Composite Likelihood Methods for Large Bayesian VARs with Stochastic Volatility

Joshua Chan¹ Eric Eisenstat² Chenghan Hou³ Gary Koop⁴

 1 University of Technology Sydney 2 University of Queensland 3 Hunan University 4 University of Strathclyde

Background: History of Large VARs

- Large VARs, involving 100 or more dependent variables, are increasingly used in a variety of macroeconomic applications.
- Pioneering paper: Banbura, Giannone and Reichlin (2010, JAE) "Large Bayesian Vector Autoregressions"
- Previous VARs: a few variables perhaps 10 at most
- BGR has 131 variables (standard US macro variables)
- Many others, here is a sample:
- Carriero, Kapetanios and Marcellino (2009, IJF): exchange rates for many countries
- Carriero, Kapetanios and Marcellino (2012, JBF): US government bond yields of different maturities
- Giannone, Lenza, Momferatou and Onorante (2010): euro area inflation forecasting (components of inflation)
- Koop and Korobilis (2016, EER) eurozone sovereign debt crisis
- Bloor and Matheson (2010, EE): macro application for New Zealand
- Jarociński and Maćkowiak (2016, ReStat): Granger causality

Background: Why large VARs?

- Availability of more data
- More data means more information, makes sense to include it
- Concerns about missing out important information (omitted variables bias, fundamentalness, etc.)
- The main alternatives are factor models
- Principal components squeeze information in large number of variables to small number of factors
- But this squeezing is done without reference to explanatory power (i.e. squeeze first then put in regression model or VAR): "unsupervised"
- Large VAR methods are supervised and can easily see role of individual variables
- And they work: often beating factor methods in forecasting competitions

Background: Computation in large VARs

- E.g. large VAR with N = 100 variables and a lag length of p = 13:
- 100,000+ VAR coefficients
- 5,050 free parameters in error covariance.
- Bayesian prior shrinkage surmounts over-parameterization
- Standard choices exist: e.g. Minnesota prior
- Key point 1: Standard approaches are conjugate: analytical results exist (estimation and forecasting – no MCMC needed)
- Key point 2: Huge posterior covariance of VAR coefficients $(N^2p \times N^2p \text{ matrix})$: tough computation
- Key point 3: Conjugacy greatly simplifies: separately manipulate $N \times N$ and $Np \times Np$ matrices
- Key point 4: Using more realistic priors or extending model (e.g. to relax homoskedasticity assumption) loses conjugacy and, thus, computational feasibility
- Bottom line: Great tools exist for large homoskedastic Bayesian VARs with a particular prior, but cannot easily

Background: Multivariate Stochastic Volatility in VARs

- Allowing for error variances to change in macroeconomic VARs important
- E.g. Primiceri (2005, ReStud), Sims and Zha (2006, AER), Clark (2011, JBES), etc.
- Research question: How to add multivariate stochastic volatility in large VARs?
- Existing Bayesian literature is either:
- Homoskedastic
- Restrictive forms (e.g. Clark, Carriero and Marcellino, 2016, JBES + 2 working papers, Chan, 2016, working paper)
- Approximations (Koop and Korobilis, JOE, JOE and Koop, Korobilis and Pettenuzzo, 2016, JOE)
- Present paper: new approach using composite likelihoods

Vector Autoregressions with Stochastic Volatility (VAR-SV)

- y_t is N-vector of dependent variables (N large)
- VAR-SV is:

$$A_{0t}y_t = c + A_1y_{t-1} + \cdots + A_py_{t-p} + \epsilon_t, \quad \epsilon_t \sim N(0, \Sigma_t),$$

• $\Sigma_t = \operatorname{diag}\left(e^{h_1,t},\ldots,e^{h_n,t}\right)$

•

$$A_{0t} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ a_{21,t} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1,t} & a_{n2,t} & \cdots & 1 \end{pmatrix}$$

Rewrite as

$$y_t = X_t \beta + W_t a_t + \epsilon_t$$

- $X_t = I_n \otimes (1, y'_{t-1}, \dots, y'_{t-p})$
- a_t is vector of free elements of A_{0t}

Vector Autoregressions with Stochastic Volatility

$$\bullet W_t = \begin{pmatrix} 0 & 0 & 0 & \cdots & \cdots & 0 \\ -y_{1,t} & 0 & 0 & \cdots & \cdots & 0 \\ 0 & -y_{1,t} & -y_{2,t} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & -y_{1,t} & -y_{2,t} & \cdots & -y_{N-1,t} \end{pmatrix}$$

0

$$h_t = h_{t-1} + \epsilon_t^h, \quad \epsilon_t^h \sim N(0, \Sigma_h)$$

$$a_t = a_{t-1} + \epsilon_t^a, \quad \epsilon_t^a \sim N(0, \Sigma_a)$$

- $\Sigma_h = \operatorname{diag}(\sigma_{h,1}^2, \dots, \sigma_{h,N}^2)$ and $\Sigma_a = \operatorname{diag}(\sigma_{a,1}^2, \dots, \sigma_{a,\frac{N(N-1)}{2}}^2)$.
- Standard MCMC methods used for estimation and forecasting
- But these will not work with large VARs

Composite Bayesian Methods

Likelihood function (assuming independent errors):

$$L(y;\theta) = \prod_{t=1}^{T} p(y_t|\theta) = \prod_{t=1}^{T} L(y_t;\theta)$$

Composite likelihood

$$L^{C}(y;\theta) = \prod_{t=1}^{T} \prod_{i=1}^{M} L^{C}(y_{i,t};\theta)^{w_{i}}$$

- $y_{i,t}$ for i = 1,..,M are sub-vectors of y_t
- $L^{C}(y_{i,t};\theta) = p(y_{i,t}|\theta)$
- w_i weight attached to sub-model i
- $\sum_{i=1}^{M} w_i = 1$
- Bayesian composite posterior

$$p^{C}(\theta|y) \propto L^{C}(y;\theta) p(\theta)$$

How do we use composite Bayesian methods?

- Instead of forecasting with large VAR-SV, forecast with many small VAR-SVs
- Let $y_t = \begin{pmatrix} y_t^* \\ z_t \end{pmatrix}$
- y_t^* contains N_* variables of interest
- z_t (with elements denoted by $z_{i,t}$) remaining variables.
- Sub-model i is VAR-SV using $y_{i,t} = \begin{pmatrix} y_t^* \\ z_{i,t} \end{pmatrix}$
- ullet Our application uses 193 variables with $N_*=3$
- Thus, 190 sub-models, each is a 4-variate VAR-SV

Theory of Composite Likelihood Methods

- Some asymptotic theory exists (e.g. Canova and Matthes, 2017)
- Require strong assumptions
- Overview: Varin, Reid and Firth (2011, Stat Sin)
- Pakel, Shephard, Sheppard and Engle (2014, working paper)
- Need asymptotic mixing assumptions about dependence over time, over variables and between different variables at different points in time
- In general, strong assumptions often not achieved in practice
- Hence, our justification is mostly empirical

Theory of Composite Likelihoods as Opinion Pools

- Bayesian theory uses idea of opinion pool
- Each sub-model is "agent" with "opinion" about a feature (e.g. a forecast) expressed through a probability distribution.
- Theory addresses "How do we combine these opinions?"
- Generalized logarithmic opinion pool equivalent to composite likelihood
- Nice properties (e.g. external Bayesianity)
- Linear opinion pools lead to other combinations of sub-models
- E.g. Geweke and Amisano (2011, JOE) optimal prediction pools
- In empirical work consider both composite likelihood and Geweke-Amisano

Choosing the Weights

- Various approaches considered
- Equal weights $w_i = \frac{1}{M}$
- Weights proportional to marginal likelihood of each sub-model
- Weights proportional to (exponential of) BIC of each sub-model
- Weights proportional to (exponential of) DIC of each sub-model
- In all above use likelihood/marginal likelihood for core variables only (y_t^*)

Computation

Target: Draws from Bayesian composite posterior

$$p^{C}(\theta|y) \propto L^{C}(y;\theta) p(\theta)$$

- We have:
- 1. MCMC draws from M sub-models (4-variate VAR-SVs)
- 2. Weights, w_i for i = 1, ..., M
- We develop accept-reject algorithm
- See paper for details

Macroeconomic Forecasting Using a Large Dataset

- FRED-QD data set from1959Q1- 2015Q3
- 193 quarterly US variables (transformed to stationarity)
- Three core variables: CPI inflation, GDP growth and the Federal Funds rate.
- Small data set: 7 variables
- Core variables + unemployment, industrial production, money
 (M2) and stock prices (S&P)
- Large data set: All 193 variables
- Lag length of 4

Organization

- With small data set use variety of models
- Computation is feasible (and over-parameterization concerns smaller)
- Large data set:
- Compare composite likelihoods methods to homoskedastic, conjugate prior, large VAR

Priors

- For composite likelihood approach prior elicitation less of an issue (small models)
- With large VARs prior elicitation is crucial (may or may not be disadvantage)
- For all models use comparable priors
- Hyperparameter choices inspired by Minnesota prior
- See paper for details

Models

- Variety of different weights in composite likelihood approaches
- Standard VAR-SV (Primiceri, 2005, ReStud)
- Homoskedastic VARs of different dimensions
- Carriero, Clark and Marcellino (CCM, 2016a,b)
- CCM1: common drifting volatility model
- VAR-SV with $a_t=0$ and $\Sigma_t=e^{h_t}\Sigma$
- h_t is scalar stochastic volatility process
- CCM2: more flexible SV model
- VAR-SV with a_t constant
- Each equation error has own volatility, but restrictions on correlations

	Description
VAR-HM	7-variable Homoskedastic VAR
VAR-SV	7-variable VAR with stochastic volatility
VAR-CCM1	7-variable model of CCM (2016a)
VAR-CCM2	7-variable model of CCM (2016b)
Large VAR	large Homoskedastic VAR
VAR-CL-BIC	VAR-CL-SV with BIC based weights
VAR-CL-DIC	VAR-CL-SV with DIC based weights
VAR-CL-EQ	VAR-CL-SV with equal weights
VAR-GA	VAR-SV with G-A weights
VAR-CL-ML	VAR-CL-SV with ML weights

Estimating Variances and Covariances

- Key variables of interest (common to all models) are $\sigma_{ij,t}$ for i,j=1,2,3
- Small data set: VAR-SV will probably be closest to "true" specification (most flexible)
- Evaluate performance relative to VAR-SV
- VAR-SV in red in following figures
- Dotted lines in some figures credible intervals (16th-84th percentiles)

Estimating Variances and Covariances

Comparison of VAR-CL-ML to VAR-SV

Comparison of VAR-CCM1 to VAR-SV

Comparison of VAR-CCM2 to VAR-SV

Comparison of VAR-HM to VAR-SV

Forecasting

- Estimation results are encouraging, what about forecasting?
- Results for h=1
- Two forecast evaluation periods:
- Beginning 1970Q1
- Beginning 2008Q1 (financial crisis and subsequent recession)

Forecast Evaluation Metrics

- For 3 core variables individually:
- RMSFE
- MAFE
- ALPL = average of log predictive likelihoods (higher value better)
- ACRPS = average of conditional rank probability score (lower values better)
- Also joint ALPL based on joint predictive for core variables

Joint ALPL for Core Variables

Forecast Performance	Post-1970	Post-2008
VAR-HM	0.33	-0.58
VAR-SV	0.65	0.44
VAR-CCM1	0.06	-0.51
VAR-CCM2	0.90	0.52
Large VAR	-0.47	-1.69
VAR-CL-ML	0.90	1.27
VAR-CL-DIC	0.85	0.67
VAR-CL-BIC	0.90	1.15
VAR-CL-EQ	0.88	0.89
VAR-GA	0.91	1.01

Joint ALPL for Core Variables

- Best overall summary
- Composite likelihoods + Geweke-Amisano forecast best
- Weights: Marginal likelihood or BIC weights best (but only slightly)
- Homoskedastic large VAR does poorly
- CCM2 better than CCM1

Forecasting the Core Forecasts Individually

- Following tables present results for each variable
- General themes:
- Composite likelihoods+GA forecast well
- Especially for 2008-2016 period
- Especially for inflation and interest rate
- Less so for GDP growth (VAR-SV is best)
- Large homoskedastic VARs forecast poorly
- CCM2 better than CCM1
- In general, CCM2 similar but a bit worse than composite likelihoods

Inflation Forecasting Beginning in 1970

	RMSFE	MAE	ACRPS	ALPL
VAR-HM	0.66	0.45	0.36	-0.15
VAR-SV	0.67	0.46	0.36	-0.06
VAR-CCM1	0.71	0.51	0.39	-0.12
VAR-CCM2	0.67	0.46	0.36	-0.00
Large VAR	0.73	0.52	0.56	-0.14
VAR-CL-ML	0.69	0.47	0.36	-0.01
VAR-CL-DIC	0.68	0.47	0.36	-0.01
VAR-CL-BIC	0.69	0.46	0.36	-0.01
VAR-CL-EQ	0.68	0.47	0.36	-0.01
VAR-GA	0.68	0.47	0.38	-0.00

Inflation Forecasting Beginning in 2008

	RMSFE	MAE	ACRPS	ALPL
VAR-HM	1.04	0.66	0.52	-1.16
VAR-SV	1.06	0.68	0.54	-0.68
VAR-CCM1	1.04	0.66	0.52	-0.71
VAR-CCM2	1.05	0.68	0.53	-0.57
Large VAR	1.03	0.65	0.69	-0.71
VAR-CL-ML	1.04	0.65	0.51	-0.54
VAR-CL-DIC	1.04	0.66	0.52	-0.57
VAR-CL-BIC	1.02	0.63	0.50	-0.50
VAR-CL-EQ	1.04	0.66	0.52	-0.57
VAR-GA	1.03	0.66	0.54	-0.48

Interest Rate Forecasting Beginning in 1970

	RMSFE	MAE	ACRPS	ALPL
VAR-HM	0.29	0.18	0.15	0.81
VAR-SV	0.28	0.17	0.14	1.03
VAR-CCM1	0.51	0.33	0.25	0.53
VAR-CCM2	0.28	0.17	0.14	1.19
Large VAR	0.56	0.42	0.44	0.17
VAR-CL-ML	0.28	0.17	0.13	1.18
VAR-CL-DIC	0.28	0.16	0.13	1.17
VAR-CL-BIC	0.28	0.17	0.13	1.20
VAR-CL-EQ	0.27	0.16	0.13	1.19
VAR-GA	0.27	0.16	0.13	1.21

Interest Rate Forecasting Beginning in 2008

	RMSFE	MAE	ACRPS	ALPL
VAR-HM	0.25	0.18	0.14	0.97
VAR-SV	0.18	0.12	0.10	1.50
VAR-CCM1	0.36	0.30	0.20	0.66
VAR-CCM2	0.20	0.12	0.10	1.45
Large VAR	0.51	0.45	0.46	0.09
VAR-CL-ML	0.13	0.07	0.06	2.00
VAR-CL-DIC	0.13	0.08	0.07	1.67
VAR-CL-BIC	0.13	0.07	0.06	1.88
VAR-CL-EQ	0.12	0.08	0.07	1.79
VAR-GA	0.12	0.08	0.07	1.83

GDP growth Forecasting Beginning in 1970

	RMSFE	MAE	ACRPS	ALPL
VAR-HM	0.89	0.68	0.51	-0.38
VAR-SV	0.86	0.65	0.50	-0.32
VAR-CCM1	0.87	0.67	0.51	-0.36
VAR-CCM2	0.86	0.66	0.50	-0.31
Large VAR	0.93	0.70	0.77	-0.39
VAR-CL-ML	0.92	0.67	0.51	-0.35
VAR-CL-DIC	0.91	0.67	0.51	-0.36
VAR-CL-BIC	0.93	0.68	0.52	-0.35
VAR-CL-EQ	0.92	0.68	0.51	-0.35
VAR-GA	0.92	0.68	0.54	-0.36

GDP growth Forecasting Beginning in 2008

	RMSFE	MAE	ACRPS	ALPL
VAR-HM	0.96	0.72	0.56	-0.48
VAR-SV	0.86	0.63	0.50	-0.42
VAR-CCM1	0.94	0.73	0.57	-0.57
VAR-CCM2	0.88	0.65	0.52	-0.46
Large VAR	0.96	0.77	0.80	-0.47
VAR-CL-ML	0.95	0.65	0.52	-0.46
VAR-CL-DIC	0.95	0.66	0.53	-0.50
VAR-CL-BIC	0.96	0.67	0.52	-0.47
VAR-CL-EQ	0.95	0.66	0.52	-0.47
VAR-GA	0.96	0.68	0.56	-0.46

Conclusion

- Composite likelihood methods allows VAR-SV with huge data sets
- Computationally and conceptually simple: average over many small models
- Other VAR-SV models have some attractive features but are computationally infeasible with huge data sets
- In small data set, composite likelihood methods approximate other methods
- In large data set, composite likelihoods forecast better than large VAR