

VAR(1)+FB2 0.834 0.863 0.887 0.935 1.106

AR(SIC) 0.860** 0.938* 0.955* 0.970 0.972**

VAR(SIC) 1.089 1.098 1.093 1.095 1.142

VAR(SIC)+FB1 0.809** 0.857** 0.883* 0.921 1.045

VAR(SIC)+FB2 0.834 0.863 0.887 0.935 1.106

DNS(1) 1.027 1.103 1.061 1.036 1.067

DNS(2) 1.032 1.093 1.052 1.042 1.064

DNS(3) 1.038 1.131 1.068 1.042 1.037

DNS(4) 1.083 1.164 1.102 1.066 1.102

DNS(5) 1.091 1.150 1.092 1.076 1.098

DNS(6) 1.093 1.196 1.106 1.061 1.071

DNS(1)+FB1 0.890 0.863* 0.891 0.975 0.981

DNS(2)+FB1 0.882 0.865* 0.898 0.993 0.980

DNS(3)+FB1 0.869 0.871* 0.894 0.999 0.991

DNS(4)+FB1 0.775** 0.859** 0.863*** 0.914 0.990

DNS(5)+FB1 0.777** 0.851** 0.860** 0.927 0.987

DNS(6)+FB1 0.768*** 0.882** 0.867*** 0.922 0.987

DNS(1)+FB2 0.949 0.908 0.943 1.046 1.053

DNS(2)+FB2 0.938 0.910 0.951 1.066 1.051

DNS(3)+FB2 0.925 0.913 0.945 1.073 1.073

DNS(4)+FB2 0.780** 0.842** 0.852** 0.913 0.988

DNS(5)+FB2 0.781** 0.836** 0.849** 0.926 0.985

DNS(6)+FB2 0.767** 0.862** 0.854** 0.922 0.989

DNS(1)+MAC 1.025 1.106 1.074 1.053 1.095

DNS(2)+MAC 1.027 1.095 1.065 1.059 1.091

DNS(3)+MAC 1.032 1.133 1.081 1.058 1.063

DNS(4)+MAC 1.126 1.150 1.126 1.147 1.191

DNS(5)+MAC 1.125 1.143 1.121 1.158 1.184

DNS(6)+MAC 1.116 1.170 1.128 1.155 1.188

DIF(1) 3.056 2.658 1.928 0.911** 2.245

DIF(2) 1.269 1.058 1.025 1.020 1.199

DIF(3) 0.960 1.035 1.031 1.040 1.130

DIF(4) 2.215 2.278 2.316 2.379 2.443

DIF(5) 2.230 2.313 2.364 2.452 2.593

DIF(6) 2.211 2.293 2.336 2.406 2.518

DIF(1)+FB1 2.182 2.154 1.696 0.942 2.239

DIF(2)+FB1 1.333 1.063 1.011 1.030 1.254

DIF(3)+FB1 0.943 0.990 1.005 1.050 1.166

DIF(1)+FB2 1.973 1.900 1.464 0.961 2.067

DIF(2)+FB2 1.260 1.041 1.001 1.020 1.247

DIF(3)+FB2 0.932 0.991 1.005 1.047 1.179

* Notes: Table 2A reports the mean squared forecast error (MSFE) relative to that from the benchmark AR(1) model based

on 1-step-ahead forecasts of monthly U.S. Treasury bond yields of various maturities. The models, as listed in column 1,

are summarized in Table 1. Entries in bold denote models with lowest MSFE for a given maturity. Starred entries denote

rejection of the null of equal predictive accuracy, based on application of the Diebold-Mariano test discussed in Section 3,

and indicate that the alternative model outperforms the AR(1) benchmark, based on MSFE loss. Significance levels for the

test are reported as ***p < 0.01, **p < 0.05, and *p < 0.1
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Table 2B: 1-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 2: 2000:1-2007:12) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.959 1.030 1.038 1.046 1.107

VAR(1)+FB1 0.712** 0.842* 0.895 0.957 1.067

VAR(1)+FB2 0.741* 0.855 0.905 0.973 1.134

AR(SIC) 0.889 1.035 1.035 1.037 1.015

VAR(SIC) 0.959 1.030 1.038 1.046 1.107

VAR(SIC)+FB1 0.712** 0.842* 0.895 0.957 1.067

VAR(SIC)+FB2 0.741* 0.855 0.905 0.973 1.134

DNS(1) 1.216 1.008 1.005 1.107 0.957**

DNS(2) 1.188 1.013 1.021 1.136 0.955**

DNS(3) 1.153 1.002 1.000 1.139 0.983

DNS(4) 1.000 1.040 1.030 1.097 1.025

DNS(5) 0.994 1.035 1.035 1.125 1.025

DNS(6) 0.996 1.065 1.033 1.114 1.034

DNS(1)+FB1 0.760** 0.814* 0.842* 0.943 0.937

DNS(2)+FB1 0.751** 0.809* 0.844* 0.963 0.934

DNS(3)+FB1 0.743** 0.830 0.842* 0.962 0.936

DNS(4)+FB1 0.698*** 0.825** 0.858** 0.965 0.949

DNS(5)+FB1 0.691*** 0.815** 0.858** 0.990 0.949

DNS(6)+FB1 0.697*** 0.851* 0.861** 0.983 0.956

DNS(1)+FB2 0.711** 0.711** 0.747** 0.882 0.845**

DNS(2)+FB2 0.699** 0.707** 0.753** 0.908 0.845**

DNS(3)+FB2 0.684** 0.720** 0.746** 0.910 0.869**

DNS(4)+FB2 0.695*** 0.758*** 0.807*** 0.955 0.919*

DNS(5)+FB2 0.685*** 0.757*** 0.817*** 0.984 0.921*

DNS(6)+FB2 0.670*** 0.772*** 0.807*** 0.978 0.948

DNS(1)+MAC 1.057 0.965 1.001 1.112 0.979

DNS(2)+MAC 1.030 0.970 1.015 1.139 0.976

DNS(3)+MAC 0.992 0.959 0.997 1.141 0.999

DNS(4)+MAC 0.958 1.014 1.051 1.175 1.061

DNS(5)+MAC 0.943 1.013 1.063 1.207 1.061

DNS(6)+MAC 0.930 1.024 1.049 1.200 1.096

DIF(1) 2.183 1.919 1.632 1.081 1.776

DIF(2) 1.182 1.122 1.145 1.089 1.209

DIF(3) 1.034 1.147 1.144 1.097 1.131

DIF(4) 1.361 1.613 1.746 1.864 1.929

DIF(5) 1.153 1.558 1.715 1.819 1.910

DIF(6) 1.178 1.562 1.709 1.800 1.889

DIF(1)+FB1 1.360 1.517 1.408 1.048 1.780

DIF(2)+FB1 0.972 0.980 1.037 1.053 1.222

DIF(3)+FB1 0.863 1.014 1.060 1.067 1.121

DIF(1)+FB2 1.236 1.566 1.484 1.055 1.638

DIF(2)+FB2 1.009 1.006 1.044 1.057 1.190

DIF(3)+FB2 0.847* 1.011 1.064 1.071 1.128

* Notes: See notes to Table 2A.

34



Table 2C: 1-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 3: 2008:1-2016:7) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.362 1.313 1.249 1.190 1.161

VAR(1)+FB1 1.649 1.487 1.386 1.328 1.313

VAR(1)+FB2 1.971 1.726 1.554 1.416 1.339

AR(SIC) 1.104 1.035 1.006 0.999 1.009

VAR(SIC) 1.362 1.313 1.249 1.190 1.161

VAR(SIC)+FB1 1.649 1.487 1.386 1.328 1.313

VAR(SIC)+FB2 1.971 1.726 1.554 1.416 1.339

DNS(1) 2.630 1.051 1.140 1.451 0.934

DNS(2) 2.417 1.095 1.231 1.552 0.930

DNS(3) 2.034 1.010 1.100 1.531 0.981

DNS(4) 1.687 1.235 1.160 1.391 1.043

DNS(5) 1.574 1.195 1.184 1.466 1.032

DNS(6) 1.444 1.320 1.157 1.455 1.069

DNS(1)+FB1 3.009 1.796 1.503 1.558 1.087

DNS(2)+FB1 2.856 1.774 1.534 1.631 1.082

DNS(3)+FB1 2.690 1.855 1.494 1.632 1.118

DNS(4)+FB1 1.889 1.505 1.287 1.418 1.142

DNS(5)+FB1 1.826 1.453 1.296 1.487 1.134

DNS(6)+FB1 1.726 1.619 1.289 1.469 1.147

DNS(1)+FB2 3.191 1.955 1.597 1.574 1.085

DNS(2)+FB2 3.028 1.930 1.624 1.644 1.078

DNS(3)+FB2 2.885 2.021 1.593 1.650 1.116

DNS(4)+FB2 2.175 1.725 1.438 1.501 1.190

DNS(5)+FB2 2.110 1.671 1.442 1.564 1.179

DNS(6)+FB2 2.007 1.833 1.434 1.549 1.192

DNS(1)+MAC 2.138 1.092 1.104 1.332 0.943

DNS(2)+MAC 1.963 1.101 1.159 1.415 0.939

DNS(3)+MAC 1.706 1.112 1.089 1.410 0.964

DNS(4)+MAC 1.579 1.220 1.165 1.389 1.058

DNS(5)+MAC 1.453 1.180 1.185 1.456 1.043

DNS(6)+MAC 1.330 1.304 1.158 1.446 1.077

DIF(1) 3.552 2.699 2.233 1.240 1.627

DIF(2) 2.151 1.385 1.282 1.195 1.200

DIF(3) 1.094 1.436 1.388 1.248 1.251

DIF(4) 6.416 4.166 3.220 2.563 2.244

DIF(5) 7.400 4.568 3.320 2.418 1.999

DIF(6) 7.413 4.707 3.548 2.710 2.217

DIF(1)+FB1 6.311 3.937 2.691 1.301 1.582

DIF(2)+FB1 3.172 1.869 1.497 1.274 1.229

DIF(3)+FB1 1.788 1.877 1.603 1.334 1.316

DIF(1)+FB2 6.953 3.956 2.478 1.175 1.470

DIF(2)+FB2 3.081 1.833 1.467 1.186 1.101

DIF(3)+FB2 1.754 1.838 1.518 1.193 1.141

* Notes: See notes to Table 2A.
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Table 2D: 1-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 4: 1992:1-2016:7) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.063 1.103 1.101 1.102 1.139

VAR(1)+FB1 0.874* 0.955 0.990 1.046 1.165

VAR(1)+FB2 0.940 1.003 1.029 1.081 1.213

AR(SIC) 0.906* 0.998 0.999 1.004 1.001

VAR(SIC) 1.063 1.103 1.101 1.102 1.139

VAR(SIC)+FB1 0.874* 0.955 0.990 1.046 1.165

VAR(SIC)+FB2 0.940 1.003 1.029 1.081 1.213

DNS(1) 1.331 1.052 1.053 1.177 0.976

DNS(2) 1.291 1.058 1.075 1.218 0.973

DNS(3) 1.226 1.053 1.046 1.213 0.996

DNS(4) 1.123 1.120 1.083 1.166 1.053

DNS(5) 1.108 1.106 1.086 1.201 1.047

DNS(6) 1.093 1.158 1.085 1.189 1.059

DNS(1)+FB1 1.109 0.996 0.994 1.122 1.012

DNS(2)+FB1 1.081 0.991 1.003 1.155 1.008

DNS(3)+FB1 1.050 1.016 0.993 1.157 1.027

DNS(4)+FB1 0.886* 0.951 0.946 1.071 1.041

DNS(5)+FB1 0.874* 0.935 0.947 1.104 1.037

DNS(6)+FB1 0.861** 0.990 0.950 1.095 1.045

DNS(1)+FB2 1.132 0.993 0.992 1.127 1.001

DNS(2)+FB2 1.100 0.988 1.003 1.162 0.998

DNS(3)+FB2 1.069 1.010 0.991 1.167 1.027

DNS(4)+FB2 0.924 0.951 0.951 1.090 1.052

DNS(5)+FB2 0.911 0.939 0.955 1.123 1.047

DNS(6)+FB2 0.885 0.982 0.951 1.115 1.061

DNS(1)+MAC 1.188 1.040 1.049 1.152 0.995

DNS(2)+MAC 1.153 1.040 1.063 1.187 0.991

DNS(3)+MAC 1.102 1.052 1.047 1.187 1.001

DNS(4)+MAC 1.105 1.101 1.102 1.224 1.094

DNS(5)+MAC 1.081 1.091 1.109 1.258 1.086

DNS(6)+MAC 1.055 1.127 1.100 1.252 1.112

DIF(1) 2.702 2.334 1.863 1.067 1.838

DIF(2) 1.344 1.141 1.128 1.095 1.203

DIF(3) 1.014 1.151 1.151 1.119 1.181

DIF(4) 2.361 2.293 2.256 2.229 2.198

DIF(5) 2.397 2.349 2.281 2.197 2.128

DIF(6) 2.404 2.366 2.314 2.253 2.193

DIF(1)+FB1 2.334 2.165 1.774 1.081 1.818

DIF(2)+FB1 1.403 1.159 1.120 1.105 1.234

DIF(3)+FB1 1.016 1.147 1.149 1.134 1.215

DIF(1)+FB2 2.279 2.092 1.677 1.056 1.681

DIF(2)+FB2 1.381 1.156 1.114 1.080 1.167

DIF(3)+FB2 1.000 1.140 1.134 1.096 1.147

* Notes: See notes to Table 2A.
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Table 3A: 3-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 1: 1992:1-1999:12) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.005 1.054 1.068 1.060 1.035

VAR(1)+FB1 0.973 1.030 1.049 1.048 1.030

VAR(1)+FB2 1.057 1.108 1.126 1.125 1.113

AR(SIC) 0.881** 0.960 0.972 0.969 0.934**

VAR(SIC) 1.005 1.054 1.068 1.060 1.035

VAR(SIC)+FB1 0.973 1.030 1.049 1.048 1.030

VAR(SIC)+FB2 1.057 1.108 1.126 1.125 1.113

DNS(1) 1.059 1.084 1.069 1.047 1.032

DNS(2) 1.066 1.087 1.072 1.053 1.035

DNS(3) 1.064 1.086 1.065 1.046 1.030

DNS(4) 0.984 1.075 1.062 1.022 1.005

DNS(5) 0.990 1.069 1.056 1.021 1.004

DNS(6) 0.996 1.086 1.063 1.014 0.990

DNS(1)+FB1 0.911 0.911 0.951 1.008 1.002

DNS(2)+FB1 0.913 0.920 0.961 1.019 1.005

DNS(3)+FB1 0.907 0.912 0.952 1.020 1.022

DNS(4)+FB1 0.851** 0.961 0.973 0.963 0.961

DNS(5)+FB1 0.857** 0.957 0.968 0.963 0.958

DNS(6)+FB1 0.857** 0.969 0.972 0.959 0.952

DNS(1)+FB2 1.015 1.011 1.031 1.055 1.008

DNS(2)+FB2 1.015 1.018 1.040 1.067 1.013

DNS(3)+FB2 1.018 1.016 1.037 1.072 1.033

DNS(4)+FB2 0.913* 1.014 1.023 1.011 0.999

DNS(5)+FB2 0.923* 1.014 1.022 1.015 1.000

DNS(6)+FB2 0.913* 1.017 1.019 1.004 0.990

DNS(1)+MAC 1.049 1.101 1.093 1.062 1.027

DNS(2)+MAC 1.057 1.104 1.095 1.067 1.030

DNS(3)+MAC 1.055 1.106 1.091 1.060 1.021

DNS(4)+MAC 0.932 1.039 1.048 1.035 1.032

DNS(5)+MAC 0.935 1.032 1.040 1.031 1.026

DNS(6)+MAC 0.942 1.050 1.050 1.033 1.025

DIF(1) 1.672 1.555 1.286 0.982 1.378

DIF(2) 1.256 1.240 1.216 1.198 1.246

DIF(3) 1.188 1.227 1.206 1.171 1.192

DIF(4) 1.199 1.265 1.303 1.350 1.429

DIF(5) 1.443 1.517 1.552 1.562 1.540

DIF(6) 1.468 1.542 1.575 1.581 1.538

DIF(1)+FB1 1.252 1.325 1.187 0.993 1.403

DIF(2)+FB1 1.198 1.186 1.167 1.169 1.239

DIF(3)+FB1 1.028 1.082 1.096 1.113 1.180

DIF(1)+FB2 1.386 1.507 1.384 1.193 1.404

DIF(2)+FB2 1.305 1.297 1.269 1.240 1.269

DIF(3)+FB2 1.121 1.188 1.194 1.188 1.225

* Notes: See notes to Table 2A.

37



Table 3B: 3-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 2: 2000:1-2007:12) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.853*** 0.896** 0.899** 0.916* 1.010

VAR(1)+FB1 0.852*** 0.892*** 0.892** 0.908** 1.002

VAR(1)+FB2 0.862*** 0.908** 0.911** 0.933 1.042

AR(SIC) 0.836*** 0.890** 0.882** 0.885** 0.934*

VAR(SIC) 0.853*** 0.896** 0.899** 0.916* 1.010

VAR(SIC)+FB1 0.852*** 0.892*** 0.892** 0.908** 1.002

VAR(SIC)+FB2 0.862*** 0.908** 0.911** 0.933 1.042

DNS(1) 1.245 1.064 1.012 1.058 0.909***

DNS(2) 1.228 1.066 1.023 1.075 0.909***

DNS(3) 1.225 1.056 1.011 1.086 0.975

DNS(4) 0.922*** 0.923** 0.903** 0.927* 0.924

DNS(5) 0.917*** 0.921** 0.906** 0.939* 0.923

DNS(6) 0.928*** 0.931* 0.904** 0.934* 0.941

DNS(1)+FB1 0.673** 0.696** 0.722** 0.832** 0.844**

DNS(2)+FB1 0.669** 0.698** 0.729** 0.845* 0.843**

DNS(3)+FB1 0.666*** 0.692** 0.717*** 0.847* 0.891*

DNS(4)+FB1 0.845*** 0.857*** 0.851*** 0.892** 0.901*

DNS(5)+FB1 0.844*** 0.859*** 0.857*** 0.906** 0.901*

DNS(6)+FB1 0.844*** 0.861*** 0.849*** 0.898** 0.920**

DNS(1)+FB2 0.794* 0.758** 0.783** 0.914 0.926

DNS(2)+FB2 0.782* 0.757** 0.789** 0.927 0.924

DNS(3)+FB2 0.789* 0.756** 0.785** 0.944 1.005

DNS(4)+FB2 0.855*** 0.867*** 0.859*** 0.900** 0.910*

DNS(5)+FB2 0.854*** 0.868*** 0.866*** 0.915** 0.912*

DNS(6)+FB2 0.854*** 0.870*** 0.857*** 0.905** 0.930*

DNS(1)+MAC 1.058 1.011 1.021 1.103 0.964*

DNS(2)+MAC 1.041 1.015 1.032 1.118 0.963*

DNS(3)+MAC 1.033 1.002 1.019 1.128 1.025

DNS(4)+MAC 0.873** 0.901* 0.907* 0.962 0.967

DNS(5)+MAC 0.868*** 0.901* 0.912* 0.975 0.964

DNS(6)+MAC 0.870** 0.903* 0.904* 0.970 0.993

DIF(1) 1.573 1.420 1.307 1.151 1.294

DIF(2) 1.219 1.227 1.210 1.203 1.354

DIF(3) 1.195 1.290 1.276 1.258 1.347

DIF(4) 0.895 1.042 1.152 1.303 1.355

DIF(5) 0.904 1.091 1.174 1.291 1.498

DIF(6) 0.936 1.127 1.209 1.315 1.518

DIF(1)+FB1 0.890 1.013 1.062 1.183 1.437

DIF(2)+FB1 0.884 1.004 1.079 1.186 1.460

DIF(3)+FB1 0.899 1.071 1.147 1.233 1.420

DIF(1)+FB2 1.004 1.202 1.222 1.190 1.733

DIF(2)+FB2 0.874 1.036 1.113 1.197 1.419

DIF(3)+FB2 0.883 1.080 1.164 1.248 1.442

* Notes: See notes to Table 2A.
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Table 3C: 3-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 3: 2008:1-2016:7) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.967 0.990 0.964 0.920* 0.927*

VAR(1)+FB1 0.933 0.975 0.958 0.923 0.938

VAR(1)+FB2 0.922 0.964 0.949 0.917 0.936

AR(SIC) 0.977 0.962* 0.938** 0.916** 0.918**

VAR(SIC) 0.967 0.990 0.964 0.920* 0.927*

VAR(SIC)+FB1 0.933 0.975 0.958 0.923 0.938

VAR(SIC)+FB2 0.922 0.964 0.949 0.917 0.936

DNS(1) 1.998 1.318 1.331 1.423 0.972

DNS(2) 1.921 1.354 1.389 1.470 0.969

DNS(3) 1.787 1.232 1.282 1.447 1.022

DNS(4) 1.047 0.971 0.983 1.044 0.907*

DNS(5) 1.022 0.969 0.994 1.066 0.899*

DNS(6) 0.990 0.980 0.981 1.064 0.918*

DNS(1)+FB1 2.591 2.085 1.793 1.595 1.098

DNS(2)+FB1 2.552 2.081 1.808 1.621 1.094

DNS(3)+FB1 2.510 2.058 1.764 1.613 1.140

DNS(4)+FB1 0.959 0.936 0.950 1.014 0.917

DNS(5)+FB1 0.939 0.931 0.958 1.036 0.911

DNS(6)+FB1 0.912 0.951 0.950 1.032 0.923*

DNS(1)+FB2 2.600 2.085 1.751 1.507 1.039

DNS(2)+FB2 2.564 2.077 1.759 1.529 1.035

DNS(3)+FB2 2.537 2.071 1.727 1.524 1.072

DNS(4)+FB2 0.977 0.947 0.959 1.023 0.925

DNS(5)+FB2 0.956 0.942 0.966 1.043 0.918

DNS(6)+FB2 0.932 0.964 0.960 1.041 0.931

DNS(1)+MAC 2.117 1.488 1.424 1.441 1.003

DNS(2)+MAC 2.051 1.515 1.472 1.486 1.000

DNS(3)+MAC 1.942 1.424 1.388 1.470 1.053

DNS(4)+MAC 1.052 0.986 0.994 1.043 0.906*

DNS(5)+MAC 1.027 0.985 1.005 1.064 0.897*

DNS(6)+MAC 0.993 0.993 0.990 1.060 0.912**

DIF(1) 1.477 1.440 1.361 1.127 1.226

DIF(2) 1.652 1.587 1.444 1.244 1.170

DIF(3) 1.574 1.673 1.567 1.371 1.215

DIF(4) 3.369 2.685 2.221 1.747 1.435

DIF(5) 3.600 2.826 2.309 1.783 1.422

DIF(6) 3.869 3.148 2.707 2.232 1.728

DIF(1)+FB1 3.375 2.608 1.996 1.318 1.263

DIF(2)+FB1 2.558 2.168 1.780 1.398 1.228

DIF(3)+FB1 2.177 2.171 1.854 1.487 1.269

DIF(1)+FB2 3.488 2.659 2.021 1.347 1.244

DIF(2)+FB2 2.518 2.134 1.766 1.394 1.236

DIF(3)+FB2 2.120 2.116 1.813 1.460 1.249

* Notes: See notes to Table 2A.
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Table 3D: 3-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 4: 1992:1-2016:7) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.927** 0.974 0.977 0.972 0.987

VAR(1)+FB1 0.909*** 0.960 0.966 0.965 0.988

VAR(1)+FB2 0.941** 0.994 1.001 1.002 1.027

AR(SIC) 0.878*** 0.930** 0.928*** 0.925*** 0.928***

VAR(SIC) 0.927** 0.974 0.977 0.972 0.987

VAR(SIC)+FB1 0.909*** 0.960 0.966 0.965 0.988

VAR(SIC)+FB2 0.941** 0.994 1.001 1.002 1.027

DNS(1) 1.320 1.119 1.101 1.150 0.976

DNS(2) 1.300 1.129 1.118 1.171 0.976

DNS(3) 1.273 1.101 1.089 1.166 1.012

DNS(4) 0.967* 0.989 0.981 0.994 0.946*

DNS(5) 0.962* 0.986 0.982 1.004 0.943*

DNS(6) 0.963* 0.999 0.981 0.999 0.949**

DNS(1)+FB1 1.111 1.041 1.034 1.100 0.995

DNS(2)+FB1 1.103 1.045 1.044 1.116 0.995

DNS(3)+FB1 1.092 1.035 1.027 1.114 1.031

DNS(4)+FB1 0.868*** 0.912** 0.918** 0.952** 0.928**

DNS(5)+FB1 0.866*** 0.910*** 0.920*** 0.962* 0.925**

DNS(6)+FB1 0.861*** 0.919** 0.917** 0.956** 0.932**

DNS(1)+FB2 1.206 1.106 1.081 1.124 0.997

DNS(2)+FB2 1.194 1.106 1.089 1.139 0.997

DNS(3)+FB2 1.193 1.104 1.079 1.145 1.040

DNS(4)+FB2 0.898*** 0.938* 0.943** 0.974 0.947*

DNS(5)+FB2 0.897*** 0.938** 0.947** 0.987 0.945*

DNS(6)+FB2 0.889*** 0.944* 0.940** 0.979 0.951**

DNS(1)+MAC 1.251 1.136 1.133 1.177 1.001

DNS(2)+MAC 1.234 1.144 1.148 1.196 1.001

DNS(3)+MAC 1.209 1.121 1.124 1.192 1.034

DNS(4)+MAC 0.927** 0.969 0.979 1.011 0.966

DNS(5)+MAC 0.921** 0.967 0.981 1.020 0.961

DNS(6)+MAC 0.918** 0.976 0.978 1.017 0.974

DIF(1) 1.589 1.475 1.310 1.081 1.298

DIF(2) 1.312 1.300 1.261 1.212 1.246

DIF(3) 1.263 1.339 1.310 1.255 1.243

DIF(4) 1.460 1.438 1.435 1.438 1.411

DIF(5) 1.591 1.582 1.557 1.523 1.484

DIF(6) 1.665 1.668 1.664 1.658 1.604

DIF(1)+FB1 1.477 1.434 1.306 1.147 1.359

DIF(2)+FB1 1.304 1.294 1.260 1.235 1.295

DIF(3)+FB1 1.181 1.284 1.276 1.254 1.279

DIF(1)+FB2 1.598 1.594 1.452 1.233 1.433

DIF(2)+FB2 1.329 1.343 1.310 1.265 1.297

DIF(3)+FB2 1.195 1.318 1.312 1.281 1.293

* Notes: See notes to Table 2A.
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Table 4A: 12-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 1: 1992:1-1999:12) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 1.312 1.308 1.290 1.222 1.062

VAR(1)+FB1 1.299 1.295 1.277 1.209 1.049

VAR(1)+FB2 1.290 1.286 1.269 1.202 1.043

AR(SIC) 1.213 1.226 1.220 1.150 0.983

VAR(SIC) 1.312 1.308 1.290 1.222 1.062

VAR(SIC)+FB1 1.299 1.295 1.277 1.209 1.049

VAR(SIC)+FB2 1.290 1.286 1.269 1.202 1.043

DNS(1) 0.660*** 0.711*** 0.757*** 0.865** 0.968

DNS(2) 0.667*** 0.717*** 0.764*** 0.873** 0.970

DNS(3) 0.648*** 0.696*** 0.743*** 0.861** 0.983

DNS(4) 1.278 1.309 1.273 1.180 1.040

DNS(5) 1.285 1.308 1.272 1.182 1.043

DNS(6) 1.286 1.313 1.271 1.171 1.028

DNS(1)+FB1 0.894 0.885 0.950 1.094 1.159

DNS(2)+FB1 0.891 0.891 0.958 1.101 1.158

DNS(3)+FB1 0.885 0.877 0.947 1.108 1.197

DNS(4)+FB1 1.228 1.276 1.252 1.172 1.042

DNS(5)+FB1 1.235 1.276 1.250 1.173 1.044

DNS(6)+FB1 1.238 1.282 1.251 1.165 1.033

DNS(1)+FB2 1.036 0.967 1.037 1.213 1.286

DNS(2)+FB2 1.029 0.971 1.044 1.219 1.285

DNS(3)+FB2 1.039 0.970 1.046 1.240 1.338

DNS(4)+FB2 1.212 1.261 1.240 1.165 1.036

DNS(5)+FB2 1.218 1.260 1.238 1.166 1.038

DNS(6)+FB2 1.222 1.267 1.240 1.160 1.029

DNS(1)+MAC 0.715** 0.760** 0.803* 0.907 0.989

DNS(2)+MAC 0.721* 0.766** 0.809* 0.914 0.990

DNS(3)+MAC 0.701** 0.745** 0.790* 0.904 1.005

DNS(4)+MAC 1.230 1.285 1.267 1.195 1.067

DNS(5)+MAC 1.235 1.283 1.264 1.194 1.067

DNS(6)+MAC 1.240 1.291 1.267 1.189 1.060

DIF(1) 0.981 0.927* 0.843*** 1.109 1.806

DIF(2) 1.309 1.324 1.467 1.717 1.880

DIF(3) 1.227 1.197 1.318 1.552 1.778

DIF(4) 1.113 1.148 1.177 1.218 1.284

DIF(5) 1.582 1.573 1.611 1.655 1.664

DIF(6) 1.679 1.655 1.686 1.712 1.685

DIF(1)+FB1 1.324 1.274 1.154 1.351 2.092

DIF(2)+FB1 1.601 1.721 1.837 2.015 2.136

DIF(3)+FB1 1.429 1.509 1.618 1.811 2.045

DIF(1)+FB2 1.454 1.468 1.513 1.917 2.285

DIF(2)+FB2 1.842 1.864 1.958 2.119 2.219

DIF(3)+FB2 1.557 1.600 1.714 1.918 2.134

* Notes: See notes to Table 2A.
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Table 4B: 12-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 2: 2000:1-2007:12) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.575*** 0.480*** 0.435*** 0.428*** 0.537***

VAR(1)+FB1 0.591*** 0.494*** 0.447*** 0.438*** 0.541***

VAR(1)+FB2 0.596*** 0.500*** 0.455*** 0.450*** 0.567***

AR(SIC) 0.583*** 0.491*** 0.447*** 0.440*** 0.527***

VAR(SIC) 0.575*** 0.480*** 0.435*** 0.428*** 0.537***

VAR(SIC)+FB1 0.591*** 0.494*** 0.447*** 0.438*** 0.541***

VAR(SIC)+FB2 0.596*** 0.500*** 0.455*** 0.450*** 0.567***

DNS(1) 0.706*** 0.599*** 0.568*** 0.628*** 0.757***

DNS(2) 0.705*** 0.602*** 0.573*** 0.634*** 0.757***

DNS(3) 0.701*** 0.597*** 0.568*** 0.637*** 0.802***

DNS(4) 0.602*** 0.512*** 0.462*** 0.452*** 0.540***

DNS(5) 0.602*** 0.511*** 0.462*** 0.454*** 0.541***

DNS(6) 0.607*** 0.514*** 0.463*** 0.451*** 0.542***

DNS(1)+FB1 0.551*** 0.509*** 0.521*** 0.659*** 0.994

DNS(2)+FB1 0.549*** 0.510*** 0.525*** 0.663*** 0.991

DNS(3)+FB1 0.545*** 0.504*** 0.518*** 0.663*** 1.035

DNS(4)+FB1 0.604*** 0.514*** 0.464*** 0.454*** 0.540***

DNS(5)+FB1 0.604*** 0.513*** 0.465*** 0.456*** 0.542***

DNS(6)+FB1 0.607*** 0.515*** 0.463*** 0.451*** 0.541***

DNS(1)+FB2 1.029 1.057 1.153 1.545 2.763

DNS(2)+FB2 1.029 1.062 1.161 1.555 2.764

DNS(3)+FB2 1.016 1.044 1.140 1.537 2.781

DNS(4)+FB2 0.603*** 0.516*** 0.468*** 0.459*** 0.552***

DNS(5)+FB2 0.604*** 0.515*** 0.468*** 0.462*** 0.554***

DNS(6)+FB2 0.606*** 0.516*** 0.466*** 0.456*** 0.552***

DNS(1)+MAC 0.666*** 0.604*** 0.600*** 0.698*** 0.877***

DNS(2)+MAC 0.664*** 0.606*** 0.605*** 0.703*** 0.876***

DNS(3)+MAC 0.661*** 0.601*** 0.601*** 0.708*** 0.919***

DNS(4)+MAC 0.588*** 0.500*** 0.453*** 0.447*** 0.543***

DNS(5)+MAC 0.588*** 0.499*** 0.453*** 0.449*** 0.542***

DNS(6)+MAC 0.591*** 0.501*** 0.452*** 0.445*** 0.547***

DIF(1) 1.242 1.155 1.121 1.149 1.567

DIF(2) 1.899 1.471 1.340 1.397 1.836

DIF(3) 2.287 1.735 1.584 1.595 2.007

DIF(4) 0.838*** 0.962 1.108 1.443 1.919

DIF(5) 1.016 1.108 1.245 1.772 3.585

DIF(6) 1.030 1.142 1.297 1.861 3.783

DIF(1)+FB1 0.997 1.051 1.124 1.541 2.442

DIF(2)+FB1 1.541 1.369 1.421 1.728 2.748

DIF(3)+FB1 1.796 1.668 1.728 2.045 3.040

DIF(1)+FB2 1.029 1.138 1.274 1.855 4.013

DIF(2)+FB2 1.848 1.809 1.989 2.610 4.386

DIF(3)+FB2 2.093 2.054 2.232 2.849 4.550

* Notes: See notes to Table 2A.
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Table 4C: 12-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 3: 2008:1-2016:7) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.712*** 0.690*** 0.671 0.647 0.707

VAR(1)+FB1 0.754*** 0.731*** 0.708*** 0.671*** 0.705***

VAR(1)+FB2 0.772*** 0.748*** 0.723*** 0.681*** 0.710***

AR(SIC) 0.701*** 0.688*** 0.663*** 0.659*** 0.736***

VAR(SIC) 0.712*** 0.690*** 0.671*** 0.647*** 0.707***

VAR(SIC)+FB1 0.754*** 0.731*** 0.708*** 0.671*** 0.705***

VAR(SIC)+FB2 0.772*** 0.748*** 0.723*** 0.681*** 0.710***

DNS(1) 1.491 1.411 1.506 1.573 1.118

DNS(2) 1.473 1.435 1.544 1.606 1.118

DNS(3) 1.444 1.377 1.489 1.598 1.179

DNS(4) 0.738*** 0.659*** 0.671*** 0.721*** 0.685***

DNS(5) 0.732*** 0.665*** 0.681*** 0.732*** 0.681***

DNS(6) 0.719*** 0.650*** 0.666*** 0.730*** 0.703***

DNS(1)+FB1 1.790 1.595 1.545 1.555 1.213

DNS(2)+FB1 1.781 1.598 1.559 1.573 1.209

DNS(3)+FB1 1.782 1.583 1.536 1.575 1.278

DNS(4)+FB1 0.787*** 0.703*** 0.712*** 0.755*** 0.701***

DNS(5)+FB1 0.778*** 0.707*** 0.721*** 0.765*** 0.697***

DNS(6)+FB1 0.765*** 0.691*** 0.705*** 0.764*** 0.721***

DNS(1)+FB2 1.926 1.803 1.806 1.839 1.411

DNS(2)+FB2 1.918 1.809 1.824 1.861 1.409

DNS(3)+FB2 1.908 1.781 1.786 1.849 1.470

DNS(4)+FB2 0.801*** 0.715*** 0.722*** 0.761*** 0.701***

DNS(5)+FB2 0.789*** 0.717*** 0.729*** 0.770*** 0.696***

DNS(6)+FB2 0.778*** 0.702*** 0.715*** 0.770*** 0.721***

DNS(1)+MAC 1.613 1.618 1.764 1.845 1.273

DNS(2)+MAC 1.588 1.635 1.797 1.871 1.268

DNS(3)+MAC 1.575 1.591 1.758 1.887 1.351

DNS(4)+MAC 0.733*** 0.658*** 0.671*** 0.724*** 0.693***

DNS(5)+MAC 0.726*** 0.663*** 0.681*** 0.734*** 0.690***

DNS(6)+MAC 0.713*** 0.648*** 0.665*** 0.732*** 0.710***

DIF(1) 1.200 1.296 1.294 1.361 1.140

DIF(2) 2.433 2.476 2.235 1.770 1.137

DIF(3) 2.831 2.746 2.668 2.258 1.458

DIF(4) 2.039 1.771 1.578 1.307 1.088

DIF(5) 1.919 1.728 1.650 1.574 1.441

DIF(6) 2.419 2.368 2.335 2.147 1.702

DIF(1)+FB1 2.095 1.841 1.602 1.326 1.153

DIF(2)+FB1 2.330 2.204 2.003 1.654 1.155

DIF(3)+FB1 2.548 2.542 2.452 2.147 1.557

DIF(1)+FB2 1.944 1.777 1.652 1.621 1.436

DIF(2)+FB2 2.337 2.267 2.142 1.893 1.403

DIF(3)+FB2 2.561 2.585 2.546 2.300 1.717

* Notes: See notes to Table 2A.

43



Table 4D: 12-Step-Ahead Relative MSFEs of All Forecasting Models (Subsample 4: 1992:1-2016:7) ∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

AR(1) 1.000 1.000 1.000 1.000 1.000

VAR(1) 0.706*** 0.660*** 0.643*** 0.665*** 0.767***

VAR(1)+FB1 0.724*** 0.674*** 0.655*** 0.673*** 0.763***

VAR(1)+FB2 0.730*** 0.680*** 0.661*** 0.680*** 0.771***

AR(SIC) 0.695*** 0.652*** 0.635*** 0.657*** 0.748***

VAR(SIC) 0.706*** 0.660*** 0.643*** 0.665*** 0.767***

VAR(SIC)+FB1 0.724*** 0.674*** 0.655*** 0.673*** 0.763***

VAR(SIC)+FB2 0.730*** 0.680*** 0.661*** 0.680*** 0.771***

DNS(1) 0.879** 0.784*** 0.794*** 0.910** 0.953

DNS(2) 0.875** 0.792*** 0.806*** 0.923* 0.954*

DNS(3) 0.863*** 0.773*** 0.788*** 0.919* 0.994

DNS(4) 0.725*** 0.673*** 0.656*** 0.686*** 0.753***

DNS(5) 0.724*** 0.674*** 0.658*** 0.690*** 0.753***

DNS(6) 0.725*** 0.674*** 0.655*** 0.685*** 0.756***

DNS(1)+FB1 0.880 0.794** 0.810** 0.975 1.125

DNS(2)+FB1 0.876 0.796** 0.816** 0.983 1.122

DNS(3)+FB1 0.873 0.787** 0.805** 0.985 1.173

DNS(4)+FB1 0.730*** 0.678*** 0.661*** 0.692*** 0.759***

DNS(5)+FB1 0.729*** 0.679*** 0.663*** 0.696*** 0.759***

DNS(6)+FB1 0.729*** 0.677*** 0.659*** 0.692*** 0.764***

DNS(1)+FB2 1.234 1.195 1.264 1.539 1.807

DNS(2)+FB2 1.232 1.201 1.274 1.551 1.806

DNS(3)+FB2 1.222 1.183 1.254 1.543 1.850

DNS(4)+FB2 0.731*** 0.679*** 0.663*** 0.695*** 0.761***

DNS(5)+FB2 0.730*** 0.680*** 0.665*** 0.699*** 0.760***

DNS(6)+FB2 0.729*** 0.678*** 0.661*** 0.695*** 0.766***

DNS(1)+MAC 0.889* 0.838** 0.875** 1.022 1.054

DNS(2)+MAC 0.882** 0.844** 0.886* 1.032 1.052

DNS(3)+MAC 0.875** 0.828*** 0.872** 1.036 1.101

DNS(4)+MAC 0.708*** 0.662*** 0.649*** 0.687*** 0.765***

DNS(5)+MAC 0.707*** 0.662*** 0.651*** 0.690*** 0.764***

DNS(6)+MAC 0.707*** 0.661*** 0.647*** 0.687*** 0.770***

DIF(1) 1.197 1.146 1.104 1.191 1.492

DIF(2) 1.941 1.653 1.546 1.561 1.602

DIF(3) 2.267 1.854 1.755 1.744 1.738

DIF(4) 1.149 1.159 1.216 1.358 1.419

DIF(5) 1.299 1.312 1.395 1.698 2.204

DIF(6) 1.435 1.478 1.581 1.895 2.367

DIF(1)+FB1 1.292 1.250 1.227 1.445 1.871

DIF(2)+FB1 1.729 1.598 1.617 1.777 1.984

DIF(3)+FB1 1.917 1.821 1.855 2.015 2.192

DIF(1)+FB2 1.295 1.323 1.395 1.813 2.540

DIF(2)+FB2 1.959 1.912 2.014 2.324 2.627

DIF(3)+FB2 2.127 2.088 2.199 2.502 2.764

* Notes: See notes to Table 2A.
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Table 5: Top 3 Forecast Models with Lowest MSFE∗

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

Forecast Sample Horizon

DNS(6)+FB2 DNS(5)+FB2 DNS(5)+FB2 DIF(1) AR(SIC)

1 Step DNS(6)+FB1 DNS(4)+FB2 DNS(4)+FB2 DNS(4)+FB2 DNS(2)+FB1

DNS(4)+FB1 DNS(5)+FB1 DNS(6)+FB2 DNS(4)+FB1 DNS(1)+FB1

DNS(4)+FB1 DNS(1)+FB1 DNS(1)+FB1 DNS(6)+FB1 AR(SIC)

1992:1-1999:12 3 Step DNS(5)+FB1 DNS(3)+FB1 DNS(3)+FB1 DNS(5)+FB1 DNS(6)+FB1

Subsample 1’ DNS(6)+FB1 DNS(2)+FB1 DNS(2)+FB1 DNS(4)+FB1 DNS(5)+FB1

DNS(3) DNS(3) DNS(3) DNS(3) DNS(1)

12 Step DNS(1) DNS(1) DNS(1) DNS(1) DNS(2)

DNS(2) DNS(2) DNS(2) DNS(2) AR(SIC)

DNS(6)+FB2 DNS(2)+FB2 DNS(3)+FB2 DNS(1)+FB2 DNS(2)+FB2

1 Step DNS(3)+FB2 DNS(1)+FB2 DNS(1)+FB2 DNS(2)+FB2 DNS(1)+FB2

DNS(5)+FB2 DNS(3)+FB2 DNS(2)+FB2 DNS(3)+FB2 DNS(3)+FB2

DNS(3)+FB1 DNS(3)+FB1 DNS(3)+FB1 DNS(1)+FB1 DNS(2)+FB1

2000:1-2007:12 3 Step DNS(2)+FB1 DNS(1)+FB1 DNS(1)+FB1 DNS(2)+FB1 DNS(1)+FB1

‘Subsample 2’ DNS(1)+FB1 DNS(2)+FB1 DNS(2)+FB1 DNS(3)+FB1 DNS(3)+FB1

DNS(3)+FB1 VAR(1) VAR(1) VAR(1) AR(SIC)

12 Step DNS(2)+FB1 VAR(SIC) VAR(SIC) VAR(SIC) VAR(SIC)

DNS(1)+FB1 AR(SIC) AR(SIC) VAR(SIC)+FB1 VAR(1)

AR(1) AR(1) AR(1) AR(SIC) DNS(2)

1 Step DIF(3) DNS(3) AR(SIC) AR(1) DNS(1)

AR(SIC) AR(SIC) DNS(3)+MAC DIF(1)+FB2 DNS(2)+MAC

DNS(6)+FB1 DNS(5)+FB1 AR(SIC) AR(SIC) DNS(5)+MAC

2008:1-2016:7 3 Step VAR(1)+FB2 DNS(4)+FB1 VAR(1)+FB2 VAR(1)+FB2 DNS(5)

‘Subsample 3’ VAR(SIC)+FB2 DNS(5)+FB2 VAR(SIC)+FB2 VAR(SIC)+FB2 DNS(4)+MAC

AR(SIC) DNS(6)+MAC AR(SIC) VAR(1) DNS(5)

12 Step VAR(SIC) DNS(6) DNS(6)+MAC VAR(SIC) DNS(4)

VAR(1) DNS(4)+MAC DNS(6) AR(SIC) DNS(5)+MAC

DNS(6)+FB1 DNS(5)+FB1 DNS(4)+FB1 AR(1) DNS(2)

1 Step VAR(SIC)+FB1 DNS(5)+FB2 DNS(5)+FB1 AR(SIC) DNS(1)

VAR(1)+FB1 DNS(4)+FB1 DNS(6)+FB1 VAR(SIC)+FB1 DNS(2)+MAC

DNS(6)+FB1 DNS(5)+FB1 DNS(6)+FB1 AR(SIC) DNS(5)+FB1

1992:1-2016:7 3 Step DNS(5)+FB1 DNS(4)+FB1 DNS(4)+FB1 DNS(4)+FB1 AR(SIC)

‘Subsample 4’ DNS(4)+FB1 DNS(6)+FB1 DNS(5)+FB1 DNS(6)+FB1 DNS(4)+FB1

AR(SIC) AR(SIC) AR(SIC) AR(SIC) AR(SIC)

12 Step VAR(1) VAR(1) VAR(1) VAR(1) DNS(5)

VAR(SIC) VAR(SIC) VAR(SIC) VAR(SIC) DNS(4)

* Notes: See notes to Table 2A. This table reports the top three performing forecast models (based on MSFE) from lowest-MSFE

to highest-MSFE, for all subsamples, horizons, and maturities, summarizing the results of Tables 2A-4D.
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Table 6: Top 3 Forecast Models with Lowest MSFE in Expansionary and Recessionary Periods∗

Maturity 3 Months 1 Year 3 Years 5 Years 10 Years

Forecast Sample Horizon

DNS(4)+FB1 VAR(SIC)+FB1 VAR(1) DNS(3)+FB2 DIF(2)+FB2

1 Step DNS(5)+FB1 VAR(1)+FB1 VAR(SIC) DNS(2)+FB2 DNS(3)

VAR(SIC)+FB1 DNS(2)+MAC DNS(1)+MAC VAR(SIC) DNS(2)

DNS(6)+FB1 DNS(6)+FB1 DNS(6)+FB1 DNS(2)+FB1 DNS(3)+FB1

Recession 3 Step DNS(6)+MAC DNS(4)+FB1 DNS(4)+FB1 DNS(3)+FB1 DNS(2)

DNS(1)+FB1 DNS(6)+MAC DNS(5)+FB1 DNS(1)+FB1 DNS(1)

DNS(3)+FB1 DNS(3)+FB1 DNS(3)+FB1 DNS(1)+FB1 VAR(1)

12 Step DNS(2)+FB1 DNS(1)+FB1 DNS(1)+FB1 DNS(2)+FB1 VAR(SIC)

DNS(1)+FB1 DNS(2)+FB1 DNS(2)+FB1 DNS(3)+FB1 DNS(5)

DNS(6)+FB2 DNS(5)+FB2 DNS(6)+FB2 AR(1) DNS(2)+FB2

1 Step DNS(6)+FB1 DNS(4)+FB2 DNS(4)+FB2 AR(SIC) DNS(1)+FB2

VAR(1)+FB1 DNS(3)+FB2 DNS(5)+FB2 DIF(1) DNS(2)+FB1

DNS(5)+FB1 DNS(5)+FB1 AR(SIC) AR(SIC) DNS(5)+FB1

Expansion 3 Step DNS(6)+FB1 DNS(4)+FB1 DNS(5)+FB1 DNS(4)+FB1 DNS(4)+FB1

DNS(4)+FB1 AR(SIC) DNS(4)+FB1 DNS(6)+FB1 AR(SIC)

DNS(4)+MAC AR(SIC) AR(SIC) AR(SIC) AR(SIC)

12 Step DNS(5)+MAC DNS(5)+MAC DNS(5)+MAC VAR(1)+FB1 DNS(6)

DNS(6)+MAC DNS(4)+MAC DNS(6)+MAC VAR(SIC)+FB1 DNS(4)

* Notes: See notes to Table 5. Recessions and expansion are defined according to NBER business cycle dates.
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Table 7: Forecast Combination Models Used in Forecast Experiments∗

Model Description

All Average of all forty four forecast models

FB Average of twenty five models that contain principle component(s), principle component analysis based on all 103 macroeconomic variables

FS Average of nineteen non-FB type models

Econometrics Average of all eight AR and VAR type models

DNS Average of all twenty two DNS type models

DI Average of twelve diffusion index type models

* Notes: This table summarizes the combination models utilized in all forecast experiments.
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Table 8A: 1-Step-Ahead Relative MSFEs of Forecast Combination Models∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

All 0.916 0.974 0.966 0.994 1.066

FB 0.897 0.943 0.950 1.001 1.101

1992:1-1999:12 FS 1.001 1.065 1.028 1.015 1.063

‘Subsample 1’ Econometrics 0.835** 0.885** 0.904** 0.927* 0.993

DNS 0.856** 0.931** 0.929** 0.976 0.998

DIF 1.282 1.280 1.184 1.134 1.468

All 0.720*** 0.842*** 0.895** 0.983 0.961*

FB 0.618*** 0.779*** 0.848** 0.943 0.954

2000:1-2007:12 FS 0.929* 0.981 1.001 1.066 0.999

‘Subsample 2’ Econometrics 0.750*** 0.860** 0.891** 0.922 0.992

DNS 0.754*** 0.816*** 0.860*** 1.003 0.925**

DIF 0.837 1.030 1.074 1.049 1.197

All 1.590 1.312 1.203 1.258 1.087

FB 2.372 1.796 1.471 1.350 1.165

2008:1-2016:7 FS 1.269 1.033 1.068 1.233 1.014

‘Subsample 3’ Econometrics 1.174 1.176 1.146 1.127 1.136

DNS 1.719 1.246 1.183 1.443 1.035

DIF 2.710 1.994 1.570 1.231 1.340

All 0.911 0.971 0.984 1.061 1.042

FB 0.958 1.011 1.011 1.074 1.082

1992:1-2016:7 FS 1.002 1.022 1.025 1.094 1.022

‘Subsample 4’ Econometrics 0.839*** 0.922* 0.947 0.980 1.053

DNS 0.922 0.932* 0.951 1.114 0.991

DIF 1.257 1.286 1.215 1.127 1.329

All 0.814 0.991 0.968 0.920 0.996

FB 1.052 1.287 1.190 0.997 1.063

Recession FS 0.887* 0.907 0.943* 0.999 0.956

Econometrics 0.692** 0.805* 0.841 0.899 1.061

DNS 0.707** 0.910 0.877 0.893** 1.052

DIF 1.506 1.517 1.404 1.109 0.984

All 0.948 0.966 0.987 1.089 1.054

FB 0.923 0.938* 0.972 1.089 1.087

Expansion FS 1.045 1.052 1.042 1.113 1.040

Econometrics 0.894* 0.953 0.971 0.995 1.051

DNS 1.002 0.938** 0.967 1.157 0.975

DIF 1.163 1.225 1.174 1.131 1.419

* Notes: See notes to Table 2A. Forecast combination models are listed in Table 7.
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Table 8B: 3-Step-Ahead Relative MSFEs of Forecast Combination Models∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

All 0.936 1.007 1.017 1.020 1.028

FB 0.932 1.007 1.027 1.041 1.057

1992:1-1999:12 FS 0.979 1.037 1.028 1.007 1.004

‘Subsample 1’ Econometrics 0.982 1.034 1.050 1.047 1.027

DNS 0.875** 0.954 0.970 0.979 0.969

DIF 1.154 1.217 1.186 1.167 1.276

All 0.784*** 0.843*** 0.869*** 0.945 0.961**

FB 0.700*** 0.786*** 0.830*** 0.924* 0.974

2000:1-2007:12 FS 0.923** 0.935** 0.934** 0.981 0.960**

‘Subsample 2’ Econometrics 0.862*** 0.900*** 0.899** 0.913** 0.993

DNS 0.785*** 0.794*** 0.810*** 0.900** 0.872***

DIF 0.850** 1.008 1.065 1.145 1.295

All 1.112 1.107 1.109 1.130 0.994

FB 1.442 1.383 1.283 1.201 1.038

2008:1-2016:7 FS 1.176 1.064 1.082 1.121 0.953

‘Subsample 3’ Econometrics 0.919 0.948 0.934 0.908** 0.923**

DNS 1.158 1.028 1.066 1.181 0.942

DIF 1.891 1.768 1.560 1.334 1.258

All 0.897** 0.955 0.976 1.022 0.997

FB 0.918 0.983 1.001 1.041 1.027

1992:1-2016:7 FS 0.989 0.998 1.001 1.028 0.973**

‘Subsample 4’ Econometrics 0.914*** 0.960* 0.964* 0.962* 0.979

DNS 0.885** 0.899** 0.925** 1.004 0.933***

DIF 1.149 1.232 1.215 1.203 1.274

All 0.794** 0.826* 0.831* 0.873** 0.973

FB 0.856 0.897 0.875 0.880 1.009

Recession FS 0.946* 0.910** 0.915** 0.962 0.972

Econometrics 0.868*** 0.874*** 0.863*** 0.863** 1.001

DNS 0.759*** 0.763** 0.770** 0.828*** 0.935

DIF 1.105 1.089 1.053 1.061 1.216

All 0.962 1.016 1.032 1.060 1.000

FB 0.957 1.024 1.048 1.082 1.030

Normal FS 1.016 1.040 1.034 1.045 0.973*

Econometrics 0.943** 1.001 1.003 0.988 0.976

DNS 0.965 0.963 0.984 1.049 0.933***

DIF 1.177 1.299 1.277 1.239 1.283

* Notes: See notes to Table 8A.
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Table 8C: 12-Step-Ahead Relative MSFEs of Forecast Combination Models∗

Model rMSFE

Maturity 1 year 2 year 3 years 5 years 10 years

All 0.851 0.924 0.969 1.043 1.072

FB 0.903 0.976 1.028 1.119 1.160

1992:1-1999:12 FS 0.898* 0.946 0.964 0.997 0.998

‘Subsample 1’ Econometrics 1.242 1.240 1.224 1.160 1.012

DNS 0.781** 0.857** 0.894* 0.943 0.932*

DIF 1.181 1.256 1.337 1.576 1.857

All 0.678*** 0.625*** 0.622*** 0.723*** 1.009

FB 0.711*** 0.682*** 0.706*** 0.876*** 1.353

2000:1-2007:12 FS 0.646*** 0.563*** 0.531*** 0.561*** 0.678***

‘Subsample 2’ Econometrics 0.599*** 0.515*** 0.473*** 0.465*** 0.560***

DNS 0.554*** 0.490*** 0.474*** 0.537*** 0.701***

DIF 1.347 1.312 1.383 1.732 2.757

All 0.797*** 0.856** 0.955 1.074 0.944*

FB 0.985 1.019 1.080 1.151 1.001

2008:1-2016:7 FS 0.970 0.965 1.018 1.064 0.880***

‘Subsample 3’ Econometrics 0.746*** 0.730*** 0.712*** 0.690*** 0.736***

DNS 0.730*** 0.747*** 0.869** 1.049 0.891***

DIF 1.595 1.624 1.618 1.575 1.302

All 0.729*** 0.722*** 0.754*** 0.882*** 1.006

FB 0.800*** 0.800*** 0.842*** 0.998 1.166

1992:1-2016:7 FS 0.754*** 0.709*** 0.711*** 0.783*** 0.853***

‘Subsample 4’ Econometrics 0.720*** 0.678*** 0.662*** 0.680*** 0.768***

DNS 0.625*** 0.603*** 0.633*** 0.754*** 0.843***

DIF 1.381 1.367 1.422 1.658 1.949

All 1.033 1.016 1.023 1.072 1.063

FB 0.948 0.963 0.999 1.103 1.254

Recession FS 1.173 1.103 1.067 1.037 0.842***

Econometrics 1.191 1.087 0.995 0.854*** 0.631***

DNS 1.024 0.950 0.945 0.971 0.806***

DIF 0.972 1.117 1.222 1.476 2.163

All 0.630*** 0.639*** 0.687*** 0.843*** 1.000

FB 0.752*** 0.754*** 0.803*** 0.977 1.157

Normal FS 0.618*** 0.598*** 0.622*** 0.731*** 0.854***

Econometrics 0.567*** 0.564*** 0.578*** 0.645*** 0.782***

DNS 0.495*** 0.506*** 0.554*** 0.710*** 0.847***

DIF 1.514 1.437 1.472 1.695 1.927

* Notes: See notes to Table 8A.
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