Reservation wages and the wage flexibility puzzle

Felix Koenig, Alan Manning and Barbara Petrongolo

LSE, QMU

June 2014

Koenig, Manning, Petrongolo (LSE, QMU)

Reservation wage cyclicality

June 2014 1 / 44

- Empirical evidence suggests that wages are not very responsive to the business cycle
 - Benchmark estimate of unemployment elasticity of wages: -0.1 (Blanchflower and Oswald 1994)
 - not a universal constant but in the right ballpark
 - Shocks to labor demand have a much larger short-run impact on unemployment rather than wages.
- The search-and-matching labor market model struggles to quantitatively replicate these results
- Large literature on the "wage flexibility puzzle"
 - how can the model be fixed to deliver predictions in line with evidence
 - natural fix consists in introducing some degree of wage rigidity
- This paper argues that the search behavior of the unemployed (reservation wages) has clear implications for wage cyclicality
- Focus on reservation wages sheds light on puzzle

The wage flexibility puzzle (I)

- Shimer (2005) argues that the Mortensen and Pissarides (1994) model lacks an amplification mechanism, i.e. it generates too little fluctuations in unemployment, given plausible productivity shocks.
- Puzzle boils down to excess wage cyclicality, which mutes response of quantities
- Wages in reality are less cyclical than implied by standard model calibrations, thus elements of wage stickiness would improve model predictions
- Simplest element of stickiness: high replacement ratios (more generally, high value of nonmarket time, Hagedorn and Manovskii, 2008). But implied replacement ratios are implausibly high (0.95).
- Approach criticized by Costain and Reiter (2008) and Pissarides (2009) as it delivers excess sensitivity of unemployment to policy changes.

- Pissarides (2009) shows that acyclical (vs procyclical) hiring costs reduce predicted wage cyclicality.
- Robin (2011) indicates endogenous job destruction as mechanism amplifying the impact of productivity shocks on unemployment. A relatively high replacement ratio is still needed.
- Infrequent wage negotiation also helps address the puzzle (Hall 2005, Pissarides 2009, Haefke et al 2008)
- Barnichon (2012) shows that wage flexibility estimates are downward biased by endogenous response of (measured) productivity to non-tech shocks.

- Use canonical model to obtain a relationship between wages and unemployment (wage curve), which is independent of labor demand shocks - and can be easily estimated
- Under plausible assumptions reservation wages are the main cyclical component of wages
- If reservation wages are not cyclical, neither are wages
- Cyclicality question directly shifted on reservation wages
- Evidence on these predictions from micro data on (reservation) wages for UK and Germany
- Discuss alternative views on reservation wage formation

Approach is general in a few important aspects:

- allows for infrequent wage negotiation, which is a recognized element of wage rigidity;
- focuses on a general wage curve, which can be obtained from Nash bargaining in search model, but is also consistent with alternative wage setting models;
- does not require to estimate a relationship between productivity shocks and unemployment.

Matching model with infrequent wage negotiation (staggered wage setting à la Calvo 1983, Gertler and Trigari 2009).

- Wages are negotiated at the start of a job-worker match, and reflect the PDV of future expected labor market conditions
- Afterwards, opportunities to renegotiate wages happen infrequently.
- A fraction of wages in the economy thus reflect past negotiations.
- This assumption has implications for cyclicality.
- And is consistent with evidence that wages in new jobs are more cyclical than wages in continuing jobs.
- Obtain simple implications for the elasticity of wages to unemployment under alternative scenarios.

- Workers find jobs at rate λ ; and lose jobs at rate s.
- Steady state unemployment:

$$u=rac{s}{s+\lambda}.$$

The Model: Firms

- Wages in new jobs negotiated according to standard rent sharing
- $\bullet\,$ But opportunity to renegotiate wages in existing jobs only arrives at Poisson rate $\phi\,$
- Value of a vacant job at time t, V(t)

$$rV(t) = -c(t) + q(t) \left[J(t;w(t)) - V(t) - C(t)\right] + E_t \frac{\partial V(t)}{\partial t}$$

• Value at time t of a job paying w, J(t; w)

$$rJ(t;w) = p(t) - w - s[J(t;w) - V(t)] + \phi[J(t;w(t)) - J(t;w) + E_t \frac{\partial J(t;w)}{\partial t}]$$

• Free entry: V(t) = 0

$$J(t; w(t)) = C(t) + \frac{c(t)}{q(\theta_t)}$$

• Value of being unemployed at time t

$$rU(t) = z + \lambda(t) \left[W(t; w(t)) - U(t)\right] + E_t \frac{\partial U(t)}{\partial t}$$

• Value at time t of being employed in a job that pays w

$$rW(t;w) = w - s[W(t;w) - U(t)] + \phi[W(t;w(t)) - W(t;w)] + E_t \frac{\partial W(t;w)}{\partial t}$$

The Model: Wage determination

• Standard sharing of surplus

$$w(t) = rg\max\left[W(t;w) - U(t)
ight]^{eta}\left[J(t;w) - V(t)
ight]^{1-eta}$$

After substituting firm's value functions

$$W(t; w(t)) - U(t) = \frac{\beta}{1 - \beta} \left[\frac{c(t)}{q(t)} + C(t) \right] \equiv \mu(t)$$

- $\mu(t)$ is mark-up of employment over outside options
- Substitute worker's value functions

$$w(t) = z + (r + s + \phi) \left[\mu(t) + E_t \int_t e^{-(r + s + \phi)(\tau - t)} (\lambda(\tau) - \phi) \mu(\tau) d\tau \right]$$

• Wages embody expectations over future labor market conditions $\lambda(\tau)$ and the effective discount rate is $r+s+\phi$

Wages cyclicality: Steady state

Current labor market conditions expected to last forever.

$$w = z + \mu(r + s + \lambda)$$

Given $u = s/(s + \lambda)$:

$$w = z + \mu \left(r + \frac{s}{u} \right)$$

- Assume acyclical hiring costs, thus mark-up is acyclical.
- Wage-unemployment elasticity:

$$\varepsilon_{wu} = -rac{\mu s}{wu} = -(1-\eta)rac{s}{ru+s}$$

where $\eta \equiv z/w$ is the replacement ratio.

• $\frac{s}{ru+s}$ is close to 1, and thus $\varepsilon_{wu} \simeq -0.1$ requires $\eta \simeq 0.9$, which is unrealistically high.

[Procyclical mark-up]

Mark-up:

$$\mu(t) = rac{eta}{1-eta} \left[rac{c(t)}{q(t)} + C(t)
ight]$$

- Vacancy duration 1/q(t) is procyclical, thus $\mu(t)$ is procyclical as long as the flow cost of keeping an open vacancy is positive (c(t) > 0)
- But if vacancy costs are mainly independent of duration (selection, training, etc. Pissarides 2009), c(t) = 0 and mark-up is acyclical
- What about if c(t) > 0 and mark-up is procyclical?

$$arepsilon_{wu} = (1 - \eta) \left(arepsilon_{\mu u} - rac{s}{ru + s}
ight)$$

- Procyclicality of hiring costs $(\varepsilon_{\mu u} < 0)$ requires an even higher value of η to match a given elasticity of wages to unemployment.
- Same argument for procyclical *z* (Chodorow-Reich and Karabarbounis 2013)

- z represents the flow utility during unemployment
 - unemployment compensation
 - (dis)utility of leisure while unemployed
 - net of job search costs.
- In 2001, the average proportion of earnings that is maintained when a worker becomes unemployed in the U.K. and Germany was 0.42 and 0.63, respectively (OECD Benefits and Wages)
- Non-pecuniary effects of unemployment: strong detrimental impact of unemployment on subjective well-being, even conditional on household income (Winkelmann Winkelmann 1998, Clark 2003, Kassenboehmer Haisken-DeNew 2009)
- 0.42 and 0.63 should be interpreted as very generous upper bounds.

Wage curve with constant mark-up

$$w(t) = z + \mu \left[(r + s + \lambda(t)) + E_t \int_t e^{-(r + s + \phi)(\tau - t)} \lambda'(\tau) d\tau \right]$$

- Wages driven by current conditions $\lambda(t)$ and expected changes $\lambda'(\tau)$
- With continuous wage negotiation $\phi \to \infty$:

$$w = z + \mu \left(r + \frac{s}{u} \right)$$

• Same predictions as in steady state - it is only contemporaneous conditions that matter.

Occasional wage renegotiation

- Wages embody expectations about the evolution of labor market conditions
- Need assumptions about $E_t \lambda(\tau)$
- e.g. $\lambda(\tau)$ follows a continuous-time AR process, with convergence ξ to steady state λ^*

$$\mathsf{E}_t\lambda(au) = \mathsf{e}^{-\xi(1-t)}\lambda(au) + [1-\mathsf{e}^{-\xi(1-t)}]\lambda^*$$

where low values of ξ imply high persistence.

• Limiting case $\xi = 0$ is equivalent to previous two cases

Implications for wage cyclicality

• Embody $E_t \lambda(\tau)$ in the wage curve:

$$w(t) = z + \mu \left(r + \frac{s}{u^*} \right) + \gamma \left(\frac{s}{u_t} - \frac{s}{u^*} \right)$$

where

$$\gamma = rac{r+s+\phi}{r+s+\phi+\xi} < 1$$

• Wage-unemployment elasticity

$$arepsilon_{wu} = -(1-\eta)rac{\gamma s}{ru^*+s}$$

• Model predictions should come closer to the data because target ε_{wu} is higher on newly-negotiatied wages (LHS higher) and because $\gamma < 1$ (RHS lower).

According to the search model wages depend on productivity and outside options, proxied by the unemployment rate

$$\ln w_{iat} = \alpha x_{iat} + \beta \ln u_{at} + d_a + d_t + d_i + \varepsilon_{iat}$$

Issues:

- Right level of aggregation (local versus national unemployment)
- All matches versus new matches
- Several estimates in the literature (Blanchflower Oswald 1994, Gregg Machin Salgado 2014, among others)
- We replicate existing consensus on same data on which we estimate reservation wage equations, and allow for higher elasticity on new matches
- BHPS (1991-2009) for UK, SOEP (1987-2010) for Germany.

Wage equations for UK: all jobs

	1	2	3	4	5	6
ln w _{it-1}				0.759*** (0.005)	0.759*** (0.005)	0.759*** (0.005)
ln u _t	- 0.022	-0.165*** (0.044)	- 0 . 155 *** (0.043)	- 0 . 123 *** (0.017)	- 0 . 106 *** (0.025)	. ,
$\ln u_{t-1}$	(****)		(****)	(***)	-0.014	
ln u _{at}					(0.020)	- 0.026 ***
trend	t	t, t ²	t, t ²	t, t ²	t, t ²	t, t^2
trend* <i>a</i>	no	no	yes	no	no	yes
Obs.	96270	96270	96270	70910	70910	70910
R^2	0.40	0.40	0.40	0.75	0.75	0.75

Sample: males and females 18-65; all jobs; 1991-2009.

Dep var: log real hourly wage. Other controls: gender, quadratic in age, educ (4

groups), cubic in tenure, married, children, region dummies.

OLS. s.e. clustered at year level (cols 1-5); at year*reg level (col 6).

***sig at 1%; **sig at 5%; *sig at 10%

Wage equations for UK: further specifications

	1	2	3	4	5	6
	New	Old	All	All	1st diff	FE
In w _{it-1}				0.759*** (0.005)		0.134*** (0.019)
ln u _t	- 0.279 *** (0.077)	- 0.116 *** (0.038)	- 0.144 *** (0.040)	- 0.123 *** (0.017)	- 0.092 *** (0.021)	- 0.183 ** (0.032)
ln u _{start}			-0.039^{***} (0.008)	-0.003 (0.004)	0.004 (0.004)	
trend	t, t ²	t, t ²				
Obs.	25517	70753	95584	70438	70438	70102
R^2	0.41	0.39	0.40	0.75	0.02	

Sample: males and females 18-65; 1991-2009.

Dep var: log real hourly wage. Other controls: gender, quadratic in age, educ (4 groups), cubic in tenure, married, children, region dummies.

s.e. clustered at year level. Col 6: 2-way cluster-robust variance (Cameron and Miller 2013). ***sig at 1%; **sig at 5%; *sig at 10%

Wage equations for Germany: all jobs

	1	2	3	4	5	6
In w _{it-1}				0.732*** (0.006)	0.732*** (0.006)	0.732*** (0.006)
ln u _t	0.078 (0.043)	- 0.005 (0.027)	0.000 (0.027)	- 0.023 ** (0.014)	0.015 (0.019)	
$\ln u_{t-1}$				× ,	- 0.048 ** (0.019)	
ln u _{at}						- 0.016 *** (0.006)
trend	t	t, t ²	t, t ²	t, t ²	t, t ²	t, t^{2}
trend* <i>a</i>	no	no	yes	no	no	yes
Obs.	213693	213693	213693	164933	164933	164933
R^2	0.64	0.64	0.64	0.85	0.85	0.85

Sample: males and females 18-65; all jobs; 1987-2010.

Dep var: log real monthly wage. Other controls: log hours, gender, quadratic in age, educ (4 groups), cubic in tenure, married, children, region dummies. OLS. s.e. clustered at year level (cols 1-5); year*reg (col 6). ***sig at 1%; **sig at 5%; *sig at 10%

Wage equations for Germany: further specifications

	1	2	3	4	5	6
	New	Old	All	All	1st diff	FE
$\ln w_{it-1}$				0.726*** (0.007)		0.371*** (0.025)
ln u _t	- 0.168 *** (0.030)	0.027 (0.029)	0.012 (0.023)	- 0.019 (0.014)	- 0.037 ** (0.014)	- 0.019 (0.024)
ln <i>u_{start}</i>			-0.025^{**}	-0.008^{**} (0.002)	-0.001 (0.002)	
trend	t, t ²	t, t ²	t, t ²	t, t ²	t, t ²	t, t ²
Obs.	34095	179333	196616	152183	152183	164933
R^2	0.62	0.62	0.64	0.85	0.05	

Sample: males and females 18-65; 1987-2010.

Dep var: log real monthly wage. Other controls: log hours, gender, quadratic in age, educ (4 groups), cubic in tenure, region dummies, married, children. s.e. clustered at the year level. Col 6: 2-way cluster-robust variance (Cameron and Miller 2013). ***sig at 1%; **sig at 5%; *sig at 10%.

- UK: all jobs, wage elasticity around -0.16
- new jobs: around −0.28
- specifications with regional unemployment at most -0.03/-0.09 resp
- controlling for unobserved heterogeneity (FE): -0.18
- results for Germany:
 - -0.05 on all jobs (max);
 - -0.17 on new jobs;
 - -0.016/-0.090 with regional unemployment
 - -0.02 with FE.

U.K. data

- Unemployment transitions from the LFS imply s = 0.0125 monthly
- AR unemployment rate estimates give $\xi=$ 0.003 monthly
- Expected contract length of about 12 months: $\phi=0.0833$
- r = 0.003 monthly
- η needs to match

$$arepsilon_{wu} = -(1-\eta)rac{\gamma s}{ru^*+s}$$

where $\gamma = rac{r+s+\phi}{r+s+\phi+\tilde{\xi}} = 0.971.$

- Need η around 0.71 in UK, 0.82 in Germany.
- Unemployment is too persistent for occasional wage renegotiation to make a sizeable difference

Reservation wages

• Reservation wage $\rho(t)$:

$$W(t;
ho(t))=U(t)$$

• Substituting value functions:

$$\rho(t) = z + \mu(r + s + \phi) E_t \int_t e^{-(r + s + \phi)(\tau - t)} (\lambda(\tau) - \phi) d\tau$$

• Combining with wage equation: wage conditional on the reservation wage

$$w(t) = \rho(t) + (r + s + \phi)\mu$$

- With constant mark-up, all cyclicality in negotiated wages is driven by cyclicality in the reservation wage
- If reservation wages are not strongly procyclical, neither will be wages
- In particular:

$$arepsilon_{
ho u} = rac{w(t)}{
ho(t)} \ arepsilon_{wu}$$

• Imposing steady-state & no renegotiation ($\phi = 0$):

$$\rho = z + \frac{\lambda(w-z)}{r+s+\lambda} \simeq uz + (1-u)w$$

for $r \rightarrow 0$

Rewrite as

$$\eta \equiv \frac{z}{w} = \frac{1}{u} \left[\frac{\rho}{w} - (1 - u) \right]$$

- In BHPS data ρ/w close to 0.8 implies η close to zero.
- In line with findings from the wellbeing literature.

- Information on reservation wages in BHPS for everyone out of work, looking for work, and willing to start work
- Question about:
 - "lowest take-home pay that one would consider accepting", and
 - "expected working hours for such lowest pay"
 - obtain a measure of hourly net reservation wage
- Information on reservation wages in SOEP elicited in monthly terms and not supplemented by information on expected hours
 - Estimate specifications for monthly reservation wages, controlling for whether an individual is looking for a full-time, part-time, or any job.
- Covariates
 - all determinants of wages
 - chances of finding a job (unemployment rate)
 - utility while unemployed (total benefits and household composition)

Reservation wage equations for the UK

	1	2	3	4	5	6
	OLS	OLS	OLS	OLS	OLS	FE
ln u _t	- 0.095 * (0.046)	-0.175*** (0.058)	- 0.164 ** (0.058)	0.116 (0.155)		0.011 (0.184)
$\ln u_{t-1}$				- 0.215 * (0.111)		-0.119 (0.129)
ln u _{at}					- 0.064 ** (0.028)	
trend	t	t, t ²	t, t ²	t, t ²	t, t ²	t, t ²
trend* <i>a</i>	no	no	yes	no	no	no
Obs.	14874	14874	14874	14874	14874	14874
R^2	0.25	0.25	0.25	0.25	0.25	

Sample: nonemployed males and females 18-65; 1991-2009. Dep var: log real hourly reservation wage. Other controls: gender, quadratic in age, educ (4 groups), cubic in duration, married, children, log benefits, region dummies. s.e. clustered at the year level (cols 1-4); year*reg (col 5). Col 6: 2-way cluster-robust variance (Cameron and Miller 2013). ***sig at 1%; **sig at 5%; *sig at 10%.

Reservation wage equations for Germany

	1	2	3	4	5	6
	OLS	OLS	OLS	OLS	OLS	FE
ln u _t	0.134 * (0.068)	- 0.009 (0.064)	-0.005 (0.066)	0.152 * (0.073)		0.123 (0.078)
$\ln u_{t-1}$				- 0.231 *** (0.049)		- 0.189 *** (0.046)
ln u _{at}					0.062 * (0.033)	
$\ln u_{at-1}$					- 0.081 ** (0.032)	
trend	t	t, t ²	t, t ²	t, t ²	t, t ²	t, t ²
trend* <i>a</i>	no	no	yes	no	no	no
Obs.	17238	17238	17238	17238	17238	17238
R^2	0.36	0.36	0.36	0.36	0.36	

Sample: nonemployed males and females 18-65; 1987-2010. Dep var: log real monthly reservation wage. Other controls: gender, quadratic in age, educ (4 groups), cubic in duration, married, children, log benefits, whether looking for FT, PT or any job, region dummies. s.e. clustered at the year level (cols 1-4); year*reg (col 5); col 6: 2-way cluster-robust variance (Cameron and Miller 2013). ***sig at 1%; **sig at 5%; *sig at 10%.

Koenig, Manning, Petrongolo (LSE, QMU)

- UK: reservation wages less cyclical than new wages.
 - 2 issues here: result not in line with wage negotiation outcome; and cyclicality too low
- Germany: reservation wages roughly as cyclical as new wages
 - but cyclicality of both lower than cyclicality the model would predict
- These estimates identify a flaw with the determination of reservation wages in search model

- Quality of reservation wage data is poor and not informative of cyclicality
- Reservation wage model is mispecified

- Post-unemployment wages on average 30% higher than reservation wages, but about 15% accept wages below their reservation wage
- From reservation wage equations: all human capital indicators and benefits have expected impact on reservation wages
- Correlation between reservation wages and
 - remaining unemployment duration;
 - post-unemployment wages
 - is in line with model predictions

	1	2	3	4	5	6
	Whe	ther found jo	b at t $+1$	Po	st-unemp w	age
$\ln ho_t$	0.001 (0.008)	- 0.020 *** (0.008)	- 0.022 *** (0.007)	0.436*** (0.021)	0.312*** (0.036)	0.308*** (0.037)
ln <i>u_t</i>		-0.069 (0.069)			-0.216^{**}	
ln u _{at}			-0.036 (0.026)			$\underset{\left(0.057\right)}{0.015}$
i.year	yes	no	no	yes	no	no
trend	no	t, t ²	t, t ²	no	t, t ²	t, t ²
Xs	no	yes	yes	no	yes	yes
Obs.	15278	14701	14701	2685	2594	2594
R^2	0.02	0.08	0.09	0.22	0.30	0.30

Sample: (1)-(3): nonemployed males and females 18-65; (4)-(6) with nonmissing wages at t + 1, 1991-2009. Controls: gender, quadratic in age, educ (4 groups), cubic in duration, married, children, log benefits, region dummies. s.e. clustered at the year level. ***sig at 1%; **sig at 5%; *sig at 10%.

	1	2	3	4	5	6
	Whet	ner found job	at $t + 1$	Po	st-unemp w	age
$\ln ho_t$	0.034*** (0.006)	- 0.067 *** (0.008)	- 0.067 *** (0.008)	0.698 *** (0.024)	0.367*** (0.030)	0.367*** (0.030)
ln <i>u_t</i>		-0.093^{***} (0.029)			-0.234^{**}	
ln u _{at}			-0.032 (0.020)			-0.090 (0.058)
i.year	yes	no	no	yes	no	no
trend	no	t, t ²	t, t ²	no	t, t ²	t, t ²
Xs	no	yes	yes	no	yes	yes
Obs.	17789	17789	17789	4718	4718	4718
R^2	0.01	0.07	0.07	0.20	0.31	0.31

Sample: (1)-(3): nonemployed males and females 18-65; (4)-(6) with nonmissing wages at t + 1, 1987-2010. Controls: gender, quadratic in age, educ (4 groups), cubic in duration, married, children, log benefits (IV), whether looking for FT, PT or any job, region dummies. s.e. clustered at the year level. ***sig at 1%; **sig at 5%; *sig at 10%.

Alternative explanations

- Alternative search model: workers search both off- and on-the-job and draw wage offers from a (posted) wage distribution f(w)
 - This model generates acyclical reservation wages whenever $\lambda^{u} = \lambda^{e}$, as $\rho = z$.
 - but if $\rho = z$ reservation wages do not respond to any individual covariate (eg human capital), while they clearly do.
 - also, evidence clearly shows $\lambda^{u} > \lambda^{e}$

e Hyperbolic discounting

- Discounting affects search behavior and reservation wages because returns to job search are delayed (Della Vigna and Paserman 2005)
- High rates of short-time discounting implies all else equal lower reservation wages
- This effect makes reservation wages more weakly correlated to wages and labor market conditions

Reference points in job search

- Reservation wages may be determined by perceptions of "fair wage"
 - perceptions strongly influenced by both past experiences and reference groups
 - less sensitive to current economic conditions than the arrival rate of job offers, which is the key cyclical driver of reservation wages in the canonical search model
- Lack of direct evidence on this possible explanation
- Falk, Fehr and Zehnder (2004): the temporary introduction of a min wage leads to a rise in subjects' reservation wages, even after the min wage has been removed.
- This makes reservation wages less cyclical than in the canonical model.

- If past wages shape reference points, which in turn influence reservation wages, we should expect a significant correlation between past wages and reservation wages.
- But several confounding factors in such correlation
- Direct links (if any) between UI benefits and past wages, and UI is key component of reservation wages in the canonical model.
 - this is the case for Germany UI entitlement is function of previous social security contribution and thus past wages
 - but not for UK: eg JSA is currently £57.35 for 16-24; £72.40 for 25+; with some allowance for dependants.
 - no explicit reference to previous earnings in UK
- Unobserved productivity components of past wages, reflected into reservation wages in the canonical model via the wage offer distribution.

- Aim to isolate the *rent* component of past wages and observe its correlation with current reservation wages
- If job search is forward-looking (canonical model), past rents should not be relevant for reservation wages.
- If job search is reference-dependent, past rents feature in reservation wages as long as they represent meaningful benchmark.

• Empirical reservation wage model:

$$\ln \rho_{it} = \beta_1 X_{it} + \beta_2 \ln w_{it-d_i} + \varepsilon_{it}$$
(1)

where w_{it-d_i} is wage in last job held, lost d_i years ago

w_{it-d_i} includes components of both worker ability (*w_i*^{*}) and rents (*R_{it-d_i}*):

$$\ln w_{it-d_i} = \gamma_1 X_{it-d_i} + \gamma_2 R_{it-d_i} + w_i^* + u_{it-d_i}$$

• Identification of reference point effect in (1) requires a proxy for past rents, which is orthogonal to worker ability.

- Industry affiliation as a proxy for the size of rents in a job
 - long-established literature (eg Krueger and Summers 1988)
- Use predicted industry-level wage as an instrument for previous wages in the reservation wage equation
- Exclusion restriction requires
 - no wealth effects from previous wages;
 - workers can distinguish rent and productivity components.

- Estimate log wage regression for 1982-2009 on ASHE, controlling for 4-digit industry effects, unrestricted age effects, region, year, individual fixed effects.
- Obtain $\widehat{\ln w_j}$ for j = 4-digit industries
- On BHPS, for each unemployed i at t: observed in employment d_i years ago, in industry j, earning wage wage w_{it-di}.
- Use $\widehat{\ln w_i}$ as IV for $\ln w_{it-d_i}$ in reservation wage equation.

	1	2	3	4	5	6
	OLS	OLS	OLS	IV	IV	IV
In w _{it-d}	0.087*** (0.005)	0.087*** (0.005)	0.105*** (0.008)	0.149*** (0.018)	0.149*** (0.016)	0.197*** (0.155)
$\ln w_{it-d} * d$			- 0.009 *** (0.002)			- 0.019 *** (0.004)
ln u _t		-0.204*** (0.083)	-0.204^{***} (0.082)		-0.174^{***} (0.086)	-0.170^{***} (0.084)
i.year	yes	no	no	yes	no	no
Obs.	8151	8151	8151	7790	7790	7790
R^2	0.28	0.27	0.27			
$F-{\sf stat}^1$				709.26	928.6	484.7
$F-stat^2$						269.7

IV in cols 4-5: predicted 4-digit industry wage differential. IV in col 6: predicted 4-digit industry wage differential, and its interaction with time since job loss.

- (lack of) Wage cyclicality is an enduring puzzle in labor/macroeconomics
- We propose a matching model with infrequent wage negotiation which delivers simple, reduced-form predictions for elasticity of wages to unemployment
- Under plausible assumptions, the reservation wage is the main cyclical component of wages
- Estimates show that reservation wages are as cyclical as actual wages, but not as cyclical as the model would predict
- Flaw in determination of reservation wage calls for alternative reservation wage models rather than alternative wage setting model
- Alternative models: Rents in previous jobs are strong predictors of reservation wages, in line with reference points in job search behavior.

Group-specific unemployment (UK) By gender and 4 age groups (16-17; 18-24; 25-49; 50+)

Wage e	Wage equations								
	All	Men	Women	16-17	18-24	25-49	50+		
In u _{gt}	-0.026 (0.009)	-0.048 (0.017)	-0.071 (0.018)	0.469 (0.302)	-0.198 (0.052)	-0.031 (0.015)	-0.024 (0.018)		
Obs.	70901	34372	36529	713	6824	48503	14861		
R^2	0.75	0.75	0.71	0.37	0.47	0.75	0.76		
Reserv	ation wage	equations							
	All	Men	Women	16-17	18-24	25-49	50+		
In u _{gt}	-0.054 (0.030)	$-0.039 \\ (0.025)$	$-0.065 \ (0.034)$	$\underset{\left(0.073\right)}{0.151}$	$-0.157 \\ (0.046)$	0.005 (0.078)	0.042 (0.060)		
Obs.	14874	6747	8127	1838	2894	7312	2830		
R^2	0.24	0.23	0.27	0.16	0.21	0.19	0.21		