Testing unit value data price indices

$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

 $^1University\ of\ Southampton\ (L.Zhang@soton.ac.uk)$ $^2Statistics\ Norway$

Three points to be covered in this presentation:

- [1] overriding issues of **unit-value** (UV) price indices
- [2] **5** tests for dynamic item universe
- [3] practical **segmented UV (SUV)** price indices

Unit-value (UV) price data

One has 'everything' at each given time period:

- *items* distinguishable from each other by (outlet, GTIN)
- unit-value price & quantum for each item over whole period

Traditional *matched-model (MM)* index approach

- observed BigData item universe **not constant** over time: problem moved from **observation deficiency** to **formula deficiency**
- MM approach requires identification of **persistent items**:

BigData = **BigTrouble** if item-matching pursued rigorously

Terms of Reference (TOR)

Two overriding requirements of UV price index method:

- 1. Accommodate *all* items in a dynamic universe
- 2. Keep the cost of item-matching sustainable

Should cover several often-mentioned desirable features, incl. e.g.

- incorporate quantity data of product offers
- generic and applicable across different consumer groups
- capture the dynamic product universe
- handles substitution: include in-coming items immediately
- handles practical challenges: avoid manual interference

Terms of Reference (TOR)

In addition, would like to maintain both cost-of-living (\boldsymbol{COLI}) and cost-of-goods (\boldsymbol{COGI}) perspectives, e.g.

- harmonised with other NSOs and consistent with HICP
- transparent and easy to communicate to users

Do not expect ideal index formula, but methods that as much as possible fulfil the TOR.

Future research: developing shared explicit empirical criteria of well-behaving indices

5 tests for dynamic universe, COLI & COGI

Identity test (T1) If $U_0 = U_t$ and $p_i^0 \equiv p_i^t$ for any $i \in U_0$, then $P^{0,t} = 1$.

Fixed basket test (T2) If $U_0 = U_t$ and $q_i^0 \equiv q_i^t$ for any $i \in U_0$, then $P^{0,t} = V^{0,t} = V^t/V^0$.

Upper bound test (T3) If $U_0 \subseteq U_t$, and $p_i^t \le p_i^0$ for all $i \in U_0$, then $P^{0,t} \le 1$.

- **Test t3** If $U_0 \subset U_t$, i.e. $U_{t\setminus 0} \neq \emptyset$, and $p_i^0 = p_i^t$ for all $i \in U_0$, then $P^{0,t} \leq 1$.

5 tests for dynamic universe, COLI & COGI

Lower bound test (T4) If $U_t \subseteq U_0$, and $p_i^t \ge p_i^0$ for all $i \in U_t$, then $P^{0,t} \ge 1$.

- **Test t4** If $U_t \subset U_0$, i.e. $U_{0\setminus t} \neq \emptyset$, and $p_i^0 = p_i^t$ for all $i \in U_0$, then $P^{0,t} \geq 1$.

Responsiveness test (T5) For $U_0 \neq U_t$, $P^{0,t}$ should not always reduce to $f(D_{0t})$, where $D_{0t} = D(U_{0t})$ and U_{0t} consists only of the persistent items between 0 and t.

NB. comparison universe of $P^{0,t}$: $\{U_0, U_t\}$; but one can choose reference universe of $P^{0,t}$: $R_B = \{U_0, U_t\}, R_M = \{U_0, U_1, ..., U_t\}$

Why no transitivity test? Some concerns...

Roughly, an index is transitive if $P^{0,t} = P^{0,r}P^{r,t}$ for any $r \neq 0, t$, provided all the three indices are calculated in the same way.

* $U_0 = U_r = U_t$, 0 < r < t, $p_i^0 = p_i^t$ for $\forall i \in U$: By test T1, $P^{0,t} = 1 \Rightarrow P^{0,r} = 1/P^{r,t}$. If $P^{t,r} = 1/P^{r,t}$, then $P^{t,r} = P^{0,r}$. Then, the index needs to be invariant whether going from $q(U_0)$ to $q(U_r)$ or from $q(U_t)$ to $q(U_r)$, where $q(U_0) \neq q(U_t)$ in general. But is this acceptable for a COLI, if utility is not just quantity?

* Does transitivity prevent chain drifting? Suppose $U_0 \cap U_t = \emptyset$. Chained index between 0 and t is clearly still possible. But what is the 'ideal' direct index between 0 and t to be compared with?

Why no transitivity test? Some concerns...

- * What about GEKS (Ivancic et al., 2011)?
 - spatial extension: undirected and limited; temporal extension: directional and unlimited, round-table analogy is unnatural
 - in reality, the disseminated GEKS over time is *not* transitive
 - built only on 2-step breakdowns, i.e. $P^{0,r}$ and $P^{r,t}$ for $0 \le r \le t$; but why not, say, all 3-step breakdowns, i.e. $P^{0,r}$, $P^{r,s}$ and $P^{s,t}$ for $0 \le r \ne s \le t$? is there a unique construction?

Transitivity seems not a necessity of COLI, generally undefined for a dynamic universe, requiring *ad hoc* imposition on index formulae.

Some test results

	Identity	Fixed-basket	Upper-bound	Lower-bound	Responsiveness
MGK	Yes if R_B	Yes	Yes	Yes	Not in Setting
	No if R_M				of t3 or t4
RQ	Yes	Yes if R_B	Possibly for T3	Possibly for T4	Yes
		No if R_M	No for t3	No for t4	
RQP	Yes if R_B	Yes if R_B	Possibly for T3	Possibly for T4	Yes
	No, if R_M	No if R_M	No for t3	No for t4	
WGM	Yes if R_B	No	Generally	Generally	Not in Setting
	No if R_M		No for T3	No for T4	of t3 or t4
GEKS	No	No	No	No	Not if (U_0, U_1)

MGK: modified Geary-Khamis; dropping the constant price adjustment/Lehr

RQ: price comparison based on fixed reference quantities of all items

 $RQP = (RQ)^{\alpha} (MGK)^{1-\alpha}$, analogous to Fisher index e.g. if $\alpha = 0.5$

WGM: weighted geometric means, e.g. de Haan and Krsinich (2014), Iklé (1972)

Remarks

* No index satisfies all the 5 tests

- * No general recommendation at this stage, since it is possible for an index to compensate for a shortcoming in one respect with better properties in others
- * need to compromise between t3, t4 and T5 in practice
- \star as shown in the paper: in the presence of a clear price trend, one can expect the bilateral MGK index to be less volatile than its persistent-universe counterpart
- * to reiterate: important to develop empirical criteria

On exchangeability and ideal segmentation

- 1. Exchangeability (to allow for substitution) is a local property, i.e. among a *limited* group of items
- 2. Exchangeability is more fundamental than observable traits. [Ideal item-matching based on exchangeability, not tangible or directly observable characteristics.]
- 3. Exchangeability is discrete: necessary and sufficient with package-exchangeability and not over a continuum.

 NR refer to artility as what enables exchangeability which

NB. refer to **utility** as what enables exchangeability, which can thus be a function of item UV-price, say, $u_i = f(p_i)$

On exchangeability and ideal segmentation

Over a suitable set of items, assume utility as a discrete, positive function of the UV-price, which is increasing in the latter in segments.

 $[f(p) \text{ is increasing in segments, if } \forall p > 0, \exists [p_L, p_U] \ni p, \text{ such that}$ $f(p') < f(p) \text{ for any } p' < p_L, \text{ and } f(p') > f(p) \text{ for any } p' > p_U]$

Ideal segmentation Provided $\{u_1, ..., u_G\}$ for $\{U_0, U_t\}$, an *ideal segmentation* method is such that, for any $i \in U_0$ and $j \in U_t$, they are assigned to the same segment g, for g = 1, ..., G, whenever $f_0(p_i^0) = f_t(p_j^t) = u_g$.

On exchangeability and ideal segmentation

NB. When $U_0 = U_t$, correct matching of the persistent items yields an ideal segmentation method. However, the approach is inadequate for a dynamic universe, due to the existence of $U_{t\setminus 0}$ and $U_{0\setminus t}$.

Other segmentation methods are necessary in a dynamic universe. In particular, two simple methods:

- (Dynamic) segments: form G segments based on $\{p_{is}; i \in U_t\}$, separately for each t, where p_{is} is a chosen 'normal' price
- Fixed segments: assign detected persistent items to the same segment; assign the rest according to fixed segment boundaries

NB. Automatic detection by (outlet, GTIN); use of metadata; segmentation by expenditure value share; segmentation by ANOVA

Some results: Grocery market 2014-2015, Norway

Using automatically matched persistent items and quantity data

Some results: Grocery market 2014-2015, Norway

NB. minimum processing effort in order to be fully responsive NB. 9 segments, not "homogeneous products" (Chessa, 2016)

Some results: Grocery market 2014-2015, Norway

- NB. hybrid: segmentation of only items not automatically matched
- NB. small segments aside the matched items: exchangeability?
- NB. somewhat messy & unstable to maintain over time

Metadata segmentation for soft drinks

NB. lower COICOP6-level; increasing volatility vs. Official index

To reiterate: empirical criteria for evaluation?

- * use available metadata for segmentation if possible?
- * audit sampling to check mis-segmentation rate?
- * how to disentangle volatility due to mis-segmentation vs. enhanced responsiveness to dynamic universe?
- * hybrid index combining automatically matched persistentitem index with all-inclusive direct SUV-index?
- * bilateral vs. multilateral index: comparisons differ with respect to short-term or long-term index movement?
- * adopting relative volatility bounds and movement bounds,
- e.g. w.r.t. a chosen persistent-item index?

- [1] Chessa, A. G. (2016). A new methodology for processing scanner data in the Dutch CPI. Eurostat review of National Accounts and Macroeconomic Indicators, 1, 49-69.
- [2] de Haan, J. and F. Krsinich (2014). Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes. *Journal of Business & Economic Statistics*, **32**, 341-358.
- [3] Iklé, D.M. (1972). A New Approach to the Index Number Problem. Quarterly Journal of Economics, 86, 188-211.
- [4] Ivancic, L., Fox, K. J. and Diewert, E. W. (2011). Scanner data, time aggregation and the construction of price indexes. *Journal of Econometrics*, **161**, 24-35.