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1 Introduction

Large VARs, involving dozens or more dependent variables, are increasingly used
in a variety of macroeconomic applications. The literature began with the US
macroeconomic application of Banbura, Giannone and Reichlin (2010) but large
VARs are now used with similar macroeconomic data sets for other countries
(e.g. Bloor and Matheson, 2010). There are also applications where large VARs
arise due to the need to build a model involving variables for many countries
(e.g. Carriero, Kapetanios and Marcellino, 2010, and Koop and Korobilis, 2016).
In addition, large VARs have arisen through having to deal with many related
variants of a single variable (e.g. interest rates of different maturities or the
different components that make up an inflation index), see Carriero, Kapetanios
and Marcellino (2012) or Giannone, Lenza, Momferatou and Onorante (2014).
They can also arise through the use of mixed frequency data (e.g. McCracken,
Owyang and Sekhposyan, 2016). Large VARs have also been used for structural
economic analysis or scenario forecasting in papers such as Banbura, Giannone
and Lenza (2015) and Jarocinski and Mackowiak (2016). In short, large VARs
are increasingly used for a plethora of purposes and are promising to become
one of the major tools of modern empirical macroeconomics.

Bayesian methods are typically used with large VARSs so as to overcome the
over-parameterization problems which plague them. For instance, when working
with a large VAR with N = 100 variables and a lag length of p = 13 (as might
be required with monthly data), the researcher will have over 100,000 VAR co-
efficients to estimate and 5,050 free parameters in the error covariance matrix.
Bayesian prior shrinkage, often using natural conjugate or Minnesota priors, is
used to surmount the problems caused by a shortage of data information relative
to the number of coefficients being estimated. Even with these priors, which
imply that the posterior and one-step ahead predictive densities have analyt-
ical forms, the researcher can face a substantial computational burden. The
main computational bottleneck is dealing with the huge posterior covariance
matrix of the VAR coefficients (even in the absence of deterministic terms it is
an N2p x N?p matrix).! Use of the natural conjugate prior in a standard ho-
moskedastic VAR leads to a particular Kronecker product form for the posterior
covariance matrix involving separate N x N and Npx Np matrices which can be
manipulated independently of one another (see Chan, 2015 or Carriero, Clark
and Marcellino, 2016a). This vastly simplifies computation. The problem is that
small departures from the natural conjugate prior VAR destroy the Kronecker
structure and, thus, lead to huge increases in the computational burden. With
large VARs this makes many sensible alternative approaches untenable. This
holds true for alternative approaches using less subjective priors that allow for

Tt is worth stressing that the main computational hurdle does not relate to the error
covariance matrix but the VAR coefficients. In finance, there are several methods (see, among
many others, Creal and Tsay, 2015) for dealing with large-dimensional covariance matrices
(e.g. involving asset returns for a huge number of assets) in models where the conditional
means of the dependent variables are of low dimension (often zero). These are not relevant
for our purposes.



automatic shrinkage of coefficients found to be unimportant (e.g. the variable
selection prior of George, Sun and Ni, 2008, Koop, 2013 and Korobilis, 2013,
or the Lasso prior of Gefang, 2014). It also holds true for specifications which
allow for time-variation in parameters. It is the latter which is the focus of the
present paper.

Papers such as Clark (2011) highlight the particular importance in macro-
economic applications of allowing for time-variation in the error covariance ma-
trix. Hence, this is what we focus on in this paper (although the econometric
methods we develop could also be used with the time-varying parameter VAR).
Since the elements of this matrix enter impulse responses and have a large im-
pact on predictive variances, use of mis-specified homoskedastic models can lead
to invalid structural inference and poor forecasts. But with large VARs stan-
dard approaches (e.g. Primiceri, 2005) which allow for multivariate stochastic
volatility are not computationally feasible. This has led to various stochastic
volatility specification that can be used with larger VARs (e.g. Chan 2015 and
Carriero, Clark and Marcellino, 2016a,b,c). However, these place restrictions
on the form of time variation allowed for. And even these have a large compu-
tational burden which means they cannot be used for forecasting with the large
VARSs involving hundreds of dependent variables which are increasingly being
used.?

In this paper, we use composite likelihood methods to allow us to approxi-
mate less restrictive specifications for the time variation in the error covariance
matrix in a computationally practical manner. We derive composite likelihood
methods for use with large VARs with stochastic volatility (VAR-SV). The basic
idea of our methods is to combine inference from smaller sub-models. In our
case, these sub-models will be small VAR-SV’s. Working with small VAR-SV’s
has three important advantages. First, the computational burden is vastly re-
duced. Second, over-parameterization concerns are greatly reduced. Third, the
role of prior information becomes less important than in large VARs where the
number of parameters is large relative to the number of observations. Thus,
prior elicitation is easier.

However, if the ideal model is a large VAR with multivariate stochastic
volatility, several questions arise relating to the issue of whether working with
composite likelihood methods involving many smaller VAR-SV models will pro-
vide a good approximation to the ideal. The first of these is whether there is
a theoretically strong justification for use of composite likelihood methods in
our context. We discuss relevant econometric theory in the next section of the
paper. The second question is: How should the various sub-models that arise
with composite likelihood methods be combined? This question we also address
in the next section of the paper. In particular, we discuss various methods for
doing so, drawing on the literature on opinion pools. The third question is: How

2Perhaps the best of the current approaches is developed in Carriero, Clark and Marcellino
(2016b). In this paper, impulse responses are presented using a 125 variable VAR, but when
forecasting only a 20 variable VAR is used. Repeatedly forecasting with this model on an
expanding window of data with the 196 variables used in this paper would take months or
more of computer time on a good PC.



well do these methods work in practice? We answer this in the third section,
using a large quarterly US macroeconomic data set involving 196 variables. We
find our composite likelihood methods to forecast substantially better than a
homoskedastic VAR using a natural conjugate prior. We would like to compare
our methods to other approaches which involve multivariate stochastic volatility
in this large data set, but cannot do since the computational burden of popular
Bayesian alternatives is too large. Instead, we compare our methods to a range
of different Bayesian VARs with multivariate stochastic volatility using a small
data set involving 7 variables. We find parameter estimates produced by our
approach to be very similar to those produced by these alternatives. This offers
reassurance that the approximation inherent in the use of composite likelihood
methods with VAR-SVs is an accurate one. We also find our (large data set)
composite likelihood methods to forecast slightly better than the (small data
set) Bayesian VAR-SV alternatives.

2 Composite Likelihood Methods for large VARs
with Stochastic Volatility

2.1 Overview

A traditional likelihood function is based on the p.d.f. of the N x 1 vector of
dependent variables, y; for t = 1,..,T. In many empirical cases, particularly if N
is large, computation involving a likelihood function can be difficult or infeasible.
In such cases, it may be possible to develop statistical methods for estimating
the parameters in the likelihood function or forecasting using the composite
likelihood instead of the full likelihood. The composite likelihood is built up as
a weighted average of likelihoods for y; ¢ for ¢ = 1,.., M which are sub-vectors
of y; (we will call these the likelihood components or sub-models in this paper).
Bayesian methods can then be used by combining a prior with the composite
likelihood in the standard way. Thus, if y;+ is of much lower dimension than
yt, a computationally difficult problem of working with a large model can be
turned into a much simpler one of working with many small sub-models.
There are theoretical and empirical reasons for thinking the composite like-
lihood function can, in many cases, provide a good approximation to the likeli-
hood function. In addition to computational gains, composite likelihood meth-
ods can be useful for reasons of robustness. That is, with high dimensional
models, there are more ways to become mis-specified than with low dimensional
densities and, thus, working with the latter can be more robust. Composite like-
lihood methods can also have advantages in terms of parsimony. That is, high
dimensional models like large VARs are hugely over-parameterized. The correct
specification is likely a highly restricted version of the large VAR. The exist-
ing Bayesian large VAR literature tries to overcome this problem through the
use of prior shrinkage. Using composite likelihood methods, it may be possible
to approximate the correct specification in a much more parsimonious fashion,
thus leading to more precise inference. Furthermore, since composite likelihood



methods are much less reliant on prior shrinkage, they may approximate the
correct specification more closely than large VARs with prior shrinkage in the
case that the large VAR prior chosen is a poor one (e.g. one which reflects prior
beliefs which are at odds with the correct specification).

The preceding paragraph provides the basic justifications and insights that
underlie the methods we use in this paper and which we elaborate on in this
section. Composite likelihood methods have been exploited in several fields. For
instance, Pakel, Shephard, Sheppard and Engle (2014) is a financial application
involving a large number of stock returns. These methods have also been used
in spatial statistics (e.g. Ribatet, Cooley and Davison, 2012). But they have
been rarely used in macroeconomics. Two exceptions to this lie in the field
of Dynamic Stochastic General Equilibrium (DSGE) modelling: Canova and
Matthes (2017) and Qu (2016). To our knowledge, our paper is the first to use
them in the large VAR field in order to add flexible and computationally feasible
forms of multivariate stochastic volatility to large VARs.

2.2 The VAR-SV

We begin by defining the VAR-SV. Specifications identical or similar to this
have been used in a huge range of papers, including Primiceri (2005), Koop,
Leon-Gonzalez and Strachan (2009), Clark (2011), D’Agostino, Gambetti and
Giannone (2013) and Chan and Eisenstat (2016). The VAR-SV model can be
written as:

Aoy = ¢+ Arye—1 + -+ Apyr—p + €4,

where c is an N x 1 vector of intercepts, A,..., A, are N x N matrices of VAR
coefficients, X; = diag (ehl«t, e ,eh”vt) and Ag; is a time varying N x N lower
triangular matrix with ones on the diagonal, to be specific,

a1t 1 e 0
Aot =
Qplt An2t - 1

It is convenient to re-write the VAR-SV as

yr = XS+ Wiar + €, € ~ N(0,%;), (1)

W x 1 vector consists of the

where Xy = I, @ (1,44 _1,---,¥Y1_,), Gt is an

free elements of Ag; stacked by rows, and W, is an N x N(NT_D matrix,
0 0 0 0
S 0 0 0
woo | 0 —me —we cee 0
: : - : 0
O e “e 7y1,f, 7y2,t PN 7yN_17t



The log-volatilities hy = (h1,, ..., n ) and the time-varying parameters a, are
assumed to follow random walk processes:

ht - ht—l + 6?7 6? ~ N(Oa Eh)? (2)
ay = Gt—1 + eta; 6? ~ N(Oa Za)a (3)
where ), = diag(o}, ;,...,07 y) and ¥, = diag(o? 4, ..., O’i NV_1) )-
—

It can be seen that the VAR-SV can have an enormous number of para-
meters when N is large. This has led large VAR researchers to work with re-
stricted versions of the stochastic volatility process. An influential recent model
is the common drifting volatility specification of Carriero, Clark and Marcellino
(2016a) which we denote by VAR-CCM1 and use in our empirical work. This is
the same as the VAR-SV except that a; = 0 and ¥; = ™%, where the ¥ is an
N x N positive definite matrix and h; is a scalar stochastic volatility process:

he = phi_1 + €, € ~ N(0,0%).

This, much more parsimonious, specification has been successfully used with
large VARs. But it does severely restrict the form that the time variation in
the error covariance matrix can take. In our empirical work, we compare our
new approach to the VAR-CCM1. We also use another specification proposed
in Carriero, Clark and Marcellino (2016b) which we label VAR-CCM2. This
amounts to the VAR-SV with a; restricted to be time-invariant.

2.3 The Theory of Composite Likelihood Methods
2.3.1 Preliminaries

Assuming serially independent errors, the likelihood function for y = (¢}, .., /)’

can be written as:
T

L(y;0) =[] L(vs:0), (4)

where L (y;;60) = p (y¢|f). The composite likelihood is defined as

T M
L9 (y;0) = [T TT£€ (wins )", (5)

t=14=1

where L (y; 4;0) = p(y;+|0) and w; is the weight attached to each likelihood
component with Zf\il w; = 1. The weights will be discussed in sub-section
2.3.3.

The maximum composite likelihood estimator (MCLE) involves taking the
maximum of LY (y;0). Bayesian estimation proceeds using a posterior based
on the composite likelihood (i.e. the Bayesian composite posterior is p© (0]y) o
LE (y;0) p (6) where p () is the prior).

In theory, the likelihood components used to build a composite likelihood can
be anything. That is, y; ; for i = 1,.., M can be any sub-sets of y; and, indeed,



yi,t and y; ¢ can overlap. For computational purposes, the key issue is that y; ;
and M should be small enough to lead to fast estimation. For instance, Pakel,
Shephard, Sheppard and Engle (2014), in an application involving stock returns
for 129 companies, achieve these goals by considering all bivariate distributions
involving each distinct pair of assets. Thus, they work with M = w =
8,256 bivariate Dynamic Conditional Correlation (DCC) models which is much
easier than trying to work with a 129 dimensional DCC model.

With large VARs, it is common to have a few core variables of interest either
for impulse response analysis (e.g. as in the FAVAR approach of Bernanke,
Boivin and Eliasz, 2005, where the interest rate is isolated in order to identify
a monetary policy shock) or forecasting. In this spirit, we propose partitioning

Y = ( Zt ) where y; is N,-dimensional and contains the core variables of
t
interest and z; (with elements denoted by z;.) is the Nyiper = N — N, vector
Yt

which contains the remaining variables. Then we can let y; , = fori =

Zit
1, ..y Nother and, thus, M = Nytper. Our composite likelihood VAR-SV (VAR-
CL-SV) application will involve sub-models which are all N, + 1 dimensional
VAR-SVs. To give the reader a rough guideline of computation time: estimating
the VAR-CL-SV with N = 100 and N, = 3 would involve using MCMC methods
with 97 4-variate VAR-SVs which a good PC can run in a few hours.?

2.3.2 Asymptotic Results

The standard frequentist way of investigating the theoretical properties of com-
posite likelihoods is to assume that L (y; #) is the true data generating process
involving a true parameter value 6 = 6° and derive the behavior of the MCLE.
Results exist in the literature noting that the MCLE should converge asymp-
totically to 6° under certain assumptions (see, e.g., Varin, Reid and Firth, 2011
or Ribatet, Cooley and Davison, 2012). But such results are limited and model
dependent. In a recent survey, Varin, Reid and Furth (2011, page 34) conclude:
“Using the most general definition of composite likelihood, it may be difficult
to derive very many specific properties beyond perhaps consistency of the point
estimator.” Ribatet, Cooley and Davison (2012, section 2.3.1) derive asymptotic
Bayesian results using p (]y) and show that this posterior will also converge to
60° under certain assumptions. We take these results as offering general support
for the idea that, in finite samples, the composite likelihood is often a reasonable
approximation to L (y¢;6).

However, it is important to dig a bit deeper into the assumptions that un-
derlie both frequentist and Bayesian asymptotic theories discussed above. In
(5), we have written the likelihood components as L (y;+;6) which all depend
upon a common parameter vector §. In the VAR-CL-SV this will not be the
case. Some parameters will not appear in any of the likelihood components. For

3 Allowing Y7, to involve all distinct pairs of variables would involve working with roughly
5,000 5-variate VAR-SVs which would raise the computational burden by more than a factor
of 50, but still be feasible in some empirical contexts.



instance, consider the equations for z;; and z;,; for ¢ # j. A large VAR-SV will
contain a time-varying error covariance between these two equations. However,
this error covariance will not appear in the composite likelihood function and
so it will be impossible to obtain consistent estimates of it using L (y;6).

Pakel, Shephard, Sheppard and Engle (2014) set up the composite likelihood
function somewhat differently, involving likelihood components L (y; +; 6,n,) where
7; are nuisance parameters specific to sub-model ¢ and 6 are the parameters of
interest which are common to all models. This set-up is more appropriate for
our case since we are interested in the time-varying error covariance matrix
corresponding to the upper left-hand N, x N, block of the error covariance
matrix (which is common to all models). In our case, the time-varying error
covariances of the other variables are of subsidiary interest. Pakel, Shephard,
Sheppard and Engle (2014) show that, under a set of stronger assumptions,*
0 is consistent (although they do not provide a central limit theorem). Under
these assumptions they show that the incidental parameter bias present in many
related approaches vanishes asymptotically. We rely on this theory to justify
including a set of y; variables in each component of the composite likelihood
and using the remaining z; variables as only being useful insofar as they improve
estimation of the error covariance matrix for the y; variables.

For the choice of sub-models made in the preceding sub-section, we have
been able to prove asymptotic convergence of the composite likelihood to that
of a restricted VAR-SV of the following form:

£
Az/;,t 0 - 0 Y Cy
_az,l,t I -0 21t Cz,1
= +
/
—Q Mt o - 1 ZM,t Cz,M
X _wy . W X *
Bjyyu g(M) 61/271,] g(M)ﬁyZ:M»J Yi—j €yt
Bayi Bazng 0 Z1t—j €21,
. . . . b)
j=1 :
!
By 0 o By ZM - €2, Mt

. ivd N s
with €,; ~ N(0,5,4), €2i¢~ N(0,e"~*+i.e70wi) independent of each other
and

1 0 <o 0 ehie
70&21715 1 A 0 6h2 t
Ayﬂf = . . . oy =
_O‘N*l,t _OZN*Q,I‘, e 1 ehN*,t

4Standard assumptions relating to asymptotic mixing either involve the dependence be-
tween the same variable at different points in time or different variables at the same point in
time. They add to these standard assumptions, additional mixing assumptions relating to the
dependence between different variables at different points in time.



Observe that this is a VAR-SV of the form

p
Ay = C+ZBjyt7j + €, (6)
j=1

with some elements of A; and Bj restricted to zero and some elements of Ej
shrunk towards zero by factors —i, ..., Jrify where g (M) is a function of M.
A word of explanation is in order about g(M). A sufficient condition for

the proof of the following proposition depends T% to be bounded for all M

(e.g. if g (M) = /M our proof follows standard law of large numbers results).
But this condition is exactly what prior shrinkage in VARs usually does. That
is, in our approach as M increases N also increases and the VAR dimension
increases. It is standard for Bayesians working with large VARs to increase
prior shrinkage (e.g. using the Minnesota prior) when VAR dimension increases
(see, e.g., Table 1 of Banbura Giannone and Reichlin, 2010). Hence, the presence
(and interpretation) of g(M) is justified as being equivalent to the types of prior
shrinkage commonly used in large Bayesian VARs. Note too that g (M) only
applies to other lags in the equations for the core variables, so the convergence of
the composite likelihood to a restricted VAR-SV only depends on the presence
of shrinkage on these coeflicients.

It is important to emphasize that L (y; ) is not a true likelihood in the sense
that it is not a density in the data (conditional on parameters) that integrates
to one. To compare it to a conventional likelihood for the restricted VAR-SV
given in (6), L (y;0), we consider the normalized composite likelihood

L (y;0)

FUO= e v

A useful measure of the approximation error associated with using ~LC(y;Q)
instead of L(y;0) is the Kulback-Liebler divergence of L(y;0) from L (y;0),
denoted Dxr, (L||L®), which is summarized in the following proposition.

Proposition 1 Assume max{w;} is decreasing in M and g\(/% < oo for all
M > 1. Then

. FC _
Jim Dyp (L]|L7) = 0.

The proof of this proposition is in the Technical Appendix. The assumption
that max{w;} is decreasing in M is innocuous as it implies only that when
we add a new sub-model it has non-zero weight which will leave less weight
for the other models, including the model with maximum weight. Thus, our
composite likelihood using small VAR-SV sub-models asymptotically converges
to a particular large VAR-SV under sensible assumptions.

Of course, given the way we have defined our sub-models, it is not possible
to asymptotically converge to an unrestricted large VAR-SV since (as noted
previously) some of the unrestricted model’s parameters appear in none of our



sub-models. If interest lies in using composite likelihood methods to provide es-
timates of all the parameters in a large VAR-SV, then other sub-models should
be chosen to build a composite likelihood function (e.g. building a set of sub-
models involving all possible bivariate or tri-variate combinations of the vari-
ables). Our choice of sub-models is based on our choice of empirical problem.
We are interested in forecasting a small number of variables, using the other
variables only to improve these forecasts. For this, our choice of sub-models is
a sensible one.

2.3.3 Composite Likelihoods as Opinion Pools

An alternative way of theorizing about composite likelihoods, popular among
Bayesians (see, e.g., Roche, 2016) is to begin by assuming there is some feature
of interest, 6 (in our case, the error covariance matrix relating to the core vari-
ables). There are many “agents” each of which uses a (possibly agent-specific)
information set to produce an “opinion” (i.e. a posterior) about 8. The opinions
going into the pool can be obtained from any source. The question arises as to
how to pool these opinions? There is a literature on such opinion or prediction
pools. Geweke and Amisano (2011) is an influential approach in economet-
rics. Genest, Weerahandi, Zidek (1984) and Genest, McConway and Schervish
(1986) are influential early references which establish or review many theoretical
properties of opinion pools.

If, in our case, we interpret each likelihood component, L¢ (yi,t; 0), as arising
from an agent, we can draw on this literature to obtain a theoretical justifica-
tion for our approach. In sub-section 2.2.1, we defined the Bayesian composite
posterior p® (fly) based on the composite likelihood (5). Papers such Roche
(2016) shows that Bayesian inference using the composite likelihood can be in-
terpreted as arising from a generalized logarithmic opinion pool. This offers
strong theoretical justification for our approach. Genest et al (1984) show that
such opinion pools have attractive properties including external Bayesianity.
External Bayesianity implies that, if all agents agree on the same prior, then
it does not matter whether the prior is added before or after the opinions are
pooled. Generalized logarithmic opinion pools are the only class of opinion pools
that have this property.

An alternative approach is to use linear opinion pools (e.g. Hall and Mitchell,
2007, and Geweke and Amisano, 2011). The use of linear opinion pools means
this approach does not satisfy external Bayesianity nor lead to Bayesian infer-
ence based on p© (6|y). However, as discussed in Geweke and Amisano (2011),
linear pools also have attractive properties and often give results that are differ-
ent from logarithmic opinion pools. Hence, even though they are not a composite
likelihood approach, they are closely related and we include them in our set of
empirical results.

The advantage of drawing on the opinion pool literature is that it offers
insights into how the weights, w; for i = 1, .., M, can be chosen. In our empirical
work, we consider a range of approaches. Setting the weights to be equal (w; =

1

47) is simple and commonly done. However, this often leads to a problem

10



known as “information overload”. Adding more and more agents can lead to
less precise inference as the agents with good opinions will find their signal
swamped. An advantage of the linear opinion pool formulation is that it derives
a set of weights which are optimal for the linear pool and provides a method for
calculating them.

In the logarithmic opinion pool formulation, a logical thing to do (see Canova
and Matthes, 2017) is to base the weights based on some measure of the fit of
each sub-model. In our application, where each component used in the compos-
ite likelihood is a VAR-SV involving a set of core variables (y;) and one other
variable, it makes sense to use the marginal likelihood or an approximation to
it to calculate the weights. Hence, we consider weighting schemes based on the
Bayesian information criterion (BIC), the Deviance Information criterion (DIC)
and the marginal likelihood. Letting BIC; be the BIC for sub-model i, we have

BIC; = —2log L (y"‘,@) + dlog(T),

where 0 is the maximum likelihood estimate using sub-model i, y* = (yi', .., y3) and
d is the number of free parameters. We stress that, in each sub-model, we are
only using the core variables (which are common to all sub-models) to define
the BIC. The maximum likelihood estimate is computed using the integrated
likelihood as in Chan and Eisenstat (2016). The weight for each sub-model is
computed as
e—$BIC;
wZBIC = 5 oo fori=1,..,M.
Zj:l e~ 3BIC;

Our second set of weights follows the same strategy, but using DIC instead of
BIC. DIC is calculated based on the integrated likelihood for the core variables
of interest (see Chan and Grant, 2016, for details).

The third weighting scheme is based on the marginal likelihood. We use the
following marginal likelihood for sub-model i:

ML, = / pi(y*10)p(6)db,

where p;(y|0) = H LE (yi4;0) and p; (y*|0) implies evaluating the marginal like-

lihood only usmg the core variables. The weight for each sub-model is computed

as
mr ML

i T M

Zj:l ML;
We use the abbreviations, VAR-CL-BIC, VAR-CL-DIC and VAR-CL-ML for
composite likelihood methods involving these three different weights.

In the linear opinion pool approach calculating the optimal weights involves
the following steps. Let p;(y;|y1.+—1) be the one-step-ahead predictive density

w

11



for the core variables for the i** sub-model and w = (w1, ws,..,wpr)’. The
predictive log score function is given by

T M
fw) = Zlog <Z wipvz(yﬂyl:t—ﬁ)) :

The optimal weight is obtained by solving the optimization problem w = argmax,, f (w).

We use VAR-LIN as the abbreviation for this approach. Even though these
weights are calculated to be optimal in the linear opinion pool case, we can use
them as weights in the composite likelihood. We refer to such an approach as

VAR-CL-LIN.

3 Bayesian Analysis Using the Composite Pos-
terior

3.1 Sub-model Posterior Distributions

Our goal is to carry out Bayesian analysis on the composite posterior using
MCMC draws from each of the sub-models. This section develops an algorithm
for doing so. We first extend our earlier notation to define the sub-models.
Remember that each of these is a VAR-SV that combines core variables of
interest, y;, with an additional variable, z; ;. Thus, sub-model ¢ (for i =1,.., M)
can be expressed in the form:

Ayeyy = XytBy + Xz tBy. + €yt eyt ~ N(0,3y4), (7)
Zig = Yio + Xof, + €2y, €zt~ N (07 ehm+u) , (8)
1 0 o0 el
Q21 ¢ 1 ... 0 eh2.
Ayat - 5 E%t =
an,1¢ an2¢ -0 1 el Nt

In (7), the matrix X, , contains lags of y;, and the matrix X, ; contains lags of
Zit

Let 0 = {B,, Ay1,---, Ay, %y 1,..., 5, 7} be the set of parameters that are

common in all sub-models, and denote by n; = {8,., 8.,z 1, ..., @z 1, AN, +i0 - -

the parameters that appear only in sub-model ¢. Each sub-model ¢ is charac-
terized by the posterior

pi(0,n; |y, zi) = p(0,n,)p(y", 2 | 0,m;) /p(y", 2:)

where z; = (21, .., zi,T)'.
A key feature of our set-up is that the likelihood of each sub-model can be
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conveniently decomposed as:

T
p(y*v Zi ‘ 9’ m) = Hp(y: |y:—15 sy y:—p? Zijt—T1y+- s Z’ht—]?vﬁyaﬁyzv Ayﬂf’ E!ht)
t=1

* ok *
X p(zi,t | yt ) yt—17 e ayt—p7 Zi,t—la R Zi,t—]ﬂ ﬁz? az,t7 h’N*-‘ri,t)v

T T
= (Hp(yfl : )) (Hp(zi,tyi‘» ' )>»

where Zi = {Zi71, ceey Zz’,T—l} and 7~7'L’ = {Bz, Oz 1y---,0%T, hN*-i-i,O, ceey hN*—H‘,T}-

In this decomposition, p(y* | Z;, 0, 3,,) is the density of a multivariate normal
distribution that can be regarded as the likelihood for the model in (7), with
Zi1,-- ., % 7—1 treated as exogenous regressors. Moreover, this density can be in-
tegrated analytically with respect to a prior on B, to obtaln a den51ty that only
contains common parameters 0, i.e. p(y*|Zz;,0 fﬁ p(y* | Z,0,8,.)d8,..

Similarly, p(z; |y*,7;) can be viewed as the multlvarlate normal likelihood for
a time-varying parameter autoregressive distributed lag model (TVP-ARDL)
with exogenous y; defined by (8), with the important feature that it contains
only nuisance parameters.

In consequence, if § and 7; are independent in the prior (as we assume in
this paper), then they are also independent in the ith sub-model posterior.
Moreover, this independence carries over to the composite posterior defined as

pc(evfha--'vﬁM|y*azlv"'7ZM) O(p(@)Hp(ﬁi)p(y*,zi|977~7i)wi,
=1

M
= pC(9 ‘ y*7217 .- 72M) Hpc(’fh | y*azi)v
1=1

pe Oy 2, 2u) < p(0) [ p(y™ | 2i,0),

1:1:

A

pC (0 |y z) o< p()p(zi | y* 7)™,

and we have used the identity

Yz

= / p(ﬁyz)p(y*|2i’0’ﬁyz)p('zi |y*aﬁz)dﬁyz

Yz

=p(y |z, 0)p(zi |y", ;)

to construct the composite likelihood in the definition of the posterior.
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3.2 Simulation from the Composite Posterior

Our computational algorithm involves taking draws from each sub-model ¢ and

then use these draws to analyze the composite posterior p© (6,7, ..., 7 | ¥*, 21, .-

The key advantage of this approach is that sampling from each sub-model can
be done in parallel and using standard MCMC methods for small VAR-SV mod-
els. This is allows us to work with hundreds of variables where other approaches
which involve use of MCMC methods with large VAR-SV are not feasible.

The decomposition of the composite posterior in the previous sub-section
suggests that once draws of § and 7; are obtained from each of the sub-models,

we can proceed using these to generate samples from p®(0|y*, 21,..., 2um),
pC (7, 1y*,21), -, p% (s | ¥, 2ar) independently.
We begin by considering simulation from p® (6 |y*, Z1, ..., Zar) by appropri-

ately pooling draws of 6 from each of the sub-models. Consider a proposal
density ¢(6) that is a mixture of sub-model posteriors, i.e.

szpz 9|y Zz = szpy |Zzu )/p(y ‘zz)

where p(y *| Z;) = [, p(0)p(y* | Z, 0)d can be regarded as the marginal likelihood
of the VAR-SV with exogenous variables defined in (7).

Note that given a set of weights w; for ¢ = 1,.., M, which can be any of
those described in section 2.3.3, and draws from p; (0 |y*, z;) for i = 1,.., M it is
trivial to obtain a set of draws from ¢(6). Moreover, ¢(6) can be easily evaluated
because p(y*|Z;) can be computed using the algorithm of Chan and Eisenstat
(2015) that we use to obtain the marginal likelihood in a VAR-SV (see Section
2.3.3). Finally, p(y* | Z;,0) is a multivariate normal density given by

(y*|2,0) ~ N (Wyay + X8, + XB XV XL+ zy) ,

assuming f3,, ~ N(éyz’zﬂaz) is the prior. In the preceding equation, X, and
X, stack X, ; and X, , which were defined in (7). W, and a,; are defined
analogously to W, and a, in (1), but only apply to the core variables. W, and
oy stack Wy ¢ and oy, into matrices and ¥, is a block diagonal matrix with
diagonal blocks ¥, ;.

Observe further that

r(0) =

M | 2 x| 2 i
iy [p(y™ 2, 0)/p(y™ [ 20 _
M * |z * |z -
> iz wip(y* | Zi,0)/p(y* | Zi)
This follows from the fact that a geometric average is always less than or equal
to the arithmetic average. Since we can express

M

p 01y 2, 2 ocp(0) [ [ Ip(y™ 12:,0) /p(y™ | 2)])™

i=1

this suggests a rejection sampling approach to pool draws of common parameters
obtained from individual sub-models. Specifically:
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1. obtain a candidate draw 6 ~ g(6);
2. accept 0 with probability 7(6).

Next, consider obtaining draws from p (), | y*, z;) for each i. Here we fo-
cus on the TVP-ARDL model defined by (8) and observe that sampling from
Y (7; | y*, ;) is equivalent to sampling from the TVP-ARDL posterior of sub-
model ¢ when w; = 1. For the more general case with w; < 1, it turns out that
the standard MCMC method needs only minor modifications.

Specifically, the Gibbs steps needed to obtain draws of the parameters 0}2”,
Ya, 0z and hy, 40, conditional ondrawsof o, 1,...,a, rand An, 451, ., AN, +i,T
are identical to the standard case. The Gibbs steps to sample o, 1,..., o, 7 and
B, are also very similar, with the only modification being that hy, 4+ is replaced
by ?LN*+1-7,5 =hn,+ig—Inw; forallt =1,...,Tand ¢ = 1,.., M in the conditional
distributions.

The most substantial adjustment is required in sampling hn, 1,1, ..., AN, +i,7-
To implement this, consider the state-space model defined by

/ / h .
Zit = y;k Q¢ + xtﬁz + €2t €zt ™ N (07 € LN*Jrl’t) )
~ T—t+1 ~
_ 2 h h 2
AN, it = — (1= wi)op i Thnovie—1 Fex 1ies enriz ~ N (0, Uh,N*Jrz‘) .
Clearly, we can sample Ay, i 1,...,R N, +i,7 using standard methods for sto-

chastic volatility models. It can be shown that proceeding this way and setting
hN,+it = by, 4i+ + Inw; yields draws from

P(AN. it AN i LN, 16,0500 N1 Q205 Qa1 - -5 O, B 260 YY)
< p(hN, i1y BN i | BN 40,05 N, 1)
p(zily* AN ity - AN i, @zt T, B)Y
as desired.

In summary, our algorithm proceeds by running a standard MCMC algo-
rithm for each of the sub-models, producing candidate draws of 6 and 7; for
t =1,..,M. These draws are then used in a second re-sampling stage. For 6,
a simple rejection algorithm is used at this stage. For 7); the re-sampling stage
requires some simple Gibbs steps.” However, it is worth pointing out that, for
the equal weights case (i.e., if we set w; = 1/M for i = 1,.., M and, thus, Inw;
is the same for all sub-models), then there is no need for 7, to be re-sampled.

4 Forecasting

We forecast the core variables at horizon h using the predictive density p© (i h |y*, z1,. ..

that is obtained from the composite likelihood as follows. The composite pre-

SNote that the draws of #; are only needed to compute MLs, DICs, and BICs, which
are only used to compute the weights {w;}. If the weights are known (e.g. as in the equal
weights case), then the algorithm can be simplified slightly and there is no need for #; to be
re-sampled.
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dictive density, conditional on the parameters, is given by

C % ~ - N
P (Wr s 21t 20t | Yt 1it—ps Ze—1it—ps 0,715 Ty ) =
M
C o, % * C * -
P (y; |yt—1:t—pazt—1:t—pa9)HP (zi |yt:t—p7’zi7t—1:t—Pani)7
i=1
where

M
P W5 1Y vt 21100 0) o [ [ 27 |97t 2t 10—, 0)™F,
=1

pc(zi,t | y::t—p’ Zit—1:it—p) ;) o p(zi,t | y::t—p’ Zit—1:t—p; )"

and z;_1.;—, denotes the set of non-core variables and their lags: {z1 1—1:4—p, - - - s ZM t—1:t—p } -
The density p© (7 | Y7 1.4—ps 2t—1:t—p, 0) is multivariate normal and has the
form

(yf | yzlufp» Zt—1:it—p> 9) ~ N(ﬂt, Vy,t)7

M
Ot = Wy oy + Xy 1B, + Vi (Z wiv!;ilthZﬂyz> ’

i=1
M -1
e (i)
i=1
Vy,i,t = Xz,tKB,zX;,t + Ey’t'
The density p®(2; ¢ | Yiit—p» Zist—1:4—p71;) 18 also normal and has the form
(Zi,t | y;,k:t—p7 Rit—1:t—ps ﬁL) ~ N (y:/az,t + Xtﬁz, ehN*+i"t_1nwi) .

Accordingly, the one-step ahead predictive density is given by
“

p y;-‘,—l ‘ y*7 Rlyeees ZM) = /pc(y:lk"+1 | y;:T—p-i-lv ZT:T—p+1, e)pC(g | y*7 217 ceey EM)dea
2]

and posterior simulator output of # along with the normal density for pc(y}Jr1 | YT T —pi1s FT:T—p+1, 0)
can be used to do one-step ahead forecasting.
The two-steps ahead predictive density is given by

C(y;+2 |y*7zla-'-aZM) =

C/ % *
// / / p (yT+2‘yT+1:T—p+27Zi,T+1:T—p+270)
0Jyri1Jzim41 ZM,T+1

°(

p

=

C * ~ ~ % ~
/ p (Zi,TJrl |yT+1:T7p+1aZi,T:Tfijlani)p 0 | y*, zi)dn; dzi 41
7,

i

2

Il
N

pc(y;“—&-l | y;:T—p—i-l) Zi,T:T—p+1, H)dy;-l-l pC(a | y*v Zla R 2M)d97
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and similarly for longer forecasting horizons.

Observe that sampling from the one-step-ahead predictive density pc(y} 11 ly*, z1, . ..

does not require draws of 7;, and therefore, the extra steps involved in sampling
7, can be omitted if the researcher is interested only in one-step ahead fore-
casting or uses the direct method of forecasting. The empirical results in the
following section use the direct method of forecasting.

5 Empirical Results

5.1 Overview

We carry out an empirical investigation of our composite likelihood methods
using a small data set of quarterly US data for 7 variables and a large quarterly
data set involving 196 variables. The data is taken from the Federal Reserve
Bank of St. Louis’ FRED-QD data set and runs from 1959Q1- 2015Q3.5 All data
are transformed to stationarity following the recommendations in the FRED-
QD data base and then standardized to have mean zero and standard deviation
one. We focus on empirical results relating to three core variables: CPI inflation,
GDP growth and the Federal Funds rate. The 4 other variables in the small data
set are the Civilian Unemployment Rate, Industrial Production Index, Real M2
Money Stock and S&P’s Common Stock Price Index. A lag length of four is
used for all models.

We include the small data set since it is computationally feasible to estimate
a wide range of VARs with stochastic volatility for models of this dimension.
The VAR-SV is the most flexible model we consider and, with 7 variables should
not be over-parameterized. Thus, it should provide us reasonable benchmark
estimates to compare the alternative approaches to. Accordingly, we classify any
alternative approach as performing well if it yields estimates which are close to
those of the VAR-SV. We also estimate the VAR-CCM1 and VAR-CCM2 using
these 7 variables (see sub-section 2.2 for a definition of these models). We also
present results from a homoskedastic VAR using the small data set (labelled
VAR-HM in the tables).

When working with the large data set, we wish to have an alternative ap-
proach to compare our composite likelihood methods to. However, it is not
possible to estimate the VAR-SV with the large data set. The only approach
(other than our composite likelihood approach) that is computationally feasi-
ble using the large data set is a homoskedastic natural-conjugate prior VAR.
Accordingly, this is the model we use in our forecast comparison. It is labelled
Large VAR in the tables.

Further details about the specification of all models, including prior choice,
are given in the Technical Appendix. For the VAR coefficients in all models
we make standard Minnesota prior choices. Where possible, we make identical

6The data is available through https://research.stlouisfed.org/econ/mccracken/fred-
databases/. See also McCracken and Ng (2015). Complete details of all the variables in
the data set are provided there.
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specification and prior hyperparameter choices across models. It is worth stress-
ing that, in conventional large VAR approaches where the number of parameters
being estimated exceeds the number of observations, prior elicitation is crucial.
Priors must be very informative and results can be sensitive to prior choice. An
advantage of composite likelihood approaches is that, since all sub-models used
are small, prior elicitation is a less important issue. It is possible to use less
informative priors and prior sensitivity concerns are mitigated.

A summary of all the models used in the paper, including their acronyms,
is given in Table 1.

Table 1: Models used in Forecasting Exercise
VAR-HM 7-variable Homoskedastic VAR,
VAR-SV 7-variable VAR with stochastic volatility
VAR-CCM1  7-variable model of CCM (2016a)
VAR-CCM2  T-variable model of CCM (2016b)
Large VAR Large Homoskedastic VAR
VAR-CL-BIC VAR-CL-SV with BIC based weights
VAR-CL-DIC VAR-CL-SV with DIC based weights
VAR-CL-EQ  VAR-CL-SV with equal weights
VAR-CL-ML  VAR-SV with ML weights
VAR-CL-LIN VAR-CL-SV with linear pool weights
VAR-LIN VAR-SV with linear pool weights

We discuss the empirical performance of each model in terms of their fore-
casting performance and the reasonableness of the estimates of features of in-
terest they produce. Our features of interest focus on the error variances and
covariances involving the three core variables.

To evaluate forecast performance, we use two point forecast metrics and
two density forecast metrics for the core variables. Let y; = (y;"l,y;Q,yf’?))/
denote the random variables being forecast and yf* = (th 1,y§?2,y§? 3)I be their

realizations. For the point forecast, we report the root mean squared forecast
error (RMSFE) and the mean absolute forecast error (MAFE),

T-h R E(y* R 2
t=to \Ytthi — (yt+h,i|y1:t)

RMSFE; =
T'—h—to+1
T—=h| R X
MAFE; = t=to |Yt+h,i — Ytthii

T—h—ty+1
for i = 1,2,3 where E(y;14|yf,) is the mean of the predictive density and g)%h
is the median of the predictive density. For the density forecasts, we report

the average log-predictive likelihoods (ALPL) and the average continuous rank
probability score (ACRPS),

T—h *
Zt:tg 10gpt+h(yt+h,i = yﬁ-h,iwﬁzt)
ALPL; = ,
T—h—ty+1
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1 T—h

ACRPS; = PSy.i,
CRPS T_h_toﬂt;OCRSt,

fori =1,2,3 where CRPS; ; = ffooo (FHh(Z) — 1(y§1h < z))2 dz = Ep, |yt~
Y il = 05Ep, i — Ufin i) and Fipp(e) is the c.d.f. of the predictive den-
sity. A small value of the ACRPS; indicates a better forecasting performance.

We also present a joint ALPL for the three core variables of interest:

T—h *
Zt:to 10gpt+h(yt+h = yﬁ,—h|y§t)
T—h—ty+1 ’

ALPL =

5.2 Estimating Variances and Covariances
Let 0,5 denote the (4, j)th element of the error covariance matrix at time t.
In this sub-section we present posterior means and, in some figures, credible
intervals covering the 16" to 84" percentiles of o;j; for 4,7 = 1,2,3 (i.e. the
three variances and three covariances corresponding to the core variables). For
the sake of brevity, the figures only presents results for a few main approaches.

Figure 1 provides point estimates from two of the main composite likelihood
approaches as well as VAR-SV and VAR-CCM2 (as we shall see below, VAR-
CCM2 is in many cases the best alternative approach). It can be seen that all
of the approaches track the VAR-SV fairly well, although VAR-CCM2 tracks
it slightly more closely than our composite likelihood approaches for o31; and

032t-
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Figure 1: Point estimates of o;;¢ for ¢,7 =1,2,3

Figure 2 offers a more detailed comparison of one of our major composite
likelihood approaches (VAR-CL-ML) to the unrestricted VAR-SV (the other
composite likelihood and linear pooling approaches reveal similar patterns). It
can be seen that, even for 031, and 039, where the point estimates differ some-
what, the credible intervals always overlap. We take this as evidence that our
composite likelihood approaches are doing a good job of matching the VAR-SV.
The VAR-CCM2 produces similarly accurate estimates. However, it is worth
noting that the VAR-CCM1 and VAR-HM do not. This is revealed in Figures
3 and 4 which present detailed results for these two models. From the former,
we can see that the common drifting volatility assumption in VAR-CCM1 is too
restrictive, with high volatility in 011 + spilling over inappropriately into some of
the other variances and covariances. From Figure 4 we can see the homoskedas-
tic model is failing to pick up changes in volatility that are clearly present in
the data.
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Figure 2: Comparison of VAR-CL-ML to VAR-SV (Point estimates of
05+ with 16%-84th percentiles, VAR-SV in red)
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Figure 4: Comparison of VAR-HM to VAR-SV (Point estimates of 05
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In this sub-section, we have compared our composite likelihood approaches
to a range of alternatives using a small data set where such a comparison is
feasible. Of course, with such a small data set, the researcher would probably
want to work with a VAR-SV (or similar model) since it is the more flexible
approach and, thus, more able to capture empirically-relevant features of the
data. But it is re-assuring to see that even with the small data set, composite
likelihood methods are producing results which are very similar to the VAR-SV.

5.3 Forecasting

In this sub-section, we investigate how well composite likelihood methods fore-
cast using the large data set involving 196 variables. We remind the reader
that, with this many variables, the only other feasible Bayesian VAR, approach
is the one with acronym Large VAR which is homoskedastic and uses a natural
conjugate prior. We also include all the models of the preceding sub-section,
but for these other models we are using the small data set to produce forecasts.
We present results for a long forecast evaluation period (beginning in 1970) and
a short forecast evaluation period that begins in 2008Q1 so as to take in the
financial crisis and subsequent period. In both cases the forecast evaluation pe-
riod runs to the end of the sample. We provide forecasts of quarterly variables
(h =1) and quarterly variables one year in the future (h = 4). To aid in inter-
pretation, note that all variables are standardized to have zero mean and unit
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standard deviation and that our forecast metrics are not benchmarked against
any model. We carry out the sign test of equal predictive accuracy of Diebold
and Mariano (1995) using the homoskedastic large VAR as the benchmark. In
the tables, *** ** and * denote rejection of the null hypothesis of equal pre-
dictive accuracy of a model and the benchmark at the 1%, 5% and 10% level of
significance, respectively.

The best overall summary of forecast performance involves the entire joint
predictive density for the three core variables. This is presented in Table 2 for
h =1 and h = 4. The most important comparison is between the Large VAR
and the methods which pool results from many small models, since these are
the only feasible approaches with large data sets. In this comparison, it can
be seen that the composite likelihood approaches are clearly winning for both
forecast horizons, particularly for the forecast evaluation period which begins in
2008Q1. For the longer forecast evaluation period with A = 1, the linear pooling
method actually forecasts slightly better than logarithmic pooling used with
the composite likelihood approaches. In general, any method which involves
homoskedasticity or highly restrictive forms for the error covariance matrix (i.e.
VAR-CCM1) forecast poorly when evaluated using the ALPL for the 3 core
variables. The less restrictive VAR-CCM2 forecasts well over the longer forecast
evaluation period but is beaten by composite likelihood methods for the shorter
evaluation period. These statements hold true for both h = 1 and h = 4. The
forecast improvements relative to the Large VAR are statistically significant in
almost every case. The only exceptions are for h = 4 for the forecast evaluation
period which begins in 2008Q1.

Table 2: Forecasting Evaluation Using Joint ALPL for 3 Core Variables
Horizon h=1 h=4

Evaluation begins: | 1970Q1 | 2008Q1 1970Q1 2008Q1
VAR-HM 0.33* | —0.58*** | —1.04*** | —1.60
VAR-SV 0.65*** | 0.44*** —1.04*** | —1.61
VAR-CCM1 0.06* | —0.51** | —0.98*** | —1.85
VAR-CCM2 0.90*** | 0.52*** —0.84*** | —1.58
Large VAR —0.47 —1.69 —1.41 —2.02
VAR-CL-ML 0.90*** | 1.27*** —0.99*** | —1.49
VAR-CL-DIC 0.85*** | 0.67*** —0.72%% | —0.92%**
VAR-CL-BIC 0.90*** | 1.15*** —0.88*** | —1.51
VAR-CL-EQ 0.88*** | 0.89*** —0.71%%* | —0.84***
VAR-CL-LIN 0.89*** | 0.92*** —0.71%** | —=0.79***
VAR-LIN 0.91%** | 1.01*** —0.75*** | —0.83***

The following tables present detailed results for the individual variables using
the full range of forecast metrics. The good forecast performance of composite
likelihood methods and relatively poor forecasting performance of the large ho-
moskedastic VAR noted in Table 2 are also found in these tables, but there are
some differences across variables and forecast metrics worth noting.

The general pattern is that composite likelihood and linear pooling methods
forecast particularly well for inflation and the interest rate, for the post-2008
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period and using metrics that involve the entire predictive density (i.e. ACRPS
and ALPL). The last point is not that surprising in that incorporation of sto-
chastic volatility is usually found to be more important in getting the shape
of the entire predictive density correct as opposed to just getting a reasonable
point forecast. For example, for inflation over the longer forecast evaluation
period with h = 1, the homoskedastic VAR-HM model is actually forecasting
quite well if we look at RMSFE and MAE. However its ALPL is not as high as
other methods for this case. It is worth noting that this pattern does not hold
for h = 4. Also, for the interest rate, the small homoskedastic model produces
poor point forecasts, especially after 2008. And the homoskedastic large VAR
often produces high RMSFEs. So the reader should not take away the message
that, if point forecasts are all that matter, then working with homoskedastic
models is adequate.

For GDP growth, Tables 7 and 8 indicate that the small VAR-SV forecasts
best for h = 1 and, in general, small models such as VAR-CCM2 tend to forecast
well. But even here, the forecast performance of composite likelihood methods is
only slightly worse than these models. For h = 4, composite likelihood methods
tend to produce superior forecasts.

In general, of the alternative models, the VAR-CCM2 tends to forecast al-
most as well as our methods (and forecasts much better than VAR-CCM1).
However, we stress that VAR-CCM2 is not computationally feasible in the re-
ally large VARs macroeconomists are increasingly interested in.

These tables also reinforce the finding that, among the various composite
likelihood approaches, the alternative ways of doing the weighting typically do
not make a great deal of difference for forecasting. There is no consistent pat-
tern where one weighting method dominates and it is always possible to find
case where a particular set of weights forecasts best. There are also cases where
a linear pool of sub-models forecasts best. Indeed, even using equal weights pro-
duces forecasts which are only slightly inferior to other methods which estimate
weights in a data-based fashion.

Table 3: Evaluation of Inflation Forecasts Beginning in 1970

h=1 h=4

RMSFE | MAE | ACRPS | ALPL RMSFE | MAE ACRPS | ALPL
VAR-HM 0.66 045 | 0.36** | —0.15*** | 0.88 0.64 0.50*** | —0.53
VAR-SV 0.67 0.46 | 0.36™* | —0.06™* | 0.88** 0.65** | 0.51*** | —0.49**
VAR-CCM1 0.71 0.51 | 0.39*** | —0.12 0.90 0.65 0.50*** | —0.43***
VAR-CCM2 0.67 0.46 | 0.36™* | —0.00*** | 0.87*** | 0.64™** | 0.50*** | —0.39***
Large VAR 0.73 0.52 | 0.56 —0.14 1.03 0.79 0.82 —0.64***
VAR-CL-ML | 0.69 047 | 0.36™* | —0.01** | 0.68*** | 0.48"** | 0.48*** | —0.39***
VAR-CL-DIC | 0.68 047 | 0.36"* | —0.01 0.67*** | 0.47* | 0.49"** | —0.36"**
VAR-CL-BIC | 0.69 0.46 | 0.36™* | —0.01** | 0.66™** | 0.47*** | 0.48*** | —0.38***
VAR-CL-EQ | 0.68 047 | 0.36"* | —0.01 0.66*** | 0.47*** | 0.48*** | —0.35"**
VAR-CL-LIN | 0.68 0.47 | 0.36™** | 0.00 0.66*** | 0.47*** | 0.48*** | —0.34***
VAR-LIN 0.68 0.47 | 0.38*** | —0.00 0.67*** | 0.48*** | 0.50*** | —0.36"**

25




Table 4: Evaluation of Inflation Forecasts Beginning in 2008

h=1 h=4

RMSFE | MAE | ACRPS | ALPL | RMSFE | MAE | ACRPS | ALPL
VAR-HM 1.04 0.66 | 0.52*** | —1.16 | 1.13 0.79 | 0.61*** | —0.94
VAR-SV 1.06 0.68 | 0.54** | —0.68 | 1.11 0.75 | 0.60*** | —0.80
VAR-CCM1 1.04 0.66 | 0.52*** | —0.71 | 1.06 0.71 0.56*** | —0.78
VAR-CCM2 1.05 0.68 | 0.53*** | —0.57 | 1.08 0.72 | 0.58** | —0.65
Large VAR 1.03 0.65 | 0.69 —0.71 | 1.25 0.88 | 0.94 —1.00
VAR-CL-ML | 1.04 0.65 | 0.51** | —0.54 | 0.97 0.60 | 0.54** | —0.59
VAR-CL-DIC | 1.04 0.66 | 0.52** —0.57 | 0.95 0.59 | 0.54*** | —0.57***
VAR-CL-BIC | 1.02 0.63 | 0.50*** | —0.50 | 0.97 0.60 | 0.54** | —0.60
VAR-CL-EQ | 1.04 0.66 | 0.52*** | —0.57 | 0.96 0.61 0.54*** | —0.57***
VAR-CL-LIN | 1.04 0.66 | 0.52** —0.50 | 0.95 0.58 | 0.54** | —0.55***
VAR-LIN 1.03 0.66 | 0.54** —0.48 | 0.96 0.61 0.54*** | —0.55"**
Table 5: Evaluation of Interest Rate Forecasts Beginning in 1970

h=1 h=4

RMSFE | MAE ACRPS | ALPL | RMSFE | MAE ACRPS | ALPL
VAR-HM 0.29"** | 0.18* | 0.15"* | 0.81*** | 0.62** 0.47 1 0.36™* | —0.06™**
VAR-SV 0.28*** | 0.17*** | 0.14** | 1.03*** | 0.59** 0.45** | 0.35"** | —0.01***
VAR-CCM1 0.51%** | 0.33*** | 0.25"* | 0.53*** | 0.68 0.51 0.39*** | —0.10**
VAR-CCM2 0.28%** | 0.17*** | 0.14** | 1.19*** | 0.59*** | 0.44*** | 0.34*** | 0.02***
Large VAR 0.56 0.42 0.44 0.17 0.75*** | 0.55*** | 0.60 —0.15
VAR-CL-ML | 0.28*** | 0.17*** | 0.13*** | 1.18** | 0.46*** | 0.34™* | 0.38"** | —0.20
VAR-CL-DIC | 0.28*** | 0.16*** | 0.13*** | 1.17*** | 0.36™** | 0.26*** | 0.34*** | 0.04***
VAR-CL-BIC | 0.28*** | 0.17*** | 0.13*** | 1.20*** | 0.41** | 0.32*** | 0.36*** | —0.10
VAR-CL-EQ | 0.27*** | 0.16*** | 0.13*** | 1.19*** | 0.37*** | 0.26*** | 0.34™** | 0.02***
VAR-CL-LIN | 0.27*** | 0.16*** | 0.13*** | 1.20*** | 0.36™** | 0.26*** | 0.34™* | 0.01***
VAR-LIN 0.27* 1 0.16™* | 0.13** | 1.21** | 0.37*** | 0.26*** | 0.35™** | —0.01***
Table 6: Evaluation of Interest Rate Forecasts Beginning in 2008

h=1 h=4

RMSFE | MAE ACRPS | ALPL | RMSFE | MAE ACRPS | ALPL
VAR-HM 0.25"** 1 0.18* | 0.14*** | 0.97*** | 0.65 0.56 0.39*** | —0.12
VAR-SV 0.18*** | 0.12*** | 0.10*** | 1.50*** | 0.62 0.56 0.39*** | —0.16
VAR-CCM1 0.36*** | 0.30*** | 0.20*** | 0.66™** | 0.74 0.70 0.48*** | —0.49
VAR-CCM2 0.20* | 0.12*** | 0.10*** | 1.45*** | 0.64 0.57 0.40*** | —0.15
Large VAR 0.51 0.45 0.46 0.09 0.72 0.62 0.62 —0.21
VAR-CL-ML | 0.13*** | 0.07*** | 0.06*** | 2.00*** | 0.46** 0.43 0.39*** | —0.32
VAR-CL-DIC | 0.13*** | 0.08*** | 0.07*** | 1.67*** | 0.27** | 0.25"** | 0.26™** | 0.27"**
VAR-CL-BIC | 0.13*** | 0.07*** | 0.06*** | 1.88*** | 0.48 0.45 0.39*** | —0.28
VAR-CL-EQ | 0.12*** | 0.08*** | 0.07*** | 1.79*** | 0.28** | 0.26™** | 0.26™** | 0.27"**
VAR-CL-LIN | 0.12*** | 0.08*** | 0.07*** | 1.78*** | 0.29*** | 0.26*** | 0.27"** | 0.24***
VAR-LIN 0.12*** | 0.08*** | 0.07*** | 1.83*** | 0.29*** | 0.26™** | 0.30*** | 0.25***
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Table 7: Evaluation of GDP Growth Forecasts Beginning in 1970

h=1 h=14

RMSFE | MAE | ACRPS | ALPL RMSFE | MAE ACRPS | ALPL
VAR-HM 0.89 0.68 | 0.51*** | —0.38 1.01** 0.76** | 0.58*** | —0.51**
VAR-SV 0.86 0.65 | 0.50*** | —0.32** | 1.00*** | 0.74*** | 0.57*** | —0.51***
VAR-CCM1 0.87 0.67 | 0.51*** | —0.36 1.00** 0.76** | 0.58*** | —0.52***
VAR-CCM2 0.86 0.66 | 0.50*** | —0.31** | 1.00*** | 0.74*** | 0.58*** | —0.50***
Large VAR 0.93 0.70 | 0.77 —0.39 1.14 0.89 0.98 —0.62
VAR-CL-ML | 0.92 0.67 | 0.51*** | —0.35 0.98** 0.72*** | 0.56™** | —0.49***
VAR-CL-DIC | 0.91 0.67 | 0.51*** | —0.36 0.97** 0.72** | 0.56™** | —0.48***
VAR-CL-BIC | 0.93 0.68 | 0.52*** | —0.35"** | 0.99** 0.73** | 0.57"* | —0.49***
VAR-CL-EQ | 0.92 0.68 | 0.51*** | —0.35 0.97** 0.71** | 0.56™* | —0.47***
VAR-CL-LIN | 0.92 0.68 | 0.51*** | —0.35 0.97** 0.71** | 0.55™** | —0.47***
VAR-LIN 0.92 0.68 | 0.54*** | —0.36 0.98** 0.72** | 0.57* | —0.47***
Table 8: Evaluation of GDP Growth Forecasts Beginning in 2008

h=1 h=4

RMSFE | MAE | ACRPS | ALPL | RMSFE | MAE | ACRPS | ALPL
VAR-HM 0.96 0.72 | 0.56* | —0.48 | 1.14 0.85 | 0.64*** | —0.70
VAR-SV 0.86 0.63 | 0.50*** | —0.42 | 1.07 0.77 | 0.62*** | —0.83
VAR-CCM1 0.94 0.73 | 0.57*** | —0.57 | 1.16 0.87 | 0.67*** | —0.88
VAR-CCM2 0.88 0.65 | 0.52*** | —0.46 | 1.11 0.82 | 0.65*** | —0.85
Large VAR 0.96 0.77 | 0.80 —0.47 | 1.14 0.87 | 0.99 —0.69
VAR-CL-ML | 0.95 0.65 | 0.52*** | —0.46 | 1.20 0.81 | 0.63*** | —0.83
VAR-CL-DIC | 0.95 0.66 | 0.53*** | —0.50 | 1.11 0.76 | 0.61*** | —0.79
VAR-CL-BIC | 0.96 0.67 | 0.52*** | —0.47 | 1.20 0.83 | 0.65*** | —0.86
VAR-CL-EQ | 0.95 0.66 | 0.52*** | —0.47 | 1.11 0.75 | 0.60** | —0.76
VAR-CL-LIN | 0.95 0.66 | 0.52*** | —0.45 | 1.10 0.75 | 0.60*** | —0.77
VAR-LIN 0.96 0.68 | 0.56** —0.46 | 1.12 0.76 | 0.62*** | —0.77

6 Summary and Conclusions

Large VARs are emerging as a popular tool in modern macroeconomics. Adding
multivariate stochastic volatility to them has emerged as one of the unresolved
challenges in the field. It arises since it is not computationally practical to
carry out Bayesian estimation in large VARs with multivariate stochastic volatil-
ity. Even if computation were possible, conventional approaches can be over-
parameterized when working with large data sets leading to problems with over-
fitting, imprecise estimation and the need for strong prior information. In this
paper, we propose the use of composite likelihood methods for meeting this chal-
lenge. These involve averaging over many smaller sub-models. In our context,
we use many small VAR-SV models thus enabling computation to be feasible
even in data sets involving hundreds of variables. By working with smaller mod-
els, concerns over over-parameterization and the need for careful prior elicitation
are lessened. We explore these themes in the paper. In addition, we discuss the
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econometric theory of composite likelihood methods drawing on conventional
asymptotic results as well as the literature on prediction pools. All in all, there
are strong theoretical reasons for thinking composite likelihood methods may
be an attractive way of adding stochastic volatility to large VARs.

The issue of how well composite likelihood methods work in practice is ex-
plored in our empirical work. Working with a large US quarterly macroeconomic
data set involving 196 variables, we find encouraging results. When we use all
196 variables and compare the forecast performance of our composite likelihood
methods against the only practical alternative (a large homoskedastic VAR with
natural conjugate prior), we find strong evidence of the superiority of our meth-
ods. Clearly, stochastic volatility is an important feature of this data set and
our VAR-CL-SV methods allow for this.

When we compare our methods to a range of existing methods which include
stochastic volatility we must restrict ourselves to smaller data sets. Using these,
we find our composite likelihood methods are producing parameter estimates
which are similar to those produced by state-of-the-art approaches. We also find
that composite likelihood methods using the large data set forecast well relative
to these other methods which use the small data set. Overall, we conclude that
the strategy of combining forecasts from many small models is computationally
feasible even with large VARs and leads to forecast performance that is as good
or better than other computationally feasible approaches.
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Technical Appendix

Priors and Specification Choices

For the VAR-SV model, we assume normal priors for the initial condition
ag ~ N(0,V,) and hg ~ N(0,V},). Moreover, we assume an independent prior
for parameters in X5, and X, which are distributed as

ohi ~1GWhi, Shi), 0o~ IG(Va, Saz2),

fori=1,...,Nand j=1,..., w We set v,; = 10, Sp; = 0.12(v,; — 1),
Va; = 10 and Sj, ; = 0.01%(vp, ; — 1). For the initial states, we set V,, = 10 x Iy
and Va =10 x IN(N—l).

2

For the VAR coefficients 8 = vec ((c, A1,,...,A4p)"), we use a Minnesota prior
and assume 8 ~ N(8,,Vz). For the prior mean, we set 8, = 0. The prior
covariance matrix Vg is set to be diagonal and its corresponding values are set
as follows:

Var(c) = 10 x Iy,
A2 op _ . .
Var(A;j):{igs o forl=1,...,pand i # j,

3

forl=1,...,pand i =j.

where Afj denotes the (7, ) th element of the matrix A; and o, is set equal to
the standard deviation of the residual from an AR(p) model for the variable 7.
For the hyperparameters, we set Ay = 0.2, Ao = 0.5, \3 =2, p =4.

The VAR-CCM2 is the same as the VAR-SV except that the a; is restricted

to be time-invariant, i.e. a; = a. We assume a normal prior a ~ N (0,€,) with

Q, =10 X In(~v—1. The priors for other parameters are set the same as those
2

in the VAR-SV.

For the VAR-HM
y+X/6+67 etNN(07IN®E)7

we assume an independent prior for the model parameters. The prior for the
VAR coefficients is set equal to that in the VAR-SV. For the covariance matrix,
we set X ~ IW(Xg,vg) with vg = N+ 2 and X9 = (vg — N — 1)Iy, where
IW(-,-) denotes the inverse Wishart distribution. This implies that the prior
mean E(X) = Iy. We also include a natural conjugate prior version of the
homoskedastic VAR for use with the large data set. For this we choose the
same prior with the exception that the prior covariance matrix for 5 is the same
as for VAR-CCM1 (see below).

For the VAR-CCMI, we first let 23 = (1,9;_y,...,%;_,). It is convenient to
specify the model as

Y =XA+U, vec(U)~N(0,Z®Q)
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where Y = (y1,...,yr), X = (x1,...,27), A = (¢, A1,...,A,) and Q =
diag(e"t,...,e"7). Recall that the log volatility follow an AR(1) process

hy = phy—1 + G?a p~ N(Ov U%)a

with |p| < 1. A standard normal-inverse-Wishart prior are set for model para-
meters (A, X) as

Y~ IW(Xg,vg), vec(A)|X ~ N(vec(Ap), X ® Va).

The hyperparameters Xy and vg are set equal to those in VAR-HM. We set
Ay = 0 for the prior mean of the VAR coefficients. For the covariance matrix,
we assume it to be V4 = diag(vy,...,v;) and set v; = /\;‘;" for coefficients
associated to lag [ of variable r for ¢ = 2,...,k and v; = 10. The other hyper-
parameters are set equal to those in VAR-SV. For the AR coefficient and the

variance of the log volatility process, we assume

p~N(pg, V,) for |p| <1, op ~ N(va,Sh)

with p, = 0.9, V, = 0.2%, v;, = 10 and Sj, = 0.1%(v, — 1).
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Proof of Proposition 1
Proof. Defining 47 = Ay 1y; —cy— E§:1 By, jyi_; it is straightforward to show
the form of the restricted VAR-SV implies:

!’
p

(il - ) AR o i S (P ol plti e
plye| - )oxexpq—5 |0 — ) wi) — Up — p wi ) —a—
2\" &M 0 ) e\ T A

o 1
X Hexp {—2 [An++ip — Inw;

i=1
2
P
—hn*14¢+Hnw; . / * .
+ e TN ‘| At Oy tYe T Czi — § : 2y, z,]yt j E /Bzz Ji,j Rt —]
j=1
’
M p 14
Wi | .y 5yz,i,jzi,t—j 1 5yz,i,jzi,t—j
X €xp Efi yt,§7 Zyt yt,§7
— 2 —~  g(M) — g(M)
— j= j=
i
1 M P M p
—1
X €xXp —729( Wy E ﬂyz,i,jzi,tfj Xyt § Wi E Byz,i,jziyt*j
=1 j=1 i=1 j=1
’
M P p
—1
X eXp 229 2| 2 Bueiaziei | Zui | 2o Busisii-d
i=1 j=1 j=1
o 1
X Hexp {—2 [Anstip — Inw;
=1
2

p p
—hn*4i¢Hnw; ) / * . ! * . .
+e *e | Bt T Qg Y — Cai — Bayii¥i—j — Bz jZit—j
=1 =

where we used the fact that (yt*)’Z;,lf (yf) = Zf\il wi(yt*)’E;% (y7). The likeli-
hood of the restricted VAR-SV is

T
L(y;0) = [[ p(we| - ). 9)
t=1
Now, suppose that our composite likelihood is constructed from sub-models:

P P
* Byz.ijZit—j
Ay =cy+ Y Byyjyij+ 3y el ST Tty ey~ N(0,Sy),
j=1 j=1

(10)
p p
) / o E / * E / L . . AN+t
Zit — az,iﬂtyt =Cz, + Bzy,jytfj + ﬁzz,i)jzz,tﬁy + €zt €zt ™ N (07 e YT ) 5

j=1 j=1
(11)
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which leads to
p

M
wi [ . BysiiZi—i
PG| - )oxexpl Y =[5 =D 71’;\4 2
— = 9(M)

X HGXP{ [wihN~ 14t

4 eth*+7¢7t+lnwi P

and the composite likelihood LE(y;0) = Hthl ¢ (yy |
Observe that

LC(y;0) < L(y;0)

T

1 M p
X exp —W; sz g Yz,1,j %t —] 2177

/

M P
E W; E :ﬂyz,i,jzii—j
i=1

/

! *
it — Oy tYs —

271

y,t

).

Yt

p

Jj=1

/

p

oy

Jj=1

1
t

J

ﬂyz,i,jzi’t*j

[

1

M
D owi) By

9(M)

Czi — E zyzjyt 7

E 5zz Vi, jRit—j

Byz,ijZit—i

j=1 i=1  j=1
1 T
X L(y1 0) €Xp § — 5£Et§t s
2900
where Zp = (21,615 Z1t—ps -+ s EM =15 s ZMt—p) s Bi = (Byz i1y - -
and Z; is a Mp x Mp positive semi-definite matrix with the (¢, k) block given
by
- [w(- wl)BlZy iB;, if i=k,
TR —wawuBIS, By if i # k.
Let z; = (251, .-y 2zir—1), 2 = (21, .., 20)s 20 = (zi, - -

/
szur) and y* =

((yr),...,(y3))'. Then, we may write the likelihood L(y;6) as the density

L(y;0) = p(y*, zr, Z | ¥). Consequently,

* = T ~j= =~
p(y s RTH % | 9) exp {_W Zt:l Zjlt:‘tzt}

LE(y;0) = - — 1
Jo Sy ey D" 20 21 0)dy* 20) exp { = 550k Ty 2EA | d2
p(y*, 21, 2] 0) exp {—W Y %Etit}
- = ,
E; (exp {—W et z{:tzt})
and

Dxi(L|ILY) = InE; (eXp {—

34

T 1 T
JU
E Z5¢% o | =Bz | —m——5
= }> < 29(M)* ]

U
E Zt:tzt> .
=1

’ﬂyzyi,p)’



To prove that Dyr, (L|| L) — 0 as M — oo, note that Z; can be repre-
sented by the Hadamard product Z; © (W ® tpt;,), with the M x M matrix W
defined by elements

Wlk_{ —W; Wk if Z;ék ’

and ¢, = (1,...,1)" being the p x 1 vector of ones. In particular, W is posi-
tive semi-definite and contains information regarding the weights, while Z;; + =
BZ(E;’ %Bk, for all 7 and k, depends only on the parameters.

Accordingly,
égatgt _ Z{Zt % Zéatgt Zézt || ||
g(M)? — g(M)? = 3z~ g(M)pT
where || - || denotes the spectral norm. Since Z; and W ® Lpty, are positive semi-

definite, Schur’s inequality (Horn and Johnson, 1991, Theorem 5.5.1) 1mphes
IZ¢ ] < pH Z.||[[W]|. Moreover, there exists a unit vector u (satisfying w/'u = 1)

such that
M M 2
W] = u'Wu = Zwmf - <Z u1w7> .
i=1 i=1

) M 9 M 9 M 2
Since Y ;~; wiu; < max{w;} > .~ u; = max{w;} and (22‘21 uiwi) >0, we
obtain [[W]| < max{w;}. Consequently, max{w;} — 0 implies |[W|| — 0 and
|Z¢|| — 0 follows from the fact that ||| is constant with respect to M.

M
It remains to show that gf}éty =>" % does not diverge for fixed
T and M — oo. Since z;;—; is normally distributed conditional on y*, with

conditional expectation u,;(y*) = E(z;+—;|y*) and variance v?, the quantity

¢ = %]\/}[L)(y*) is conditionally independently (though not 1dentlcally) dis-
tributed, and has the following properties:

L E(Gly") =
2
2. B((] |y*) = M)27
3. fo\il Var((; [y*) = TJ% < 00, where v = 57 Zi\il v

4. Zij\ilVar(Cf|y*)<3v sanT < 00, where 0 = MZZ L i

Hence ZZ 1 ¢ and ZZ N g(M both converge in R almost surely (Dur-
M 2
rett, 2010, Theorem 2.5.3), which implies % converges in R almost

surely. In this case, the product Q(E/Tgt)z,HEtH — 0 and Dy, (L||LC) vanishes in
the limit. m
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