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Financial stability concerns
influence monetary policy (Stein 2014)

1. Quadraticloss objective which includes a risk
term: variance of realized employment which
depend on financial market vulnerability

2. Some variable summarizing financial market
vulnerability is influenced by monetary

policy.
3. Risks associated with FMV cannot be fully

offset at zero cost with other non-monetary
tools, such as financial regulation



The crisis and the loss function of the
FED: (USA, beginning April 2014)

Percent Job Losses in Post WWII Recessions
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Macro-prudential DSGE and New
Keynesian model concerns upon

1) Identification and ability to test those models and
to then inform monetary policy:

Cochrane (2011), J Political Economy.
Komunjer and Ng (2011), Econometrica.

2) Lack of optimal control robustness to
misspecification: local instability in m dimensions,

in order to achieve the unique solution for the model
(determinacy) with expectations exact immediate self
adjustment to shock in those m dimensions, for non
pre-determined variables.



I

Plan

Blanchard Kahn (1980) unique solution
Kalman’s (1960) Controllability
Quasi-optimal rules

. Over stable optimal rules

Optimal rules robust to misspecification



1. Blanchard and Kahn (1980)
no bubbles hypothesis



Blanchard and Kahn (1980) hypothesis
for a unique solution

N pre-determined variables:
autoregressive shocks, capital stock

M non pre-determined variables:

output gap, inflation, asset prices, credit.

Expectations driven variables, so that even you
observe the data now, next second they could be
driven by sunspots shocks initial conditions.

« Unique stable » solution when M unstable
dimensions (exploding variables except on N stable
dimensions),



M non pre-determined are « determined »
by N pre-determined,
immediate self-correction to shocks in M
dimension to remain on the stable manifold.
The expectations of errors in (1b) is ALWAYS
ZERO.
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2 dimensions linear systems
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Blanchard and Kahn (1980)
hypothesis w=(k,q,z)

vt € N.3w, € R*.30, € R. such that

By (Weey 1 )| < (1+9)" W, Vi e RT.



Excluding diverging path « bubbles »
by assumption and not by an explicit
stabilizing mechanism, for any R>1
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Path AB: Divergent asset price
alpha=A
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New Keynesian Central Bank rules should
maintain M potential bubbles in the
economy, else sunspots (infinity of initial
conditions in M dimensions) are worse.

Paradise Hell




« Determinacy »: Do not « over-stabilize »
more than N dimensions (N<N+M)




Bubbles versus sunspot for modelling
financial stability hard to communicate to

Governors of central banks

Other policy makers, journalists

Microeconomists, labour and finance economists
(Cochrane)

Mathematicians, engineers

Businessmen

Households, poor people:

People expects « financial stability » means
« lean against and stabilize bubbles ».



« Prefer potential bubbles instead of
sunspots »: not their idea.
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2. Kalman’s controllability (1960)



Kalman’s controllability (1960)

Ability to control a dynamical linear system from

point A to point B at any speed with a linear
rule.

Effect of monetary policy on financial market
vulnerability (Stein 2014).

No: if your instruments for control are not able
to change several dimensions:

exogenous auto-regressive shocks.



Controllability Normal Form

Theorem 15 There exists a state coordinate change which

forms the linear system © = Ax + Bu into
53’1 - 1411 1412 21 Bl
such that (A, By) is controllable. In Matlab use ctrbf.
You should learn to read these equations actually as

’:1 — ‘-411:'!1 T ‘-412:2 -+ Bli!’-. 22 — *‘422:2-

Hence the evolution of 25(#) cannot be influenced by the contro

Definition 16 The eigenvalues of A,, are called uncontrol

modes of (A. B).



Summary

Every system & = Ax + Bu can be transformed by state-coordinate

change into the controllability normal form:

(3 ) — (All 412) (31> + (Bl) u, (A, By) controllable.
29 0 flgg Z 0

e Controllability of (A, By) means that (Bl AnBy --- flif'l_lBl )

has full row rank.

Equivalently, ( Ay — N By ) has full row rank for all A\ € C.

—_—

e [he matrix (A— A B) looses rank at A € C iff A € eig(As),
.e., exactly in the uncontrollable modes of (A, B).
e [he evolution of the state 2, cannot be influence by the control input.

Intuitively, the uncontrollable modes of the system cannot be excited

by control.



(1) Stabilizing M unstable dimensions

X(t+1)=a. X(t) + br(t), r(t)=f.X(t)
X(t+1)= (a+bf ). X(t)

IF b#0 (Kalman controllability; scalar case);
b=dX(t+1)/dr(t)<0, f=dr(t)/dX(t)>0 OR
b=dX(t+1)/dr(t)>0, f=dr(t)/dX(t)<0

O<athf <1<a



(2) Stabilizing « more » N stable dimensions
Increases the speed of convergence to steady state

X(t+1)=a. X(t) + br(t), r(t)=f.X(t)
X(t+1)= (a+bf ). X(t)

IF b#0 (Kalman controllability; scalar case);
b=dX(t+1)/dr(t)<0, f=dr(t)/dX(t)>0 OR
b=dX(t+1)/dr(t)>0, f=dr(t)/dX(t)<0

O<athf <ax<1l



3. Quasi-optimal rules



Controllability and
the linear quadratic regulator

Minimize a quadratic loss function including a cost
for changing the policy rate

Subject to a linear system, with linear policy rule.

Kalman controllability: can choose rules with as
many stable dimensions as you wish (indeed all
stable except in Blanchard Kahn world).

Unique solution for the fully stable parameters of
the rule (N+M dimensions) and for ALL N+M stable
eigenvalues > M required in Blanchard Kahn.



Controllability, Rules

and Blanchard Kahn
Monetary policy rules can fully stabilize the
system, but « indeterminacy for ad hoc rules».

Design your policy rules so that they leave M
unstable dimensions, [although they are able to
fully stabilize the model].

Financial stability?



Quadratic loss
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F are rules parameters
B are effets of controls upon state
z(t) are exogenous variables




C=—N(F(s))
Depends upon F(s), the rule
s=n, stable dimensions
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ldentification restrictions so that the rule
depends only upon pre-determined
variables: restricted «quasi-optimal» rules
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Optimal control program
dimension N<N+M

The policy-maker only needs to control predetermined variables:

1 Z*“ o (ke —k*\°
I?}%-:? 2 =0 | |:an ( k:# ) P (rt ' )

subject to the closed loop system of pre-determined variables:

!

Koy = (Am ~ Ban’ln) k.

According to the following equality:

A=A, — AN, and F,, =F,, — F1,,N,..,

Q. =Qu+NF) QuNF) +QumN([F) +N(F). Qu



Evaluate the augmented Taylor rule
on the stable manifold (here, a line)
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Instantaneous jump immediately after a
shock on productivity A on the stable
manifold (here a line)

Go—9q ﬁf}

k*)



|dentification

If 2 different values of a parameter (for example
zero, positive or negative)

Leads to an observationally equivalent model to be
tested with data:

Non identification

Textbook demand supply example: Two
endogenous variables quantity and price (with 4
parameters to estimate) in a system of two
equations and only one exogenous variable (a
constant). Reduced form cannot estimate all 4
parameters.



For ad hoc rules, no optimisation on pre-
determined variables. M ad hoc
identification restrictions on rules
parameters may set
N rule parameters for k(t) equal to zero,
ok if M £ N, problem if N<M
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ldentification in estimated DSGE

Ex-ante and Ex-post evaluations of identification
(Kemunjer and Ng (2011), Econometrica,
Cochrane (2011) on Taylor rule, J Pol Eco).

Auto-regressive shocks parameter: identified.

Taylor rule parameters and many other DSGE
parameters: not identified.



Indeterminacy of Blanchard Kahn
« unique » solution: Blake Kirsanova (2012)

To select quasi-optimal rules with n stable
dimensions

You have the choice between n+m stable
dimensions

There are the number to choose a set of n
elements in a set of N+M « stable
eigenvectors ».

for building matrix —N=C



Conclusion for quasi-optimal rules

1. Lack of identification of rule parameters for
non predetermined variables

2. Indeterminacy
3. Time consistency a la Calvo.

4. Covariance matrix between non

predetermined and predetermined variables

is fixed (but non unique), without ANY effect
of policy.




4. Over stable Optimal Rules

Compromise: Rational expectations
Over-stable (as Old Keynesian and Kalman)
Determinacy
Precommitment (time inconsistency problem)



Pretermined Lagrange multipliers
of non predetermined variables
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« As if » non pre-determined
are pre-determined

Ljungqvist and Sargent (2012, chapter 19) describe a four step algorithm
for solving the optimal policy under commitment. "Step I seems to disregard

the forward looking aspect of the problem. If we temporarily ignore the fact
ko—k*

that the qo component of the state yo = ( - ) 1s not actually a state

do—a
vector. then superficially the Stackelberg problem has the form of an optimal

linear requlator problem” (Ljungqvist and Sargent (2012, chapter 19, p.769).



The rule depends on Lagrange multiplier
of non predetermined variables
(besides the « as if » explicit rule)

Step 3 uses the property that a stabilizing solution satisfies:
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If Kalman controllability in N+M
dimensions with distinct eigenvalues

Each non pre-determined variables has its own
specific freedom to vary distinctly from other
variables (N+M dimensional system).

For the LQR, there is a unique correspondance
between the set of eigenvalues and the set of

parameters of the rule.
This allows identification of the rule parameters.



Determinacy
with P from optimal decision

4. Determinacy. Kalman’'s controllability condition 1s a precondition for
assuming that the Lagrange multipliers related to non predetermined vari-
ables should be all equal to zero at the initial date pq—0 = 0 (Bryson and
Ho (1975). p.55-59: Xie (1997) provides a counter example where Kalman'’s
controllability condition is not satisfied). As the Lagrange multipliers are re-
lated to the optimal value function matrix as follows: i, — Pz the initial
values of non-predetermined variables are linear functions of the initial val-
ues of predetermined variables (Ljundquist and Sargent’s (2012. Chapter 19).
Jensen (2011)):

Jo — _P;‘ziannkO 1f Hq.t=0 — 0. (25)



Additional M degrees of freedom
to explain phenomena

6. Minimal volatility of the policy interest rate (p > 0,Q = 0). It is such
that stable eigenvalues of the open loop system are the same as in the closed
loop system |\; a—Br| = |Nia| < 1 and that unstable eigenvalues (indexed by
i!) of the open loop system are mirrored by stable eigenvalues in the closed
loop system having their modulus such that |\ a—Br| = 1/ |A\ir.a| < 1 (Rojas
(2011)).

7. Ability of policies to decrease the covariances matrixz between pre-
determined and non pre-determined variables when the policy maker pref-
erences are such that Q,,, # 0 and Q,,,, # 0.



Time consistency problem
a la Calvo (1978)

8. Time inconsistency a la Calvo (1978). When the system is controllable
and without a pre-commaitment constraint. a policy maker who optimize again
on pertod t + 1 would choose an initial condition g1 = 0 instead of the
optimal path pigq++1 7 0 decided on date t. The system remains bounded and
stable if ever the policy maker chooses g+ = 0 on all following periods



p(t) is the Lagrange multiplier of a non
pre-determined variable, p(t=0)=0

top3(ty)

p3(to) =0

_..,-_

xu x('t]]

p3
A

Eigenvector associated
with ‘small’ root

FEigenvector assoc-
iated with ‘large’
root

"

Fig. 1: The ‘time inconsistency’ of optimal policy



OK, but what do | need to change in my
models?... A few signs of dX(t+1)/dr(t).

Bubbles > sunspots DSGE models are designed so that the
rule is not stabilizing in some dimensions, so that for
example:

b=dX(t+1)/dr(t)>0,
f=dr(t)/dX(t)>0
So that a < 1 < a+bf

It happens in some cases that you need to turn unstable
after control a dimension which is stable before controlin
order to maintain exactly N stable dimensionsand M
unstable dimensions.

X(t+1) output gap, asset prices, financial market vulnerability.



An example of over stable rule
with unexpected sign

X(t) — X(t+1)=- b r(t)

Output gap X(t) at date t is a negative function
of the interest rate.

Output gap X(t+1) at date t+1 is a positive
function of the interest rate.

Then, a stabilizing optimal rule is a negative
function of the output gap:

r(t) = - 0.05 outputgap(t) + 1.6 . Inflation (t)



(1) Stabilizing M unstable dimensions

X(t+1)=a. X(t) + br(t), r(t)=f.X(t)
X(t+1)= (a+bf ). X(t)

IF b#0 (Kalman controllability; scalar case);
b=dX(t+1)/dr(t)<0, f=dr(t)/dX(t)>0 OR
b=dX(t+1)/dr(t)>0, f=dr(t)/dX(t)<0

O<athf <1<a



5. Optimal rules
robust to mis-specification



Blanchard Kahn lack of optimal control robustness
when the expectations of errors in (1b) is not zero,
even with an infinitesimal deviation from zero

« Robust » optimal control takes into account the
risk of « misspecified » model:

- omitted variable bias

- biased measurement errors on inflation, on the
output gap.

- endogeneity bias

THEN: infinitesimal deviation in (1b): the economy
blows up with hyperinflation, deflation, depression

overheating, bubbles and krachs for credit and
asset prices.



M non pre-determined are « determined »
by N pre-determined,
immediate self-correction to shocks in M
dimension to remain on the stable manifold.
The expectations of errors in (1b) is ALWAYS
ZERO.
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Macro-prudential DSGE is a non cumulative
literature with financial stability results which are
not robust to mis-specification

A second macro-prudential DSGE model

which adds an omitted financial market
vulneratibility variable n(t)

with respect to a first macro-prudential DSGE
q(t)=C.k(t)+e+D.n(t)

Demonstrates that the first macro-prudential
model model was blowing up the economy
when omitting D.n(t), non-zero mean of
disturbances



Linear system multiple equilibria, crisis
and robust macroprudential policy

If the system has a saddlepoint finite long term
equilibrium x*,

It has also two alternative multiple equilibria for m
diverging dimensions with two alternative long term
equilibria: +eo and -o=. (or zero if the variable is bounded
below And xmax if the variable is bounded upwards).

Robust preventive macro-prudential policy should avoid
the crisis with policy leaning against those potential
bubbles in the neighbourhood of x(0) avoiding the bad
extreme equilibria.




Robust preventive macro-prudential policy

Does not deal with the exit of a bad equilibrium
to get out of a financial crisis.

Holds only in the neigthbourhood of a « good »
long run equilibrium with a linearized system
valid for relative deviations of variables from
their long run equilibrium value at most equal to

10%.



Robust macro-prudential policy

Min-max of losses +e° and -e= when the
expectations of disturbancesis distinct from
zero in equation (1b).

This implies seeking for bounded solutions,
« over-stable » rules in the min-max
optimization

And min-max the finite losses when the

expectations of disturbances is distinct from
zero in equation (1a).



Example: Probability of Stable
Control of an Unstable Plant
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Applying Blanchard and Kahn (1980) unique solution,
maintaining instability in m dimensions, with
instantaneous, not modelled, self adjustment of the
system to shocks in those m dimensions,
with lack of robustness to infinitesimal deviation of the
mean of errors of specification in those m dimenions




Robust to misspecification, preventive,
macro-prudential policy goal is to avoid
crisis (USA, April 2004)

Percent Job Losses in Post WWII Recessions

o 1948 w1953 w1957 ===1960 -=1969 1974 1980 ===198] ===1990 ===2001 ===2007

/

1.0%

0.0%

EEEEEP .AEEREE P

-1.0%

-2.0%

-3.0%

-4.0%

-3.0%

Current
Employment
Recession

Percent Job Losses Relative to Peak Employment Month

Dotted Line
ex-Census
Hiring

-6.0%

-7.0%

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82
Number of Months After Peak Employment http://wwuw.calculatedriskblog.com/




LQ Regulato
the Example

 Casae &) LOR with low

weighting

= Casa b LOR with high
mmul’uﬂghﬂngm

+  Case c) Case b with gains s, ==l -E2 A0 Al
rrLiftl by & for bandwidth

(lbp-iransfer) recovery

rs for

= Three siabilizing feadback control laws

Q= diap(LLLOE, R={L1}, i_

oo| 017 130 3 036 1
058 —11 =3 -1 |

=35 5.§.-43 42|

- G0 /& 3 104 |
clly 4% =18 —1F

[} m g | L0y Re{loomiods), 4,

o3 Ay i

i

ol 43 w8 -ax ]
P =33 A1 -10-05

L F



Robust optimal control
by Hansen Sargent (2007)

Robust rules obtained in
minimizing the maximum
of losses (with parameter
0 measuring mis-
specification aversion)
when the expectations of
errors is non zero for (1a)
and (1b).

ROBUSTNESS




Conclusion
Macro-prudential DSGE models:
From Blanchard Kahn
to Kalman’s controllability?



Kalman’s US national medal of science
(2009)
and his contribution to Apollo program
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