Discussion of "Liquidity Intermediation in the Euro Money Market" by Stefan Reitz & Falko Fecht

Peter Hoffmann

 ECB^1

Oct 22, 2013

¹Disclaimer: The views expressed do not neccessarily relect those of the ECB.

1 / 16

- The crisis has highlighted the importance of the interbank market
- Signs of market stress
 - counterparty risk
 - liquidity hoarding
 - $\bullet \ \text{unsecured} \rightarrow \text{secured}$
- Big issue: Limited data availability
 - mostly bilateral OTC trading
- This paper analyzes a dataset from a large MM dealer
 - Estimate structural MM Model of dealer intermediation
 - adverse selection, inventory risk, counterparty risk, etc.
 - pre-post Lehman crisis

- The money market essentially works as a decentralized OTC markets
- A dealer prices interbank loans as follows $p_t = \mu_t - \gamma(I_t - I^*) + \delta M_t + \rho C_t + \psi D_t$ where
 - D_t : Trade direction
 - $I_t I^*$: Deviations from target inventory (usually $I_t^* = 0$) M_t : maturity
 - C_t : credit risk
 - μ_t : Dealer's expectation about fundamentals

Adverse Selection

- However: Customers have private information about fundamentals
- Consequently, the dealer learns from the order flow q_t , such that his estimate of μ_t is

$$\mu_t = \pi y_t + (1-\pi)(p_t + rac{1}{lpha}q_t)$$
 where

 y_t : Public signal

- $\pi: \mathsf{Weight}$ on public info
- α : responsiveness of insider to private information
- After some algebra, we get the following structural pricing equation

$$\Delta \rho_{t} = \left(\frac{1}{\pi} - 1\right)I^{*} + \frac{(1 - \pi)}{\alpha \pi}q_{t} - \frac{\gamma}{\pi}I_{t} + \gamma I_{t-1} + \frac{\delta}{\pi}M_{t} - \delta M_{t-1} + \frac{\rho}{\pi}C_{t} - \rho C_{t} + \frac{\psi}{\pi}D_{t} - \psi D_{t-1} + \eta_{t}$$

- Transactions of a major European dealer
- 2007-2008 (510 days)
 - 3 subperiods (normal, pre-Lehman turnmoil, post-Lehman)
- Time, counterparty, size, direction, maturity
- 17,888 transactions
 - 15,348 deposits
 - 2,540 loans

- Pricing equation is estimated by GMM
 - $\bullet\,$ no excluded instruments, hence GMM=OLS
- Additionally control for
 - lagged price changes
 - relationships (# trades with counterparty)
 - EONIA
 - "large" trades (above median)

Results (Noon)

	Full sample	Normal Times	Post Lehman
Deal Size	-3.80**	-8.83**	-15.81*
Direction	8.26***	6.36***	14.89***
Direction(-1)	-5.71^{***}	-2.49***	-12.35***
Inventory	-2.17***	-0.35	-5.23***
Inventory(-1)	2.45***	0.55	5.14***
Credit	0.27	7.54***	19.57***
Credit(-1)	1.24***	5.58***	-6.43**
Maturity	0.43***	0.81	0.42***
Maturity(-1)	-0.42***	-0.99***	-0.41^{***}
# Trades	0.77***	1.33***	0.29***

- Larger trades receive discounts (!)
- Transaction costs & inventory considerations increase in crisis
- Similar for credit risk & maturity premia
- Based on trade directions, π increases to 1 (all weight on public info)

Peter Hoffmann (Institute)

• Recall structural pricing equation

$$\Delta \rho_{t} = \left(\frac{1}{\pi} - 1\right) I^{*} + \frac{(1 - \pi)}{\alpha \pi} q_{t} - \frac{\gamma}{\pi} I_{t} + \gamma I_{t-1} + \frac{\delta}{\pi} M_{t} - \delta M_{t-1} + \frac{\rho}{\pi} C_{t} - \rho C_{t} + \frac{\psi}{\pi} D_{t} - \psi D_{t-1} + \eta_{t}$$

• Authors apply reduced form estimation (GMM/OLS)

$$\Delta p_{t} = \alpha + \beta_{1}q_{t} + \beta_{2}I_{t} + \beta_{3}I_{t-1} + \beta_{4}M_{t} + \beta_{5}M_{t-1} + \beta_{6}C_{t} + \beta_{7}C_{t} + \beta_{8}D_{t} + \beta_{9}D_{t-1} + \eta_{t}$$

- 10 Coefficients $(\alpha, \beta_1 \beta_9)$, but only 7 structural parameters $(\alpha, \gamma, \delta, \rho, \pi, \psi, I^*)$
- The model is overidentified!
- Need to pin down $\pi = \frac{-\beta_2}{\beta_3} = \frac{\beta_4}{-\beta_5} = \frac{\beta_6}{-\beta_7} = \frac{\beta_8}{-\beta_9}$ using coefficient restrictions
- GMM can actually be helpful here, as ML would involve making distributional assumptions
- ullet This is important because the authors make statements on π
 - "the process of information aggregation ... is systematically hampered"

< 回 ト < 三 ト < 三 ト

- Identification stems from relating price changes to differences in transaction attributes (direction, credit risk, maturity)
- Descriptive statistics suggest that caution is warranted, especially in subsamples
- Trade direction (ψ)
 - few loans (80-95% of trades are deposits)
 - Especially post-Lehman, loans/deposits cluster at different times
 - large relative drop in loans (only 2.5 loans/day in 3rd subsample)
- Credit risk (ρ)
 - Small variation in borrower risk, large variation is lender risk
 - Why should depositor risk be priced ?
- Maturity (δ)
 - Most volume is overnight ($\sim 60\%$ of trades, $\sim 75\%$ of volume)
 - ${\scriptstyle \bullet} \,$ focus on O/N

Day Time							
Number of Loans							
Morning	177	490	98	765			
Noon	92	234	28	354			
Afternoon	502	874	45	1421			
Sum	771	1598	171	2540			
Number of Deposits							
Morning	547	674	361	1582			
Noon	1600	1851	1201	4652			
Afternoon	2676	4458	1980	9114			
Sum	4823	6983	3542	15348			

Notes: First, second, third refer to the subsample periods.

- Identification stems from relating price changes to differences in transaction attributes (direction, credit risk, maturity)
- Descriptive statistics suggest that caution is warranted, especially in subsamples
- Trade direction (ψ)
 - few loans (80-95% of trades are deposits)
 - Especially post-Lehman, loans/deposits cluster at different times
 - large relative drop in loans (only 2.5 loans/day in 3rd subsample)
- Credit risk (ρ)
 - Small variation in borrower risk, large variation is lender risk
 - Why should depositor risk be priced ?
- Maturity (δ)
 - Most volume is overnight ($\sim 60\%$ of trades, $\sim 75\%$ of volume)
 - ${\scriptstyle \bullet} \,$ focus on O/N

Comments - Identification

510 trading days between Jan 2, 2007 – Dec 31, 2008							
	First	Second	Third	Full sample			
	Counte	rparty rat	ing				
Number of loans							
AAA	69	178	72	319			
AA	497	966	39	1502			
А	129	410	59	598			
BBB	12	22	1	35			
BB	0	0	0	0			
В	1	3	0	4			
CCC	0	0	0	0			
NR	63	19	0	82			
Sum	771	1598	171	2540			
Number of deposits							
AAA	123	83	73	279			
AA	516	945	501	1962			
А	686	708	485	1879			
BBB	286	497	265	1048			
BB	627	1022	340	1989			
В	124	335	98	557			
CCC	24	4	21	49			
NR	2437	3389	1759	7583			
Sum	4823	6983	3542	15348			

Table 2: Descriptive Statistics Across Ratings and Day Time

Peter Hoffmann (Institute) Discussion of "Liquidity Intermediation in the

(日) (同) (三) (三)

- Identification stems from relating price changes to differences in transaction attributes (direction, credit risk, maturity)
- Descriptive statistics suggest that caution is warranted, especially in subsamples
- Trade direction (ψ)
 - few loans (80-95% of trades are deposits)
 - Especially post-Lehman, loans/deposits cluster at different times
 - large relative drop in loans (only 2.5 loans/day in 3rd subsample)
- Credit risk (ρ)
 - Small variation in borrower risk, large variation is lender risk
 - Why should depositor risk be priced ?
- Maturity (δ)
 - Most volume is overnight ($\sim 60\%$ of trades, $\sim 75\%$ of volume)
 - ${\scriptstyle \bullet} \,$ focus on O/N

- More fundamentally, what is private information in the overnight money market?
- Information about "true" overnight rate?
- Negative coefficient on deal size not consistent with standard theory
 - Is deal size normalized by bank size?
- Maybe consider other dealer models (e.g. Huang and Stoll)
- Maybe abstract from private info
 - Literature on relationships (formally include relationship variable in pricing equation)

- Data treatment
 - "The credit risk premium is set to zero when no rating is available"