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 Availability of big data at many frequencies, 
for many variables is a key driving force for 
applied and theoretical work.

 Methodological and empirical advances have 
accumulated very quickly in recent years.

 I will discuss a very few of the advances in 
forecasting due in large part to this 
phenomenon – model building and model 
selection methods.



 I . Model Building:

 Discuss - Factor Models and Diffusion Indices
 Principal component analysis
 Sparse principal component analysis
 Independent component analysis

 Mention - Mixed Frequency (MF) Indices
 Hybrid models using MF and diffusion indices
 Modeling with switching and surveys



 Discuss - Machine Learning, Variable Selection, 
and Shrinkage
 Bagging
 Boosting
 Ridge regression
 Least angle regression
 Lasso
 Elastic net
 Non-negative garrote

 Hybrid factor models using above methods



 II. Model Selection:

 Loss Function Dependent Tests
 Pairwise Comparison
 Data Snooping or Multiple Comparison

 Robust Forecast Comparison
 Stochastic Dominance Methods
 Robust to Choice of Loss Function



 Above model includes      variables; autoregressive structure – key 
additional variables.

 Allow for random walk, AR, and VAR strawman models.

 Factor model is an approximation. Underlying model may not have a factor 
structure, but complex and rich covariance structure (e.g. in MC studies) 
across the X variables lends itself to principal component type shrinkage.

What about mixed frequency models? Estimation of diffusion indices?

Xt    Ft   t ,

Xt an N  1 vector
 an N  r factor loading matrix
0 an N  1 intercept

Ft is unobserved r  1 factor vector
 t an error term

Wt

yth  WtW  FtF  th



What about usefulness of sparseness (SPCA – discussed later) and zero 
restrictions in factor loadings? 

e.g. Ability to isolate potential control variables for policy analysis. 
Interpretability remains an issue.

 Armah and Swanson (2010): Factor “proxy” selection small set of 
observables as predictors. Parsimonious model selection?

 Key predictors = “variable subset”? Targeted predictors (e.g. Bai and Ng 
(2007,2008))?

 In Carrasco and Rossi (2016)  factors chosen using cross validation … 
explicitly considers “target variable”. What about also selecting factor 
loadings based on target variable? i.e. three layers here:

 (i)    Traditional approach of using highest eigenvalue factors.

 (ii)   Select factors other than highest eigenval. ones, given target variable.

 (iii)  Use (ii) and also determine “adjusted” loadings  = shrinkage = lasso …



 Might lack of sparseness be of interest? 

 Variables that are not usually relevant included, and if these variables 
“jump” under structural change, then may impose robustness to structural 
instability 

 Turning point stability of predictions ...

 But sparseness useful to isolate potential control variable … interpretability.

 Again leads to methodology of Bai and Ng, i.e., targeted predictors. 

What about: Couple shrinkage regression approach with factor/loadings 
shrinkage methods, such as sparse PCA, and include also a set of W 
targeted “stability predictors”, say, or a factor constructed using these stability 
predictors.

 Kim and Swanson (2014,2016) SPCA then shrinkage, or shrinkage 
followed by ICA, SPCA or PCA  dimension reduction

= lasso, elastic net -> get targeted predictors … then construct factors …

 Or directly “shrink” factors to a particular target …



 Independent Component Analysis 

 Assume the F are statistically independent

 . 

 As is evident from above figure, ICA exactly the same as PCA, if demixing 
matrix is the factor loading coefficient matrix associated with PCA.

 In general, ICA yields uncorrelated factors with descending variance => 
easy "ordering".

 Moreover, those components explaining the largest share of the variance 
are often assumed to be the "relevant" ones for subsequent use in diffusion 
index forecasting.



.

. 

. 

.

. 

ICA finds a demixingmatrix which transforms the observed X

into independent components F∗  F1
∗,F2

∗ .

Joint pdf characterized byEF1
∗pF2

∗q   EF1
∗p EF2

∗q .

Joint pdf characterized byEF1F2   EF1 EF2 .

For simplicity, consider two observables, X  X1 ,X2 .

PCA transforms X into uncorrelated components F  F1 ,F2 .



 Use multiple frequencies of data? 

 Pastcasting, nowcasting, forecasting, and “continuous” updating.

 Example: Factor MIDAS used for predicting quarterly data via the use of 
monthly factors (Marcellino and Schumacher (2010)).

 MIDAS model for forecasting       quarters ahead is

 .

.

.                                                      -- Almon distributed lag

hq

Ytqh q  0  1BL1/m ,F̂tm
3  tq

BL1/m ,  ∑
j0

jmax

bj,Lj/m

bj, 
exp 1j2j2

∑j0
jmax

exp 1j2j2

  1 ,2  F̂tm is a set ofmonthly factors F̂tm
3 is skip sampled from the monthly factor, F̂tm



Sparseness not present in ridge regression, but may be useful for 
interpretation of factors. Key idea is to be able to (uniquely) estimate 
regression coefficients when number of variables > sample size.

 Optimization Problems that treat such multicollinearity.

Ridge (Hoerl):

Lasso (Tibshirani):

Elastic Net (Zou, Hastie):

 Ridge the original  but lasso (least absolute shrinkage and selection 
operator) shrinks some parameters all the way to zero.

 Elastic net (Zou and Hastie (2005)) combines the two.

 If do not care about sparsity, how about neural nets as an alternative?                
Overfitting matters – how big an issue in factor analysis w/o sparseness, in 
the sense of PEER?

min‖y − X‖2 s.t. ‖‖1  ∑
j1

p

| j | ≤ .

min‖y − X‖2 s.t. ‖‖2  ∑
j1

p

j
2 ≤ .

min‖y − X‖2 s.t. ‖‖2 ∑
j1

p

| j | ≤ 1 and ∑
j1

p

 j
2 ≤ 2.



 Circling Back  Consider SPCA (Zou, Hastie and Tibshirani (2006)), which 
adds the sparseness feature of lasso (elastic net) to PCA.

How? Reformulate PCA as a regression-type optimization problem, and then 
impose the lasso (elastic net = double shrinkage) . 

Consider penalized regression form of the optimization problems outlined 
above.

 2-stage SPCA? Replace y with F -> ridge is PCA then add L1-norm penalty.

 Constraint: Lasso can select at most T of N variables, when N>T in PCA 
construction.

 Economic interpretability of factors. Couple SPCA for factors with further 
targeted (on predictor variable) penalized regression?


lasso  arg min ‖y − j1

N Xjj‖
2  1j1

N |j | .


elastic net  1  2arg min ‖y − j1

N Xjj‖
2  1j1

N |j |  2j1
N j

2 .



Recalling that the L1 norm does not necessarily lead to sparsity, but the L1 regularization  
term (the penalty) on the weights/coefficients in the model does.

L2-norm (e.g. least squares regression) L1-norm (e.g. LAD regression)

Not so robust to outliers Robust

Stable solution Unstable solution for small data perturbations

Unique solution Possibly multiple solutions

Non-sparsity Sparsity

Computational efficiency (anal. soln) Comput. inefficiency (what if non-sparse?)



 Diebold and Mariano (1995), White (2000), Chao, Corradi and Swanson 
(2001), Clark and McCracken (2001,2013), Corradi and Swanson (2006) …

 Key Question: Should We Utilize Loss Function Specific Measures, or Not?

.

 Pairwise Accuracy

 Causality

 Big Data

H0 : Egu0,th − gu1,th  0

HA : Egu0,th − gu1,th ≠ 0

DMP  dt
d t

d
→ N0,1,

dt  1
P ∑tR1

T dt, dt  gu 0,th − gu 1,th, and dt


d t

P
.

mP  P−1/2∑tR1
T u 0,thXt

SP  maxk1,...,m DMP1,k



Stochastic Dominance Methods

 General Loss Forecast Superiority <-> 1st Order Stochastic Dominance

Convex Loss Forecast Superiority <-> 2nd Order Stochastic Dominance

 Implementation:

Gx  F2x − F1xsgnx

Cx  
−

x
F1t − F2tdt1x  0  

x


F2t − F1tdt1x ≥ 0

u1 G u2 iff ELu1 ≤ ELu2, ∀ L ∈ LG

u1 C u2 iff ELu1 ≤ ELu2, ∀ L ∈ LC

ELu1 ≤ ELu2 for all L iff Gx ≤ 0,



 . Fkx  Puk,t ≤ x

Fk,nx  P−1∑
tR

T

1uk,t ≤ x

TGn
 

k2,..,m
max

x∈X

sup n Gk,nxandTGn
− 

k2,..,m
max

x∈X−
sup n Gk,nx

TCn
 

k2,..,m
max

x∈X

sup n Ck,nx and TCn
− 

k2,..,m
max

x∈X−
sup n Ck,nx,

Gk,nx  Fk,nx − F1,nxsgnx

Ck,nx  
−

x
F1,ns

−Fk,nsds1x  0  
x


Fk,ns − F1,nsds1x ≥ 0



 The Models

 Dynamic Nelson Siegel – a ‘small data’ model (Diebold and Li (2006)) with 
time decay parameter, maturity parameter; and level, slope and curvature 
‘factors’ (i.e., the betas), so that factor loading on level factor is one, etc. 

 Slope factor increase -> slope of curve increases as short rates increases 
more than long rates in this case  …

Dimension Reduction (Big Data) Models

Strawman Econometric Models

yt  1,t  2,t
1−exp− t

 t
  3,t

1−exp− t
 t

− exp− t   t

yth  ′Wt  2
′ Ft

b  2
′ Ft

s   th

yth  ′Wt   th



 Use zero coupon U.S. Treasury yield curve, monthly, 1982-2016; 
Gurkaynak, Sack, and Wright ((2006). 

 Target variables are 1,2,3,5,10 year maturity yields.

 Forecast horizons are h=1,3,12 months.

 Prediction subsamples 1992-99, ‘2000-07, 2008-16, recession/expansion.

 Small data panel has N=10, T=415.

 Big data panel uses FRED-MD dataset with 103 macroeconomic variables.

 Predictions constructed in real-time, and estimations are based on rolling 
windows.

 Model Selection: MSFE and DM Tests.











The Models



 .



 .

.



 MSFE-Best Models













 Forecast Combination (1-Month Ahead)

.



 Subsamples 1 and 2: DNS+FB models usually win, including  17 of 20 
maturity/horizon permutations.

 Subsample 3: DNS+FB wins in only 2 of 10 cases for h=1 and 3, across 
maturities. Post Great Recession confusion?

 Entire Sample Period: For h=1,3, DNS+FB wins 7 of 10 times.

 Evidence for h=12 much more mixed, AR, VAR, and  pure DNS often ‘win.’

 1 or 2 factors always ‘best’.



 AND the `best’ models are almost always significantly better than  AR(1) 
straw-man model.

 DNS model ‘winners’ are used ‘vector’ variety. DNS factors do not evolve 
independently of one another, when predicting.

 Thus, DNS factors best predicted using other DNS factors AND big data 
diffusion indexes.

 DNS+FB evidence even stronger for recession subsample: DNS+FB wins 
in 13 of 15 horizon/maturity permutations.

 NOT so for expansion subsample: DNS+FB wins in 7 of 15 permutaitons.



 Forecast Combination is not optimal in our experiments.

 Combinations fail to win in 15 of 20 permutations, for h=1, across all 
subsamples.

 Combinations fail to win in 18 of 20 permutations, for h=3, across all 
subsamples and bond maturities.

Combinations fail to win in 17 of 20 permutations, for h=12, across all 
subsamples and bond maturities.



 Big (and wide) data analysis is a burgeoning area of research, and many 
interesting methodological advances remain to discovered and also 
empirically analyzed.

 Not only do we have more data than ever to propel this empirical research, 
but we also have many useful new tools, ranging from data shrinkage 
methods to varieties of latent factor modelling, with which to work. 

 Thank You!!!!




