
Comments on "Short-term GDP forecasting with a
mixed frequency factor model with stochastic volatility"

P. Poncela

June, 2012

P. Poncela () June, 2012 1 / 20



Outline of the talk

Review

Model

Data

Alternative

Conclusions

P. Poncela () June, 2012 2 / 20



Outline of the talk

Review

Model

Data

Alternative

Conclusions

P. Poncela () June, 2012 2 / 20



Outline of the talk

Review

Model

Data

Alternative

Conclusions

P. Poncela () June, 2012 2 / 20



Outline of the talk

Review

Model

Data

Alternative

Conclusions

P. Poncela () June, 2012 2 / 20



Outline of the talk

Review

Model

Data

Alternative

Conclusions

P. Poncela () June, 2012 2 / 20



Review

Model:

Mixed frequency (monthly and quarterly) dynamic factor model
Stochastic volatility in both the common factor + the idiosyncratic
components.

Estimation: Bayesian, through the Gibbs sampler

Goal: Short term forecast of EA GDP growth rate

Point + density forecasts

Emphasis: intervals
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Model

Measurement equation for yt
yt = P ft + ut ,

N � 1 N � 1 1� 1 N � 1

Common factor and speci�c components equation

Φf (L)ft = vteλf ,t/2,
Φq(L)uq,t = εq,tσqeλq,t/2,

Φmj (L)um,j ,t = εmj ,tσmjvteλmj ,t/2

Volatilitities

λi ,t = λi ,t�1 + θi ,tσλ,i
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Model

If I sum 2 processes with SV...
Why SV in both components?
How does identi�cation work?
The proposed model tries to capture changing
variance...of what type?
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Data
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Data
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Data

After �tting an AR(1)-ARCH(2), the squared residuals seem OK
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Data
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Model + data: SV in common and idiosyncratic
components
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Model + data: SV in common and idiosyncratic
components

"To see whether the model picks up any signi�cant time variation in the
variances of the common and idiosyncratic errors we plot the posterior
median of selected members of Qt together with their 68% con�dence
bands (Figure 2)."

Do we need SV both in the common factor and idiosyncratic
component?

Can we make the common stochastic volatility more common?
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Extracting nonlinear signals in multivariate setups
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Extracting nonlinear signals in multivariate setups

Measurement equation for yt
yt = P ft + ut ,

N � 1 N � 1 1� 1 N � 1

Common factor and speci�c components equation

ft = µst + at
Φq(L)uq,t = εq,tσq,st

Φmj (L)um,j ,t = εmj ,tσmj ,st

Transition probabilities

p(st = j jst�1 = i , st�2 = h, ..., It�1) = p(st = j jst�1 = i) = pij
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Extracting nonlinear signals in multivariate setups

ut is (0,Σu). In classical factor analysis, Σu is diagonal.

P = (λ1,λ2, ...,λN )0 is the factor loading matrix.
at is wn (0, σ2a)

It is the information set up to period t.
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Alternative: Literature review

Hamilton (1989)

Diebold and Rudebush (1996)

Kim and Yoo (1995), Chauvet (1996) and Kim and Nelson
(1998,1999)

Chauvet and Hamilton (2006), Hamilton (2011)

Camacho, Perez-Quiros and Poncela (2012) with mixing frequencies
and ragged ends
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Alternative
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Extracting nonlinear signals in multivariate setups

Let I �t =
n
(f �τjτ)

τ=t
τ=1

o
,

prob(st = j jI �t ) =
f (f �t jt jst = j , I �t�1)prob(st = j jI �t�1)

f (f �t jt jI �t�1)

What about the news content of the observations? The �ltered linear
common factor is a weighted average of all observations (present and
past)

Misspeci�ed common factor estimator

f �t jt =
t

∑
τ=1

wt ,τyτ
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Extracting nonlinear signals in multivariate setups

How observations are weighted?

wt ,t =
1
ct
P0Σ�1u

wt ,τ =
1
cτ

1
Vτjτ�1

φwt ,τ+1 for τ = t � 1, ..., 1

where ct and Vt jt�1 are f
�
P0Σ�1u P,φ

�
= f

�
∑N
i=1

λ2i
σ2i
,φ
�
.

These weights depend on:

the AR parameter φ (depends on the di¤erence in means among
regimes, and the transition and state probabilities)
the signal to noise ratios

High volatile observations have less weight....
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Conclusions

More insights into the statistical properties of the model. Do you see
more SV on the observed series or on the unobserved components?

For macro applications: do we need SV in both components (common
and idiosyncratic)?

Challenge against models that try to capture the same features
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