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Background: History of Large VARs
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Large VARs, involving 100 or more dependent variables, are
increasingly used in a variety of macroeconomic applications.
Pioneering paper: Banbura, Giannone and Reichlin (2010,
JAE) "Large Bayesian Vector Autoregressions”

Previous VARs: a few variables perhaps 10 at most

BGR has 131 variables (standard US macro variables)

Many others, here is a sample:

Carriero, Kapetanios and Marcellino (2009, I1JF): exchange
rates for many countries

Carriero, Kapetanios and Marcellino (2012, JBF): US
government bond vyields of different maturities

Giannone, Lenza, Momferatou and Onorante (2010): euro
area inflation forecasting (components of inflation)

Koop and Korobilis (2016, EER) eurozone sovereign debt crisis
Bloor and Matheson (2010, EE): macro application for New
Zealand

Jarociniski and Mackowiak (2016, ReStat): Granger causality



Background: Why large VARs?

@ Availability of more data
@ More data means more information, makes sense to include it

e Concerns about missing out important information (omitted
variables bias, fundamentalness, etc.)

@ The main alternatives are factor models

@ Principal components squeeze information in large number of
variables to small number of factors

@ But this squeezing is done without reference to explanatory
power (i.e. squeeze first then put in regression model or
VAR): “unsupervised”

o Large VAR methods are supervised and can easily see role of
individual variables

@ And they work: often beating factor methods in forecasting
competitions
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Background: Computation in large VARs

e E.g. large VAR with N = 100 variables and a lag length of

p=13:

100, 0004 VAR coefficients

5,050 free parameters in error covariance.

Bayesian prior shrinkage surmounts over-parameterization

Standard choices exist: e.g. Minnesota prior

Key point 1: Standard approaches are conjugate: analytical

results exist (estimation and forecasting — no MCMC needed)

@ Key point 2: Huge posterior covariance of VAR coefficients
(N?p x N?p matrix): tough computation

@ Key point 3: Conjugacy greatly simplifies: separately
manipulate N x N and Np x Np matrices

o Key point 4: Using more realistic priors or extending model
(e.g. to relax homoskedasticity assumption) loses conjugacy
and, thus, computational feasibility

@ Bottom line: Great tools exist for large homoskedastic
Bayesian VARs with a particular prior, but cannot easily
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Background: Multivariate Stochastic Volatility in VARs

@ Allowing for error variances to change in macroeconomic
VARs important

e E.g. Primiceri (2005, ReStud), Sims and Zha (2006, AER),
Clark (2011, JBES), etc.

@ Research question: How to add multivariate stochastic
volatility in large VARs?

o Existing Bayesian literature is either:
@ Homoskedastic

@ Restrictive forms (e.g. Clark, Carriero and Marcellino, 2016,
JBES + 2 working papers, Chan, 2016, working paper)

e Approximations (Koop and Korobilis, JOE, JOE and Koop,
Korobilis and Pettenuzzo, 2016, JOE)

@ Present paper: new approach using composite likelihoods
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Vector Autoregressions with Stochastic Volatility

(VAR-SV)

@ y; is N-vector of dependent variables (N large)
o VAR-SV is:

Aoty =+ Arye—1+ - Apyr—p + €, €~ N(0,X;),

o ¥, =diag(eM?,... eMmt)
1 0 --- 0
ae 1 -+ 0
Aot = .
anlt @an2;t " 1

@ Rewrite as
ye = XeS+ Wear + €

° Xt = /n ® (17y1_{_17 R 7y1{—p)
@ a; is vector of free elements of Ap;
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Vector Autoregressions with Stochastic Volatility
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Standard MCMC methods used for estimation and forecasting
But these will not work with large VARs
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Composite Bayesian Methods

o Likelihood function (assuming independent errors):

T T
0) =[] p0el6) = [T L (:0)
t=1 t=1

Composite likelihood

M
i) =TTTILE bie:0)”

t=1i=1

yit for i =1,.., M are sub-vectors of y;
LE (i1 0) = p (vi.el0)
w; weight attached to sub-model i

M
iz Wi =1
Bayesian composite posterior

€ (ly) o< LC (y:0) p ()
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How do we use composite Bayesian methods?

@ Instead of forecasting with large VAR-SV, forecast with many
small VAR-SVs

Letyt:<)z/: >

yi contains N, variables of interest

z; (with elements denoted by z; ;) remaining variables.

Sub-model i is VAR-SV using y; ; = < Jz’t )
it

)

Our application uses 193 variables with N, =3
Thus, 190 sub-models, each is a 4-variate VAR-SV
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Theory of Composite Likelihood Methods

@ Some asymptotic theory exists (e.g. Canova and Matthes,
2017)

Require strong assumptions
Overview: Varin, Reid and Firth (2011, Stat Sin)
Pakel, Shephard, Sheppard and Engle (2014, working paper)

Need asymptotic mixing assumptions about dependence over
time, over variables and between different variables at
different points in time

@ In general, strong assumptions often not achieved in practice

@ Hence, our justification is mostly empirical
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Theory of Composite Likelihoods as Opinion Pools

@ Bayesian theory uses idea of opinion pool

@ Each sub-model is “agent” with “opinion” about a feature
(e.g. a forecast) expressed through a probability distribution.

@ Theory addresses “How do we combine these opinions?”

@ Generalized logarithmic opinion pool equivalent to composite
likelihood

@ Nice properties (e.g. external Bayesianity)
@ Linear opinion pools lead to other combinations of sub-models

e E.g. Geweke and Amisano (2011, JOE) optimal prediction
pools

@ In empirical work consider both composite likelihood and
Geweke-Amisano
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Choosing the Weights

Various approaches considered

°
o Equal weights w; = ﬁ

@ Weights proportional to marginal likelihood of each sub-model
°

Weights proportional to (exponential of) BIC of each

sub-model

e Weights proportional to (exponential of) DIC of each
sub-model

@ In all above use likelihood/marginal likelihood for core

variables only (y;)
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Computation

Target: Draws from Bayesian composite posterior
pC (Oly) o< L (v:0) p(6)

We have:
1. MCMC draws from M sub-models (4-variate VAR-SVs)
2. Weights, w; for i =1,.., M

We develop accept-reject algorithm

See paper for details
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Macroeconomic Forecasting Using a Large Dataset

FRED-QD data set from1959Q1- 2015Q3

193 quarterly US variables (transformed to stationarity)

Three core variables: CPI inflation, GDP growth and the
Federal Funds rate.

@ Small data set: 7 variables

@ Core variables + unemployment, industrial production, money
(M2) and stock prices (S&P)

o Large data set: All 193 variables
o Lag length of 4
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@ With small data set use variety of models

e Computation is feasible (and over-parameterization concerns
smaller)

o Large data set:

@ Compare composite likelihoods methods to homoskedastic,
conjugate prior, large VAR
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Priors

For composite likelihood approach prior elicitation less of an
issue (small models)

With large VARs prior elicitation is crucial (may or may not be
disadvantage)

For all models use comparable priors

Hyperparameter choices inspired by Minnesota prior

See paper for details
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Variety of different weights in composite likelihood approaches
Standard VAR-SV (Primiceri, 2005, ReStud)

Homoskedastic VARs of different dimensions

Carriero, Clark and Marcellino (CCM, 2016a,b)

CCM1: common drifting volatility model

VAR-SV with a; = 0 and ¥; = X

h; is scalar stochastic volatility process

CCM2: more flexible SV model

VAR-SV with a; constant

Each equation error has own volatility, but restrictions on
correlations

® 6 6 6 6 6 o o o o
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Description
VAR-HM 7-variable Homoskedastic VAR
VAR-SV 7-variable VAR with stochastic volatility
VAR-CCM1  7-variable model of CCM (2016a)
VAR-CCM2  7-variable model of CCM (2016b)
Large VAR large Homoskedastic VAR
VAR-CL-BIC VAR-CL-SV with BIC based weights
VAR-CL-DIC  VAR-CL-SV with DIC based weights
VAR-CL-EQ  VAR-CL-SV with equal weights
VAR-GA VAR-SV with G-A weights
VAR-CL-ML  VAR-CL-SV with ML weights
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Estimating Variances and Covariances

Key variables of interest (common to all models) are o; + for
j=123

Small data set: VAR-SV will probably be closest to “true”
specification (most flexible)

Evaluate performance relative to VAR-SV
VAR-SV in red in following figures

Dotted lines in some figures credible intervals (16th-84th
percentiles)
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Estimating Variances and Covariances
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Comparison of VAR-CL-ML to VAR-SV
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Comparison of VAR-CCM1 to VAR-SV
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Comparison of VAR-CCM2 to VAR-SV
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Comparison of VAR-HM to VAR-SV
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Estimation results are encouraging, what about forecasting?
Results for h=1

Two forecast evaluation periods:

Beginning 1970Q1

Beginning 2008Q1 (financial crisis and subsequent recession)

e 6 6 o o
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Forecast Evaluation Metrics

For 3 core variables individually:

RMSFE

MAFE

ALPL = average of log predictive likelihoods (higher value
better)

ACRPS = average of conditional rank probability score (lower
values better)

Also joint ALPL based on joint predictive for core variables
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Joint ALPL for Core Variables

Forecast Performance | Post-1970 | Post-2008
VAR-HM 0.33 —0.58
VAR-SV 0.65 0.44
VAR-CCM1 0.06 —0.51
VAR-CCM2 0.90 0.52
Large VAR —0.47 —1.69
VAR-CL-ML 0.90 1.27
VAR-CL-DIC 0.85 0.67
VAR-CL-BIC 0.90 1.15
VAR-CL-EQ 0.88 0.89
VAR-GA 0.91 1.01
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Joint ALPL for Core Variables

Best overall summary

Composite likelihoods + Geweke-Amisano forecast best
Weights: Marginal likelihood or BIC weights best (but only

slightly)
Homoskedastic large VAR does poorly

CCM2 better than CCM1

(]
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Forecasting the Core Forecasts Individually

Following tables present results for each variable
General themes:

Composite likelihoods+GA forecast well
Especially for 2008-2016 period

Especially for inflation and interest rate

Less so for GDP growth (VAR-SV is best)

Large homoskedastic VARs forecast poorly
CCM2 better than CCM1

In general, CCM2 similar but a bit worse than composite
likelihoods
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Inflation Forecasting Beginning in 1970

RMSFE | MAE | ACRPS | ALPL
VAR-HM 0.66 0.45 | 0.36 —0.15
VAR-SV 0.67 0.46 | 0.36 —0.06
VAR-CCM1 | 0.71 0.51 | 0.39 —0.12
VAR-CCM2 | 0.67 0.46 | 0.36 —0.00
Large VAR 0.73 0.52 | 0.56 —0.14
VAR-CL-ML | 0.69 0.47 | 0.36 —0.01
VAR-CL-DIC | 0.68 0.47 | 0.36 —0.01
VAR-CL-BIC | 0.69 0.46 | 0.36 —0.01
VAR-CL-EQ | 0.68 0.47 | 0.36 —0.01
VAR-GA 0.68 0.47 | 0.38 —0.00
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Inflation Forecasting Beginning in 2008

RMSFE | MAE | ACRPS | ALPL
VAR-HM 1.04 0.66 | 0.52 —1.16
VAR-SV 1.06 0.68 | 0.54 —0.68
VAR-CCM1 | 1.04 0.66 | 0.52 —-0.71
VAR-CCM2 | 1.05 0.68 | 0.53 —0.57
Large VAR 1.03 0.65 | 0.69 —0.71
VAR-CL-ML | 1.04 0.65 | 0.51 —0.54
VAR-CL-DIC | 1.04 0.66 | 0.52 —0.57
VAR-CL-BIC | 1.02 0.63 | 0.50 —0.50
VAR-CL-EQ | 1.04 0.66 | 0.52 —0.57
VAR-GA 1.03 0.66 | 0.54 —0.48
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Interest Rate Forecasting Beginning in 1970

RMSFE | MAE | ACRPS | ALPL
VAR-HM 0.29 0.18 | 0.15 0.81
VAR-SV 0.28 0.17 | 0.14 1.03
VAR-CCM1 | 0.51 0.33 | 0.25 0.53
VAR-CCM2 | 0.28 0.17 | 0.14 1.19
Large VAR 0.56 0.42 | 0.44 0.17
VAR-CL-ML | 0.28 0.17 | 0.13 1.18
VAR-CL-DIC | 0.28 0.16 | 0.13 1.17
VAR-CL-BIC | 0.28 0.17 | 0.13 1.20
VAR-CL-EQ | 0.27 0.16 | 0.13 1.19
VAR-GA 0.27 0.16 | 0.13 1.21
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Interest Rate Forecasting Beginning in 2008

RMSFE | MAE | ACRPS | ALPL
VAR-HM 0.25 0.18 | 0.14 0.97
VAR-SV 0.18 0.12 | 0.10 1.50
VAR-CCM1 | 0.36 0.30 | 0.20 0.66
VAR-CCM2 | 0.20 0.12 | 0.10 1.45
Large VAR 0.51 0.45 | 0.46 0.09
VAR-CL-ML | 0.13 0.07 | 0.06 2.00
VAR-CL-DIC | 0.13 0.08 | 0.07 1.67
VAR-CL-BIC | 0.13 0.07 | 0.06 1.88
VAR-CL-EQ | 0.12 0.08 | 0.07 1.79
VAR-GA 0.12 0.08 | 0.07 1.83
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GDP growth Forecasting Beginning in 1970

RMSFE | MAE | ACRPS | ALPL
VAR-HM 0.89 0.68 | 0.51 —0.38
VAR-SV 0.86 0.65 | 0.50 —-0.32
VAR-CCM1 | 0.87 0.67 | 0.51 —0.36
VAR-CCM2 | 0.86 0.66 | 0.50 -0.31
Large VAR 0.93 0.70 | 0.77 —0.39
VAR-CL-ML | 0.92 0.67 | 0.51 —0.35
VAR-CL-DIC | 0.91 0.67 | 0.51 —0.36
VAR-CL-BIC | 0.93 0.68 | 0.52 —0.35
VAR-CL-EQ | 0.92 0.68 | 0.51 —0.35
VAR-GA 0.92 0.68 | 0.54 —0.36
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GDP growth Forecasting Beginning in 2008

RMSFE | MAE | ACRPS | ALPL
VAR-HM 0.96 0.72 | 0.56 —0.48
VAR-SV 0.86 0.63 | 0.50 —-0.42
VAR-CCM1 | 0.94 0.73 | 0.57 —0.57
VAR-CCM2 | 0.88 0.65 | 0.52 —0.46
Large VAR 0.96 0.77 | 0.80 —0.47
VAR-CL-ML | 0.95 0.65 | 0.52 —0.46
VAR-CL-DIC | 0.95 0.66 | 0.53 —0.50
VAR-CL-BIC | 0.96 0.67 | 0.52 —0.47
VAR-CL-EQ | 0.95 0.66 | 0.52 —0.47
VAR-GA 0.96 0.68 | 0.56 —0.46
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Conclusion

@ Composite likelihood methods allows VAR-SV with huge data
sets

@ Computationally and conceptually simple: average over many
small models

@ Other VAR-SV models have some attractive features but are
computationally infeasible with huge data sets

@ In small data set, composite likelihood methods approximate
other methods

@ In large data set, composite likelihoods forecast better than
large VAR
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