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Abstract

This paper considers housing search, trading and valuation in interconnected hous-
ing market segments with heterogeneous buyers. We use a novel data set on online
housing search to measure buyer search ranges for the San Francisco Bay Area. We
document the cross section of turnover, inventory and search activity in a large num-
ber of market segments. We find substantial variation within narrow geographic areas
that is critical for understanding market activity: for example, search activity and in-
ventory covary positively within cities and zipcodes, but negatively across those units.
A quantitative search model of the housing market shows how market activity at dif-
ferent levels of aggregation depends on the interaction of heterogeneous clienteles. It
also implies liquidity discounts in house prices are large and vary widely across market
segments.

1 Introduction

Home buyers typically look for properties in a search range that depends on their geographic
preferences, budget, or family size. For example, they might focus on houses in a certain
price range that are also in reasonable commuting distance from their workplace. A family
with children might in addition require that the house be located in a good school district.
An individual property that comes on the market is then considered by a clientele of potential
buyers whose search ranges contain that property. The interaction of clienteles determines
how turnover, inventory and prices differ across segments of the housing market.
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Existing studies of housing search typically assume that clienteles are homogeneous. In
particular, two common assumptions are that the market under consideration is either fully
integrated — that is, the clientele for each house consists of all potential buyers — or that
it is perfectly segmented, that is, it can be partitioned into submarkets, each with its own
buyer type who considers all houses in the submarket. However, when studying, say, a metro
area, homogeneity of clienteles is not a priori obvious. For example, a neighborhood with
good schools might see competition between families with children — who search narrowly in
that neighborhood — and other potential buyers who search more broadly. More generally,
the distribution of workplaces and commuting costs in the population is likely to generate
clienteles whose search ranges only partially overlap.

This paper considers housing search, trading and valuation in interconnected housing
market segments with heterogeneous clienteles. We introduce a novel dataset on housing
search behavior in the San Francisco Bay Area to document stylized facts on search ranges.
When we divide the Bay Area into market segments based on observed search ranges, we find
substantial heterogeneity not only for market outcomes across segments but also for clienteles
both within and across segments. We then use a search model with multiple segments to
relate market outcomes to the distribution of preferences and the matching technology. We
show that the interaction of heterogeneous clienteles is a quantitatively important force in
the housing market.

We infer search ranges from online search via the real estate website trulia.com. Searchers
on trulia.com can set an email alert that triggers an email whenever a house with their desired
characteristics comes on the market. We find that housing search occurs predominantly
along three dimensions: geography, price and, to a lesser extent, house size as captured by
the number of bathrooms. Most searchers look for houses in contiguous areas, but differ in
geographic breadth. In cheaper urban areas, there are fewer searchers per house, and those
who do search broadly for low prices. In contrast, clienteles in more expensive and more
suburban areas tend to be larger but also more selective.

To analyze market activity, we divide the San Francisco Bay Area into 576 distinct market
segments along the dimensions suggested by the search alerts. We then measure the cross
section of turnover and inventory at the segment level by matching search alert data to deeds
and assessment records as well as feeds of listings for sale. We find that about half of the
variation in market activity occurs within zip codes, our finest geographic unit. Inventory
and turnover comove strongly, both at the segment level and when we aggregate to the
zipcode or city level. In particular, in cheaper areas or segments, houses turn over faster,
but there is also more inventory for sale.

To relate market and search activity, we express search ranges as subsets of the set
of all segments, resulting in about 9000 distinct ranges. We measure search activity at
the segment level in terms of searchers per house. We find that the relationship between
inventory and search activity depends critically on the level of aggregation. Across cities,
inventory and search activity are inversely related — in other words, the “Beveridge curve”
slopes down across cities. For example, in expensive cities like San Francisco, many people
search scarce inventory, while in cheaper cities like San Jose, plenty of inventory is considered



by few searchers. In contrast, the Beveridge curve slopes up within most cities: for example,
cheaper segments within San Francisco have higher inventory and are considered by more
searchers.

Our model exercise builds on a version of the Diamond-Mortensen-Pissarides random
matching model with fixed numbers of both houses and agents. Moving shocks induce
agents to sell their current house (at a cost) and search for another house. What is new
in the model is the presence of multiple market segments as well as heterogeneous agent
types identified by search ranges — subsets of the set of all segments as in our data. While
matching is random, agents are more likely to match in those segments within their search
range where inventory is higher. Prices reflect the present value of housing services less a
discount due to search and transaction costs.

The equilibrium of the model relates the cross sectional distribution of turnover, inven-
tory, price and search activity to the distribution of preferences, moving shocks and the
matching technology. The distribution of preferences — including search ranges — allows the
model to capture the rich clientele patterns we measure in the data. The key theoretical
effect added by heterogeneous clienteles is that broad searchers flow to high inventory seg-
ments and compete with narrow searchers there. It is stronger in more integrated areas, for
example within cities that have a larger share of broad searchers. It implies that the nature
of clientele patterns then matters both for how market activity responds to changes in the
environment and for what we can infer about parameters from the cross section of market
activity.

If there is perfect segmentation, then identification of the three forces that drive segment
heterogeneity is relatively simple. In more stable segments — where moving shocks arrive
less frequently — turnover and inventory are both lower. In more liquid segments — where
matching is faster holding fixed the buyer and seller pools — turnover is also higher but
inventory is lower. The same is true in more popular segments that have more potential
buyers per house. However, more popular segments also see more search activity.

Our quantitative exercise suggests that patterns at the city level are driven by differences
in popularity and stability. More expensive cities like San Francisco are both more stable
and more popular than cheaper cities like San Jose. The former explains why turnover and
inventory are both lower in San Francisco. The latter explains why search activity is higher
there and helps generate a downward sloping Beveridge curve in the cross section of cities.

Within cities, the Beveridge curve is affected not only by the correlation of exogenous
forces, but also by the endogenous interaction of heterogeneous clienteles. Indeed, consider
two segments that are equally popular and differ only in stability. Broad searchers who scan
both segments will tend to flow to the less stable segment where inventory is higher. As
a result, narrow searchers in the unstable segment find it harder to find a house and must
search more. Within partially integrated areas such as cities, differences in stability alone
thus generate an upward sloping Beveridge curve. We show that the endogenous response
of broad searchers is quantitatively important.

We also use our estimated parameters to infer liquidity discounts for houses in various



segments. These discounts are quantitatively large, between 10 and 40 percent of the fric-
tionless house value (defined as the present discounted value of future housing services by
the house.) The liquidity discounts are large in segments that are less stable, where houses
turn over more often. They are also large in illiquid segments, where houses take a long time
to sell for whatever reason. High turnover and high time on market increase the value of
the trading frictions that the current and future buyers face, which amount to the liquidity
discount.

Finally, we illustrate the role of search patterns for the transmission of shocks with
comparative statics exercises. In particular, we ask how time on market and inventory
change if the supply of houses in a segment increases. The answer crucially depends on the
number of searchers and what other markets those searchers look at. For example, shocks to
a downtown San Francisco segment with many searchers who search broadly is transmitted
widely across the city. In contrast, shocks to a suburban segment close to the San Francisco
city boundary has virtually no effect on the market in the city itself.

Related Literature

Our paper provides the first model in which potential buyers search for a house in different
segments of the market. Their search patterns may integrate different housing segments and
thereby create commonality among these markets. Alternatively, the search patterns may
lead to perfectly segmented housing markets that do not have common features. Our paper
contributes to a literature that has investigated the implications of search models for a single
market, e.g. Wheaton (1990), Krainer (2001), Caplin and Leahy (2011), Novy-Marx (2009),
Ngai and Tenreyro (2009), Piazzesi and Schneider (2009), Burnside, Eichenbaum and Rebelo
(2011), and Han and Strange (2013).!

Landvoigt, Piazzesi and Schneider (2012) develop an assignment model to study different
housing segments. Their model has implications for the relative volume of various segments,
but not for overall volume or the behavior of time on the market. Van Nieuwerburgh and
Weill (2010) study the predictions of a dynamic spacial model for the dispersion of wages
and house prices across U.S. metropolitan areas. Empirical studies (e.g, Poterba, Weil and
Shiller (1991), Bayer, Ferreira and McMillan (2007), Mian and Sufi (2009)) document the
importance of determinants such as credit constraints, demographics, or school quality in
different housing markets.

More related to our paper, Genesove and Han (2012) document the number of homes that
actual buyers have visited on their house hunt, but without knowing the location or other
characteristics of these homes, which are key elements in our work. A number of papers have
considered how to divide housing markets into segments; Islam and Asami (2009) survey the
literature. Most of these paper discuss how to split housing markets into mutually exclusive
segments based on similarity along a number of characteristics. Goodman and Thibodeau

IRecent models of a single housing market with frictions other than search include Piazzesi and Schneider
(2012), Floetotto and Stroebel (2012), Favilukis, Ludvigson and Van Nieuwerburgh (2010) and Glover,
Heathcote, Krueger and Rios-Rull (2011). Empirical analyses of frictions in the real estate market include
Glaeser and Gyourko (2003), Levitt and Syverson (2008), Garmaise and Moskowitz (2004) and Stroebel
(2012).



(1998) define housing markets as geographical areas based on a consistent price per unit
of housing services. Leishman (2001) argues that housing markets can be segmented both
spatially and structurally.

Perhaps the closest paper to ours is by Manning and Petrongolo (2011) who estimate a
search and matching model for local labor markets. While the study does not have data on
where unemployed workers look for jobs (as we have for home buyers), it uses their home
addresses, the addresses of job vacancies in their local area and puts more structure on how
workers compare jobs with different commuting times (e.g., workers are indifferent about
commuting within some radius.)

2 Dimensions of housing search

In this section we document search behavior in the San Francisco Bay Area using email
alerts set on trulia.com. We first describe the data and then provide summary statistics on
the major dimensions of housing search. The results here provide answers to three broad
questions. First, can search ranges inferred from trulia alerts can be plausibly interpreted
as reflecting the considerations of a typical home buyer? Second, how much heterogeneity
do we observe in search behavior? Finally, is there a simple way to describe search ranges
as subsets of a space of characteristics (including geography and quality)?

The San Francisco Bay Area is a major urban agglomeration in Northern California
that includes the cities of San Francisco, San Jose and Oakland. Our analysis combines
data on two Metropolitan Statistical Areas (MSAs) bordering San Francisco Bay. The San
Francisco-Oakland-Hayward, CA Metropolitan Statistical Area comprises Alameda, Contra
Costa, San Francisco, San Mateo, and Marin counties. The San Jose-Sunnyvale-Santa Clara,
CA Metropolitan Statistical Area consists of Santa Clara and San Benito counties. As of
the 2010 Census, these counties were home to about 6 million people who live in about 2.2
million housing units.

2.1 Email alerts

Visitors to trulia.com can set alerts that trigger regular emails when houses with certain
characteristics come on the market. The web form for setting alerts is shown in Figure 1.
Every alert must specify the fields in the first line: “Type” is either “For sale”, “For rent”,
or “Recently sold”. The field “Location” allows for a comma-delimited list of zipcodes,
neighborhoods, or cities. Neighborhoods are geographic units commonly listed on realtor
maps that are often, but not always, aligned with zipcodes. When users fill our the form,
an autocomplete function suggests names of neighborhoods or cities.

The second row in the form provides the option of specifying house characteristics beyond
geography. Price ranges may be set by providing a lower bound, an upper bound or both.
For bedrooms and bathrooms, there is the option to set an integer lower bound from one to



five (“147, “24+” up to “5+7). Finally, for the house size in square feet, the lower bound
is one of seventeen value between 250 square feet and 10,000 square feet. In the third row,
“Property type” allows narrowing the search to “Single family home”, “Condo” and several
smaller categories. Finally, the remaining fields govern how emails are processed: for the
“New listing email alerts” relevant for us, the options are “Email me daily” or “Email me
weekly”.

Figure 1: Setting email alerts on Trulia.com

Add a new alert

Type Location

[For sale E] City & State, Neighborhood, or ZIP

Price range Bedrooms Bathrooms Sqft

$ min to $ max (Any B (Any B (Any [

Property type s Open House email alert 2 New listing email alert

(Any B [For the coming weekend B (Email me daily B

Save Alert

Pooling alerts to obtain search ranges

We observe a random subset of 39,617 “For sale” search alerts between March 2006 and
April 2012. Those alerts were set by 24,125 unique Trulia users, identified by the (scrambled)
email address to which emails triggered by the alert are sent. Given the layout of the web
form, it makes sense to set multiple alerts for example when searching according to different
criteria in different cities. Almost 70 percent of searchers set only one alert, and more than
90 percent of individuals set 3 or fewer alerts.

We are interested in search ranges rather than individual alerts and thus pool alerts by
searcher. In particular, we take the geographic area to be the union of all areas covered in
individual alerts. For the purposes of this section, we also take the price range to be the
maximal range considered across alerts.

Representativeness

The interpretation of our findings depends to some extent on whether searchers who use
trulia are a special subset of the overall searcher pool. In particular, their use of the internet
in home search might signal that they are younger and richer than the average home buyer.
While we do not have direct demographic information on the searchers in our sample, recent
surveys conducted by the National Association of Realtors provide some useful background
information on modern home search.



The internet has now become the most important tool in the home buying process, with
over 90 percent of homebuyers using the internet in their homesearch process (National
Association of Realtors, 2013). In particular, for 35 percent of home buyers, looking online
is the first step taken in the home purchase process. The fraction of people who deemed
real estate websites ”very important” as a source of information was 76 percent, larger than
the fraction 68 percent who found real estate agents ”very important”. Moreover, use of
the internet is not concentrated among younger buyers: 86 percent of home buyers between
the ages of 45 and 65 go online to search for a home. The median age of homebuyers using
the internet is 42, the median income is $83,700 (National Association of Realtors, 2011).
This is only slightly younger than the median of all home buyers (which is 45) and slightly
wealthier (the median income of all home buyers was $80,900).

In addition to showing that online real estate search is almost universal, this suggests
that we can learn from online real estate search about overall search behavior. Moreover,
trulia.com, with approximately 24 million unique monthly visitors (71 percent of whom
report to plan to purchase in the next 6 months), has similar demographics to those of the
overall online home search audience (Trulia, 2013).

Major dimensions of search

Table 1 shows that roughly a third of the queries does not specify any fields in addition
to geography. The other fields that are specified regularly include listing price and the
number of bathrooms. Just under a third of queries specifies both price and the number
of bathrooms, while another third specifies just a price range. The remaining 5 percent of
queries specifies just a bathroom criterion in addition to the geographic restriction. Other
fields in Figure 1 are used much less. For example, only 1.3 percent of queries specify square
footage while 2.7 percent of queries specify the number of bedrooms. While the latter two
fields are alternative measures of size, the minimum number of bathrooms is a commonly
used filter to place restrictions on the size of homes.

Table 1: Distribution of alert parameters

‘ Price not specified Price specified ‘ Total

Baths not specified 13,019 13,777 26,796
Baths specified 1,848 11,881 13,729
Total | 14,867 25,658 | 40,525

Note: This table shows the distribution of alert parameters that Trulia users specify in addition to
geography in our query sample.
2.2 Search by geography

Each alert defines the desired search geography by selecting one or more city, zip code or
neighborhood. About 61 percent of alerts define the finest geographic dimension in terms of
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cities, 18 percent in terms of zip codes, and the remaining 21 percent of alerts specify the
finest geographic dimension in terms of neighborhoods. Some queries include geographies in
terms of cities, zip codes, and neighborhoods in the same query.

Distance

To summarize how search ranges reflect geographic considerations, we consider measures
of size. 28 percent of searchers consider only a single zipcode. For the remaining searchers,
we measure the maximal distance between zip codes contained in their search ranges. If a
range is not directly defined in terms of zipcode, this requires converting city or neighborhood
information to zipcode information, as described in the appendix. We then focus on distances
between population-weighted zipcode centroids. Population weighting is useful since we are
interested in distance between agglomerations within zipcodes that might reflect searchers’
commutes.?

Table 2 reports maximum and mean distance between zipcode centroids for the ranges
of searchers who consider more than one zipcode. We compare three measures of distance.
Geographic distance is measured in miles and is direct ”as the crow flies”. Travel and
transport time are calculated using Google Maps; they represent distance in minutes by car
or public transport, respectively, as of 8am on Wednesday, March 20, 2013.> The distribution
is over 17,488 searchers who select more than one zip code. We conclude from these numbers
that the size of the typical search range is consistent with reasonable commuting times
guiding geographic selections. Moreover, there is sizable heterogeneity in geographic breadth.

Table 2: Distribution of distances across search alert zip codes

Population-Weighted Zip Code Centroids
Min Bottom Decile Median Top Decile Max Mean

Max Geographic Distance 0.5 2.3 6.8 21.1 103.3 9.7
Mean Geographic Distance 0.5 1.8 3.2 8.9 74.0 4.7
Max Car Travel Time 4.0 9.5 20.5 38.5 143.5 228
Max Public Transport Time 3.8 8.9 13.1 19.7 1325 14.0
Mean Public Transport Time 10.5 40.5 79.0 375.0 073.5  140.1

Note: This table shows the summary statistics across searchers who select more than one zip code (N =
17,488) of travel time and geographic distances between the centroids (population-weighted) of all zip codes
selected by that query. Travel times are measured in minutes. Geographic distances are measured in miles.

2For each zipcode, we start from geographic centroids of all census blocks contained in the zip code,
as provided by the Census Bureau, and then calculate their population-weighted arithmetic mean. For
robustness, we also check results with geographic zipcode centroids and find similar results.

3A few zip code centroids are inaccessible by public transport as calculated by Google. Public transport
distances to those zip code centroids were replaced by the 99th percentile of travel times between all zip
code centroids for which this was computable. This captures that these zip codes are not well connected to
the public transport network.



Contiguity & circularity

To guide our modeling of clientele heterogeneity, we ask whether there is a simple orga-
nizing principle for observed search ranges, namely that searchers consider contiguous areas,
possibly centered around a focal point such as a place of work or a school. We say a search
range is contiguous if it is possible to drive from between any two zipcode centroids in the
range without ever leaving the range. Here we allow for travel across one of the six Bay Area
bridges. Details are contained in Appendix A.1.

Table 3 shows summary statistics by the number of zipcodes defining the search range.
The second column reports the share of searchers who select contiguous geographies. While
overall only 18 percent of searchers have non-contiguous search ranges, they tend to be
broad searchers who consider more than five distinct zipcodes and hence provide market
integration across neighborhood and city boundaries. The third and fourth columns report
the mean and max number of contiguous areas covered by a search range. Broad searchers
often consider multiple distinct contiguous areas. Preference for certain cities plays a role
here: the increase in the share of contiguous queries for the group with 21-30 zip codes
selected can be explained by the prevalence of searches for “San Francisco” and “San Jose”
in that category.

Table 3: Contiguity analysis — summary statistics

Contiguous Segments
Number of Zips Covered | Share contiguous | Mean Max ‘ Total Number

2 91% 1.09 2 2,927
3 83% 1.18 3 1,761
4 91% 1.10 3 2,248
5 67% 1.37 4 844

6-10 1% 1.38 5 2,612
11-20 74% 1.38 8 2,071
21-30 91% 1.13 10 4,213
30+ 48% 1.94 9 798

Total 82% | 1.24 10 17,474

Note: This table shows summary statistics for contiguity measures across queries that select different
number of zip codes.

A stylized model of geographic search might view a range as a circle around a central
point. We ask whether our search ranges can be suitably approximated by such a model. We
thus compute, for each searcher, the geographic center of range: the average longitude and
latitude of all (geographic) zipcode centroids selected by that searcher. We then determine
the maximum distance to this center of any zip code centroid contained in the search range.
On average, the maximum distance is 3.95 miles, while the 10th percentile is 1.31 miles and
the 90th percentile is 12.78 miles. We then compute the number of zip code centroids (not
necessarily contained in the search range) that are within maximum distance to the center.



We say a search range is circular if all zip codes within maximum distance to the center are
also contained in the search range. Figure 2 illustrates this procedure.

Figure 2: Explanation of circularity test
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set to the search set center. All zip codes whose center lies within the circle (and who are thus at least as
close as the furthest zip code center in the search set) are shaded.

Overall, 47 percent of all searchers have circular search ranges. This number is highest,
at 83 percent, for ranges that only cover two zip codes, and declines for queries that cover
more zip codes. In addition, for search sets with a larger maximum distance, the proportion
of searches that cover all zip codes within this maximum distance from the center declines.
On average, searchers cover 78 percent of all zip codes within maximum distance of their
search range center. However, for non-contiguous ranges, the share of zip codes covered falls
to 33 percent.

We conclude from these results that it is difficult to come up with a parsimonious descrip-
tion of the geographic selections defining search ranges. In particular, a modeling approach
that describes ranges in terms of contiguous and/or circular subsets of the plane will fail
to account for the behavior of broad searchers who integrate markets. This finding guides
our approach in the next section, where we define a discrete grid of market segments, using

10



zipcode as the geographic units. Geographic selection can then be represented as subsets
of the set of all zipcodes, and it is straightforward to accommodate non-contiguous and
non-circular search patterns.

Figure 3: Price cutoff analysis
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Note: This figure shows a histogram in steps of $10,000 of the minimum and maximum listing price
parameters selected by home searchers in their email alerts. The bottom left panel of this figure shows the
distribution of price ranges across queries both for queries that only select a price upper bound as well as for
those queries that select an upper bound and a lower bound. The bottom right panel shows statistics only
for those alerts that select an upper and a lower bound. The line chart shows the average price range by for
different groups of mid prices, the bar chart shows the average of the price range as a share of the mid price.

2.3 Search by price and size

Out of the 61 percent of searchers who fill out the price field for their email alert, 50 percent
specify both an upper and a lower bound, whereas 48 percent specify only an upper bound
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and only 2 percent select only a lower bound. The top panel of Figure 3 shows the distribution
of minimum and maximum prices selected in the email alerts. Price range bounds are
typically multiples of $50, 000, with particularly pronounced peaks at multiples of $100, 000.

There is significant heterogeneity in the breadth of the price ranges selected by different
searchers. Among those who set both an upper and a lower bound, the 10th percentile selects
a price range of $100,000, the median a price range of $300,000 and the 90th percentile a
price range of $1.13 million. The bottom left panel of Figure 3 shows the distribution of
price ranges both for those agents that select an upper and a lower bound, as well as for
those agents that only select an upper bound.

The bottom right panel shows that searchers who consider more expensive houses specify
wider price ranges. We bin the midprice of price ranges into 10 groups. The dashed line (with
values measured along the right-hand vertical axis) shows that the price range considered
increases monotonically with the midpoint of the price range. One simple hypothesis consis-
tent with this is that searchers set price ranges choosing a fixed percentage range around a
benchmark price. The bar chart (with percentages measured on the left hand vertical axis)
shows that this is not the case: the percentage range is in fact U-shaped in price.

The third dimension that is regularly populated in the email alerts is a constraint on the
number of bathrooms. Figure 4 shows the distribution of bathroom cutoffs selected for the
Bay Area. 68% of all bathroom limits are set a value of 2, most of them as a lower bound.
This setting primarily excludes 1 and 2 bedroom apartments and very small houses.

Figure 4: Bathrooms cutoffs selected
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Note: This figure shows a histogram in steps of 0.5 of the minimum and maximum bathroom parameters
selected by home searchers in their email alerts.

Tradeoffs between search dimensions

The three major search dimensions we have identified are not necessarily orthogonal.
For example, one can search for houses in a particular price range by looking only at zip
codes in that price range or only at homes of a certain size. Table 4 provides evidence on
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how different search dimensions interact. It shows in particular that searchers who are more
specific on price or home size search more broadly geographically. For example, searchers
who specify a price restriction cover an average of 10.3 zip codes with an average maximum
distance between centroids of 7.9 miles, while other searchers cover only 7.3 zipcodes with
an average maximum distance 1.06 miles. As we show below, discretizing the space of
search characteristics can deal easily with searchers expressing their budget constraint or
size preferences via geographic restrictions.

Table 4: Geography, price and bath parameter interaction

No Price Price No Bath Bath
Mean N |Mean N |[Mean N |[Mean N
# Zips Covered 7.3 8725 | 10.3 15,400 | 8.8 15,716 | 10.0 8,409
Max Dist. (Mil) 7.9 5375 | 106 12,113 | 8.9 10,899 | 11.1 6,589
Max Car (Min) 20.8 5375 | 24.5 12,113 | 22,5 10,899 | 24.7 6,589
Max Public Trans. (Min) | 75.8 5,375 | 924 12,113 | 82.1 10,899 | 959 6,589
Is Continguous 54% 8,725 | 62% 15,400 | 59% 15,716 | 60% 8,409

Note: This Table shows summary statistics across queries that cross-tabulate moments across different
search parameters.

3 Market segments

In this section, we divide the San Francisco Bay Area housing market into a finite number
of segments, motivated by search ranges inferred from email alerts. We then use summary
measures of market and search activity at the segment level to establish stylized facts.

3.1 Data

To measure housing market activity, we combine three main datasets. We start from the
universe of ownership-changing deeds in the Bay Area between 1994 and 2011. The property
to which a deed relate is uniquely identified at the county level by the Assessor Parcel
Number (APN). From the deeds data, we obtain the property address, transaction date,
transaction price, type of deed (e.g. Intra-Family Transfer Deed, Warranty Deed, Foreclosure
Deed), and the type of property (e.g. Apartment, Single-Family Residence). We identify
armslength transactions and foreclosure transactions using information on the type of deed
and transaction price.

We also have the universe of tax assessment records in the Bay Area for the year 2009.
Properties are again identified by their APN. This dataset includes information on property
characteristics such as construction year, owner-occupancy status, lot size, building size, and
the number of bedrooms and bathrooms.
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Finally, we use a dataset of all property listings on trulia.com between October 2005
and December 2011. The variables we use here are listing date, listing price, and the listing
address. The latter can be used to match listings data to deeds data. We can then construct
a measure of time on market for each property that eventually sells.

Throughout we pool observations for the period 2008-2011. The goal of this paper is to
understand the cross section of market activity. Pooling observations across years helps us
achieve a finer description of cross sectional heterogeneity. In particular, there are sufficiently
many observations to measure separately what happens in segments with low listing and
housing turnover rates. To make prices comparable across years, we convert all prices in
2010 dollars using zipcode level repeat sales price indices.

3.2 Defining segments

We are looking for a partition of Bay Area houses into market segments. The finest partition
that can be motivated by search data is obtained by joining all search ranges in our sample.
Any division of houses into segments would then be motivated by the preferences of at least
one searcher. Moreover, the preferences of any one searcher could be expressed exactly
through a subset of the set of all segments. However, the problem with this approach is
sample size: the number of houses per segment would be too small to accurately measure
moments such as time on the market, inventory and buyer interest.

Our approach is to get as close as possible towards the finest partition, but subject to the
constraint that segments must be sufficiently large in terms of volume and housing stock.
This leads us to a set H of 576 segments as well as a set © of 9091 search ranges that can
each be represented as a subset of H. These segments contain houses within a zipcode that
are of similar quality (based on price) and size (based on bathrooms). We provide a detailed
description of the algorithm in the appendix. In what follows we only sketch the main steps.

We start from our earlier result that people search mostly according to (i) quality, by
specifying price ranges (ii) geography, where in particular zip code is the finest unit and
(1ii) size, by specifying the number of bathrooms, typically either “up to 2” or “more than
2” bathrooms. Facts (i) and (7i7) lead us to first divide the Bay Area by zipcode and then
divide each zipcode into two size categories.

In order to use zipcode as the basic geographical unit, we need to deal with search ranges
that specify geography at a unit that does not perfectly overlap with zipcodes. For search
ranges that select listings at the city or neighborhood level, we assign all zip codes that are
at least partially within the range of the city or neighborhood to be covered by the search
range. This provides us, for each search range, with a list of zip codes that are covered
by that search range. Using this method of expressing geographic selections in terms of
zipcodes, the search ranges in our dataset cover a total of 191 unique Bay Area zipcodes.

To further accommodate search by quality, we further divide — zipcode by zipcode —
each size group into four price groups. Here we start from a set of candidate price cutoffs:
$200K, $300K, $400K, $500K, $750K and $1 million. We then select three cutoffs from these
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candidates that are most often close to price cutoffs appearing in our email alerts. The idea
is that the resulting set of segments is close to the ideal partition implied by the ranges. In
particular, high prices zipcodes will typically have higher cutoffs than lower priced zipcodes.

At this point, we have divided each zipcode into eight size-price groups. It is possible,
however, that some of the groups are too small to provide accurate measures of segment level
moments. Our criteria here are that a segment must have enough number of transactions
as well as a sufficiently large housing stock. If this is not the case, we merge candidate
segments to form a larger joint segment. As a result, some zip codes that have very thin
housing markets might have very few segments.

Given a final set of segments we express each search range as a subset. Here we start from
the raw search range, specified along the dimensions quality, size and geography, ignoring
other dimensions. We then determine the set of segments that is approximately covered by
the specified range. We also exclude ranges containing segments with very different median
segment prices, relative to the distribution of ranges with an explicit price selection. Since
some detail is lost at this step, the number of distinct patterns drops from about 30K to
about 9K.

3.3 Market activity and search activity

The following notation is useful to organize facts reported at the segment level. Let H
denote the set of all segments. The measure p? counts houses, so u* (h) is the housing
stock in segment h. Let V (h) denote the average monthly turnover rate in segment h
defined as the number of transactions divided by total housing stock. Let T (h) denote the
mean time on the market in segment h defined as months between listing and sales date,
less one month for the typical escrow period. Our measure of average inventory in segment
his p® (h) := T (h) V (h) pf (h).* We also define the inventory share I (h) = u° (h) /u!? (h)
which is the fraction of all houses that is currently for sale.

Every search range in our sample is a subset of the set of all segments H. We index the
ranges by 6 € © and refer to the set O as the set of searcher “types” 2 A searcher of type 6
scans inventory in the set of segments H (§) C H. The total housing stock that is of interest

to searcher 0 is
V0 = 3 (h).
heH(0)

Similarly, we define the total inventory considered by searcher ¢, denoted v%(#), as the sum
over all inventory p° (h) for sale in segments in ’s search range H (#).

4This measure of inventory for houses conditions on houses that are eventually sold, since T is based on
actual sales. Alternatively, one can construct measures of inventory directly from listings data. The resulting
series are noisy because they require assumptions on when listings are removed.

5For the presentation of facts in this section, "type” is no more than a label for search ranges. The
notation is motivated by our model below where each search range will indeed correspond to a different type
of agent (with the search range a feature of preferences).
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The clientele of segment h consists of all searchers who consider segment h as part of
their search range, that is,

é(h):{ee@:heﬁ(e)}. (1)

The pattern of clienteles reflects the interconnectedness of segments. As an extreme example,
in a perfectly segmented market, there are #H types with search ranges each consisting of a
single segment, and each segment has a homogenous clientele of one type who searches only
that segment, that is H (§) = {h}. In contrast, in a perfectly integrated market there is a
single type with H (f) = H and all clienteles are identical and contain only that type. More
generally, clienteles are heterogeneous and may consist of distinct types with only partially
overlapping search ranges. Let ( () denote the relative frequency of search ranges 6 in the
data sample. The distribution of searchers interested in segment h follows by computing the

marginal of 5 on © (h).

For example, as one summary statistic of overall search activity in segment h, we compute
the weighted number of searchers per house

JCEDE )

Weighting here captures the idea that search effort is somewhat diluted if it is broader.
Indeed, if every searcher were looking only at one segment, then o (h) simply reflects the
number of searchers per house in h. More generally, some searchers 6 in the clientele of h
may consider segments other than h. Dividing the number 3(0) of type 6 by the housing
stock v (0) that this type is interested in makes broader searchers (who are interested in
more housing stock) count less towards search activity in h.

So far, all summary statistics have been defined at the segment level only. We are also
interested in how market and search activity vary at different levels of aggregation. Since
V,I and o are all defined as ratios relative to housing stock, aggregation uses housing stock
as weights. For example, the turnover rate over some subset G C H, such as a zipcode or
city, is computed as

pt (R)V (h)

hel: > hea M ()
We aggregate inventory share and search activity in the same way.

In addition to administrative geographic units, we are also interested in aggregating to
sets of segments that are more closely integrated, in the sense that there is is a sufficiently
large common clientele. We define the area connected to h as the set of segments h such that
the weighted share of searchers scanning both A and h is at least a fraction ¢ of searchers
scanning h,

Ag(h)y=SheH: Y ﬁf(?e))2¢ Z ﬁ{((ee)) : (3)

0:h,hc H(0) 0:hc H(0)
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The distribution of market and search activity

Table 5 presents summary statistics on market and search activity for the Bay Area as a
whole as well as by segment. The housing market is illiquid: on average only 1.7 percent of
Bay Area housing stock is for sale and the average turnover rate is .34 percent, so the typical
house turns over once every 25 years. At the segment level, relative variation is substantial:
at the 75th percentile for inventory share there is more than 2.5 times as much inventory
than at the 25th percentile. At the 75th percentile for volume houses turn over twice as fast
as at the 25th percentile.

Table 5: Summary statistics of market and search activity

inventory share | turnover rate | search activity | mean price | housing stock

I (in percent) | V (in percent) o (in thous.)
Bay Area 1.70 0.34 1.00 645 1,565,259
min 0.09 0.01 0.05 80 1,005
q25 0.81 0.21 0.52 313 1,564
qb0 1.33 0.29 0.82 526 2,271
q75 2.17 0.41 1.31 805 3,341
max 12.46 1.75 4.31 2,490 11,178

The measure of search activity (2) has an average of one by construction. Its distribution
is positively skewed: the majority of segments have less than one weighted searcher per
house. The minimum of .05 is achieved in Martinez in the Sacramento Delta. In contrast,
some segments have substantially more search activity, all the way to a maximum of 4.32 in
a segment in central San Francisco.

Variation across submarkets

Table 6 reports cross sectional variation in observables at different levels of aggregation.
The three left-hand panels show volatilities and correlation coefficients across segments,
zipcodes and cities, respectively. Comparison of volatilities shows that there is substantial
variation in segments which is below the zipcode and city level. Indeed, the zipcode-level
movements account for only 53, 59, and 55 percent of the segment-level variance in inventory
share I, turnover rate V', and search activity o, respectively.

Our market activity indicators — inventory share and turnover rate — comove strongly
across any type of “submarket”: segment, zipcode, or city. Both variables also tend to be
higher in cheaper submarkets. In contrast, the comovement of search activity and market
activity depends crucially on the level of aggregation. While it is close to zero at the segment
level, it is turns negative at the zipcode and even more at the city level. At the same time,
the relationship with price also changes: while more expensive segments do not see higher
search activity on average, more expensive zipcodes and cities are searched more.

Principal component analysis on the observables in Table 6 further clarifies the multi-
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variate patterns at work in the data. At the segment level, the first principal components
explains 61 percent of normalized variation and loads with equal sign on inventory and
turnover and (with the opposite sign) on price. In contrast, the second principal component
explains 22 percent and loads almost exclusively on search activity. The situation changes
at broader units of aggregation: for example, at the city level, loadings make the first princi-
pal component (now explaining 68 percent) induce negative correlation between market and
search activity.

Variation within submarkets

The three right hand panels of Table 6 consider segment-level variation within submar-
kets. The bottom two panels report volatilities and correlations within the average zipcode
and city. There are 192 zipcodes and 96 cities in our data. All moments are weighted us-
ing housing stock.® The top panel shows segment level variation within areas connected by
significant common clienteles Ay (h), evaluating (3) with ¢ = .3. There are as many such
areas as there are segments.’

For market activity indicators and prices, the nature of covariation across and within
submarkets is essentially the same. Indeed, inventory share and turnover rate move together
and are both negatively correlated with price. For zipcode and city, the “within” correlation
coefficients in the right hand panels are also quantitatively close to the “across” correlation
coefficients in the left hand panels.

In contrast, the sign of comovement between search activity on the one hand and market
activity and price on the other depends on whether we look within or across submarkets.
Indeed, for both zipcodes and cities, search activity moves together with market activity and
against price across units, but it moves against market activity and with price within units.
The signs of within correlations are the same for connected areas that defined on the basis
of common clienteles as opposed to geographic closeness.

The relationship between inventory and measures of search activity is reminiscent of the
“Beveridge curve” that relates vacancies and unemployment in labor market statistics. The
stylized fact here is that the housing-market Beveridge curve is downward sloping across
broad units of aggregation, while it is on average upward sloping within broad units. In fact,
the Beveridge curve is upward sloping within 81 out of 96 cities that represent 68 percent of
the total housing stock.

The within-city Beveridge curve also slopes up for 15 of the largest 20 cities. One notable
exception among the latter is San Jose, which has a correlation coefficient of —.08. The fact
is not primarily driven by small cities, however. Indeed, the 15 cities in the top 20 that have
an upward sloping Beveridge curve have an average slope of .53 and a 25th percentile slope
of .38. The slope for San Francisco is .66. At the same time, negative slopes among the top

6The unweighted median number of segments for both zipcodes and cities is equal to 3. However, the
distribution of cities is highly skewed. For example, San Francisco and San Jose contain 101 and 70 segments,
respectively.

"There are as many connected areas as there are segments. The median and 75th percentile area by
number of segments consist of 5 and 10 segments, respectively. The main qualitative message below is not
sensitive to the choice ¢.
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Table 6: Cross sectional variation in market and search activity

variation across units avg variation within units
I Vv o log(p) I Vv o log(p)
segment connected area
vol 1.26 0.19 0.68 0.66 0.80 0.12 0.56 0.34
corr 1 .95 01  —.67 1 89 33 —45
1 —-.01 —=.57 1 29 13
1 .05 1 —.15
1 1
zipcode zipcode
vol 0.92 0.14 0.52 0.52 0.90 0.13 0.43 0.42
corr 1 95 -—-21 -—-.73 1 87 .51 =76
1 —-17 —.64 1 36 —.61
1 42 1 —A47
1 1
city city
vol 0.78 0.13 0.40 0.47 0.84 0.13 0.38 0.43
corr 1 96 -39 —-.80 1 84 51 =74
1 =30 =71 139 =55
1 .53 1 —.46
1 1

5 cities range between —.08 and —.26.
Breadth of search & integration

The summary measure o (h) reflects average search activity in a segment, but it does not
tell us whether that activity is due to narrow local searchers or due to broader searchers who
provide connection to other segments. To summarize interconnectedness, we now compare
segments in terms of the inventory scanned by their typical client. The left-hand panel of
Figure 5 plots the share of inventory in segment h in total Bay Area inventory (measured
along the horizontal axis) against the inventory scanned by the median client of segment h
(measured along the vertical axis). Every dot represents a segment, and color reflects the
value on the vertical axis so the segments can be recognized in the map in the right-hand
panel.

If the Bay Area were perfectly segmented, then any given segment would only have clients
who scan that particular segment. As a result, all points would have to line up along the 45-
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Figure 5: Scanned inventory

Inventory scanned by median client

0 02 04 06 038
Inventory (% of total Bay area)

degree line. At the opposite extreme, if the Bay Area were perfectly integrated, then every
client of every segment would scan all houses, so all points should line up along a horizontal
lines at 100 percent of total inventory. Not surprisingly, the truth is in the middle: the
median searcher in a segment scans multiple times more inventory than is available in the
segment itself, but far less than 100 percent of the total.

Areas with a large common clientele appear in the plot as near-horizontal clusters: if any
subset of segments were perfectly integrated but not connected to other segments, then it
would form a horizontal line at the level of its aggregate inventory. The relevance of this
effect is visible for the top cluster of pink dots. The map in the right hand panel shows
that those dots represent cheaper segments in the city of San Jose. More generally, clusters
of dots with high scanned inventory correspond to cheap urban areas where broad search
appears to be more common.

The first column of Table 7 summarizes the distribution of inventory scanned by the me-
dian client. In the average segment, the median client scans 2 percent of the total inventory,
or 45 houses. The table also clarifies that most dots in Figure 5 are clustered in the bottom
left; the 75th percentile is at only at 2.7 percent of total inventory. The second column
in Table 7 shows the distribution of within segment interquartile ranges for scanned inven-
tory. The point here is that there is substantial clientele heterogeneity. Indeed, the average
within-segment IQ) range of inventory scanned by different searchers is, at 1.77 percent, quite
similar to the across-segment IQ) range of inventory scanned by the median searcher. Inter-
estingly, clientele heterogeneity comoves strongly with overall connectedness: the correlation
coefficient between the first and second columns is 63 percent. In other words, in segments
that are on average more integrated with other segments, there are larger within-segment
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differences between the interacting narrower and broader searchers.

Table 7: Variation in scanned inventory

by segment: total inv. by zipcode: share of search ranges by city: share of search types

scanned (in percent)  (in percent) (in percent)

median 1Q range one multiple < one other one multiple subset other
mean 2.00 1.77 5.5 3.8 6.2 84.5 9.7 6.7 17.8 65.8
q25  0.80 0.84 0 0 0.9 73.9 0 0 3.2 54.6
qb0 1.38 1.57 1.2 0.9 2.4 93.5 49 1.1 13.5 66.4
q75 270 2.31 44 3.9 6.7 97.2 152 7.0 27.9 79.9

Search at the city and zipcode level

The right-hand columns of Table 7 ask how important detailed segment-level information
is for understanding search patterns. For each zipcode and city, we first classify the share
of searchers active in that zipcode or city who search entire zipcodes or cites, respectively.
The categories labeled “one” and “multiple” distinguish further between searchers who scan
exactly one versus exactly an integer number of zipcodes or cities. Together, they indicate
the share of searchers for whom detailed segment level information is not important. The
category labeled “one” collects searchers who scan only a subset of a segment, while ”other”
mops up other searchers for whom segment information matters because their range intersects
with multiple zipcodes or cities.

The table reports mean and quartiles for the shares of each category of searcher in the
cross section of segments. For example, in the average segment, only 5.5 percent of searchers
select exactly the zipcode containing that segment. The distribution is highly skewed: in
75 percent of segments, the share of searchers scanning the zipcode is 4.4 percent or less.
The order of magnitude of the numbers is similar at the city level and whether we consider
multiple versus a single unit. We can therefore conclude that the clientele patterns at work
in our data is due to searches that are not simply driven by zipcode or city. Instead, other
characteristics defining a segment, in particular size and quality, play an important role.

4 Model setup

The model describes a small open economy, such as the San Francisco Bay Area. Time is
continuous and the horizon is infinite. Agents live forever and discount the future using the
riskless rate 7.

Segments, search ranges and clienteles

The model allows for agents of different types who search across different segments of
the housing market, as in our data. We use the notation introduced in Section 3.3. There
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is a finite set H of market segments. The measure Y on H counts the number of houses in
each segment. We normalize the total number of houses in the economy to one:

> uf(h) =1.

heH

Agents have quasilinear utility over two goods: numeraire and housing services. Agents
own at most one house. When an agent moves into a house, he obtains housing services
v (h) > 0 until the house falls out of favor, which happens at the rate n (h). After the house
falls out of favor, the agent no longer receives housing services from that particular house.
The agent can then put the house on the market in order to sell it and subsequently search
for a new house. We assume that the search for a new house is costless, whereas putting a
house on the market in segment h involves costs ¢(h) per period.

Agent type 6 is identified by a search range, a subset H(#) € H of market segments that
he is interested in. Search ranges are part of the description of preferences — an agent will
never move into a house outside H (). We use a measure ;© on the set of all types © to
count the number of agents of each type. The total number of agents is

p°=> ul() > 1.

0cO

Since there are more agents than houses and agents own at most one house, some agents
are always searching. The idea is that these i® — 1 agents rent or stay in a hotel while they
search for a house to buy.

The clientele © (h) of segment h is the set of all agents who are interested in segment h,
as defined in (1). It is helpful to consider two extremes. The market is perfectly segmented
if every segment is searched by a single type who is interested only in that segment. The
clienteles © (h) are then disjoint sets that each contain a single type #. In contrast, the
market is fully integrated if there is only one type who searches all segments; all clienteles
) (h) are then identical and contain the same type. The inventory scanned by type 6 is

V5 ().
Matching

Matching in the housing market involves searchers scanning inventory, identifying suitable
properties and making contact with sellers. We capture this process by a random matching
technology. We make two assumptions. First, searchers flow into segments within their
search range in proportion to segment inventory. This assumption is natural if searchers are
equally likely to find a favorite house anywhere in their search range. Formally, let i? (6)
denote the number of buyers of type 6. We define the number of buyers in segment A as

)= 3 Lo 6) (@)

0cO&(h)

For the given segment h, buyers can belong to any type in the clientele © (h). If a type 0
searches only segment h, then v° (6) = p” (h) and all buyers i () of type 6 are in fact
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buyers in h. If segments have roughly the same inventory, searchers are equally likely to be
buyers in any of the segments in their search range. More generally, the more inventory is
available in h relatively to other segments in type 6’s search range, the larger the share of
type 6 buyers who flow into h.

Our second assumption is the presence of a matching function. The match rate in segment

h is given by
m (h) = (u (h), u® (h) . h) ,

where m is increasing in the number of buyers and sellers and satisfies m (O,MS ,h) =
m (uB ,0, h) = 0. At this point, we do not make further assumptions on the functional
form of the function m. What is important is that it is allowed to depend on the segment
h directly (other than through the number of buyers and inventory). For example, the
process of scanning inventory could be faster in a segment because the properties are more
standardized, or because more open houses are available to view properties.

Once a buyer and seller have been matched, the seller makes a take-it-or-leave-it offer.
If the buyer rejects the offer, the seller keeps the house and the buyer continues searching.
If the buyer accepts the offer, the seller starts to search, whereas the buyer moves into the
house and begins to receive utility v (h).

Equilibrium

In equilibrium, agents make optimal decisions taking as given the distribution of others’
decisions. In particular, owners decide whether or not to put their houses on the market,
sellers choose price offers and buyers choose whether or not to accept those offers. In what
follows, we focus on steady state equilibria in which (i) owners put their house on the market
if and only if their house has fallen out of favor, so that the owners do not receive housing
services from it, and (i7) all offers are accepted.

Since the model has a fixed number of agents and houses, the steady state distributions
of agent states can be studied independently of the prices and value functions. We need
notation for the number of agents who are in the different individual states. Let u® (h;0)
denote the number of type # agents who are homeowners in segment h, and let u* (h;0)
denote the number of type 6 agents whose house is listed in segment h. In steady state, all
these numbers, as well as the numbers of buyers by type i (8) and by segment u? (h), are
constant. We now derive a set of equations to determine them.

The first set of equations uses the fact that p° (h), the number of houses for sale in
segment h, is constant in steady state. As a result, the number of houses newly put on the
market in segment h must equal the number of houses sold in segment h:

n(h) (" (h) = p® (h)) = (u” (h) , 1 (h) , h). (5)

The left-hand side shows houses coming on the market, given by the rate that houses fall
out of favor multiplied by the number of houses that are not already on the market. The
right-hand side shows the number of matches and thus the number of houses sold.

The second set of equations uses the fact that the rate at which houses fall out of favor
in segment h is the same for all types in the clientele of h. As a result, the share of houses
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owned by type 0 agents in h must equal the share of houses bought by type 6 agents in h:

W (hs9) S () i (6) .

pt () vS(0) u? (h)
On the right-hand side, the share of type 6§ buyers in segment h equals the number of type
0 buyers that flow to h in proportion to inventory, as in (4), divided by the total number of
buyers in segment h. The equation also says that the buyer-owner ratio for any given type
0 in segment h is the same and equal to the segment level buyer-owner ratio u (h) /uf! (h).

Finally, the number of agents and the number of houses must add up to their respective
totals:

pt(h) =Y p"(h6),

6€6(h)
WO O0) =" (O)+ D u (1:0). (7)

heH(0)

Equations (5), (6) and (7) jointly determine the unknown numbers pf? (h;9), 1 (h), u? (h)
and 1P (0), a system of 24 H + #0O (1 + #H) equations in as many unknowns.

Parameters

The model identifies three forces that determine market activity and prices in the cross
section. Two forces operate at the segment level. First, the rate n(h) at which houses fall
out of favor represents differences in the supply of housing across segments. In what follows,
we refer to 7 (h) as a measure of instability: a more unstable segment is one where more
houses come on the market per period. The second force is the segment-specific effect on
match rates summarized by m (.,.,h) which represents differences market frictions across
segments, respectively. The third force is the demand for housing which is captured by the
distribution of search ranges H (0) and the number of agents 1®(6) of type 6.

Housing demand parameters are more complicated to study since their effect depends on
the entire clientele pattern. It is nevertheless helpful to consider a summary measure at the
segment level. We define the popularity of a segment by

©
w(h) =Y ’:H Ez; 8)

0€6(h)

A segment is more popular if there are more agents per house who include it in their search
ranges. The measure is analogous to the measure of weighted searchers (2) in that broad
searchers who look at multiple segments other than h count toward the popularity of segment
h. A key difference is that 7 (h) is an exogenous determinant of demand for segment h,
because it captures the distribution 1®(#) of preferences, whereas search activity o (h) is
determined endogenously, as described below.

Observables
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The observables described in Section 3.3 all have model counterparts. The inventory
share is I (h) = p® (h) /u® (k) and the turnover rate is V (h) = m (h) /u™ (h). Search alerts
represent a sample of buyers. The relative frequencies of the search ranges H (0) in the
model are given by 5 (0) = i®(0)/ (7° — 1) and are thus observable up to the constant

fi® — 1. Our measure of search activity at the segment level can be written as

)= Y 105 )

H 0€6(h)

where I (8) = v () /v™ (6) is the inventory share measured over the search range of type 6.
Ezact identification of parameters

The structure of the model implies that the supply and demand parameters — 7 (h) and
1 (0), respectively — can be identified without taking a stand on the exact shape of the
matching function. All that is required is that the dependence of the matching function
on the segment is sufficiently flexible that the model can jointly match the inventory share
I (h), the turnover rate V (h), and the relative frequencies of search ranges (5 (6). We now
derive this result from equations (5)-(7).

Dividing the market clearing condition (5) by the housing stock u* (h), we obtain
n(h) (1= 1I(h)) = V(h). (10)

The frequency of moving shocks n(h) can thus be inferred from inventory and turnover alone.
Moreover, we know from the summary statistics in Table 5 that inventory shares are small,
their 90th percentile is at 3.5%. As a result, the parameter must closely track the turnover
rate by segment. Intuitively, because the time a house remains on the market is much shorter
than the time that it is occupied by an owner, turnover is almost entirely accounted for by
the frequency of moving shocks.

The match rate for a buyer who flows to segment h is a(h) = m (h) /u® (k). Using the
definition of buyers (4), it can be expressed in terms of observables (up to a constant) as

R I(h)BO)(r°—1) 1
a(h)_z ) v  V(h)

(11)

~

0e6(h)

Interpreting terms from the right, we have that matching is fast (at a high rate «(h)) in
segment h if turnover is high in A, if the buyer-owner ratio is high for types in the clientele
of h, and if inventory is high in A relative to other segments in its clientele’s search ranges.

We do not have information on the overall number of buyers fi® — 1. As an additional
target moment, we set the average match rate for a buyer to 20% which is also the average
match rate for inventory in our data. The average time it takes for a buyer to find a house
is therefore about 5 months. This choice does not affect the relative behavior of market
and search activity across segments, and therefore is not particularly important for most
of our results. Formally, the average inventory-weighted match rate across types 6 is the
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same as the average inventory-weighted match rate across segments.® We thus determine
the constant ji® — 1 by setting the average of the buyer match rates a (h) to the average of
the inventory match rate I (h) /V (h).

Once the total number of buyers is determined, the number of buyers by type i (8) =
B(0) (1° — 1) and by segment p® (h) = p” (h) V (h) /o (h) follow immediately. Substituting
for p* (h;0) in (7) using (6) we can solve out for the type distribution u® (6) from

p° (0) — i (0) p® (h) p'" (h)

ATO) 2 05 (0) 1B (h) (12

heH ()

The adding up constraint says that the owner-buyer ratio for type 6 agents should be the
inventory weighted average of owner-buyer ratios at the segment level. We will therefore
infer the presence of more types 6 not only if we observe more buyers of type 6 (higher 3 (0)
and hence jiZ (), but also if type 0’s search range has on average relatively more owners
relative to buyers. In the latter case, more types € agents are themselves owners, so their
total number is higher.

At this point we have identified the supply and demand parameters of the model without
specific assumptions on the functional form of the matching function. If we postulate such
a functional form, restrictions on its parameters follows from equation (5). For example,
consider the Cobb-Douglas case with a multiplicative segment-specific parameter m(h) that
governs the speed of matching

m (1 (h), 5 (B) 1) = m (h) i (B)° i ()"

For a given weight §, the speed of matching parameter m (h) can be backed out from ob-
servables as m (h) = a (h)’ (V (k) /I (h))'™°. The speed of matching parameter is thus a
geometric average of the buyer and inventory match rates.

4.1 The role of heterogeneous clienteles

We now develop some intuition for how the exogenous forces — demand, supply and frictions
— drive the cross section of observables in equilibrium, and how their effects depend on the
level of aggregation. The mapping from parameters to observables depends on the nature
of the search patterns. For example, parameters that are “local” to segment h, such as the
rate at which houses come on the market there, will matter less for local inventory and time

8Let i denote total inventory and consider the identity

—1 v (0 S(h) @B (0 -1
) g X g gm0 = %) Y

el heH (6) heH(0)

15 (h)
aB ()™ )

Here the right hand side is the average match rate across segments and the left hand side is the average
match rate across types. In particular, the second sum on the left hand side is number of matches entered
by type 6 which depends on the relative inventory available in 8’s search range as well as the share of 6 in
each segment’s buyer pool.
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on the market if segment h is more integrated with similar segments. A natural benchmark
is therefore the extreme case of perfect segmentation.

Perfect segmentation

Suppose there are exactly as many types as segments and each type scans exactly one
segment. We use the label § = h for the type scanning segment h and otherwise drop 6
arguments. The number of buyers is the difference between the number of types interested
in h and the number of houses in segment h. Substituting into (5), equilibrium inventories
are determined segment by segment by

n(h) (' (h) = p® (b)) = m (u® (h) — u™ (), p* (h) ). (13)

The left panel in Figure 6 plots both sides of (13) for segment h. The left-hand side of the
equation is the rate at which houses come on the market in segment h. It is a curve that is
strictly decreasing in inventory: higher inventory means that fewer agents are living in their
favorite house and thus fewer houses can come on the market each instant. The right-hand
side is the rate at which houses are sold. It is a strictly increasing curve in inventory: higher
inventory means that buyers are more likely to be matched with a house. It follows that
there is a unique equilibrium level of inventory p° — if inventory is too low, then too many
houses come on the market whereas if inventory is too high, then too many houses are sold.

Figure 6: Equilibrium and comparative statics with perfect segmentation

m(h) = m [ue(h)J° [us(h))S mih) = m (R G2

Volume —m(h)
\
\
\
Volume — m(h)
\
|

S mih) =l - (h]

mih) = nl(h) - u5(h)] / T

Inventory — pS(h) Inventory — uS(h)

Implications for the cross section of segments obtain from comparative statics. The right
plot in Figure 6 makes the segment more unstable by increasing 7 (h). When houses come
on the market more quickly in h, the downward-sloping curve shifts to the right. In this
case, volume increases together with inventory. In contrast, if the segment is more popular
(higher 7 (h) = u® (h) /u* (k) as defined in (8)) so there are more buyers per house in h, the
upward-sloping curve shifts up (not depicted in Figure 6). In this case, volume increases, but
inventory decreases. Intuitively, an increase in either demand or supply increases volume.
The difference is that an increase in supply also make the market clear more slowly (time
on the market is higher) so inventory is higher.
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Suppose we want to explain the stylized facts in Table 6 with a perfectly segmented
model. At any level of aggregation, we observe a strong positive relationship between in-
ventory and turnover. It follows that differences in supply — the parameter 1 (h) — must
be important, whereas differences in popularity must be weak enough so as not to overturn
the positive relationship between inventory and turnover. At the same time, (9) says that
search activity in the perfectly segmented case simply reflects the relative number of buyers
scanning segment h
o (h) = po (h) —pf(h) _m(h) =1

(1€ =) p'(h)  p®—1

Variation in search activity across segments is thus driven only by variation in popularity.
Since more popular segments have lower inventory shares, such variation in itself will al-
ways generate a downward sloping Beveridge curve. To generate instead an upward sloping
Beveridge curve requires comovement of 7 (h) and 7 (h): if more unstable segments are also
more popular, then high inventory and turnover driven by ample supply can in principle go
along with more search activity driven by high demand.

(14)

Finally, consider a change in the matching technology that allows for more matches per
period for given buyer and seller pools. From the equilibrium condition (13), this comparative
static works like an increase in popularity: turnover increases while inventory declines. At
the same time, changes in matching technology have no effect on our measure of search
activity.

Partial integration and the role of broad searchers

To illustrate how heterogeneity of clienteles affects the cross section of market and search
activity, we extend the example by adding one additional type: a ”"broad searcher” who
scans all segments h € H. We denote this type by 0 so v° (0) is total inventory. The buyer
pool of segment h now contains narrow searchers of type h and also broad searchers who
flow into segment h depending on the share of segment h inventory in total inventory (by
the definition of buyers (4)). Equilibrium inventories again adjust equate the flow of houses
coming on the market to the volume of sales:

) (" (1) = 0 (1) = i (2 (1) + L0 (0) e (1) 1) (15)

The key new feature with partial integration is that the buyer pool is endogenous and
tends to move positively with inventory in equilibrium. Two effects are relevant here. On
the one hand, the direct effect apparent from (15) is that a larger share of broad type 0
searchers flows to segments with higher inventory. On the other hand, competition from
broad searchers implies that the number of narrow searchers looking for a house in h also
increases with inventory. To see this, use the implication of (6) that buyer-owner ratios in
any given segment are equated across all types in the clientele. Comparing narrow and broad
buyers and owners in the clientele of h, we have

BE(h) S (h) i” (0)
S B

(16)



where the second denominator on the right hand side determines broad owners in h as a
residual. Holding fixed the number of houses and narrow types, a segment with a higher
share of inventory must have more narrow buyers.”

The role of parameters for the cross section of inventory shares and turnover rates is
qualitatively similar to the perfect segmentation case. In more unstable segments, inventory
and volume both tend to be higher. However, the effect on inventory will typically be weaker
because more searchers flow into segment h as more houses come on the market there. In
other words, a higher supply endogenously gives rise to an offsetting increase in demand. An
increase in the speed of matching or a larger number of types interested in A will increase
turnover and decrease inventory. Of course, the interdependence of segments implies that
the magnitude of effects is now more complicated to assess. For example, how the relative
inventory of two segments depends on their stability now depends on the stability of other
segments as well.

An important difference to the perfectly segmented case is how the presence of broad
searchers alters the mapping between parameters and search activity. With partial integra-
tion, search activity (2) becomes

o) = = (Lt + i 0)). (1)

fi® — 1 \ pf (h)

Differences in search activity across segments are driven by differences in narrow buyers per
house, since the contribution of broad searchers is same for all segments. It then follows from
(15)-(16) that for two equally popular segments (which have identical p® (h) and u* (h)),
the segment with more instability or slower matching must have higher inventory together
with higher search activity. In other words, with partial integration, differences in stability
or the speed of matching can account for an upward sloping Beveridge curve.

Hypothetical perfectly segmented benchmark

How large is the contribution of partial integration to the Beveridge curve? We ask
what the Beveridge curve looks like in a economy with demand parameters changed so as to
remove integration, but with all other parameters held fixed. In principle, there are many
ways to construct such an economy: they differ in how broad searchers are replaced by
narrow searchers of different types. A simple benchmark is a perfectly segmented economy
that delivers the same inventory I (h), turnover V (h), and buyer match rates o (h). This is
the economy considered by an econometrician who observes I (h) and V' (h) as well as match
rates by segment (or who knows the matching functions), but who does not have information
on integration and proceeds to assume that the economy is perfectly segmented.'®

9The remaining equations determining equilibrium is the definition of ° (0) as total inventory and the
requirement that buyers add up to the correct total, that is,

A% =1=p" )+ Y i (h).
heH

OTmportantly, the experiment here is a comparative static on the demand parameters designed to measure
the contribution of broad searchers observed in the data to the Beveridge curve observed in the data. It
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Since the hypothetical perfectly segmented economy has the same match rate and housing
stock as the original economy, it also has the same number of equilibrium buyers. From (12)
the type distribution for the hypothetical economy is given by 1°(0) = 0 and ° (k) =
p (h) + pP (h) . Combining (14) and (17), we can write search activity in the hypothetical

PO & (h) = (i® - 1) (U (h)+B(0) (% B 1)) ' 1)

While the actual Beveridge curve consists of the locus (o (h), I (h)) measured in the data,
the hypothetical Beveridge curve adds an extra upward sloping piece that becomes more
important as the share of broad searchers increases. Intuitively, removing broad searchers
and replacing them by narrow searchers implies that differences in search activity must be
explained by differences in popularity that are directly reflected in search activity.

5 Quantitative results

Table 8 summarizes the basic properties of demand and supply parameters. We report mo-
ments of instability 7 (h) as well as popularity 7 (h), our segment level summary statistic of
demand. The top panel of the table provides information on the distribution of the param-
eters. The bottom three panels report correlations both among the parameters themselves
and between parameters and observables. Here we compare variables at the segment level
and with city level averages as well as variation within the city of San Francisco. We focus
on San Francisco because it is the city with the largest number of segments.

The table also reports the properties of the inferred match rate a(h). While « (h) is
an endogenous object rather than a parameter, it contains information about the role of
matching frictions.!* Since we do not have information to identify the shape of the matching
function, we do not directly draw conclusions on matching technology. We only record what
can be about the distribution of match rates from search behavior.

Instability and popularity at the segment and city level

As expected from equation (10), instability n(h) tracks turnover almost exactly. Its
moments in Table 8 are essentially the same as those reported for turnover in Table 5. In
particular, unstable segments are cheaper and see more turnover and larger inventories. This
is true not only across segments, but also across cities and within San Francisco.

Popularity 7 (h) ranges overall between .2 and 2.4, with an IQ) range between .82 and 1.17.
The fact that popularity is below one for many segments is indicative of the role of partial

is also possible to construct a perfectly segmented economy that explains the data exactly by allowing the
matching function to vary simultaneously.

UFor example, with a Cobb-Douglas matching function m (k) = m (h) u? (h)6 w’ (h)lfé , we would have

logm (h) = dloga (h) + (1 —d)log (V (h) /I (h)).
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Table 8: Estimated parameters and hypothetical segmentation

parameters hypothetical perfectly segmented case

100 x n(h) w(h) «f(h) g (h) o(h)—oa(h)
mean 34 1.02  0.16 1.02 0
q25 21 082 0.06 0.44 —0.17
50 29 1.01 0.10 0.75 —0.04
q7b 41 117 0.18 1.36 0.12

n(h) w(h) a(h) I(h) V(h) o(h) log(p(h))

correlation across segments
n (h) 1 —.11 42 95 1.00 —.01 —.54
7 (h) 1 —.48 —.12 =10 78 10
a(h) 1 43 41 —.44 —.24
correlation across cities
n(h) 1 =21 .52 95 1.00 —-.25 —.63
7 (h) 1 —.64 —-24 =21 .74 .30
a(h) 1 .56 b2 —.66 —.62
correlation within San Francisco
n(h) 1 35 —.29 .86 1.00 .50 —.18
7 (h) 1 —.59 .35 .35 .85 —.05
a(h) 1 -5l —-29 —.63 .38

integration. Indeed, if segments were either perfectly segmented or perfectly integrated, then
the number of weighted buyer would be larger than the number of houses in all segments,
and popularity would have to be above one.

To see how partial integration can imply 7 (h) < 1, consider a simple example: assume
there are two equally large and equally unstable segments 1 and 2, say, as well as an equal
number of narrow searchers who scan only segment 1 and broad searchers who scan both
segments. We then have 7 (1) = 3/2 and 7 (2) = 1/2. Intuitively, a segment that is
considered largely by broad searchers will tend to have low popularity.

The slope of the Beveridge curve

Consider now how our model accounts for the slope of the Beveridge curve at different
levels of aggregation. Popularity comoves strongly with search activity at the segment and
city levels as well as within San Francisco. At the same time, popularity correlates positively
with instability within San Francisco and negatively across segments and cities. It follows
that part of the behavior of the Beveridge curve is explained by differences in the relationship
between the exogeneous parameters. More popular cities are more stable, while more popular
segments within cities are less stable.

As shown via example above, the second effect that can contribute to an upward sloping
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Beveridge curve in our model is the endogenous response of a partially integrated set of
clienteles to differences in instability or the matching technology, regardless of the behav-
ior of popularity. This effect is consistent with upward slopes in cities, which tend to be
more integrated. The contribution of this effect is more difficult to quantify directly, since
it requires taking a derivative with respect to the entire structure of clientele patterns in
the direction of less integration. We can however measure the strength of the endogenous
response of broad searchers by comparing our model to a perfectly segmented benchmark;
we turn to this next.

The role of partial integration

To assess the role of partial integration, we compute search activity in a hypothetical
perfectly segmented economy. We construct a comparison economy along the lines introduced
in our example in Section 4.1. In particular, we set the number of agents interested in segment
h to the sum of the housing stock and the equilibrium buyers in h: ° (h) = p (h)+u® (h).
By construction, this economy matches the same pattern of market activity (inventory,
turnover and match rates) as the actual economy. It also holds fixed the parameters governing
supply and the matching function. However, the two economies generally differ in demand
parameters and therefore in search activity, because the hypothetical economy shuts down
the endogenous response of broad searchers to inventory.

Comparing the differences in search activity in the hypothetical and actual economy,
o (h) and o (h), respectively, provides a measure of the importance of endogenous responses
by broad searchers at the segment level. Indeed, if & (h) is, say 10% larger than o (h) in
segment h, then market activity in segment h is driven by an endogenous buyer pool that
contains many braod searchers and hence looks as if there were 10% more narrow searchers
interested in segment h. Conversely, if 6 (h) is lower than o (h) then broad searchers stay
away from that segment in equilibrium and the buyer pool looks as if there are less narrow
searchers interested in h.

Search activity in the hypothetical economy is compared to actual search activity in
the top right of Table 8. On average, the two measures must be equal by construction,
as suggested by the definition (18) of 6(h). Away from the mean, however, we observe
substantial differences between the two measures of search activity. Those increase further
in the tails: the 10th and 90th percentile of & (h) are at -.40 and .40, respectively.

From (18), one would expect that differences are generated by differences in inventory.
In fact, the correlation of 6 — o with I is 47% in the entire sample. It is less than one since
computing correlations for the entire Bay Area averages over several partially integrated
clusters, whereas the example in Section 4.1 assumes that broad searcher scan all segments.
Within San Francisco, resembles more closely a perfectly integrated market, the correlation
between 6 — o and [ is is 78%.
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6 Prices and spillovers

6.1 Equilibrium prices

Denote by VI (h; 0) the utility of a type 6 agent who obtains housing services from a house in
segment h. Since sellers make take-it-or-leave offers and observe buyers’ types, they charge
prices equal to buyers’ continuation utility. The price paid by a type 6 buyer in segment
h is thus p (h,0) = VI (h;0). We now show that prices are the same in all transactions in
segment h. Start from the Bellman equation of a seller who puts his house on the market

v ) = et + ) (50,00 1 V2 00

where the expectation uses the equilibrium distribution of buyers 12 (h; ) /u® (h). It follows
that the value function of the seller is therefore independent oftype. Intuitively, will be
charged his continuation value as a buyer, and so cares only about the expected sale value.

Consider now the Bellman equations of an owner who does not put his house up for sale
rVE (h:0) = v (h) +n (k) (V (h;0) = VT (h;6))

Since utility v (h) and the arrival of moving shocks are also independent of type, so is
VE (h;0). As a result, the same price p (h) in all transactions in segment h.

We can combine these equation and solve for the price

10 n () v () + e (h)
N  ICY I OETTO R e

The first term is the present value of a permanent flow of housing services. This price
obtains if houses never fall out of favor (n = 0) or if the market is frictionless in the sense
that matching is infinitely fast (m/u® — o00). More generally, the price incorporates a
liquidity premium — the second term — that reflects foregone utility flow during search as
well as the cost of search itself. The liquidity premium is larger if houses fall out of favor
more quickly (7 higher) and if it is more difficult to sell a house in the sense that time on
market 5 (h) /m (h) is longer.

6.2 Liquidity discounts

We now ask how market frictions identified by our estimation affect the dispersion of house
prices across segments. The price formula (19) shows how the price is determined as the
difference between a “fundamental” price v(h)/r and a liquidity discount that capitalizes the
present value of search and transaction costs. The latter are segment-specific: the popularity
and instability properties of a segment derived above affect both the average time on the
market (and hence search costs) as well as turnover (and hence the frequency at which
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transaction costs arise). What is as yet missing to evaluate the formula is a measure of
fundamental value.

To estimate both fundamental value we can use the cross section of median prices together
with our estimation results. In particular, for each cross section of prices and parameter
vector, we can back out from (19) the vector of mean utility values v(h) such that the model
exactly matches the cross section of transaction prices. We postulate a real interest rate of
2% and set the transaction cost such that the average sale costs 6% of the resale value of
the house, a standard number in the literature.

The results are summarized in Figure 7. The left hand panel plots median price against
the liquidity discount, stated as a percentage of price. The right hand panel shows the
geographic distribution of liquidity discounts. There are two notable results here. First,
liquidity discounts are large — they can be up to 40% of the sales prices. Second, liquidity
discounts differ widely by segment, oftentimes within the same zip code. In poor segments
with high volume and high time on market, both search and transaction costs are high; as
a result, prices are significantly lower than they would be in a frictionless market. In rich
segments discounts are still significant, but they are considerably smaller.

50

N
o
°

Liquidity discount, %
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Figure 7: Liquidity Discounts. Left panel: mean zip code price vs zip code liquidity discount
as a percentage of mean price; color coding reflects liquidity discount. Right panel: zip codes
colored by same code as in right panel.
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6.3 Comparative statics

Figure 8 shows how the steady state equilibrium changes when a particular zipcode becomes
more popular. Formally, we recompute the steady state using the same parameters as above,
but we increase u "¢“(h) in one particular segment h. The panels are maps of only the tip
of the San Francisco peninsula. The lines in the map indicate zipcode boundaries. Each
zipcode contains several dots, which represents segments within zipcodes. The dots are
aligned so that the cheapest segment sits at twelve o’clock and segment house prices increase
clockwise. Both panels assume that the hypothetical change in popularity occurs in the gray
shaded zipcode. In the left panel, the grey shaded zipcode is 94015 Daly City. In the right
panel, the grey zipcode is 94127 San Francisco West Portal. The colors indicate changes in
inventory in the segments, ranging from blue (drop) to pink (increase).

The result is that an increase in the popularity of 94015 lowers inventory in Daly City
itself, and has spillovers on its neighboring zipcode to the east. Essentially nothing happens
to the north, in the city of San Francisco itself. In contrast, an increase in popularity of
94127 lowers inventory in West Portal and has spillover effects on inventory all over San
Francisco. This is because a large share of searchers scan all these segments jointly. These
results show that search patterns introduce asymmetries in the transmission of shocks.

Figure 8: Inventory response to an increase in popularity.

Note: The figure shows responses in inventory to an increase in popularity of zipcode 94015 Daly City in
the left panel and 94127 San Francisco West Portal in the right panel.
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A Data Appendix

A.1 Constructing Contiguity Measures

To analyze whether all zip codes are contiguous, one challenge is provided by the San Fran-
cisco Bay. The location of this body of water means that two zip codes with non-adjacent
borders should sometimes be considered as contiguous, since they are connected by a bridge
such as the Golden Gate Bridge. Figure A.1 illustrates this. Zip codes 94129 and 94965
should be considered contiguous, since they can be traveled between via the Golden Gate
Bridge. To take the connectivity provided by bridges into account, we manually adjust the
ESRI shape files to link zip codes on either side of the Golden Gate Bridge, the Bay Bridge,
the Richmond-San Rafael Bridge, the Dumbarton Bridge and the San Mateo Bridge. In ad-
dition, there is a further complication in that the bridgehead locations are sometimes in zip
codes that have essentially no housing stock, and are thus never selected in search queries.
For example, 94129 primarily covers the Presidio, a recreational park, that contains only 271
housing units. Similarly, 94130 covers Treasure Island in the middle of the SF Bay, again,
with only a small housing stock. These zip codes are very rarely selected by search queries,
which would suggest, for example, 94105 and 94607 would not be connected. This challenge
is addressed by manually merging zip codes 94129 and 94130 with the Golden Gate and Bay
bridge respectively. This ensure, for example, that 94118 and 94955 are connected even if
94129 was not selected.

In the following we provide examples of contiguous and non-contiguous search sets. The
top left panel of Figure A.3 shows all the zip codes covered by a searcher that searched
for homes in Berkeley, Fremont, Hayward, Oakland and San Leandro. This is a relatively
broad set, covering most of the East Bay. The top right panel shows a contiguous set of
jointly searched zip codes, with connectivity derived through the Golden Gate Bridge. The
searcher queried homes in cities north of the Golden Gate Bridge (Corte Madera, Larkspur,
Mill Valley, Ross, Kentfield, San Anselmo, Sausalito and Tiburon), but also added zip codes
94123 and 94115. The bottom left panel shows the zip codes covered by a searcher that
selected a number of San Francisco neighborhoods. The final contiguous search set (bottom
right panel) was generated by a searcher that selected a significant number of South Bay
cities.!? These are all locations with reasonable commuting distance to the tech jobs in the
Silicon Valley. Notice how the addition of Newark adds zip code 94550 on the East Bay, which

12 Atherton, Belmont, Burlingame, El Granada, Emerald Hills, Foster City, Half Moon Bay, Hillsborough,
La Honda, Los Altos Hills, Los Altos, Menlo Park, Millbrae, Mountain View, Newark, Palo Alto, Portola
Valley, Redwood City, San Carlos, San Mateo, Sunnyvale, Woodside.



Figure A.1: Bridge Adjustments - Contiguity Analysis

Note: This figure shows how we deal with bridges in the Bay Area for the contiguity analysis.

is connected to the South Bay via the Dumbarton Bridge. Not all email alerts generate sets
of zip codes that are contiguous. In Figure A.3 we show four actual non-contiguous search
sets. The top left panel shows the zip codes covered by a searcher that selects the cities of
Cupertino, Fremont, Los Gatos, Novato, Petaluma and San Rafael. This generates three
contiguous set of zip codes, rather than one large, contiguous set. The zip codes in the
bottom right belong to a searcher that selected zip code 94109 and the neighborhoods Nob
Hill, Noe Valley and Pacific Heights. Again, this selection generates more than one set of

contiguous zip codes.

A.2 Segment Construction

This section describes the process of arriving at the set of 576 distinct housing market
segments for the San Francisco Bay Area. As before, we select the geographic dimension of
segments to be a zip code. Since we will compute average price, volume, time on market and
inventory for each segment, we restrict ourselves to zip codes with at least 800 armslength
housing transactions between 1994 and 2012. This leaves us with 191 zip codes with sufficient

observations to construct these measures.

We next consider how to further split these zip codes into segments based on a qual-



Figure A.2: Sample Contiguous Queries

Note: This figure shows a sample of contiguous search sets. The zip codes selected by the searcher are
circled in red. Zip code centroids of contiguous zip codes are connected.

ity (price) and size dimension. Importantly, we will need to observe the total housing
stock in each segment in order to appropriately normalize moments such as turnover and
inventory. The residential assessment records do contain information on the universe of
the housing stock. However, as a result of Proposition 13, the assessed property values
in California do not correspond to true market value, and it is thus not adequate to di-
vide the total zip code housing stock into different price segments based on this assessed
value.'® To measure the housing stock in different price segments we use the U.S. Cen-
sus Bureau’s 2011 American Community Survey 5-year estimates, which report the total

number of owner-occupied housing units per zip code for a number of price bins. We com-

13 Allocating homes that we observe transacting into segments based on value is much easier, since this
can be done on the basis of the actual transaction value, which is reported in the deeds records.



Figure A.3: Sample Non-Contiguous Queries

Note: This figure shows a sample of non-contiguous search sets. The zip codes selected by the searcher
are circled in red. Zip code centroids of contiguous zip codes are connected.

bine a number of these bins to construct the total number of housing units in each of
the following price bins: < $200k, $200k—$300k, $300k—$400k, $400k—$500k, $500k—$750k,
$750k—$1m, > $1m. These bins provide the basis for selecting price cut-offs to delineate
quality segments within a zip code. One complication is that the price boundaries are re-
ported as an average for the sample years 2006-2010. Since we want segment price cut-offs
to capture within zip code time-invariant quality segments, we need to adjust for average
market price changes of the same-quality house over time. To do this, we adjust all prices

and price boundaries to correspond to 2010 house prices.'

14This is necessary, because the Census Bureau only adjusts the reported values for multi-year survey
periods by CPI inflation, not by asset price changes. This means that a $100,000 house surveyed in 2006
will be of different quality to a $100,000 house surveyed in 2010. We choose the price that a particular



Not all zip codes have an equal distribution of houses in each price (quality) bin. For
example, Palo Alto has very few homes valued at less than $200,000, while Fremont has very
few million-dollar homes. Since we want to avoid cutting a zip code into too many quality
segments with essentially no housing stock to allow us measure segment-specific moments
such as time on market, we next determine a set of three price cut-offs for each zip code by
which to split that zip code. To determine which of the seven census price bin cut-offs should
constitute segment cut-offs, we use information from the search queries. This proceeds in
two steps: First we change the price parameters set in the email alerts to account for the fact
that we observe queries from the entire 2006 - 2012 period. This adjusts the price parameters
in each alert by the market price movements of homes in that zip code between the time
the query was set and the year 2010.> Second, we determine which set of three ACS cutoffs
is most similar to the distribution of actual price boundaries selected in search queries that
cover a particular zip code. For each possible combination of three (adjusted) price cut-offs
from the list of ACS cut-offs, we calculate for every email alert the minimum of the absolute
distance from each of the (adjusted) search alert price restrictions to the closest cut-off.1®
We select the set of segment price cut-offs that minimizes the average of this value across all
queries that cover a particular zip code. This ensures, for example, that if there are many
queries that include a high limit such as $1 million, $1 million is likely to also be a segment

boundary.

To determine the total housing stock in each price by zip code segment, one additional
adjustment is necessary. Since the ACS reports the total number of owner-occupied housing
units, while we also observe market activity for non owner-occupied units, we need to adjust
the ACS-reported housing stock for each price bin by the corresponding homeownership

rate. To do this, we use data from all observed armslength ownership-changing transactions

house would fetch in 2010 as our measure of that home’s underlying quality. To transform the housing stock
by price bin reported in the ACS into a housing stock by 2010 “quality” segment, we first construct zip
code specific annual repeat sales price indices. This allows us to find the average house price changes by zip
code for each year between 2006 and 2010 to the year 2010. We then calculate the average of these 5 price
changes to determine the factor by which to adjust the boundaries for the price bins provided in the ACS
data. Adjusting price boundaries by a zip code price index that looks at changes in median prices over time
generates very similar adjustments.

15This ensures that the homes selected by each query correspond to our 2010 quality segment definition.
Imagine that prices fell by 50% on average between 2006 and 2010. This adjustment means that a query set
in 2006 that restricts price to be between $500,000 and $800,000 will search for homes in the same quality
segment as a query set in 2010 that restricts price to a $250,000 - $400,000 range.

16For example, imagine testings how good the the boundaries 100k, 300k and 1m fit for a particular zip
code. A query with an upper bound of 500k has the closest absolute distance to a cut-off of min{|500 —
100/, |500 — 300, |[500 — 1000|} = 200. A query with an upper bound of 750k has the closest absolute distance
to a cut-off of 250. A query with a lower bound of 300k and an upper bound of 600k has the closest absolute
distance to a cut-off of 0. For each possible set of price cut-offs, we calculate for every query the smallest
absolute distance of a query limit to a cut-off, and then find the average across all search alerts.



between 1994 and 2010 as reported in our deeds records. We first adjust the observed
transaction price with the zip code level repeat sales price index, to assign each house for
which we observe a transaction to one of our 2010 price (quality) bins. For each of these
properties we also observe from the assessor data whether they were owner-occupied in 2010.
This allows us to calculate the average homeonwerhisp rate for each price segment within a

zip code, and adjust the ACS-reported stock accordingly.'”

The other search dimension regularly specified in the email alerts, and that we hence
wanted to incorporate in our segment definition, is the number of bathrooms as a measure of
the size of a house conditional on its location and quality. Since section 77 showed that the
vast majority of constraints on the number of bathrooms selected homes with either more or
fewer than two bathrooms, we further divide each zip code by price bucket group into two
segments: homes with less than two bathrooms, and homes with at least two bathrooms.
Unfortunately the ACS does not provide a cross-tabulation of the housing stock by home
value and the number of bathrooms. To split the housing stock in each price and zip code
segment into the two groups by home size, we apply a similar method as above to control for
homeownership rate. We use the zip code level repeat sales price index to assign each home
transacted between 1994 and 2010 to a 2010 price (quality) bin. For these homes we observe
the number of bathrooms from the assessor records. This allows us to calculate the average
number of bathrooms for transacted homes in each zip code by price segment. We use this

share to split the total housing stock in those segments into two bathroom size groups.

The approach described above splits each zip code into eight initial segments along three
price cutoffs and one size cutoff. For each of these segments, we have an estimate of the
total housing stock. Since we need to measure specific moments such as the average time on
market with some precision, we need to ensure that each segment is sufficiently large, and
has a housing stock of at least 1,000 units. If this is not the case the segment is merged with
a neighboring segment until all remaining segments have a housing stock of sufficient size.
For price segments where either of the two size subsegments have a stock of less than 1,000,
we merge the two size segments. We then begin with the lowest price segment, see whether
it has a stock of less than 1,000, and merge it with the next higher price segment. This
procedure generates 576 segments. Figure A.4 shows how many segments each zip code is
being split into. 25 zip codes are not split up further into segments. 48 zip codes are split into

two segments, 58 zip codes are split into 3 segments. 418 segments only have a geography

"For example, the 2010 adjusted segment price cutoffs for zip code 94002 are $379,079, $710,775 and
$947,699. This splits the zip code into 4 price buckets. The homeownerhip rate is much higher in the
higher bucket (95%) than in the lowest bucket (65%). This shows the need to have a price-bucket specific
adjustment for the homeownership rate to arrive at the correct segment housing stock.



and price limitation, and include homes of all sizes falling into those price categories. The
right panel of figure A.4 shows the distribution of housing stock across segments. On average,
segments have a stock of 2,717, with a median value of 2,271. The largest segment has a
housing stock of 11,178.

Figure A.4: Segment Overview
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A.3 Assigning segments to search alerts

As a next step, to analyze segments in terms of their search clientele we need to analyze each
query and determine which segments are covered by that query. In section 7?7 we describe
how we determine which zip codes are covered by each query. In this section we describe how
we deal with the price and bathroom dimensions to determine the set of segments covered
by each query. The challenge is that price ranges selected by queries will usually not overlap
perfectly with the price cutoffs of the individual segments. For those queries that specify a

price dimension, we assign a query to cover a particular segmented in one of three cases:

1. When the query completely covers the segment (that is, when the query lower bound

is below the segment cutoff and the query upper bound is above the segment cutoff).

2. When the segment is open-ended (e.g. $1 million +), and the upper bound of the
query exceeds the lower bound (in this case, all queries with an upper bound in excess
of $1 million).

3. For queries that partially cover a non-open ended segment, we determine the share

of the segment price range covered by the query. For example, for a segment $300k



- $500k, the query 0-$250k covers 25%, the query $300k - $700k covers 50% of the
segment. We assign all queries that cover at least 50% of the price range of a segment

to cover that segment.

To deal with the bathroom dimensions, we let a query cover a segment unless it is
explicitly excluded. For example, queries that want at least two bathrooms will not cover

the < 2 bathroom segments and vice versa.

We argued above that it was hard to pool across different alerts set by the same individual,
since alerts differed along a number of key dimensions including geography, home size and
home quality. The housing market segments constructed above allow us to pool all segments
selected by the same searcher. In particular, we begin by determining the subset of the
segments that are covered by each individual search alert. This process described in more
detail in Appendix A.3. After pooling all segments covered by at least one email alert set
by each searcher, we arrive at a total of 9,091 unique search profiles. A total of 7,366 search
profiles are selected by only a single user. Another 622 search profiles are selected twice. A
total of 338 search profiles are selected more than 10 times each, with the two most commonly
selected search profile showing up 1,017 and 416 times. Figure A.5 shows the distribution
of how often each search profile is selected. We also analyze the total housing stock covered
by each searcher. We find that the average (median) searcher covers a total stock of 57,483
(33,807) housing units.

A.4 Construction of Segment Moments

Our model links the characteristics of search patterns to segment specific moments such as
price, volume, time on market and inventory. In this section we describe how we construct
these moments at the segment level. We begin by identifying a set of armslength transactions,
which are defined as transactions in which both buyer and seller act in their best economic
interest. This ensures that transaction prices reflect the market value (and hence the qual-
ity) of the property. We include all deeds that are one of the following: “Grant Deed,”
“Condominium Deed,” “Individual Deed,” “Warranty Deed,” “Joint Tenancy Deed,” “Spe-
cial Warranty Deed,” “Limited Warranty Deed” and “Corporation Deed.” This excludes,
for example, intra-family transfers. We drop all observations that are not a Main Deed or
only transfer partial interest in a property (see Stroebel (2012) for details on this process of

identifying armslength transactions).

We can then calculate the total number of transactions per segment between 2008 and



Figure A.5: Number of Searchers per Unique Profile
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2011, and and use this to construct annual volume averages. In order to allocate houses to
particular segments, we adjust transaction prices for houses sold in years other than 2010
by the same price index we used to adjust listing price boundaries (see appendix A.2). We
arrive at our measure of Volume Share by dividing the annual transaction volume by the
segment housing stock. Inventory levels are first constructed at the monthly level. To do
this we use the dataset on all home listings on Trulia.com, beginning in January 2006. We
assign each listed property to a segment using its location, size and adjusted listing price.
Each month we add all newly listed properties in a segment to the inventory observed in the
previous month. In addition, all listings that result in a sale as observed in the deeds data
get removed from the inventory. We then construct the average of these monthly inventory
levels for the period 2008-2011."® Inventory Shares are determined by dividing inventory
levels in a segment by the total housing stock in the segment. We also construct a second
inventory measure, “cold inventory”, which is the fraction of the housing stock that is listed,

and has been on the market for more than 30 days. In constructing inventory measures,

18Many properties that are sold as REO resales (i.e. mortgage lenders selling properties that are acquired
through a foreclosure) do not get listed through an MLS, and hence do not show up in Trulia’s listing
database. We thus need to construct REO resale inventory in a different way. In the deeds data we observe
when a foreclosure occurs, since a foreclosure involves an ownership transfer to the bank. For those REO
properties that do show up in the listings data, we calculate the median time between the foreclosure and
the listing, which is 20 days. We henceforth add every foreclosed property to the inventory 20 days after we
observe the foreclosure, and remove it when we observe an REO resale.



one empirical challenge is that we do not observe when listings that do not result in a sale
get removed from the market. We remove all listings for which we do not observe a sale
from the inventory 270 days after the initial listings (as a reference point, note that the 90th
percentile of time on market for houses that do eventually get sold is about 190 days). Of
course, if a house sells that was listed for more than 270 days, we record that as a sale. A
second challenge in measuring inventory levels arises from the fact that Trulia’s coverage of
listings is not 100% (for example, there are properties that are “for sale by owner” and hence
do not show up in MLS feeds), and has increased over the time period we consider. However,
we do have the universe of all transactions - this allows to construct, for every segment, a
measure of how many homes we observe transacting over the sample period without having
previously observed a listing. We can then scale our measure of inventory by the “share sale

without listing” measure for that particular segment.

To calculate the average time on market, we match home listings in the listings database
with final transactions from the deeds database.'® We find segment-specific measures of time
on market by averaging the time on market across all transactions that sold between 2008
and 2011. We also calculate the average time on market conditional on the time on market
exceeding 30 days, which will be used in our stock-flow model of the matching process.
Finally, we calculate the share of “hot sales”, i.e. transactions that are recorded within 30

days of the initial listing.

A.5 Stability of search patterns

Our model below will interpret search ranges as a feature of buyer preferences. It is then
interesting to ask whether ranges are invariant to changes in market conditions. In particular,
do searchers change narrow the range of houses they consider when market activity is higher?
To test this hypothesis, we exploit seasonal variation in housing market activity: more houses

typically trade in summer as compared to winter.

Each panel of Figure A.6 shows a scatter plot of the share of total volume in a month,
and a particular search dimension. We include (clockwise from top-left) the average distance
between geographic zip code centroids, the average commuting time by public transport
between geographic zip code centroids, the share of searches that yield contiguous search sets

and the share of searches that include a price dimension. The takeaway here is that none

19Tn the very few instances when the listing price and the final sales price would suggest a different segment
membership for a particular house — i.e. cases where the house is close to being at a segment boundary and
sells for a price different to the listing price, we allocate the house to the segment suggested by the sales
price, not the listing price.

10



of the search dimensions exhibit meaningful seasonality, consistent with an interpretation of

search parameters as time-invariant sets driven by preferences.

Figure A.6: Non-Seasonality of Search Parameters
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