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Abstract

Mortgage loans are a striking example of a persistent nominal rigidity. As a result, under
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to income ratios suggest the role of such loans in monetary transmission may be important.

A general equilibrium model is developed to address this question. The transmission is

found to be stronger under adjustable- than fixed-rate contracts. The source of impulse also

matters: persistent inflation shocks have larger effects than cyclical fluctuations in inflation

and nominal interest rates.
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1 Introduction

Most theories of how monetary policy affects the real economy rely on some form of nominal

rigidity. Frequently made assumptions, supported by empirical evidence, are that prices

and wages of individual firms or households are pre-set in nominal terms for a given period

of time, with the result that nominal variables under the control of a monetary authority

affect relative prices and real incomes. A specific form of nominal rigidity, but somewhat

overlooked in the literature, characterizes also standard mortgage loans. In particular, fully-

amortizing mortgages require the homeowner to make nominal instalments—regular interest

and amortization payments—for the duration of the loan. The installments are calculated so

as to guarantee that the principal is repaid in full by the end of the loan’s life. A conventional

fixed-rate mortgage (FRM) in the United States, for instance, carries a fixed nominal interest

rate and prescribes constant nominal installments for the entire life of the loan, typically 30

years. An adjustable-rate mortgage (ARM), typical for the United Kingdom or Australia,

also prescribes nominal installments, calculated each period so that, given the current short-

term nominal interest rate, the loan is expected to be repaid in full by the end of its life.1

This paper studies the macroeconomic consequences of the nominal rigidity inherent in

standard mortgage loans. In particular, our aim is to characterize the channels through

which the rigidity facilitates the transmission of monetary policy into the real economy,

especially into housing investment, and to investigate the strength of the transmission in

general equilibrium. In order to isolate the effects of the rigidity, the paper abstracts from

other nominal frictions.

1The majority of mortgage loans in advanced economies are fully-amortizing mortgages with a term of
15 to 30 years, either FRMs or ARMs. On average, over the period 1982-2006, FRMs accounted for 70% of
mortgage originations in the United States (Federal Housing Finance Agency, Monthly Interest Rate Survey,
Table 10); before 1982, they were essentially the only mortgage type available. Other countries in which
FRMs—with interest rates fixed for at least 10 years—have traditionally dominated the mortgage market
include Belgium, Denmark, and France (in addition, the typical mortgage in Germany and the Netherlands
has rates fixed for 5 to 10 years); in other advanced economies, ARMs (with an interest rate linked to a short-
term market rate) or FRMs with interest rates fixed for less than 5 years prevail; see Scanlon and Whitehead
(2004) and European Mortgage Federation (2012a). Such cross-country heterogeneity in mortgage markets
appears to be due to different government regulations (e.g., Green and Wachter, 2005; Campbell, 2012). The
structure of mortgage markets and mortgage contracts is taken here as given and we consider only the two
extremes: FRMs with an interest rate fixed for the entire term and ARMs.



Recent monetary policies in a number of advanced economies have aimed at reducing long-

term interest rates or have committed to low short-term interest rates for long periods of time.

One of the goals of such policies is to encourage housing investment (e.g., Board of Governors,

2012). Concerns have also been expressed about the consequences of potential future rises

in short-term interest rates for existing homeowners with ARMs (Bank of England, 2013).

The model developed in this paper provides a step towards a framework allowing formal,

general equilibrium, analysis of the effects of such policies on aggregate housing investment

and income redistribution.

Mortgage payments (interest and amortization) as a fraction of income—the so called

‘debt-servicing costs’—are nontrivial. Our estimates suggest that, on average over the past

30-40 years, they were equivalent to 15-22% of the pre-tax income of the 3rd and 4th quintiles

of the U.S. wealth distribution, representing the typical ‘homeowner’ (Campbell and Cocco,

2003). A similar picture emerges also from scattered information for some other coun-

tries. Hancock and Wood (2004) report that in the United Kingdom mortgage debt servic-

ing costs (for pre-tax income) fluctuated between 15% and 20% over the period 1991-2001.

And in Germany, mortgage debt servicing costs are reported to be around 27% of dis-

posable income (European Mortgage Federation, 2012b). Mortgage debt to (annual) GDP

ratios in advanced economies are also considerable, reaching on average around 70% in 2009

(International Monetary Fund, 2011, Chapter 3).

The nominal rigidity in mortgages leads to two channels of monetary policy transmission.

One channel works through new borrowing (a price effect), the other through outstanding

mortgage debt (current and expected future wealth effects). As a preliminary step illus-

trating the real effects through the first channel, Figure 1 shows the quantitative impact of

alternative paths of the short-term (i.e., one-period) nominal interest rate on a typical mort-

gage holder’s expected debt-servicing costs over the life of a typical 30-year mortgage, either

FRM or ARM (one period here, equals one quarter). In this example, a household considers

buying a house by taking out a mortgage in period 1 worth four times its annual post-tax
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income.2 Let us assume no uncertainty (for easier exposition) and that short- and long-term

nominal interest rates, as well as mortgage rates, satisfy standard no-arbitrage conditions3.

In addition, assume that the real interest rate and the household’s real income are constant

(the real rate is 1% per annum) and that the household’s nominal income changes in line

with inflation. The two real variables are purposefully held constant so that any real effects

on the household’s budget occur only due to nominal factors.

Panel A of Figure 1 considers the effect of a mean-reverting decline of the short rate.

Its steady-state level is 4%, which is roughly the average for the period from 1990 onwards.

As the right-hand side chart shows (lines labeled ‘steady state’), at the steady-state interest

rate, debt-servicing costs are front-loaded and decline monotonically over the life of the

mortgage, here from 29% to 6.5%. This is the well-known ‘tilting’ effect, which occurs due

to a positive inflation rate (3%).4 Now instead suppose that in period 1 the short rate is

equal to 1% (‘monetary policy easing’) and reverts back to the steady state with persistence

of 0.95, the average autocorrelation in the data. Under this path, the tilting is weakened:

at the front end of the mortgage debt-servicing costs decline, while at the back end they

somewhat increase. For example, in period 1, they decline by 9 percentage points under

ARM and by 4 percentage points under FRM. The decline under FRM is smaller than under

ARM because the FRM interest rate, due to the mean-reverting nature of the short rate,

2This is based on the average ratio, 1975-2010, of the median price of a new home (assuming a loan-
to-value ratio of 76%) to the median household income (assuming an income tax rate of 23.5%). The data
on both house prices and incomes are from the U.S. Census Bureau. The loan-to-value ratio is the average
ratio for single family newly-built home mortgages (Federal Housing Finance Agency, Monthly Interest Rate
Survey, Table 10). The tax rate is an estimate discussed in Section 4.

3Specifically, (i) the expectations hypothesis—i.e., the interest rate on an n-period nominal zero-coupon
bond is equal to the average of one-period nominal interest rates between periods 1 and n; (ii) the Fisher
effect—i.e., the one-period nominal interest rate at time t is equal to the real interest rate plus the inflation
rate between periods t and t+1; and (iii) mortgages are priced by arbitrage with the zero-coupon bonds (i.e.,
in the case of FRM, the mortgage interest rate is such that when the installments are evaluated at the prices
of zero-coupon bonds—which are determined by the expectations hypothesis—the present value of a $1 loan
is $1; in the case of ARM, the mortgage rate is equal to the one-period interest rate, implying again that the
present value of a $1 loan is equal to $1). The principles of mortgage pricing and installment calculations
are discussed by, e.g., Fabozzi, Modigliani, and Jones (2010); in the context of a two-period mortgage, they
are explained in Section 3.

4Positive inflation deflates the real value of mortgage payments in later periods of the life of the loan,
which has to be compensated by higher real payments at the beginning, for the present value of a $1 loan
to equal to $1.

3



declines by less than the short rate itself. However, the impact of a decline of the short

rate on debt-servicing costs is not always larger under ARM. Panel B of Figure 1 depicts

a situation—a hump-shaped decline of the short rate—characterized by a stronger impact

under FRM. This is because the FRM rate anticipates the future decline in the short rate,

thus declining immediately in period 1.5

The two cases illustrate that changes in the path of the short rate, occurring due to purely

nominal factors (the expected path of inflation), redistribute the expected debt burden over

the life of the loan. Here, reducing real mortgage payments closer to the front end, where

debt-servicing costs are the highest. This lowers the effective cost of the loan under a

concave utility function and increases housing demand. A monetary policy ‘tightening’ has

the opposite effect. An implicit assumption in this discussion, and a necessary condition for

this effect to matter to the household, is that the household cannot fully offset the impact

of the short rate on debt-servicing costs through other financial instruments.

In addition to the above (price) effect, which relates to new mortgage loans, in a world

with uncertainty monetary policy also affects household decisions ex-post, through current

and future debt-servicing costs on outstanding mortgage debt (wealth effects). In the case

of FRM, only the inflation rate matters: a higher inflation rate reduces the real value of

outstanding debt and thus the real value of the payments households have to make. The

strength of this effect increases with inflation persistence. In the case of ARM, both the

short-term nominal interest rate and the inflation rate are relevant. An equiproportionate

(persistent) increase in the two rates, for instance, initially increases the real payments, as

the impact of a higher nominal interest rate dominates the effect of higher inflation. Over

time, however, the effect of persistently high inflation gains strength, reducing the real value

5If the steady-state short rate was equal to 1% (i.e., zero inflation rate), debt-servicing costs would be
constant at 15%. The more persistent the 3 percentage point decline of the short rate is, the closer debt-
servicing costs get to 15% and the smaller is the difference between the above effects under ARM and FRM.
In the case of 8% steady-state short rate—the average for the period 1970-1989—a mean-reverting decline in
the short rate by 3 percentage points (0.95 persistence) results in declines in debt-servicing costs in the first
period by 11 percentage points under ARM and 6 percentage points under FRM. At the 8% steady-state
short rate, the tilting is 42% in the first period and 3% in the final period, making a given reduction more
valuable (under a concave utility function) than in the case of the 4% steady-state rate.
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of the payments.

These channels are studied numerically in a general equilibrium model with incomplete

asset markets and long-term mortgage loans. As in the above examples, mortgages are

priced by arbitrage, but unlike in the examples, the short rate, the real interest rate, and

the household’s real income are endogenous. These variables are determined by a monetary

policy rule, the marginal product of capital (owned by mortgage lenders), and labor supply

decisions by homeowners in competitive factor markets. The two types of the short rate

dynamics considered in the numerical example above arise endogenously in response to dif-

ferent shocks. The monetary policy rule consists of two parts: systematic responses of the

central bank to movements in output and inflation and exogenous changes in an implicit

inflation target. In equilibrium, the latter works like a level factor in models of the yield

curve and allows the model to replicate the persistence and volatility of long-term nominal

interest rates; the former affects the cyclical volatility of the long-short spread. Due to the

long-term nature of the mortgage loan, the persistence of nominal interest rates affects the

quantitative importance of the nominal rigidity.

The results can be summarized as follows. First, monetary policy has a larger effect

on housing investment under ARM than under FRM. Broadly speaking, this is because the

price and wealth effects reinforce each other under ARM, but tend to offset each other under

FRM. Second, the effects of the stochastic part of the policy rule are larger than the effects

of the systematic part. In the latter case, general equilibrium adjustments in the expected

future path of the real interest rate tend to offset the real effects of the nominal rigidity

in mortgages, whereas in the former case such offsetting forces are weaker. Third, higher

inflation redistributes income from lenders to borrowers under FRM, but (at least initially)

from borrowers to lenders under ARM.6 An implication of our findings for the current policy

debate is that, other things being equal, low nominal interest rates are likely to have larger

real effects in ARM than FRM countries and the impact will be larger the longer is the time

6The result that monetary policy transmission is stronger under ARM than under FRM is consistent with
cross-country empirical findings of Calza, Monacelli, and Stracca (2013).
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horizon for which the rates are expected to stay low.

The paper proceeds as follows. Section 2 relates it to the literature. Section 3 uses a

simple three-period problem to explain the nature of the nominal rigidity and the two chan-

nels of transmission. Section 4 describes the general equilibrium model and its equilibrium.

Section 5 discusses the mapping between the model and the data and calibrates the model.

Section 6 reports the findings and explains the general equilibrium adjustments. Section 7

concludes and offers suggestions for future research. A supplemental material contains a list

of the model’s equilibrium conditions, the computational method, a description of the data

counterparts to the variables in the model, and estimates of mortgage debt servicing costs

for the United States.

2 Related literature

The paper is related to distinct strands of the literature. First, a number of earlier studies

recognize that inflation/nominal interest rates may affect housing demand and construction.

The role of the tilting effect has been investigated in the context of mortgage contract design

(Lessard and Modigliani, 1975), a supply-demand econometric model of the housing market

(Kearl, 1979), and a consumer’s problem under a constant inflation rate (Schwab, 1982;

Alm and Follain, 1984).7

Second, following the seminal contribution of Iacoviello (2005), a number of dynamic

stochastic general equilibrium (DSGE) models study the role of housing and housing finance

in the monetary transmission mechanism (Iacoviello, 2010, contains various references). This

literature, however, is concerned with a different channel than ours, focusing on the interac-

tion between sticky prices, borrowing constraints, and the collateral value of housing. In ad-

7In addition, Poterba (1984) notes that, as the U.S. income tax brackets are set in nominal terms,
mortgage finance and inflation also interact due to the tax deductibility of mortgage interest payments.
This feature adds an additional layer of nominal rigidity into a mortgage contract, but is abstracted from
in this paper. More recently, Brunnermeier and Julliard (2008) argue that the main channel through which
inflation and mortgages affect housing decisions is money illusion, which makes households ignore the effects
of inflation on the real value of future mortgage payments.
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dition, housing finance in this literature takes the form of one-period loans, which (as shown

in Section 3) eliminates from the transmission mechanism the nominal rigidity we focus on.8

Iacoviello and Neri (2010) estimate a version of Iacoviello (2005) and find that housing de-

mand shocks—modeled as shocks to the marginal utility of housing—are important drivers

of housing investment and house prices over the business cycle. Shocks to the marginal util-

ity of housing are also key in the land collateral mechanism of Liu, Wang, and Zha (2013).

The price channel in our model may be viewed as a structural interpretation of such shocks,

as it shows up in a similar way in the optimality condition for housing.

Housing and monetary policy have also been studied in the context of home production

models (Edge, 2000; Aruoba, Davis, and Wright, 2012) and models with liquidity effects

(Li and Chang, 2004; Dressler and Li, 2009; Ghent, 2012). Except for Ghent (2012), who

works with FRMs specified in real terms, these studies abstract from mortgage loans.9

Third, mortgages (or long-term housing debt more generally) are considered by a num-

ber of studies focusing on issues unrelated to monetary policy: optimal mortgage choice

(Campbell and Cocco, 2003), consumption smoothing (Hurst and Stafford, 2004; Li and Yao,

2007), equilibrium homeownership rates (Chambers, Garriga, and Schlagenhauf, 2009a,b),

and equilibrium foreclosures (Garriga and Schlagenhauf, 2009; Chatterjee and Eyigungor,

2011; Corbae and Quintin, 2011). The objects of analysis of these studies are either a single

household’s decisions or steady-state equilibria in models without aggregate shocks. This

allows the inclusion of various option-like features, such as refinancing or default, which our

model with aggregate shocks abstracts from.10

8The interest rate on the one-period loan is in this literature specified as either the current short rate
(Iacoviello, 2005, and many others), a weighted average of current and past short and long rates (Rubio,
2011), or evolving in a Calvo-style ‘sticky’ fashion (Graham and Wright, 2007). A staggered evolution of the
interest rate introduces a form of nominal rigidity into the housing loan, but due to the one-period nature
of the loan, households can undo its effects. Calza et al. (2013) distinguish between one- and two-period
contracts, aimed at capturing ARM and FRM respectively. Their FRM thus contains the nominal rigidity
studied here, but it lasts for only two periods; as a one-period loan, their ARM does not contain the rigidity.

9In addition to these quantitative-theoretical studies, a number of authors investigate the relationship
between monetary policy and housing empirically, in various regression models (see Kearl, Rosen, and Swan,
1975; Kearl, 1979) and structural VARs (e.g., Bernanke and Gertler, 1995; Iacoviello and Minetti, 2008;
Calza et al., 2013). Using data for a number of developed economies, Calza et al. (2013) find stronger
monetary transmission in ARM than FRM countries.

10An exception in this regard is Koijen, Van Hemert, and Van Nieuwerburgh (2009), who study a mortgage
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Fourth, the paper is related to studies investigating the redistributive effects of monetary

policy when debt contracts are specified in nominal terms (Doepke and Schneider, 2006;

Meh, Rios-Rull, and Terajima, 2010; Sheedy, 2013). We show that in the case of mortgages

the distributional consequences depend, even qualitatively, on whether the loan is ARM or

FRM.

Finally, for our numerical analysis we use an approximation of mortgage loans proposed

by Kydland, Rupert, and Sustek (2012), which makes mortgages easy to handle in DSGE

models. The focus of their paper is the lead-lag cyclical pattern of residential investment,

rather than monetary policy transmission. To that end, they take the mortgage and inflation

rates as exogenous, following an estimated VAR process with total factor productivity. As

such, the interest and inflation rates process fed into their model reflects shocks and frictions

our model abstracts from.

3 The nominal rigidity and channels of transmission

In a deterministic three-period problem of a single household, this section explains the nature

of the nominal rigidity and the resulting two channels of monetary policy transmission.

Using, at this stage, a deterministic three-period example allows us to describe the rigidity

in a transparent way. An extension to an infinite horizon and uncertainty is straightforward

but at the cost of extra notation (probabilities and histories of events) and cumbersome

expressions.11

Time is denoted by t = 1, 2, 3. Each period the household is endowed with constant real

income w and in period 1 has no outstanding mortgage debt (we introduce outstanding debt

choice problem with some option-like features in a model with aggregate shocks. Their agents and mortgages,
however, live for only two periods.

11The issues discussed here apply equally to other long-term loans with nominal installments, such as
car loans. The focus of the paper is on mortgages as they have much longer term than car loans and
housing makes up a bigger chunk of household investment than automobiles. As shown below, a particular
nominal rigidity characterizes also long-term coupon bonds, typically issued by corporations. This paper
abstracts from corporate debt for the reason that, in contrast to single-family housing, long-term corporate
assets are predominantly (more than 75%) financed through retained earnings and other forms of equity
(Rajan and Zingales, 1995).
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later in this section). In period 1, the household makes a once-and-for-all housing investment

decision, financing a fraction θ of the investment with a loan and a fraction 1−θ with income.

The loan can be used only for the housing investment and the house lasts for periods 2 and 3.

The life-time utility function of the household is V =
∑3

t=1β
t−1u(ct)+

∑3
t=2β

t−1g(h), where β

is a discount factor, ct is consumption of a nonhousing good in period t, h is housing, and u(.)

and g(.) have the standard properties. The household maximizes the utility function with

respect to c1, c2, c3, and h, subject to three per-period budget constraints: c1+h = w+ l/p1,

c2 = w − m2/p2, and c3 = w − m3/p3, where l = θp1h is the nominal value of the loan,

m2 and m3 are nominal loan installments (to be specified below), and pt is the aggregate

price level in period t (the price of goods in terms of an abstract unit of account). Assume

there is a financial market that prices assets by arbitrage but in which the household does

not participate due to, for instance, high entry costs (in the actual model this assumption

will be partially relaxed). Assume also that monetary policy controls a one-period nominal

interest rate it. The absence of arbitrage restricts it to satisfy 1 + r = (1 + it)/(1 + πt+1),

where 1+r is a gross rate of return on real assets, assumed to be constant and given by some

pricing kernel µ∗ = (1 + r)−1, and πt+1 ≡ pt+1/pt − 1 is the inflation rate between periods t

and t+ 1.

3.1 Mortgages

Mortgage installments satisfy m2 ≡ (iM2 + γ)l and m3 ≡ (iM3 + 1)(1− γ)l. Here, iMt denotes

the mortgage interest rate (henceforth referred to as the ‘mortgage rate’). Under FRM,

iM2 = iM3 = iF ; under ARM, iM2 and iM3 may be different. Further, γ is the amortization rate

in the first period of the life of the mortgage, when the outstanding nominal debt is l. In the

second period, the outstanding nominal debt is (1 − γ)l and the amortization rate is equal

to one (i.e., the mortgage is repaid in full). FRM prescribes constant nominal installments:

m2 = m3. The amortization rate therefore solves iF + γ = (iF + 1)(1 − γ), which yields

γ = 1/(2 + iF ) ∈ (0, 0.5), for iF > 0. Note that dγ/diF = −1/(2 + iF )2 ∈ (−0.25, 0). For

9



a given l, m2 and m3 therefore increase when iF increases. Under ARM, γ = 1/(2 + iM2 ) ∈

(0, 0.5), for iM2 > 0. If iM3 > iM2 then m3 > m2 and vice versa. It is also the case that

dγ/diM2 ∈ (−0.25, 0) and therefore that m2 increases when iM2 increases.

3.1.1 Mortgage pricing and housing investment under FRM

In the absence of arbitrage, iF has to satisfy

1 = Q
(1)
1 (iF + γ) +Q

(2)
1 (1− γ)(iF + 1), (1)

where Q
(1)
1 = (1+ i1)

−1 and Q
(2)
1 = [(1+ i1)(1+ i2)]

−1 are the period-1 prices of one- and two-

period zero-coupon bonds, determined according to the expectations hypothesis. Condition

(1) states that the present value of installments for a mortgage of size one is equal to one.

Notice that if γ = 1, the mortgage becomes a one-period bond and if γ = 0, the mortgage

becomes a coupon bond. It is straightforward to show that, for γ ∈ [0, 1), i1 < i2 implies

i1 < iF < i2 and vice versa.

The household’s only first-order condition is u′(c1)(1 + τH) = β(1 + β)g′(h), where

τH = −θ

{
1−

[
µ12

iF + γ

1 + π2

+ µ12µ23
(1 + iF )(1− γ)

(1 + π2)(1 + π3)

]}
(2)

is a wedge between the marginal utility of period-1 nonhousing consumption and the marginal

lifetime utility of housing, and where µt,t+1 ≡ βu′(ct+1)/u
′(ct) is the household’s ‘stochastic’

discount factor. Notice that the wedge works like an ad-valorem tax/subsidy on housing

investment and that the expression within the square brackets is the present value of the

marginal real installments from the household’s perspective (i.e., evaluated at its stochastic

discount factor rather than the pricing kernel of the financial market, µ∗). The present value

represents the cost of the mortgage to the household. Because the household does not trade

in the financial markets, in general, µt,t+1 ̸= µ∗ and the present value is different from one.

When it is less (greater) than one, the wedge is negative (positive).

10



Equation (2) shows that the wedge depends on nominal variables iF , π2, π3; i.e., it is not

possible to rewrite the wedge in terms of real variables alone. By controlling i1 and i2—and

thus, through the no-arbitrage conditions, iF , π2, and π3—monetary policy affects τH and

the household’s optimal choice of h. This channel of transmission will be referred to as the

price effect, as it affects the cost of new borrowing and thus the effective price of housing

investment paid by the household. Notice that r also affects τH : for a given it, it affects πt+1

through the Fisher equation. But because of the long-term and nominal nature of the loan,

r alone is not a sufficient statistic for the cost of the loan to the household. In contrast, in

standard models used for monetary policy analysis (e.g., the New-Keynesian models), r is

such a summary statistic.12

When µt,t+1 = µ∗, τH = 0 and monetary policy is neutral. When µt,t+1 ̸= µ∗, the

wedge is nonzero for any γ ∈ [0, 1), not just the FRM γ which makes m2 = m3. The

value of γ, however, controls the form of the nominal rigidity. In the extreme case, γ = 0

(a coupon bond), the nominal payments are concentrated in period 3 and monetary policy

works primarily through changing the real value of the repayment of the principal; in the case

of FRM, the nominal payments are distributed evenly across the two periods, producing the

tilting effect asm3 gets more deflated, in real terms, thanm2. When γ = 1 (one-period loan),

monetary policy is neutral: τH = −θ {1− µ12[(1 + i1)/(1 + π2)]}, where (1 + i1)/(1 + π2) =

1 + r = (µ∗)−1, and µ12 is evaluated at c2 = w − θ(1 + r)h.13

3.1.2 Mortgage pricing and housing investment under ARM

Under ARM, iM2 = i1 and iM3 = i2 ensures the absence of arbitrage:

Q
(1)
1 (iM2 + γ) +Q

(2)
1 (1− γ)(iM3 + 1) =

i1 + γ

1 + i1
+

(1− γ)

(1 + i1)

[
(i2 + 1)

(1 + i2)

]
= 1.

12Monetary policy transmission in that class of models works through sticky prices, resulting in sluggish
πt+1, which allows it to directly affect rt+1.

13Neutrality also results when the housing loan takes the form of a 2-period zero-coupon bond; i.e., m2 = 0
and m3 = (1+ i1)(1+ i2)l. It is straightforward to show that in this case the wedge depends only on the ratio
of (µ12µ23) and (µ∗)2, where µ23 is evaluated at w − (1 + r)2θh. Neutrality also results under index-linked
mortgages (see Section 3.2.1) and in the trivial case of θ = 0.

11



The household’s first-order condition takes the same form as under FRM, but with a wedge

τH = −θ

{
1−

[
µ2

i1 + γ

1 + π2

+ µ2

(
µ3

µ∗

)
1− γ

1 + π2

]}
, (3)

where we have substituted (µ∗)−1 for (1 + i2)/(1 + π3). Again, for γ ∈ [0, 1), τH depends

on nominal variables and monetary policy affects the household’s optimal choice of h. For

instance, a decline in i1 reduces the marginal real installments in the first period of the life

of the mortgage: through the Fisher effect (holding r constant), π2 declines one for one with

i1 but—as γ ∈ (0, 0.5) and dγ/diM2 ∈ (−0.25, 0)—the effect on the numerator is stronger

than the effect on the denominator.

3.1.3 Outstanding mortgage debt

Let us now abstract from the housing investment decision and focus instead on how monetary

policy affects the real value of payments on outstanding mortgage debt. Suppose that in

period 1 the household has some outstanding mortgage debt l0, taken out in period 0 and

maturing in period 2. The household’s budget constraint in period 1 is c1 = w − m̃1, where

m̃1 ≡ m1/p1 = [(iM1 +γ)/(1+π1)]l̃0, with l̃0 ≡ l0/p0. The mortgage rate iM1 is predetermined

in period 1; it is equal to some iF0 under FRM and to i0, the period-0 short rate, under

ARM. Clearly, a higher π1 generates a positive current wealth effect in period 1. This is the

standard wealth effect present also in the case of one-period loans (γ = 1).

In period 2, the real payments on this 2-period loan are, respectively under FRM and

ARM,

m̃2 =
iF0 + 1

(1 + π1)(1 + π2)
(1− γ)l̃0 and m̃2 =

1 + r

1 + π1

(1− γ)l̃0,

where in the second equation we have substituted 1 + r for (i1 + 1)/(1 + π2). Thus, for

γ ∈ [0, 1), a higher π1 generates not only positive wealth effects in period 1, but also positive

expected future wealth effects, as it reduces the real payments in period 2. If the increase in

the inflation rate is persistent, under FRM the expected future wealth effects occur also due

12



to expectations of a higher π2. In the case of ARM, the absence of the nominal interest rate

and period-2 inflation rate in m̃2 is due to the 2-period term of the loan considered here.

Suppose, instead, that the loan has a 3-period term, maturing in period 3. In period 2, the

real mortgage payments are then

m̃2 =
i1 + γ2

(1 + π1)(1 + π2)
(1− γ1)l̃0,

where γ2 is a period-2 amortization rate. In this case, an expected increase in π2 which, by the

Fisher equation, leads to an equiproportionate increase in i1, does not reduce the expected

period-2 real payments, as in the case of FRM, but increases them. It is straightforward to

check that, as γ2 ∈ (0, 0.5) and dγ2/di1 ∈ (−0.25, 0), an increase in i1, accompanied by an

equiproportionate increase in π2, increases the real installments.14 In period 3, the ARM

payments are

m̃3 =
1 + r

(1 + π1)(1 + π2)
(1− γ2)(1− γ1)l̃0,

where we have substituted 1 + r for (i2 + 1)/(1 + π3). A higher π2, while increasing the real

payments in period 2, leads to their reduction in period 3.

To summarize, current inflation produces standard wealth effects under both FRM and

ARM, as well as under one-period loans. In addition, with mortgages there are expected

future wealth effects. When a higher current short rate transmits one for one into a higher

inflation rate next period, as the Fisher effect dictates, it unambiguously reduces future real

payments on outstanding mortgage debt under FRM; under ARM, it increases the payments

in the immediate periods, but reduces them in later periods of the life of the mortgage. The

more persistent the increase in the inflation rate is, the larger is the expected future reduction

in the real value of mortgage payments.15

14The properties of γ2 listed here are derived from the equation (i1+γ2)(1−γ1) = (i1+1)(1−γ2)(1−γ1),
which states that the installments in periods 2 and 3 have to be the same, conditional on i1. This yields
γ2 ≈ (1− γ1)/(2 + i1 − γ1), which, for some γ1 ∈ (0, 1), is in the interval (0,0.5). Taking the derivative with
respect to i1 then confirms that dγ2/di1 ∈ (−0.25, 0), for γ1 ∈ (0, 1).

15In a model with both the outstanding and new debt, the wealth effects interact with the price effect,
as they affect consumption of the nonhousing good and thus µt,t+1, the valuation of the marginal real
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3.2 Alternative housing finance arrangements

For comparison, we now discuss alternative housing finance arrangements.

3.2.1 Index-linked mortgage

An index-linked mortgage, also known as a price-level adjusted mortgage, is a mortgage

(here with a 2-period term) that adjusts the principal for changes in the price level. Under

this mortgage, the nominal installments are m2 = (iM2 + γ)[(1+π2)l] and m3 = (iM3 +1)(1−

γ)[(1 + π2)(1 + π3)l]. Arbitrage imposes iM2 = iM3 = r. As a result, real installments, m2/p2

and m3/p3, do not depend on nominal variables, rendering monetary policy neutral. The

wedge in this case is τH = −θ {1− [µ12(γ + r) + µ12µ23(r + 1)(1− γ)]}. Notice that the

same wedge results under FRM or ARM if πt = 0 for t = 2, 3.

3.2.2 Sequence of one-period loans

Suppose we let the household adjust h and l in period 2. That is, the household chooses

lt = θptht in periods t = 1, 2 and pays back (1 + it−1)lt−1 in periods t = 2, 3. This is

a common assumption in the DSGE models noted in Section 2.16 Such arrangement is

similar to period-by-period refinancing: each period, an existing mortgage is fully prepaid

(with the one-period interest paid) and a new mortgage—of a possibly different size and

with a different interest rate—is taken out. The sequence of loans results in wedges in

periods t = 1, 2 given by τHt = −θ[1 − µt,t+1(1 + r)], which are nonzero for µt,t+1 ̸= µ∗,

but do not depend on nominal variables. Clearly, both period-by-period refinancing and

keeping the mortgage until maturity—an implicit assumption in our set up—are extreme

cases. In reality, refinancing is an option, which the household may occasionally exercise.

This paper abstracts from optimal refinancing. The nominal rigidity in mortgages is thus

installments.
16The constraint in these models is slightly different from our version of it. Usually it takes the form

[(1+ it)/(1+πt+1)](lt/pt) ≤ θpHt+1ht. That is, repayment of the one-period loan with interest, in real terms,
must be less or equal to a fraction of the value of the house next period, where pH is the relative price of the
house in terms of the nonhousing good. Additional assumptions guarantee that the constraint always holds
with equality. These details are unimportant for the point being made here.
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at its extremum and the results are best viewed as an upper bound on the strength of the

transmission mechanism under investigation.

4 The model

The model embeds a version of the household’s problem of Section 3.1 in a general equilibrium

framework. As in that section, and in the examples in the Introduction, mortgages are priced

by arbitrage and the expectations hypothesis and the Fisher equation hold. The model differs

from the three-period example in six respects: i) the time horizon is infinite and the same

types of decision are made every period; ii) there are aggregate shocks; iii) houses consist

of land and structures; iv) mortgages resemble standard 30-year mortgage loans, rather

than maturing in just two or three periods; v) households have some ability to smooth the

impact of mortgage payments through financial assets; and vi) the household’s income, the

short-term nominal interest rate, and the real interest rate are endogenous. The model also

includes various taxes, transfers, and government expenditures. They are parameters and

their role is to facilitate a sensible mapping of the model into data. The presence of land

in the model is unimportant for the main results, but it allows us to derive the model’s

implications for house prices, as opposed to only prices of structures.

4.1 Environment

The economy’s population is split into two groups, ‘homeowners’ and ‘capital owners’, with

measures Ψ and (1−Ψ), respectively. Within each group, agents are identical. An aggregate

production function combines capital and labor to produce a single good. Capital owners

own the economy’s capital stock, whereas homeowners supply labor and own the economy’s

housing stock. Such abstraction is motivated by cross-sectional observations.17 The two

17Capital owners and homeowners in the model correspond to, respectively, the 5th and the sum of the
3rd and 4th quintiles of the U.S. distribution of wealth: in the data, the 3rd and 4th quintiles hold most of
their assets in housing, while the 5th quintile hold almost the entire corporate equity in the economy (the
5th quintile also own housing, but it is a less important component of their asset structure; the 1st and
2nd quintiles are essentially renters with no assets); see Campbell and Cocco (2003), Figure 1. In addition,
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types of agents trade a one-period nominal bond and capital owners provide mortgage loans

to homeowners, pricing them by arbitrage. Where applicable, the notation is the same as

in Section 3. Only new variables and functions are therefore defined. When a variable’s

notation is the same for both agent types, an asterix (∗) denotes the variable pertaining to

capital owners.

4.1.1 Capital owners

A representative capital owner maximizes expected life-time utility

Et

∞∑
t=0

βtu(c∗t ), β ∈ (0, 1),

where u(.) has standard properties, subject to a sequence of budget constraints

c∗t + xKt +
b∗t+1

pt
+

l∗t
pt

= [(1− τK)rt + τKδK ] kt + (1 + it−1)
b∗t
pt

+
m∗

t

pt
+ τ ∗t +

pLt
1−Ψ

. (4)

Here, xKt is investment in capital, b∗t+1 is holdings of the one-period nominal bond between

periods t and t + 1, τK is a capital income tax rate, δK ∈ (0, 1) is a depreciation rate, kt is

capital, and τ ∗t is a lump-sum transfer. In addition, 1/(1−Ψ) is new residential land, which

the capital owner receives each period as an endowment, and pLt denotes its price in terms

of consumption. The capital stock evolves as

kt+1 = (1− δK)kt + xKt (5)

and the depreciation is tax deductible in order to make the capital income tax rate in the

model comparable with its estimates in the literature.

All mortgages in the economy are either FRM or ARM and are approximated using the

formulation of Kydland et al. (2012), which is convenient both analytically and computa-

the 3rd and 4th quintiles derive almost all of their income from labor, whereas labor income is much less
important for the 5th quintile (Survey of Consumer Finances; see also Section 5.2 for details).
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tionally, while being reasonably accurate (see their paper for details). Three state variables

track the outstanding nominal mortgage debt and its effective amortization and interest

rates. Denoting by d∗t the outstanding debt owed to the capital owner, the nominal mort-

gage payments received by the capital owner in period t are

m∗
t = (R∗

t + γ∗
t )d

∗
t , (6)

where R∗
t and γ∗

t are, respectively, the effective interest and amortization rates. The state

variables evolve as

d∗t+1 = (1− γ∗
t )d

∗
t + l∗t , (7)

γ∗
t+1 = (1− ϕ∗

t ) (γ
∗
t )

α + ϕ∗
tκ, (8)

R∗
t+1 =

 (1− ϕ∗
t )R

∗
t + ϕ∗

t i
F
t , if FRM,

it, if ARM,
(9)

where ϕ∗
t ≡ l∗t /d

∗
t+1 is the fraction of new loans in the outstanding debt next period and

κ, α ∈ (0, 1) are parameters controlling the evolution of the amortization rate.

Under FRM, the first-order condition for l∗t ensures that i
F
t is such that the capital owner

is indifferent between new mortgages and rolling over the one-period bond from period t on.

The first-order condition is an infinite-horizon counterpart to equation (1); see Appendix A.

Under ARM, the current one-period interest rate it is applied to both new and outstanding

mortgage loans, making the capital owner again indifferent between mortgages and rolling

over the bond. Notice that, even though new loans are extended every period, each new

loan (both FRM and ARM) is a long-term loan, starting with an amortization rate κ. A

one-period loan would result as a special case of this formulation if we set α = 0 and κ = 1,

which implies γt = 1 ∀t.

17



4.1.2 Homeowners

A representative homeowner maximizes expected life-time utility

Et

∞∑
t=0

βtv(ct, 1− nt, ht),

where nt is labor and v(., ., .) has the standard properties. This maximization is subject to

ct + pHtxHt −
lt
pt

+
bt+1

pt
= (1− τN)(wtnt − τ) + (1 + it−1 +Υt−1)

bt
pt

− mt

pt
+ Ωt, (10)

lt
pt

= θpHtxHt. (11)

Here, xHt is newly constructed houses, pHt is their relative price, τN is a labor income

tax rate, and τ is a pre-tax labor income deduction.18 Further, Υt−1 is a bond market

participation cost, governed by a function Υ(−B̃t), where B̃t ≡ Bt/pt−1 is homeowners’

real aggregate holdings of the bond. The function Υ(.) is assumed to be bounded below

by minus one, increasing, and convex. In addition, Υ(.) = 0 when B̃t = 0, Υ(.) > 0 when

B̃t < 0, and Υ(.) < 0 when B̃t > 0. We think of Υ(.) > 0 as capturing a premium for

unsecured consumer credit, which is increasing in aggregate borrowing19; Υ(.) < 0 is meant

to capture some intermediation costs on household savings, which reduce the interest rate on

savings below the market interest rate it. In order to avoid the participation cost affecting

the definition of aggregate output, it is rebated to the homeowner as a lump-sum transfer

Ωt = BtΥt−1/pt. In a nonstochastic steady state, B̃ = 0 and the first-order conditions for

bt+1 and b∗t+1 imply µ = µ∗ and hence τH = 0.

18As in the three-period example, θ is treated as a parameter. Similar assumption is made also by
Chambers et al. (2009a) and has empirical support: over the period 1973-2006, there has been very little
variation in the cross-sectional average of the loan-to-value ratio for single family newly-built home mortgages
(Federal Housing Finance Agency, Monthly Interest Rate Survey, Table 10).

19This can be though of as capturing the notion that as aggregate unsecured credit grows, the creditwor-
thiness of borrowers declines.
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The housing stock evolves as

ht+1 = (1− δH)ht + xHt, (12)

where δH ∈ (0, 1). Mortgage payments are again given as

mt = (Rt + γt)dt, (13)

where

dt+1 = (1− γt)dt + lt, (14)

γt+1 = (1− ϕt) (γt)
α + ϕtκ, (15)

Rt+1 =

 (1− ϕt)Rt + ϕti
F
t , if FRM,

it, if ARM.
(16)

4.1.3 Technology

An aggregate production function, operated by perfectly competitive producers, is given

by Yt = Atf(Kt, Nt), where Kt is the aggregate capital stock, Nt is aggregate labor, and

f(., .) has the standard neoclassical properties. Total factor productivity (TFP) evolves as

logAt+1 = (1 − ρA) logA + ρA logAt + ϵA,t+1, where ρA ∈ (0, 1), A is the unconditional

mean, and ϵAt ∼ iidN(0, σA). The real rate of return on capital, rt, and the real wage

rate, wt, are determined by the marginal products of capital and labor, respectively. The

resource constraint of the economy is Ct + XKt + qtXSt + G = Yt, where Ct is aggregate

consumption, XKt is aggregate investment in capital, XSt is aggregate investment in housing

structures, and G is (constant) government expenditures. Here, qt is the marginal rate of

transformation between housing structures and the other uses of output, and hence the

relative price of structures. It is given by a strictly increasing convex function q(XSt), which

makes the economy’s production possibilities frontier concave in the space of (Ct+XKt+G)

and (XSt)—a specification akin to that of Huffman and Wynne (1999). Its sole purpose is
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to ensure realistic volatility of housing investment in response to shocks; if the production

possibilities frontier was linear, given the calibration of the shocks, the volatility would be

too high.

As in Davis and Heathcote (2005), new houses consist of structures and land and are

produced by perfectly competitive homebuilders according to a production function XHt =

g(XSt, XLt). Here, XHt is the aggregate number of new homes produced in period t, XLt

is the amount of new residential land used, and g has the standard neoclassical properties.

Homebuilders chooseXHt, XSt, andXLt to maximize profits pHtXHt−qtXSt−pLtXLt, subject

to the above production function.

4.1.4 Monetary policy and government

Monetary policy is modeled as an interest rate feedback rule with a stochastic inflation target

(e.g., Ireland, 2007)

it = (i− π + πt) + νπ(πt − πt) + νy(yt − y). (17)

Here, νπ > 1, νy ≥ 0, i is the nonstochastic steady-state nominal interest rate, πt is the

inflation target, yt ≡ log Yt − log Yt−1 is the output growth rate, and y is its nonstochastic

steady-state value (equal to zero). The inflation target follows an AR(1) process πt+1 =

(1−ρπ)π+ρππt+ϵπ,t+1, where ρπ is less than but close to one, π is the nonstochastic steady-

state inflation rate, and ϵπ,t+1 ∼ iidN(0, σπ). As shown in Section 4.2.2., in equilibrium,

the inflation target shock works like a ‘level factor’, moving short and long rates equally,

and allows the model to reproduce the observed volatility and persistence of the 30-year

mortgage rate. A number of studies document that the level factor accounts for over 90% of

the volatility of yields across maturities (see, e.g., Piazzesi, 2006) and shocks to the inflation

target are often invoked as its structural interpretation (e.g., Atkeson and Kehoe, 2008). The

model is closed by the government budget constraint: G+ T ∗
t = τK(rt − δK)Kt + τN(wtNt −

τΨ) + τΨ, where T ∗
t is a transfer to capital owners.
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4.2 Equilibrium

The equilibrium concept is the recursive competitive equilibrium (e.g., Hansen and Prescott,

1995). First, let zt ≡ [logAt, πt, pt−1, Yt−1] be the vector of exogenous state variables and

lagged endogenous variables pt−1 and Yt−1, s
∗
t ≡ [kt, b

∗
t , d

∗
t , γ

∗
t , R

∗
t ] the vector of the capital

owner’s state variables, st ≡ [ht, bt, dt, γt, Rt] the vector of the homeowner’s state variables,

and St ≡ [Kt, Ht, Bt, Dt,Γt,ℜt] the vector of aggregate endogenous state variables, where

the elements are, respectively, the aggregate capital, housing, bonds, mortgage debt, and

its effective amortization and interest rates. Next, write the capital owner’s optimization

problem as

U(z, S, s∗) = max
[xK ,(b∗)′ ,l∗]

{
u(c∗) + βE[U(z′, S

′
, (s∗)

′
)|z]
}
, (18)

where a prime denotes a value next period and the constraints (4)-(9) are thought to have

been substituted in the utility and value functions. Similarly, write the homeowner’s problem

as

V (z, S, s) = max
[xH ,b

′
,n]

{
v(c, 1− n, h) + βE[V (z′, S

′
, s

′
)|z]
}
, (19)

where the constraints (10)-(16) are thought to have been substituted in the utility and

value functions. Let Wt ≡ [XKt, pt, i
M
t , XHt, Bt+1, Nt] be the vector of aggregate decision

variables and prices, where iMt = iFt under FRM and iMt = it under ARM. Define a function

Wt = W (zt, St).

A recursive competitive equilibrium consists of the functions U , V , and W such that:

(i) U and V solve (18) and (19), respectively; (ii) rt and wt are given by the respective

marginal products of capital and labor, pHt and pLt are given by the homebuilder’s first-

order conditions for structures and land, and qt = q(XSt); (iii) it is given by the monetary

policy rule (17) and the government budget constraint is satisfied; (iv) the bond, mortgage,

housing, and land markets clear: (1 − Ψ)b∗t+1 + Ψbt+1 = 0, (1 − Ψ)(l∗t /pt) = ΨθpHtxHt,

ΨxHt = g(XSt, XLt), and XLt = 1; (v) aggregate consistency is ensured: Kt = (1 − Ψ)kt,

XKt = (1 − Ψ)xKt, T ∗
t = (1 − Ψ)τ ∗t , XHt = ΨxHt, Nt = Ψnt, Bt = Ψbt, Ht = Ψht,
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(1 − Ψ)m∗
t = Ψmt, (1 − Ψ)d∗t = Ψdt = Dt, γ

∗
t = γt = Γt, and R∗

t = Rt = ℜt; (vi) the

exogenous state variables follow their respective stochastic processes and the endogenous

aggregate state variables evolve according to aggregate counterparts to the laws of motion for

the respective individual state variables; and (vii) the individual optimal decision rules of the

capital owner (for xK , (b
∗)

′
, and l∗) and the homeowner (for xH , b

′
, and n) are consistent with

W (z, S), once the market clearing conditions (iv) and the aggregate consistency conditions

(v) are imposed.

It is straightforward to check that the goods market clears by Walras’ Law: Ct +XKt +

qtXSt + G = Yt, where Ct = (1 − Ψ)c∗t + Ψct. Equations characterizing the equilibrium are

contained in Appendix A; a computational procedure resulting in log-linear approximation of

W (z, S) around the model’s non-stochastic steady state is described in Appendix B. The first-

order conditions of the capital owner for xKt, b
∗
t+1, and l∗t result in no-arbitrage conditions

for capital, bonds, and new mortgages. As a result, the capital owner is indifferent between

the three assets and the allocation of his period-t savings is determined by the homeowners’s

demand for bonds and new mortgages.20

4.2.1 Capital owner and homeowner blocks

It will be convenient to view the economy as consisting of two blocks. Given a set of decision

rules for XHt, Bt+1, and Nt, the ‘capital owner block’ determines an aggregate decision rule

forXKt and pricing functions for pt and iMt . Similarly, given a set of decision rules and pricing

functions for XKt, pt and iMt , the ‘homeowner block’ determines aggregate decision rules for

XHt, Bt+1, and Nt. In equilibrium, the two sets of decision rules and pricing functions have

to be mutually consistent at each point in the state space (z, S). Working with these two

blocks in partial equilibrium—i.e., taking the other block’s decision rules as given—facilitates

understanding of the general equilibrium results.21

20In the case of ARM, iMt = it makes the capital owner indifferent between new mortgages and bonds and
the first-order condition for l∗t can be dropped from the description of the equilibrium. In the case of FRM,
the first-order condition determines iFt .

21In terms of equations, the homeowner block consists of the optimality conditions for the homeowner’s
Bellman equation, while the capital owner block consists of the optimality conditions for the capital owner’s
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4.2.2 The equilibrium short rate

The capital owner’s first-order conditions for b∗t+1 and xKt yield the Fisher equation. In a

linearized form: it = Etπt+1+Etrt+1, where (abusing notation) the variables are in percentage

point deviations from steady state. Given a stochastic process for rt, by successive forward

substitution the Fisher equation and the monetary policy rule (17) determine it. Excluding

explosive paths for inflation (a common assumption) and given ρπ close to one, the resulting

expression for it is

it ≈
∞∑
j=0

(
1

νπ

)j

Etrt+1+j + πt, (20)

where, anticipating calibration described in the next section, νy = 0 has been imposed. Due

to its high persistence, πt generates highly persistent movements in it and thus moves it and

iFt approximately one for one. In this sense, it works like a level factor, moving all yields

approximately equally. In contrast, the first term in equation (20) is much less persistent

than πt, mainly due to a lower persistence of the At shock. It produces only temporary

movements in it and thus smaller movements in iFt than in it. As a result, it moves the

long-short spread, iFt − it. In this sense it works like a slope factor. The equilibrium inflation

rate is determined from the monetary policy rule as πt = (π− i)/νπ+πt+(it−πt)/νπ, where

it is given by (20). Notice that a higher νπ reduces the volatility of it and πt in response to

movements in the expected future path of rt.

The real interest rate rt is pinned down by the marginal product of capital. In a log-

linearized form, rt = At + (ς − 1)Kt + (1 − ς)Nt. The equilibrium it thus depends on

the stochastic paths of four variables: the exogenous state variables At and πt and the

endogenous variables Kt and Nt. Any general equilibrium adjustments of it thus occur

through expected future paths of Kt and Nt. Recall that in equilibrium the capital owner is

indifferent between saving in mortgages, bonds, or capital. An increase in the demand for

mortgages, other things being equal, thus reduces Kt+1. This increases rt+1 and hence it.

Bellman equation; both blocks also contain the producers’ conditions determining rt, wt, qt, pHt, pLt, and
XSt, the government budget constraint, and the monetary policy rule, so that the prices and transfers
relevant to each block can be pinned down (given decisions/prices of the other block).
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5 Calibration

A closed-form solution to the model’s equilibrium conditions does not exist and the model’s

properties can be studied only numerically for specific functional forms and parameter values.

The choice of parameter values is based on calibration. The model is quarterly and most

parameter values are obtained by requiring the model to reproduce long-run averages of the

data in nonstochastic steady state. Some second moments are also used. As most of the

required historical data are readily available for the United States, the calibration is based

on U.S. data.

An extra layer of complication, relative to most DSGE models, arises due to the need

to match debt-servicing costs of homeowners. For this reason the model is required to be

consistent with both the cross-sectional distribution of income, as well as the key aggregate

ratios: XK/Y = 0.156, XS/Y = 0.054, G/Y = 0.138, K/Y = 7.06, H/Y = 5.28, averages

for 1958-2006 (see Appendix C for the description of the data), and N = 0.255 (American

Time-Use Survey, 2003, population 16+). Official data for mortgage debt servicing costs

are not available for the United States. Estimates, however, can be obtained from different

data sources (see Appendix D), resulting in long-run averages (1972-2006) in the ballpark of

18.5% of homeowners’ pre-tax income. The model’s steady-state counterpart to this ratio is

M̃/(wN − τΨ), where M̃ = (R + γ)D̃/(1 + π) and D̃ is real mortgage debt.

Consistency with the cross-sectional distribution of income is achieved through the trans-

fer τ . Recall that homeowners in the model are an abstraction for the 3rd and 4th quintiles

of the U.S. wealth distribution, while capital owners are an abstraction for the 5th quintile.

In the data, the 5th quintile derives 40% of income from capital and 53% from labor; in the

case of the 3rd and 4th quintiles, 81% comes from labor (SCF, 1998). As a result, if the

only source of income of capital owners in the model was capital, and given the observed

average capital share of output ς, they would account for too small fraction of aggregate in-

come (28.3% in the model vs 48% in the data), while homeowners’ share would be too large

(71.7% vs 34%). As a result, the steady-state debt-servicing costs implied by the observed

24



θ and H/Y ratio (and steady-state amortization and interest rates) would be too low. The

parameter τ adjusts for this discrepancy by transferring, in a lump-sum way, some of the

labor income from homeowners to capital owners.22

5.1 Functional forms

The capital owner’s per-period utility function is u(c∗) = log c∗; the homeowner’s utility

function is v(c, n) = ω log c+ (1−ω) log(1− n), where c is the composite consumption good

c(c, h) = cξh1−ξ. The additive separability of the homeowner’s utility function facilitates

a transparent interpretation of the results as marginal utilities are independent of the con-

sumption of other goods. Further, the goods production function is f(K,N) = KςN1−ς

and the housing production function is g(XS, XL) = X1−φ
S Xφ

L . As in Kydland et al. (2012),

q(XSt) = exp(ζ(XSt − XS)), where ζ > 0 and XS is the steady-state structures to output

ratio (Y is normalized to be equal to one in steady state). A similar functional form is

used also for the bond market participation cost: Υ(−B̃) = exp(−ϑB̃t) − 1, where ϑ > 0

and B̃t = 0 in steady state. It is straightforward to check that this function satisfies the

properties set out in Section 4.1.2.

5.2 Parameter values

The model’s parameters are summarized as follows: Ψ (population); δK , δH , ς, A, ρA, σA,

ζ, φ (technology); τK , τN , G, τ (fiscal); θ, α, κ (mortgages); ϑ (bond market); π, νπ, νy, ρπ,

σπ (monetary policy); and β, ω, ξ (preferences). The parameter values are listed in Table 1

and are discussed in detail in what follows. Most parameters can be assigned values without

solving a system of steady-state equations. Four parameters (ω, ξ, τK , τ) have to be obtained

jointly. A third set of parameters (ζ, ρπ, σπ) is assigned values by matching second moments

of the data. Table 2 lists the steady-state values of the model’s endogenous variables implied

by the calibration and, where possible, the values of their data counterparts. As can be seen,

22The lump sum transfer can be interpreted as labor income of capital owners obtained by inelastic labor
supply and a constant wage rate.
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despite the highly stylized nature of the model, the steady state is broadly consistent with

a number of moments not targeted in calibration.

In order to be consistent with the notion of homeowners and capital owners in the data,

Ψ is set equal to 2/3. The parameter ς corresponds to the share of capital income in output

and is set equal to 0.283, an estimate obtained by Gomme and Rupert (2007) from National

Income and Product Accounts (NIPA) for aggregate output close to our measure of output

(see Appendix C). The share of residential land in new housing φ is set equal to 0.1, an

estimate reported by Davis and Heathcote (2005). The depreciation rates δK and δH are set

equal to 0.02225 and 0.01021, respectively, to be consistent with the average flow-stock ratios

for capital and housing investment, respectively. The level of TFP, A, is set equal to 1.5321,

so that steady-state output is equal to one. The stochastic process for TFP has ρA = 0.9641

and σA = 0.0082, estimates obtained by Gomme and Rupert (2007) for the Solow residual

of a production function with the same ς and measurements of capital and labor inputs used

here (see Appendix C). The labor income tax rate is derived from NIPA using a procedure of

Mendoza, Razin, and Tesar (1994), yielding τN = 23.5%. As noted above, G = 0.138. The

mortgage parameter θ is set equal to 0.76, the average (1973-2006) of the cross-sectional mean

of the loan-to-value ratio for single family newly-built home mortgages (Federal Housing

Finance Agency, Monthly Interest Rate Survey, Table 10). Using the average (1972-2006)

30-year FRM interest rate of 9.31% per annum, Kydland et al. (2012) show that κ = 0.00162

and α = 0.9946 provide a close approximation to the installments of a conventional 30-year

mortgage. In a baseline case, the weight on inflation in the monetary policy rule, νπ, is

set equal to 1.35, which falls in the middle of the range of estimates reported by Woodford

(2003), Chapter 1. This parameter will be treated as a free parameter in monetary policy

experiments. The weight on output, νy, is set equal to zero.23 The steady-state inflation

rate, π, is set equal to 0.0113, the average (1972-2006) quarterly inflation rate. In steady

state, the first-order condition for l∗t constrains iF to equal to i. Given the values of i and π,

23Experimentation with alternative values of νy did not significantly change the dynamic properties of
the model. This is because output in the model responds to shocks in the typical mean-reverting fashion,
producing only small growth rates after the impact period.
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the first-order condition for b∗t implies β = 0.9883. For the participation cost function Υ(.),

the choice of ϑ is guided by available studies on prices of unsecured credit. Namely, setting ϑ

equal to 0.035 gives approximately the same premium at B̃ = −0.5 as that predicted by the

unsecured credit pricing function of Chatterjee, Corbae, Nakajima, and Rios-Rull (2007),

Figure 6, white-collar workers.24

Given the above parameter values, ω, ξ, τK , and τ are chosen jointly to match the values

of K/Y , H/Y , debt-servicing costs, and N . The relationship between the parameters and

the targets is given by the steady-state versions of the first-order conditions for xKt, xHt,

and nt, and the expression for steady-state debt-servicing costs noted above (the first-order

conditions are contained in Appendix A). These restrictions yield ω = 0.2478, ξ = 0.6009,

τK = 0.3362, and τ = 0.5886.25

Conditional on all of the above values, the parameters ζ, ρπ, and σπ are calibrated

by simulation under FRM. The parameters of the process for πt are calibrated by match-

ing the standard deviation (2.4%) and the first-order autocorrelation (0.97) of the 30-year

FRM mortgage rate (annualized rate, unfiltered data).26 The resulting parameter values are

ρπ = 0.994 and σπ = 0.0015. The parameter ζ controls the volatility of the expenditure

components of output and is used to match the volatility of aggregate consumption, relative

to the volatility of output. Targeting the volatility of consumption has the advantage that

approximately the same parameter value is obtained regardless of whether the FRM or the

ARM economy is used. The resulting value is ζ = 0.35.

24We thank Eric Young for this suggestion on how to calibrate the cost parameter.
25In principle, τK can be measured from NIPA in the same way as τN . Such alternative parameterization,

however, is inconsistent with the observed capital to output ratio. This is because β is already pinned down
by the first-order condition for bonds. Nevertheless, τK implied by the model is not far from the NIPA tax
rate obtained by Gomme, Ravikumar, and Rupert (2011): 33.62% in the model vs 40.39% in NIPA.

26The 10-year government bond yield is actually used as a proxy for the 30-year mortgage rate. The two
rates co-move closely for the period for which both series are available (from 1972), but the data for the
10-year yield are longer (1958-2007), thus providing a better estimate of the stochastic properties of the
inflation target shock.
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6 Results

We start by presenting results for a version of the economy in which homeowners are com-

pletely excluded from the bond market (i.e., ϑ = ∞ and, in equilibrium, b∗t = 0). This is

done in Subsection 6.1. The main results of the paper are qualitatively unaffected by this

simplification but the general equilibrium mechanism is easier to explain. The explanation

is provided in Subsection 6.2. Subsection 6.3 then presents the results for the case with

homeowners’ access to the bond market. In light of how the simplified economy works, these

results are quite straightforward.

6.1 No access of homeowners to the bond market

Figure 2 plots the general equilibrium responses of selected aggregate variables to a 1 per-

centage point (annualized) increase in the inflation target in period 1. Recall that the only

rigidity that allows the transmission of this shock to real variables is the structure of FRM

and ARM contracts. The first two left-hand side charts show that, in line with equation

(20), the short-term nominal interest rate, the FRM interest rate, and the inflation rate all

increase approximately by 1 percentage point in period 1 and revert back to the steady state

very slowly, more or less replicating the autocorrelation of the shock, 0.994. (The inflation

rate and the short rate under ARM increase by a little more than 1 percentage point due to

an increase in labor supply, discussed below, which increases the marginal product of capital

and thus the first term in equation (20).) Next, under both FRM and ARM, the increase in

the inflation rate reduces in period 1 the real value of payments on outstanding debt. This is

the standard wealth effect present also in the case of one-period loans. However, it is quite

small and is dwarfed by the effects of inflation in the subsequent periods. Under FRM, the

cumulative effect of persistently high inflation gradually reduces the real value of mortgage

payments. In contrast, under ARM, mortgage payments increase sharply in period 2, then

start to decline over time as the inflation effect starts to slowly dominate the nominal interest
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rate effect.27

As discussed in Section 3, under both FRM and ARM, an equiproportional increase in

the nominal interest and inflation rates increases the real mortgage installments of a new

loan at the front end of the loan’s life. This, other things being equal, increases τH . But

given the relative sizes of the outstanding and new debt, housing demand is mainly driven by

the wealth effects, rather than the price effect. Under FRM, housing investment gradually

increases as the real value of mortgage payments on outstanding debt declines. The increase,

however, is modest, reaching a peak of only 1.6%. In contrast, in the case of ARM, housing

investment drops sharply in period 2, by 6.3%, as mortgage payments on existing debt

increase.28 As for investment in capital, it increases under both FRM and ARM. Under

FRM, this is due to an incentive of the capital owner to save more in order to make up for

the expected future decline in income from outstanding mortgages (a part of the increased

saving goes into the new mortgage borrowing by homeowners). Under ARM, this is due to an

incentive to smooth the effect of the temporary windfall of higher real mortgage payments

from period 2 on. Finally, under FRM, output gradually declines as homeowners reduce

labor supply in response to the positive wealth effects. Under ARM, output increases as

homeowners increase labor supply in response to the negative wealth effects.

Figure 3 shows general equilibrium responses to a 1% increase in TFP. Two cases are

considered: loose policy (νπ = 1.05) and tight policy (νπ = 2.5).29 The top charts show

27Under both FRM and ARM, the path of real mortgage payments from period 2 on reflects both, payments
on debt outstanding in period 1 as well as payments on new loans taken out from period 1 (inclusive) on.
The outstanding stock in period 1, however, is almost 40 times larger than the quarterly flow of new loans,
dominating thus the responses of m̃t, at least in the first 30-40 periods.

28In period 1, housing investment under ARM drops a little due to the price effect. The price effect is
small because of a change in the valuation of the installments on a new loan: as consumption in period 2
drops due to the increase in mortgage payments on outstanding debt (and is subsequently expected to return
back to steady state), consumption growth from period 2 on is positive, reducing µt,t+1 from period 2 on.
For a similar reason, in period 1 housing investment under FRM increases: future consumption is expected
to increase with the expected future decline in real mortgage payments on outstanding debt, reducing the
valuation of the mortgage payments on a new loan sufficiently enough to even reduce τH and increase housing
investment in period 1.

29As, to a large extent, output is driven by the shock, for space constraints, the responses of output are
not included in the figure. For space constraints the figure also does not include the responses of nominal
interest rates. Under both FRM and ARM, the path of the short rate approximately copies the the path of
the inflation rate, being above the inflation rate due to an increase in the marginal product of capital.
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that loose policy lets inflation deviate from target much more than tight policy. Under both

FRM and ARM, the inflation rate increases in response to the shock, as expected from our

discussion in Section 4.2.2. Under loose policy, the initial increase is about 0.6 percentage

points (annualized) under both contracts but the inflation rate is more persistent under FRM

than under ARM (we will come back to this in the subsection below); under tight policy, the

inflation rate increases only a little under both contracts, thus effectively producing the same

allocations as under an index-linked mortgage. Any significant differences in the dynamics of

housing investment across the two types of loan will thus be visible only under loose policy

and the real effects of the nominal rigidity under each contract can be judged against the

responses under tight policy.

The key observation to make from Figure 3 is that, in contrast to the case of the inflation

target shock, the responses of housing investment are very similar across both mortgage

types and policies. Especially in period 1 the responses are almost identical. From period

2 on, some differences exist between FRM and ARM, as the increase in the inflation rate

increases the real payments on outstanding debt under ARM, while it reduces them under

FRM. In contrast to housing investment, the responses of capital investment (under loose

policy) differ significantly across the loan types. The next subsection explains these results.

6.2 Explaining the general equilibrium mechanism

We use partial equilibrium analysis of the capital owner and homeowner blocks to explain

the general equilibrium mechanism in the model. Figure 4, panel A, shows the responses

of the capital owner block (i.e., treating XHt and Nt as exogenous and constant) to 1%

increase in At. The first chart shows a response of XKt familiar from the neoclassical growth

model. The response is a little higher after period 2 under ARM than under FRM because

of a (relatively small) additional increase in income due to higher real mortgage payments

from outstanding debt under ARM, occurring due to an increase in the nominal interest

and inflation rates plotted in the next two charts. These two nominal variables increase due
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to an increase in the first term in equation (20); the baseline value νπ = 1.35 is used. The

FRM mortgage rate iFt also increases, but substantially less than it, as it is expected to mean

revert relatively fast; the implied autocorrelation is about 0.95. Notice for future reference

that about 2/3 of the increase in it transmit into πt+1.

Panel B of Figure 4 shows the responses of the homeowner block (i.e., treating XKt,

πt, and iMt as exogenous) to 1 percentage point (annualized) mean reverting increase in it,

assuming autocorrelation of 0.95. It is further assumed that 2/3 of it transmit into πt+1 and

that iFt is related to it as in panel A. The first chart in panel B shows that in response to the

shock, XHt declines by more under ARM than under FRM. As the next two figures in the

panel show, under ARM the price and wealth effects work in the same direction (both τHt

and real mortgage payments on outstanding debt increase), whereas under FRM they work

in opposite directions (τHt increases but real mortgage payments on outstanding debt decline

over time).30 In addition, τHt increases by less under FRM than under ARM. The first chart

in the panel complements the responses of XHt with its response to 1% increase in At. This

response is the same under both contracts, as iMt and πt are, in this case, held constant.

Taken the responses of XHt to the interest rate and TFP shocks together, we would expect

a positive TFP shock, triggering movements of the nominal interest and inflation rates as in

panel A, to increase XHt substantially more under FRM than under ARM. This, however,

does not occur in general equilibrium, as Figure 3 showed.31

Panel C completes the picture. It shows the responses of the capital owner block to 10%

increase in XHt (10% is used so that the order of magnitude of the shock is in line with the

responses of XHt in panel B). As the capital owner supplies any amount of new mortgages

demanded by the homeowner, such shock crowds out XKt. As a result, Kt starts to gradually

decline and rt to gradually increase, at least until the capital owner (induced by a higher rt)

sufficiently increases his overall saving. rt thus follows a hump-shaped path, which produces

30Of course, in period 1, only the price effect is present. The positive wealth effects from period 2 on under
FRM show up in the response of Xht in the relatively fast recovery of XHt (faster than the decline of τHt),
whereas under ARM the negative wealth effect shows up as further decline in XHt in period 2.

31Note that it increases by only 0.3 percentage points in panel A, whereas panel B shows responses to an
increase by 1 percentage point (a normalization).
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hump-shaped responses of it and πt, plotted in the charts in panel C. Anticipating future

increases in it, i
F
t jumps immediately. In combination with the sluggish increase in πt, this

implies higher initial real mortgage installments on a new loan under FRM than under ARM.

In sum, while the partial equilibrium effect of the nominal rigidity on housing investment

in the presence of a TFP shock is stronger under ARM than under FRM, the general equilib-

rium effect is stronger under FRM than under ARM. In combination, these two effects result

in similar responses of XHt to the TFP shock regardless of the mortgage type. The working

of this mechanism is apparent in Figure 3 in the more persistent response of inflation under

FRM than under ARM—reflecting the hump-shaped component—and in the hump-shaped

response of capital investment under FRM.32 As shown below, in the full model, the general

equilibrium adjustment is weakened and the responses are closer to what would be expected

from partial equilibrium analysis.

Why, in contrast to the TFP shock, in the case of the inflation target shock the general

equilibrium responses of housing investment differ across contracts? (Refer back to Figure

2.) Roughly speaking, this is because the responses of the two agent types are mutually

consistent at, more or less, a constant real interest rate. In the case of FRM, while the

homeowner demands more mortgage borrowing, the capital owner wants save more. (The

real interest rate declines a little due to a small increase in capital accumulation, as not

all desired saving gets absorbed by new mortgage borrowing.) In the case of ARM, the

homeowner reduces demand for mortgages, whereas the capital owner increases his desired

saving. However, the downward effect on the real interest rate from the resulting faster

capital accumulation is neutralized by higher labor supply by the homeowner, which he uses

to smooth the increase in real mortgage payments on outstanding debt. (The real interest

rate increases a little as the effect of higher labor supply is somewhat stronger than the effect

of higher capital stock, as was noted in our discussion of Figure 2 above.)

32The same general equilibrium adjustment also produces the similar responses of XHt under the two
alternative values of νπ, for a given contract.
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6.3 The full model

With access to the bond market, homeowners have an additional margin with which to

smooth the impact of the two shocks. In particular, they use the bond to borrow when

either income declines or real mortgage payments increase and to lend when either income

increases or real mortgage payments decline. The left-hand side chart of Figure 5, panel

A, shows the responses of housing investment to the inflation target shock for the baseline

autocorrelation of the shock of 0.994. Under both FRM and ARM, the responses are now

smoother and somewhat muted, relative to Figure 2, but the main result that the effect of

the shock is larger under ARM than FRM still holds (a maximum decline of −3.7% under

ARM vs a maximum increase of 1.4% under FRM).

The right-hand side chart in panel A shows the responses for a lower autocorrelation

of the shock, 0.75. In this case, while the responses are qualitatively similar to those in

the left-hand side chart, quantitatively they are much smaller, especially in the ARM case:

−0.4% vs −3.7% in period 1. High persistence of the shock is thus crucial for the quan-

titative importance of the nominal rigidity. Historically, through the lenses of the model,

the baseline autocorrelation of 0.994 is the more relevant one, as it reproduces the observed

autocorrelation of the long-term nominal interest rate.33 An implication of this property of

the model for policy—especially for ARM countries—is that, in order to have sizable effect

on housing investment, changes in the short-term nominal interest rate have to be persistent.

Homeowners’ access to the one-period bond market also weakens the general equilibrium

adjustments in response to TFP shocks described in the previous subsection. Now home-

owners respond to a positive TFP shock by increasing both housing investment and bond

holdings. The resulting flow of funds from homeowners to capital owners and the lower

demand for mortgages, relative to the case of no access to the bond market, mean that the

crowding out of capital investment, and its implication for interest rates, does not need to

occur as much as before in order for equilibrium to be reached. Panel B of Figure 5 shows

33High persistence of long rates is historically observed across developed economies, not just in the United
States.
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that, in response to the 1% positive TFP shock, housing investment now increases by more

under FRM than under ARM. This is consistent with Figure 4, panel B, which shows that,

in the extreme case of no crowding out, the increase in interest rates in response to the TFP

shock dampens the response of housing investment more under ARM than under FRM.

A final set of results is contained in Table 3, which reports standard deviations and

correlations with output of the model’s variables and their counterparts in U.S. data (see

Appendix C for a description of the data counterparts to the variables in the model). Given

that the model has only two shocks, and purposefully abstracts from a number of empirically

relevant frictions, these statistics serve the purpose of only gauging the model’s general

plausibility, rather than as a formal test of the theory. As is customary in the business cycle

literature, the statistics are for HP-filtered series, both in the model and in the U.S. economy.

Even though the inflation target shock has real effects, the TFP shock is the dominant shock

and the model’s business cycle moments are mainly determined by this shock. As Table 3

shows, for most statistics, the model is broadly in line with the data, but some discrepancies

are worth noting. First, the correlation in the model between Yt and Nt is negative, under

both FRM and ARM. This is because, with limited means to smooth consumption over

time, the intertemporal elasticity of labor—responsible for the positive comovement between

hours and output in real business cycle models—is relatively small here and is dominated by

wealth effects. Second, because the only shock driving the comovement between the slope

factor and output in the model is the TFP shock, the negative correlation of the long-short

spread with output in the model is stronger than in the data. The long-short spread is also

only half as volatile, relative to output, as in the data. This likely reflects the absence of

time-varying term premia in our model. Third, the model underpredicts the volatility of

house prices, relative to that of output, accounting for about two thirds of the observed

relative standard deviation, and produces too high comovement between house prices and

the business cycle. This is because qt, determined in the model by housing demand, is much

less volatile than in the data and too strongly positively correlated with output. In order to
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reproduce the observed volatility of house prices and their correlation with output, shocks

to qt are needed.34

7 Concluding remarks

A parsimonious model containing either FRM or ARM loans was constructed in order to

investigate the equilibrium effects on the real economy, and on aggregate housing investment

especially, of the nominal rigidity inherent in fully-amortizing mortgages. The model econ-

omy has a population of homeowners and capital owners with selected key characteristics

of each group observed in the data. Due to the nominal rigidity and incomplete asset mar-

kets, monetary policy transmits through the effective price of new housing and current and

expected future wealth effects of payments on outstanding mortgage debt. The key finding

is that monetary policy affects housing investment more under ARM than under FRM. In

addition, shocks to long-run inflation have larger effects than cyclical fluctuations in inflation

and nominal interest rates, occurring due to TFP shocks. Finally, the distributional conse-

quences of monetary policy depend on the type of the mortgage loan. A persistent increase

in the inflation rate redistributes real income from lenders to borrowers under FRM, but

from borrowers to lenders under ARM, at least in the initial periods after the shock. An

implication of our findings for the current policy debate is that, other things being equal, low

nominal interest rates are likely to have a larger effect on the housing market in ARM than

FRM countries and the effect of such a policy will be larger the longer is the time horizon

for which the rates are expected to stay low.

Our aim was to make a step towards a better understanding of the aggregate and redis-

tributive consequences of monetary policy in the presence of standard mortgage loans. In

order to isolate the channels under investigation, and to describe their effects in a transparent

way, the model has intentionally abstracted from other nominal frictions. Shocks were also

34In the multisectoral model of Davis and Heathcote (2005), TFP shocks in the construction sector play
such a role.
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limited to only two types, traditional business cycle shocks to TFP and shocks to long-run

inflation. The long-run inflation shocks work like the level factor in models of the yield curve,

moving short and long rates approximately equally, whereas TFP shocks resemble a slope

factor, moving the long-short spread over the business cycle.

A natural next step is to incorporate other relevant shocks, margins of adjustment, or

frictions to align the model more closely with the data and investigate how the quantita-

tively important elements of these richer environments impact on the basic conclusion of the

paper. Based on our partial equilibrium results, we conjecture that mechanisms that weaken

the general equilibrium adjustments in the path of the real interest rate will increase the

importance of the nominal rigidity in the transmission mechanism.

The focus of the paper was only on conditional first moments in agents’ decisions. That

is, we have abstracted from the role of risk. Indeed, ARMs have different risk characteristics

then FRMs. Furthermore, long-term interest rates contain risk premia that vary with the

state of the economy. Incorporating these elements would be another fruitful extension of

the model.

A third relevant extension, conditional on successfully achieving the second one, would

be to include optimal refinancing and/or the choice between FRM and ARM. As we dis-

cussed, introducing such margins is going to weaken the effects of the nominal rigidity. In

that sense, our results are best interpreted as providing an upper bound. The challenge of

such extensions, however, is to avoid a bang-bang solution. Doing so necessarily involves

the complication of homeowners’ heterogeneity. The same difficulty also applies to the in-

troduction of the option to default. In our model homeowners are not allowed to default.

When real mortgage payments on outstanding debt increase, homeowners respond by cutting

consumption and investment and increasing hours worked. These adjustments are especially

relevant in the case of ARM. With default, depending on its costs, homeowners may instead

choose to default on mortgage debt, especially in response to very large increases in real

mortgage payments.
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Finally, an interesting normative question regards optimal monetary policy. Under in-

complete markets, the nominal rigidity in mortgage loans generates both a distortion in the

optimality condition for housing and ex-post redistribution of income between homeowners

and capital owners. With our mapping between these two groups of agents in the model and

in the data, the latter group have better means of smoothing consumption over time and

states of the world. In addition, mortgage income makes up only a small fraction of their

total income. An optimal monetary policy may therefore essentially face a trade off between

eliminating the distortion in the optimality condition for housing and providing insurance

to homeowners against ex-post fluctuations in real mortgage payments. As the real effects

of monetary policy differ depending on whether loans are FRM or ARM, optimal monetary

policy is likely to depend on the type of the loan contract. Additional complexity in the de-

sign of optimal monetary policy is likely to arise when default is allowed. All these questions

and issues are, however, beyond the scope of this paper and are left for future research.
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A. Mean-reverting decline in the short rate
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B. Hump-shaped decline in the short rate
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Figure 1: Monetary policy and debt-servicing costs. The left-hand side panels
show alternative paths of the short-term nominal interest rate. The right-hand
side panels show the corresponding mortgage payments as a fraction of post-
tax income for FRM and ARM; the label ‘steady-state’ refers to the case when
the short rate is at its steady-state level of 4%. The mortgage loan is equal to
four times the household’s post-tax income. In all cases, the real interest rate
(1%) and real income are held constant; nominal income changes in line with
inflation.
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Table 1: Calibration

Symbol Value Description

Population
Ψ 2/3 Share of homeowners
Technology
A 1.5321 Steady-state level of TFP
ς 0.283 Capital share of output
δK 0.02225 Depreciation rate of capital
δH 0.01021 Depreciation rate of housing
ζ 0.35 Curvature of PPF
φ 0.1 Land share of new housing
Fiscal
G 0.138 Government expenditures
τN 0.235 Labor income tax rate
τK 0.3362 Capital income tax rate
τ 0.5886 Labor income transfer
Preferences
β 0.9883 Discount factor
ω 0.2478 Cons. composite’s share in utility
ξ 0.6009 Share of market cons. in composite
Mortgages
θ 0.76 Loan-to-value ratio
κ 0.00162 Initial amortization rate
α 0.9946 Amortization adjustment factor
Bond market
ϑ 0.035 Participation cost function
Monetary policy
νπ 1.35 Weight on inflation
νy 0 Weight on output growth
π 0.0113 Steady-state inflation rate
Exogenous processes
ρA 0.9641 Persistence of TFP shocks
σA 0.0082 Std. of TFP innovations
ρπ 0.994 Persistence of infl. target shocks
σπ 0.0015 Std. of infl. target innovations
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Table 2: Nonstochastic steady state and long-run averages of data

Symbol Model Data Description

Normalized:

Y 1.0 N/A Output

Targeted in calibration:

K 7.06 7.06 Capital stock
H 5.28 5.28 Housing stock
XK 0.156 0.156 Capital investment
XS 0.054 0.054 Housing structures
N 0.255 0.255 Hours worked
m̃/(wn− τ) 0.185 0.185 Debt-servicing costs (pre-tax)
iM 0.0233 0.0233 Mortgage rate

Not targeted:

Aggregate mortgage variables

D̃ 1.61 2.35† Mortgage debt
γ 0.0144 0.0118‡ Amortization rate

Capital owner’s variables
(1− τK)(r − δK) 0.012 0.013§ Net rate of return on capital
[(r − δ)k + m̃∗]/[(r − δ)k + m̃∗ + τ∗] 0.31 0.39¶,§§ Income from assets to total income
m̃∗/[(1− τK)(r − δ)k + m̃∗ + τ∗] 0.089 N/A Mortg. payments to total (net) income

Homeowner’s variables
τH 0 N/A Housing wedge
m̃/[(1− τN )(wn− τ)] 0.24 N/A Debt-servicing costs (post-tax)
(wn− τ)/(wn− τ) 1.00 0.81¶ Income from labor to total income

Distribution of wealth

(K + D̃)/(K +H) 0.71 0.82¶ Capital owners

(H − D̃)/(K +H) 0.29 0.18¶ Homeowners

Note: Rates of return and interest and amortization rates are expressed at quarterly rates; capital

owners = the 5th quintile of the SCF wealth distribution; homeowners = the 3rd and 4th quintiles

of the SCF wealth distribution.

† Upper bound for the mortgage debt in the model due to the presence in the data of equity loans,

second mortgages, and mortgages for purchases of existing homes.
‡ For a conventional 30-year mortgage.
§ NIPA estimate by Gomme et al. (2011).
¶ 1998 SCF; the model counterpart is defined so as to be consistent with SCF.
§§ The sum of capital and business income.
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Figure 2: General equilibrium responses to 1 percentage point (annualized)
increase in πt in period 1; version without access of homeowners to the bond
market.
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Figure 3: General equilibrium responses to 1% increase in At in period 1;
version without access of homeowners to the bond market. Loose policy: νπ =
1.05; tight policy: νπ = 2.5.
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Figure 4: Explaining the general equilibrium adjustments to a positive At

shock using partial equilibrium responses of the capital owner and homeowner
blocks. Panel A: capital owner block—responses to 1% increase in At. Panel
B: homeowner block—responses to 1 percentage point (annualized) increase in
it (with 2/3 pass-through to πt+1); in the first chart complemented with the
response of XHt to 1% increase in At. Panel C: capital owner block—responses
to 10% increase in XHt.
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Figure 5: General equilibrium responses of housing investment in the version
with homeowners’ access to the bond market. Panel A: effects of varying the
degree of persistence of the inflation target shock; panel B: responses to a TFP
shock under loose policy (νπ = 1.05) and tight policy (νπ = 2.5).

48



Table 3: Business cycle properties

US data Model
FRM ARM

Std
Y 1.92 0.94 1.04

Rel. std
Y 1.00 1.00 1.00
C 0.42 0.42 0.35
XS 6.94 9.48 8.20
XK 2.45 1.76 3.01
N 0.92 0.24 0.30
π 0.58 0.85 0.81
i 0.58 0.85 0.85
iF 0.35 0.77 N/A
iF − i 0.42 0.21 N/A
q 0.58 0.18 0.15
pH 1.57 1.13 0.97

Corr
(Ct, Yt) 0.79 0.88 0.94
(XSt, Yt) 0.60 0.99 0.85
(XKt, Yt) 0.73 0.92 0.83
(Nt, Yt) 0.84 -0.67 -0.05
(πt, Yt) 0.14 0.23 0.41
(it, Yt) 0.36 0.32 0.48
(iFt , Yt) 0.01 0.09 N/A
(iFt − it, Yt) -0.49 -0.98 N/A
(qt, Yt) 0.41 0.99 0.85
(pHt, Yt) 0.55 0.99 0.85

Note: All U.S. moments are for HP-filtered series, post-Korean war data. Interest and inflation

rates are annualized. The 10-year government bond yield is used as a proxy for iFt due to its

longer time availability; the inflation rate of the GDP deflator is used for πt; the 3-month T-bill

yield is used for it; the ratio of the residential investment deflator to the GDP deflator is used for

qt; the ratio of the average price of new homes sold (Census Bureau) and the GDP deflator is used

for pHt (1975-2006). The model moments are averages of moments for 150 runs of the model;

the artificial series of each run have the same length as the data series and are HP filtered.
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Supplemental material—appendices

Appendix A: Equilibrium conditions

This appendix lists the conditions characterizing the equilibrium defined in Section 4.2.
Throughout, the notation employed is that, for instance, uct denotes the first derivative
of the function u with respect to c, evaluated in period t. Alternatively, v2t, for instance,
denotes the first derivative of the function v with respect to the second argument, evaluated
in period t.

Capital owner’s optimality

The first-order conditions with respect to, respectively, xKt, b
∗
t+1, and l∗t :

1 = Et

{
β
uc,t+1

uct

[1 + (1− τK)(rt+1 − δK)]

}
,

1 = Et

[
β
uc,t+1

uct

(
1 + it

1 + πt+1

)]
,

1 = Et

{
β
Ûd,t+1

uct

+ β
Uγ,t+1

uct

ζ∗Dt [κ− (γ∗
t )

α] + β
UR,t+1

uct

ζ∗Dt(i
F
t −R∗

t )

}
.

In the last equation, which—as discussed in the text—applies only in the FRM case, Ûdt ≡
pt−1Udt is a normalization to ensure stationarity in the presence of positive steady-state
inflation and Udt, Uγt, and URt are the derivatives of the capital owner’s value function
with respect to d∗t , γ

∗
t , and R∗

t , respectively. These derivatives are given by the Benveniste-
Scheinkman (BS) conditions:

Ũdt = uct
R∗

t + γ∗
t

1 + πt

+ β
1− γ∗

t

1 + πt

Et

{
Ũd,t+1 + ζ∗lt [(γ

∗
t )

α − κ]Uγ,t+1 + ζ∗lt(R
∗
t − iFt )UR,t+1

}
,

Uγt = uct

(
d̃∗t

1 + πt

)
− β

(
d̃∗t

1 + πt

)
EtŨd,t+1

+β

(
d̃∗t

1 + πt

){
ζ∗lt[κ− (γ∗

t )
α] +

(1− γ∗
t )α(γ

∗
t )

α−1

1−γ∗
t

1+πt
d̃∗t + l̃∗t

}
EtUγ,t+1

+β

(
d̃∗t

1 + πt

)
ζ∗lt(i

F
t −R∗

t )EtUR,t+1,

URt = uct

(
d̃∗t

1 + πt

)
+ β

(
1−γ∗

t

1+πt
d̃∗t

1−γ∗
t

1+πt
d̃∗t + l̃∗t

)
EtUR,t+1.
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In these expressions, d̃∗t ≡ d∗t/pt−1, l̃
∗
t ≡ l∗t /pt,

ζ∗lt ≡
l̃∗t(

1−γ∗
t

1+πt
d̃∗t + l̃∗t

)2 ∈ (0, 1),

and

ζ∗Dt ≡
1−γ∗

t

1+πt
d̃∗t(

1−γ∗
t

1+πt
d̃∗t + l̃∗t

)2 ∈ (0, 1).

Notice that for a once-and-for-all mortgage loan (l∗t = l∗ in period t and l∗t = 0 thereafter) and
no outstanding mortgage debt (d∗t = 0 in period t), ζ∗Dt = 0 and ζ∗l,t+j = 0, for j = 1, 2, ....

In this case, the first-order condition for l∗t and the BS condition for Ũdt simplify. Once
combined, the resulting equation is just an infinite-horizon extension of the mortgage-pricing
equation (1) in the two-period mortgage example of Section 3. The complications in the
general case arise because the mortgage payment m∗

t entering the budget constraint of the
capital owner pertains to payments on the entire outstanding mortgage debt, not just the
new loan. The simplified form also arises when Rt = it−1 (i.e., ARM) and γ∗

t = κ (i.e.,
the amortization rate is constant through out the life of the mortgage, which is the case for
α = 1). This is because in that case the interest and amortization rates of m∗

t are the same
as those of the new (marginal) mortgage payment.

The capital owner’s constraints:

c∗t + kt+1 + b̃∗t+1 + l̃∗t = [1 + (1− τK)(rt − δK)] kt + (1 + it−1)
b̃∗t

1 + πt

+ m̃∗
t + τ ∗t +

pLt
1−Ψ

,

m̃∗
t = (R∗

t + γ∗
t )

d̃∗t
1 + πt

,

d̃∗t+1 =
1− γ∗

t

1 + πt

d̃∗t + l̃∗t ,

γ∗
t+1 = (1− ϕ∗

t ) (γ
∗
t )

α + ϕ∗
tκ,

R∗
t+1 =

{
(1− ϕ∗

t )R
∗
t + ϕ∗

t i
F
t , if FRM,

it, if ARM,

where ϕ∗
t ≡ l̃∗t /d̃

∗
t+1 and b̃∗t ≡ b∗t/pt−1.

Homeowner’s optimality

The first-order conditions with respect to, respectively, nt, xHt, and bt+1:

vct(1− τN)wt = v2t,

vct(1− θ)pHt = βEt

{
Vh,t+1 + pHtθ

[
Ṽd,t+1 + ζDt(κ− γα

t )Vγ,t+1 + ζDt(i
M
t −Rt)VR,t+1

]}
,
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1 = Et

[
β
vc,t+1

vct

(
1 + it +Υt

1 + πt+1

)]
,

where Ṽdt ≡ pt−1Vdt and Vht, Vdt, Vγt, and VRt are the derivatives of the homeowner’s value
function. Further, ζDt is the homeowner’s analog to ζ∗Dt and iMt = iFt in the FRM case and
iMt = it in the ARM case. Rearranging the second equation yields

vctpHt(1 + τHt) = βEtVh,t+1,

where the wedge τHt is given by

τHt ≡ −θEt

[
1 + β

Ṽd,t+1

vct
+ ζDt(κ− γα

t )β
Vγ,t+1

vct
+ ζDt(i

M
t −Rt)β

VR,t+1

vct

]
.

For the same reasons as in the case of the mortgage-pricing equation of the capital owner, the
wedge is more complicated than in the case of the two-period mortgage. Again, it becomes
a straightforward infinite-horizon extension of either equation (2) or (3) when the housing
investment decision is once-and-for-all and there is no outstanding mortgage debt. The
derivatives of the value function with respect to dt, γt, and Rt are given by BS conditions,
which take similar forms to those of the capital owner:

Ṽdt = −vct
Rt + γt
1 + πt

+ β
1− γt
1 + πt

Et

[
Ṽd,t+1 + ζlt (γ

α
t − κ)Vγ,t+1 + ζlt(Rt − iMt )VR,t+1

]
,

Vγt = −vct

(
d̃t

1 + πt

)
− β

(
d̃t

1 + πt

)
EtṼd,t+1

+β

(
d̃t

1 + πt

)[
ζlt(κ− γα

t ) +
(1− γt)αγ

α−1
t

1−γt
1+πt

d̃t + l̃t

]
EtVγ,t+1

+β

(
d̃t

1 + πt

)
ζlt(i

M
t −Rt)EtVR,t+1,

VRt = −vct

(
d̃t

1 + πt

)
+ β

(
1−γt
1+πt

d̃t
1−γt
1+πt

d̃t + l̃t

)
EtVR,t+1.

In addition, there is a BS condition for the derivative with respect to ht:

Vht = vht + β(1− δH)EtVh,t+1.

Due to the aggregate consistency conditions (1−Ψ)d̃∗t = Ψd̃t, γ
∗
t = γt, and R∗

t = Rt, it is
not necessary to include the homeowners laws of motion for the mortgage variables among
the equations characterizing the equilibrium. The constraints pertaining to the homeowner
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are:

ct + pHtxHt − l̃t + b̃t+1 = (1− τN)(wtnt − τ) + (1 + it−1 +Υt−1)
b̃t

1 + πt

− m̃t + Ωt,

where Ωt = [̃bt/(1 + πt)]Υt−1, and

m̃t = (Rt + γt)
d̃t

1 + πt

,

l̃t = θpHtxHt,

xHt = ht+1 − (1− δH)ht.

Production

The producer’s first-order conditions:

rt = Atf1 ((1−Ψ)kt,Ψnt) ,

wt = Atf2 ((1−Ψ)kt,Ψnt) .

Output:
Yt = Atf ((1−Ψ)kt,Ψnt) .

The relative price of structures (i.e., the curvature of the production possibilities frontier):

qt = q(ΨxSt).

Homebuilding

Using the equilibrium condition
XLt = 1,

the production function and the first-order conditions of homebuilders (for the Cobb-Douglas
production function):

xSt =
1

Ψ
(ΨxHt)

1
1−φ ,

pHt = qt
(ΨxSt)

φ

1− φ
,

pLt = pHtφ(ΨxSt)
1−φ.

For a given xHt, the first equation determines xSt, the second pHt, and the third pLt. Notice
that when φ = 0, xHt = xSt and pHt = qt.

Monetary policy and the government

The monetary policy rule:

it = (i− π + πt) + νπ(πt − πt) + νy(log Yt − log Yt−1 − y).

53



The government budget constraint:

G+ (1−Ψ)τ ∗t = τK(rt − δK)(1−Ψ)kt + τN(wtΨnt − τΨ) + τΨ.

Market clearing

The land and structures market clearing conditions have already been imposed in the home-
building sector. The remaining market clearing conditions are for the bond market:

(1−Ψ)̃b∗t +Ψb̃t = 0;

and mortgage market:
(1−Ψ)l̃∗t = Ψl̃t.

It is straightforward to verify that the Walras’ law holds (i.e., the goods market clears and
national accounts hold):

(1−Ψ)c∗t +Ψct + (1−Ψ)xKt + qtΨxSt +G = Yt = rt(1−Ψ)kt + wtΨnt.

Stochastic processes

TFP:

logAt+1 = (1− ρA) logA+ ρA logAt + ϵA,t+1, where ϵA,t+1 ∼ iidN(0, σA).

Inflation target:

πt+1 = (1− ρπ)π + ρππt + ϵπ,t+1, where ϵπ,t+1 ∼ iidN(0, σπ).

Appendix B: Computation

The recursive competitive equilibrium (RCE) is computed using a linear-quadratic (LQ)
approximation method for distorted economies with exogenously heterogenous agents (see
Hansen and Prescott, 1995, for details). In a nutshell, the Bellman equation of each agent
type (equations (18) and (19)) is LQ approximated. Following the split-up of the economy in
Section 4.2 into the capital owner and homeowner blocks, the maximization problem of each
block is solved in isolation, given a guess for the decision rules of the other block. The RCE
of the entire economy is a fixed point in which the guesses coincide with the outcomes of each
respective block’s problem. The centering point of the approximation is the nonstochastic
steady state and the approximation of the Bellman equations is computed using numerical
derivatives; all variables in the approximation are either in percentage deviations or percent-
age point deviations (for rates) from the steady state. Before computing the equilibrium,
the model is made stationary by expressing all nominal variables in real terms and replacing
ratios of price levels with the inflation rate, as is done in Appendix A.

Because the laws of motion for the mortgage variables are nonlinear, and cannot be
substituted out into the per-period utility function as required by the standard LQ approx-
imation method, the method is modified along the lines of Benigno and Woodford (2006).
This involves forming a Lagrangian, consisting of the per-period utility function and the laws
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of motion for the mortgage variables. The Lagrangian is then used as the return function
in the Bellman equation being approximated. This adjustment is necessary to ensure that
second-order cross-derivatives of the utility function and the constraints are taken into ac-
count in the LQ approximation. This modification, as applied to the homeowner, is described
in detail by Kydland et al. (2012). The specification for the capital owner is analogous. We
therefore refer the reader to that paper.

An alternative procedure—implemented, for instance, by Dynare—would be to log-
linearize the model’s equilibrium conditions in Appendix A and use a version of the Blanchard-
Kahn method to arrive at the equilibrium decision rules and pricing functions. As is well
known, the two procedures yield the same linear equilibrium decision rules and pricing func-
tions, approximations to the set of functions W (z, S). We have a slight preference for the
LQ method as, in the future, it can be easily adopted to a specification of the model with re-
cursive preferences, which price in long-term risk, and are thus a natural choice for studying
the implications of the risk characteristics of long-term mortgage loans.

In computing the partial equilibrium results, we treat XKt, i
M
t , and πt in the homeowner

case, and XHt, Bt+1, and Nt in the capital owner case, in the same way as the exogenous
state variables in the vector zt. Specifically, the variables are assumed to follow a diagonal
VAR(1) process, with the parameter values specified in the text, and are included in the
vector zt of exogenous state variables in the respective Bellman equations. The Bellman
equation of each block is then LQ approximated. The homeowner block gives aggregate
decision rules for XHt, Bt+1, and Nt, while the capital owner block gives aggregate decision
rules and pricing functions for XKt, i

M
t , and πt. These are linear functions of the variables

in each block’s (modified) vector z and in each block’s vector of endogenous state variables:
[Kt, D

∗
t ,Γ

∗
t ,ℜ∗

t ] in the capital owner’s case and [Ht, Bt, Dt,Γt,ℜt] in the homeowner’s case.

Appendix C: Data counterparts to variables

This appendix explains the construction of the data used to calculate the aggregate ratios
employed in calibrating the model. Adjustments to official data are made to ensure that
the data correspond conceptually more closely to the variables in the model. To start, for
reasons discussed by Gomme and Rupert (2007), the following expenditure categories are
taken out of GDP: gross housing value added, compensation of general government employ-
ees, and net exports. In addition, we also exclude expenditures on consumer durable goods,
as our ‘home capital’ includes only housing, and multifamily structures, which since the
mid-1980s rely much less on mortgage finance than single-family structures (Kydland et al.,
2012). With these adjustments, the data counterparts to the expenditure components of
output in the model are constructed from BEA’s NIPA tables as follows: consumption (C)
= the sum of expenditures on nondurable goods and services less gross housing value added;
capital investment (XK) = the sum of nonresidential structures, equipment & software,
and the change in private inventories; housing structures (XS) = residential gross fixed pri-
vate investment less multifamily structures; and government expenditures (G) = the sum
of government consumption expenditures and gross investment less compensation of general
government employees. Our measure of output (Y = C+XK+XS+G) accounts, on average
(1958-2006), for 74% of GDP.

BEA’s Fixed Assets Tables and Census Bureau’s M3 data provide stock counterparts
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to capital and housing investment: capital stock (K) = the sum of private nonresidential
fixed assets and business inventories; housing stock (H) = residential assets less 5+ unit
properties.35 Federal Reserve’s Flow of Funds Accounts provide data on mortgages and we
equalize mortgage debt in the model (D) with the stock of home mortgages for 1-4 family
properties. The Flow of Funds data, however, include mortgage debt issued for purchases
of existing homes, second mortgages, and home equity loans. In contrast, the model speaks
only to mortgage debt on new housing. The data thus provide an upper bound for D in the
model.

Appendix D: Estimation of mortgage debt servicing costs

As discussed in the main text, a key measurement for calibrating the model concerns the
mortgage debt servicing costs of homeowners. Unfortunately, such information for the United
States is not readily available. Four different procedures are therefore used to arrive at
its estimate. To a smaller or larger extent, the four procedures exploit the notion that
the homeowners in the model correspond to the 3rd and 4th quintiles of the U.S. wealth
distribution. Some of these estimates arguably overestimate the debt servicing costs, while
other underestimate it. Nevertheless, all four procedures yield estimates in the ballpark of
18.5% of pre-tax income, the value used to calibrate the model. This ballpark is similar to
the estimates for the United Kingdom reported in the literature, noted in the Introduction.

The first procedure, for FRM (1972-2006) and ARM (1984-2006), combines data on
income from the Survey of Consumer Finances (SCF) and the model’s expression for debt
servicing costs. Suppose that all mortgage debt is FRM. The model’s expression for steady-
state debt-servicing costs, (R+γ)[D/(pwN−pτΨ)], can then be used to compute the average
debt-servicing costs of homeowners. The various elements of this expression are mapped into
data in the following way: D/(pwN − pτΨ) corresponds to the average ratio of mortgage
debt (for 1-4 unit structures) to the combined personal income (annual, pre-tax) of the
3rd and 4th quintiles, which is equal to 1.56; R corresponds to the average FRM annual
interest rate for a conventional 30-year mortgage, equal to 9.31%; and γ corresponds to the
average amortization rate over the life of the mortgage, equal to 4.7% per annum. This
yields debt-servicing costs of 22%. This estimate is likely an upper bound as some of the
outstanding mortgage debt in the data is owed by the 5th quintile (the 1st and 2nd quintiles
are essentially renters) and the effective interest rate on the stock in the data is likely lower
than the average FRM rate due to refinancing. When all mortgage debt is assumed to be
ARM, this procedure yields 17.5% (based on the average Treasury-indexed 1-year ARM rate
for a conventional 30-year mortgage).

The second estimate is based on Federal Reserve’s Financial Obligation Ratios (FOR) for
mortgages (1980-2006). FOR report all payments on mortgage debt (mortgage payments,
homeowner’s insurance, and property taxes) as a fraction of NIPA’s share of disposable
income attributed to homeowners. For our purposes, the problem with these data is that
members of the 5th quintile of the wealth distribution are also counted as homeowners in the
data (as long as they own a home), even though they do not represent the typical homeowner

35Separate stock data on 2-4 unit properties are not available, but based on completions data from the
Census Bureau’s Construction Survey, 2-4 unit properties make up only a tiny fraction of the multifamily
housing stock.
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in the sense of Campbell and Cocco (2003). To correct for this, we apply the share of the
aggregate SCF personal income attributed to the 3rd, 4th, and 5th quintiles of the wealth
distribution to disposable income from NIPA. This gives us an estimate of NIPA disposable
income attributed to these three quintiles. This aggregate is then multiplied by the financial
obligation ratio to arrive at a time series for total mortgage payments. Assuming again that
all mortgage payments are made by the 3rd and 4th quintiles, the total mortgage payments
are divided by NIPA personal (pre-tax) income attributed to just these two quintiles (using
the SCF shares). This procedure yields average debt-servicing costs of 20%.

Third, we use the ratio of all debt payments to pre-tax family income for the 50-74.9
percentile of the wealth distribution, reported in SCF for 1989-2007. The average ratio
is 19%. About 80% of the payments are classified as residential by the purpose of debt,
yielding an average ratio of 15.2%. A key limitation of this procedure is that the data
exclude the 1970s and most of the 1980s—periods that experienced almost twice as high
mortgage interest rates, on average, than the period covered by the survey. Another issue is
that the information reported in the survey is not exactly for the 3rd and 4th quintiles.

The fourth procedure is based on the Consumer Expenditure Survey (CEX), 1984-2006.
This survey reports the average income and mortgage payments (interest and amortization)
of homeowners with a mortgage. To the extent that homeowners without a mortgage are
likely to belong to the 5th quintile of the wealth distribution—they have 100% of equity in
their home and thus have higher net worth than homeowners with a mortgage—the survey’s
homeowners with a mortgage should closely correspond to the notion of homeowners used in
this paper (CEX does not contain data on wealth). The resulting average, for the available
data period, for mortgage debt servicing costs of this group (pre-tax income) is 15%. Given
that the data do not cover the period of high mortgage rates of the late 1970s and early
1980s, like the third estimate, this estimate probably also underestimates the debt servicing
costs for the period used in calibrating the model.
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