The Effect of Bank Recapitalization Policy on Corporate Investment: Evidence from a Banking Crisis in Japan

Hiroyuki Kasahara Yasuyuki Sawada Michio Suzuki University of British University of Tokyo Columbia Tokyo

May 1, 2014

Common Challenges in Asia and Europe

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

(本語)》 (本語)》 (本語)》 (二語)

Issues:

- Did capital injection promote investment in Japan during the 1997-1999 banking crisis?
- If so, how much?
- We look at specific mechanism:

Capital injection \Rightarrow Bank capital ratio \uparrow

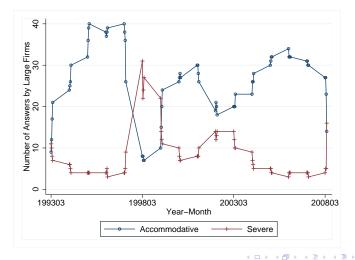
 \Rightarrow Financial friction \downarrow

$$\Rightarrow$$
 Investment \uparrow

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

Banking Crisis in Japan for 1997–1998


- 1997/7: Finance Ministry Ordinance: Threshold 4 or 8 %; Relaxing Accounting Standards
- 1997/11: Bank Failures Sanyo Securities, Hokkaido
 Takushoku Bank, Yamaichi Securities, Tokuyo City Bank.
- ▶ 1998/3: Capital injection (1.8 trillion yen/12.7 bn euro)
- 1998/4: "Law to Ensure the Soundness of Financial Institutions"
- 1998/10-12: Nationalization of Long-Term Credit Bank of Japan and Nippon Credit Bank.
- ▶ 1999/3: Capital injection (7.5 trillion yen/52.9 bn euro)

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

TANKAN Survey (Large Firms, Manufacturing)

'Severe lending attitude' \uparrow in 1997 and \downarrow in 1999.

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

What We Do:

- Connect investment data with bank's balance sheet data
 - ► Japanese firms listed on the Tokyo Stock Exchange
- Estimate dynamic structural model of firm's investment with financial frictions
 - Variations across bank's Basel I capital ratios
- Conduct counter-factual policy experiments
 - ▶ Capital injection policies: March of 1998 and 1999

Related Literature:

Bank Capital \Rightarrow Lending

▶ Peek and Rosengren (2000), Woo (2003), Watanabe (2007)

Bank Capital \Rightarrow Corporate Investment

Nagahata and Sekine (2005)

Bank Capital & Capital Injection \Rightarrow Lending

 Montgomery and Shimizutani (2009), Allen, Chakraborty, and Watanabe (2011), Giannetti and Simonov (2013)

Bank Capital & Capital Injection \Rightarrow Borrower Performance

Giannetti and Simonov (2013)

Kasahara, Sawada, Suzuki

Investment Rate and Basel I Capital Ratio (1997-1998)

	Low Machine Capital Stock						
	Low	TFP	High TFP				
	$\textit{Basel1} \leq 0.02$	Basel1 > 0.02	$\textit{Basel1} \leq 0.02$	Base/1 > 0.02			
Mean I_m/K	m						
1997	0.098	0.082	0.107	0.340			
	(0.010)	(0.022)	(0.013)	(0.102)			
1998	0.078	0.066	0.058	0.120			
	(0.015)	(0.012)	(0.01)	(0.042)			
# of Obs.							
1997	144	28	121	20			
1998	125	97	59	46			

Basel1 = Basel I capital ratio - 0.08 (or 0.04)

Kasahara, Sawada, Suzuki

Dependent Variable: I_m/K_m

			m/ m	
TFP	0.0205**	0.0242**	0.0229**	0.0182
	[0.009]	[0.010]	[0.010]	[0.011]
In K _m	0.0009	0.0010	0.0010	0.0025
	[0.003]	[0.003]	[0.003]	[0.004]
D_{Basel1}	0.0159	0.0180	0.0300**	0.0276*
	[0.012]	[0.012]	[0.014]	[0.015]
$D_{\textit{Basel1}} imes \textit{TFP}$		0.0412**	0.0441**	0.0393**
		[0.016]	[0.018]	[0.019]
<u>Debt</u> Land	-0.0016	-0.0016	0.0007	0.0018
2010	[0.002]	[0.002]	[0.003]	[0.003]
$\frac{Debt}{Land} \times TFP$		-0.0071**	-0.0069	-0.0069
2010		[0.003]	[0.004]	[0.005]
$D_{Basel1} \times \frac{Debt}{Land}$			-0.0101**	-0.0095*
Land			[0.005]	[0.005]
$D_{Basel1} imes rac{Debt}{Land} imes TFP$			-0.0037	-0.0006
			[0.007]	[0.008]
Lagged Investment				0.1896***
				[0.064]

Year dummy/Year dummy× TFP are included.

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Model of Investment with Financial Friction

Notation: v (TFP), K (capital), b (net debt), N (land).

▶ *N* and *Basel*1 are firm-specific.

Profit Function

$$\pi(\mathbf{v}, \mathbf{K}) = \exp(lpha_{\mathbf{0}} + lpha_{\mathbf{K}} \ln \mathbf{K} + \mathbf{v}).$$

Capital Adjustment Cost

$$\psi(K', K, \epsilon^{k}) = \begin{cases} \frac{\gamma}{2} \left(\frac{I}{K}\right)^{2} K + e^{\epsilon^{k}} I & \text{if } I \ge 0\\ \frac{\gamma}{2} \left(\frac{I}{K}\right)^{2} K + e^{\epsilon^{k}} p_{s} I & \text{if } I < 0 \end{cases}$$

Value of Collateral

$$\Phi(K', N, \epsilon^b) = e^{\epsilon^b} (\lambda_K K' + \lambda_N N),$$

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

イロト イポト イヨト ヨー シベル

Model Cont'd

Dividend or new equity issuance

$$d = \pi(v, K) - \psi(K', K, \epsilon^k) - c_f - b + q^b(v, K', b', N, Basel1)b'.$$

where

- ▶ *q^b*: state-dependent bond price
- Basel1: weighted average of banks' Basel I capital ratios.

Equity issuance cost

$$\kappa(d) = \left\{egin{array}{cc} 0 & ext{if } d \geq 0 \ \lambda_d |d| & ext{if } d < 0, \end{array}
ight.$$

Kasahara, Sawada, Suzuki

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへ⊙

Timing within a Period

- 1. Enter period with s = (v, K, b, N, Basel 1).
- 2. Choose stay/exit/default (χ).
 - $\chi \in \{1 \text{ (stay)}, 2 \text{ (exit)}, 3 \text{ (default)}\}.$
 - Exiting cost shocks ε^χ = (ε^χ(1), ε^χ(2), ε^χ(3)) drawn independently from standard Type-I exterme-value distribution.
- 3. Choose K', and b'.
 - Collateral shock: $\epsilon^b \sim N(-0.5\sigma_b^2, \sigma_b^2)$
 - Investment price shock: $\epsilon^k \sim N(-0.5\sigma_k^2, \sigma_k^2)$
 - TFP shock:

$$\mathbf{v}' = \rho_{\mathbf{v}}\mathbf{v} + \epsilon^{\mathbf{v}}$$

with $\epsilon^{v} \sim N(0, \sigma_{v}^{2})$

Kasahara, Sawada, Suzuki

Firm's Problem

$$V(s,\epsilon^{\chi}) = \max\{\underbrace{W(z,s,\epsilon^{k},\epsilon^{b}) + \rho\epsilon^{\chi}(1)}_{\text{stay}}, \underbrace{J(s) + \rho\epsilon^{\chi}(2)}_{\text{exit}}, \underbrace{\rho\epsilon^{\chi}(3)}_{\text{default}}\}$$

► Stay:

$$W(s,\epsilon^{k},\epsilon^{b}) = \max_{b',K'} \quad d - \kappa(d) + \beta E[V(s',\epsilon^{\chi'})|s]$$

s.t. $d = \pi(v,K,N,I) - \psi(K',K,\epsilon^{k}) - c_{f} - b + q^{b}b'.$

• Exit value:
$$J(s) = (1 - \delta)K + N - b$$

Default value is zero.

Kasahara, Sawada, Suzuki

State-Dependent Bond Price

• $q^b \equiv q^b(v, K', b', N, Basel1)$: state-dependent bond price

• $q(Basel1) \equiv 1/(1 + r + r(Basel1))$: bank's fund raising cost

r(Basel1): bank's interest premium depends on Basel I ratio.

$$\frac{q^{b}b'}{q(Base/1)} = \underbrace{\left(1 - E[\Pr(\chi' = 3|s')]\right)}_{\text{no default}} b' + \underbrace{E[\Pr(\chi' = 3|s')]}_{\text{default}} \underbrace{\Phi(K', N, \epsilon^{b})}_{\text{collateral}},$$

$$q^{b} = \begin{cases} q(Base/1) \left\{ E[\Pr(\chi' = 3|s')] \left(\frac{\Phi(K', N, \epsilon^{b})}{b'} - 1\right) + 1 \right\} & \text{if } b' > \Phi, \\ q(Base/1) & \text{if } \phi \ge b' > 0, \\ 1/(1+r) & \text{if } b' \le 0. \end{cases}$$

Kasahara, Sawada, Suzuki

Estimation: Parametric Specification of Bond Price

$$\begin{split} q^{b}(\mathbf{v}, \mathbf{K}', b', \mathbf{N}, \textit{Basel1}) &= \\ q(\textit{Basel1}) \left\{ E[\Pr(\chi' = 3|s')] \left(\frac{\Phi(\mathbf{K}', \mathbf{N}, \epsilon^{b})}{b'} - 1 \right) + 1 \right\}, \end{split}$$

Bank's Interest Premium

$$q(\textit{Basel1}) = 0.6 + 0.4 rac{\exp(eta_0^b + eta_1^b\textit{Basel1})}{1 + \exp(eta_0^b + eta_1^b\textit{Basel1})}.$$

Approximation of Expected Default Probability

$$E[\Pr(\chi' = 3|s')] = \frac{\exp(\beta_0^d + \beta_1^d v + \beta_2^d \ln K' + \beta_3^d (b'/K') + \beta_4^d \ln N)}{1 + \exp(\beta_0^d + \beta_1^d v + \beta_2^d \ln K' + \beta_3^d (b'/K') + \beta_4^d \ln N)}.$$

Kasahara, Sawada, Suzuki

Estimation

Data:

 $\{K_{i,1998}, b_{i,1998}, v_{i,1998}, N_{i,1998}, Basel 1_{i,1998}, K_{i,1999}, b_{i,1999}\}_{i=1}^{N}$

Maximum Likelihood Estimation

- For each candidate parameter, given q^b, solve dynamic programming.
- Maximize log-likelihood of joint distribution of investment & debt.

Externally Set Parameters

Parameter	Description	Value
β	Discount factor	0.9000
$ ho_{v}$	Autocorrelation of v	0.8391
α_K	Curvature of profit function	0.5970
r	(saving) interest rate	0.0019
δ	Depreciation rate	0.0954
λ_K	Resale value of capital	0.1537
λ_N	Resale value of land	0.6777

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

◆□ → ◆聞 → ◆臣 → ◆臣 → □ 臣

Estimation Results

Bank's Interest Premium

$$q(\textit{Basel1}) = 0.6 + 0.4 \Big(\frac{\exp(\beta_0^b + \beta_1^b \times \textit{Basel1})}{1 + \exp(\beta_0^b + \beta_1^b \times \textit{Basel1})} \Big).$$

Expected Default Probability

$$\frac{\exp(\beta_0^d + \beta_1^d \nu + \beta_2^d \ln K' + \beta_3^d (b'/K') + \beta_4^d \ln N)}{1 + \exp(\beta_0^d + \beta_1^d \nu + \beta_2^d \ln K' + \beta_3^d (b'/K') + \beta_4^d \ln N)}$$

$\hat{\beta}_{0}^{b}$	$\hat{\beta}_1^b$	$\hat{\beta}_0^d$	\hat{eta}_1^{d}	$\hat{\beta}_2^d$	$\hat{\beta}_3^d$	$\hat{\beta}_4^d$
-1.40	39.97	-0.39	-1.13	-0.02	0.65	-0.18
(0.03)	(0.80)	(0.48)	(0.10)	(0.02)	(0.06)	(0.02)

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

Estimates of Real Interest Rate: $\hat{r}^b = 1/\hat{q}^b - 1$

		Real Interest Rate: $\hat{r}^b = 1/\hat{q}^b - 1$						
Basel1	Low b'	High <i>b</i> ′	Low N	High N	Low K'	High K'	Median	
0.00	0.47	0.85	0.53	0.47	0.52	0.47	0.48	
0.02	0.35	0.70	0.40	0.35	0.39	0.35	0.35	
0.04	0.22	0.54	0.26	0.22	0.26	0.22	0.22	
0.06	0.12	0.41	0.16	0.12	0.15	0.12	0.12	
0.08	0.06	0.33	0.10	0.06	0.09	0.06	0.06	

"Basel1" = Basel I capital ratio - 0.08 (or 0.04)

"Low b''' = evaluating b' at 25 percentile value while other variables at their median values

"High b''' = evaluating b' at 75 percentile value $b' \in \mathbb{R}^{3}$ is $b' \in \mathbb{R}^{3}$. Kasahara, Sawada, Suzuki Investment and Borrowing Constraints: Evidence from Japanese Firms 18 / 35 Investment Rates by Basel I Capital Ratio, Debt/Collateral,

Capital and TFP: Data vs Model Prediction

	Low Machine Capital Stock					
	Low	TFP	High TFP			
	$\textit{Basel1} \leq 0.02 \textit{Basel1} > 0.02$		$\textit{Basel1} \leq 0.02$	Basel1 > 0.02		
Low b'/Φ						
Data (1998)	0.102	0.072	0.063	0.126		
	(0.029)	(0.020)	(0.012)	(0.041)		
Model	0.061	0.051	0.051	0.105		
High <i>b</i> ′/Φ						
Data (1998)	0.057	0.057	0.052	0.114		
	(0.010)	(0.009)	(0.015)	(0.079)		
Model	0.053	0.043	0.061	0.076		

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

Investment Rates by Basel I Capital Ratio, Debt/Collateral,

Capital and TFP: Data vs Model Prediction

	High Machine Capital Stock					
	Low	TFP	High TFP			
	$\textit{Basel1} \leq 0.02 \textit{Basel1} > 0.02$		$\textit{Basel1} \leq 0.02$	Basel1 > 0.02		
Low b'/Φ						
Data (1998)	0.137	0.105	0.104	0.117		
	(0.019)	(0.010)	(0.012)	(0.009)		
Model	0.065	0.067	0.135	0.141		
High <i>b</i> ′/Φ						
Data (1998)	0.102	0.082	0.122	0.099		
	(0.025)	(0.014)	(0.015)	(0.011)		
Model	0.062	0.071	0.125	0.131		

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

Counterfactual Experiments

- What if there had been no capital injection of 1.8 trillion yen in March 1998?
- What if

the 1999 capital injection (7.5 trillion yen) had taken place in

March 1998 on the top of 1.8 trillion yen?

Counterfactual Aggregate Investment in 1998

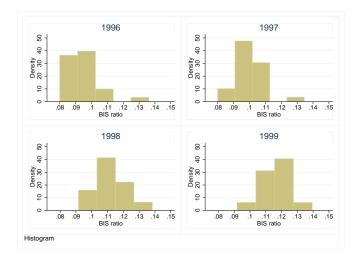
	All Sample	Low K _m and High TFP
No injection in 1998	-1.34%	-3.31%
1999 injection	8.32%	16.46%

Counterfactual Average Investment Rate in 1998

	Low	TFP	High TFP		
	$\textit{Basel1} \leq 0.02$	Base/1 > 0.02	$\textit{Basel1} \leq 0.02$	Basel1 > 0.02	
Low K_m					
Actual	0.056	0.047	0.056	0.092	
No injection.	0.056	0.047	0.052	0.084	
1999 injection	0.058	0.049	0.080	0.103	
High K _m					
Actual	0.063	0.070	0.129	0.135	
No injection	0.062	0.068	0.127	0.132	
1999 injection	0.072	0.081	0.145	0.154	

Tentative Conclusion

- Estimated investment model with financial frictions using Japanese firm-bank data for 1997–1999.
- Bank's Basel I ratio has significant effects on investment.
- Counterfactual experiment on capital injection policies
 - ▶ No injection in 1998: Aggregate investment \downarrow by 1.34%.
 - ▶ 1999 injection: Aggregate investment ↑ by 8.32%.
 - Effects larger for smaller and more productive firms.


Back-up Slides

Kasahara, Sawada, Suzuki

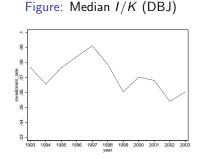
Investment and Borrowing Constraints: Evidence from Japanese Firms

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ の Q @

Basel I Capital Adequacy Ratio (1996-1999)

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms


(日) (同) (日) (日) (日)

26 / 35

э.

Investment Rate (I/K)

• Median I/K falls from 1997 to 1999.

Sources: Development Bank of Japan (DBJ).

Kasahara, Sawada, Suzuki

3

・ 戸 ト ・ ヨ ト ・ ヨ ト

Data Sources

Development Bank of Japan (DBJ) Data

- Manufacturing firms listed on Japanese equity markets.
 - Firms in financial sector not included in DBJ data.
- Data on balance sheets and income statements.

Nikkei NEEDS Data

- City and regional banks.
- Data on balance sheets and income statements.
 - Basel I capital ratio and non-performing loan ratio.

Combining DBJ and Nikkei NEEDS data

- ► For each firm, compute weighted average of Basel I ratios.
 - Use outstanding amount of long-term loans as weights.

Kasahara, Sawada, Suzuki

Sample Selection

	Observations deleted	Remaining observations
Initial data for 1994-1999		11956
Missing data (I_m/K_m , Basel I ratio)	6321	5635
$I_m/K_m>2$ or $I_m/K_m<-2$	4	5631
Large long-term loan with		
missing Basel I ratio	388	5243
More loans from 'other banks'	931	4312
Benchmark sample		4312

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ の Q @

Summary Statistics (1997–1998)

		Mean	Median	Std. Dev.	Min	Max
Base/1	1997	0.015	0.128	0.007	0.001	0.056
	1998	0.021	0.020	0.008	0.005	0.069
TFP	1997	7.626	7.599	0.592	5.828	9.831
	1998	7.476	7.462	0.607	5.476	9.636
$\ln K_m$	1997	15.331	15.333	1.637	7.828	20.423
	1998	15.206	15.265	1.625	7.805	20.528
Debt	1997	243	623	651	-9960	8600
	1998	214	605	606	-1140	8960
In Land	1997	16.079	15.998	1.368	9.754	20.618
	1998	15.926	15.864	1.358	9.679	20.401

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ─ 臣 ─ の Q @

Correlation Coefficient with Basel1 (1997–1998)

Corr. with Basel1	In <i>TFP</i>	$\ln K_m$	Debt	In <i>Land</i>
1997	-0.0536	-0.0046	-0.0607	-0.0171
	(0.1777)	(0.9081)	(0.1267)	(0.6681)
1998	-0.0370	0.0906	-0.0032	-0.0028
	(0.3482)	(0.0213)	(0.9361)	(0.9436)

Notes. p-values for testing the null hypothesis of no correlation are in parentheses. (Sources: DBJ Corporate Finance Data, Nikkei NEEDS)

In K_m by Basel I Ratio, Debt/Collateral, Capital and TFP (1997–1998)

	Low Machine Capital Stock					
	Low	TFP	High TFP			
	$\textit{Basel1} \leq 0.02$	Basel1 > 0.02	$\textit{Basel1} \leq 0.02$	<i>Basel</i> 1 > 0.02		
Low b'/Φ						
1998	13.65	14.09	13.86	14.25		
	(0.18)	(0.128)	(0.17)	(0.18)		
High b'/Φ						
1998	13.80	14.18	14.02	14.22		
	(0.15)	(0.12)	(0.21)	(0.21)		

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

Linear Investment Model: Dependent Variable I_m/K_m

	(1)	(2)	(3)	(4)	(5)	(6)
Z _{it}	0.0256**	0.0069	0.0042	0.0266**	0.0220	0.0182
	[0.012]	[0.011]	[0.011]	[0.013]	[0.015]	[0.015]
k _{m,it}	0.0035	0.0035	0.0041	0.0033	0.0032	0.0039
	[0.004]	[0.004]	[0.004]	[0.004]	[0.004]	[0.004]
BASEL1	0.0274*	0.1851**	0.1671*	0.0271*	0.1814**	0.1642*
	[0.016]	[0.093]	[0.093]	[0.015]	[0.092]	[0.092]
BASEL1 * z _{it}		0.0726*	0.0661*		0.0710*	0.0647*
		[0.038]	[0.038]		[0.038]	[0.037]
<u>Debt</u> Land	-0.0017*	-0.0058	-0.0035			
20110	[0.001]	[0.006]	[0.006]			
Debt * Zit		-0.0020	-0.0011			
20110		[0.003]	[0.003]			
Debt Collat				-0.0046	-0.0265	-0.0217
const.				[0.003]	[0.018]	[0.017]
Debt Collat * Zit					-0.0107	-0.0093
constr					[0.009]	[0.008]
$\frac{I_{m,it-1}}{K}$			0.0954*		-	0.0930*
r\m,it-1			[0.050]			[0.051]
$\frac{Debt}{Land} * Z_{it}$ $\frac{Debt}{Collat.}$ $\frac{Debt}{Collat.} * Z_{it}$ $\frac{I_{m,k-1}}{K_{m,it-1}}$		-0.0020	-0.0011 [0.003] 0.0954*		[0.018] -0.0107	[0.01 -0.009 [0.00 0.093

Data for 1997-1998 used. Year dummy included.

Kasahara, Sawada, Suzuki

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Capital Adjustment Cost

$$\psi(K', K, \epsilon^{k}) = \begin{cases} \frac{\gamma}{2} \left(\frac{I}{K}\right)^{2} K + e^{\epsilon^{k}} I & \text{if } I \ge 0\\ \frac{\gamma}{2} \left(\frac{I}{K}\right)^{2} K + e^{\epsilon^{k}} p_{s} I & \text{if } I < 0 \end{cases}$$

Collateral Value

$$\Phi(K', N, \epsilon^b) = e^{\epsilon^b} (\lambda_K K' + \lambda_N N),$$

Equity Issuing Cost

$$\kappa(d) = \left\{egin{array}{cc} 0 & ext{if } d \geq 0 \ egin{array}{cc} \lambda_d |d| & ext{if } d < 0, \end{array}
ight.$$

$\hat{\gamma}$	\hat{p}_{s}	$\hat{\sigma}^{b}$	$\hat{\sigma}^k$	$\hat{\lambda}_d$
31.81	0.005	0.21	1.60	1.81
(0.76)	(0.785)	(0.0003)	(0.04)	(0.001)
▲日> ▲雪> ▲回>				

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms

< ≣ >

Counterfactual Experiments

Procedures for Counterfactual Experiments

- 1. Construct the counterfactual value of Basel I capital ratio for each bank.
- Evaluate the counterfactual investment rate for each firm based on the counterfactual Basel I ratio using the estimated model.

Kasahara, Sawada, Suzuki

Investment and Borrowing Constraints: Evidence from Japanese Firms