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Review

o Model:

o Mixed frequency (monthly and quarterly) dynamic factor model
e Stochastic volatility in both the common factor + the idiosyncratic
components.

Estimation: Bayesian, through the Gibbs sampler
Goal: Short term forecast of EA GDP growth rate

Point + density forecasts

Emphasis: intervals
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@ If | sum 2 processes with SV...

@ Why SV in both components?

@ How does identification work?

@ The proposed model tries to capture changing
variance...of what type?
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Data

After fitting an AR(1)-ARCH(2), the squared residuals seem OK
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—— Conditional variance
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Model + data: SV in common and idiosyncratic

components

Figure 2: Stochastic volatility for the common factor and for selected variables
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Model + data: SV in common and idiosyncratic

components

"To see whether the model picks up any significant time variation in the
variances of the common and idiosyncratic errors we plot the posterior
median of selected members of Q; together with their 68% confidence
bands (Figure 2)."

@ Do we need SV both in the common factor and idiosyncratic
component?
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"To see whether the model picks up any significant time variation in the
variances of the common and idiosyncratic errors we plot the posterior
median of selected members of Q; together with their 68% confidence
bands (Figure 2)."

@ Do we need SV both in the common factor and idiosyncratic

component?
@ Can we make the common stochastic volatility more common?
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Extracting nonlinear signals in multivariate setups

Figure 3: RMSE at different releases
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Extracting nonlinear signals in multivariate setups

Measurement equation for y;

yf ft’ + U,
N x1 N x1 1x1 N x1
Common factor and specific components equation
fi Hs, + at
@q(L) Uq’t S eq,ta-q,sf
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Transition probabilities
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e a;iswn (0,02)
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Extracting nonlinear signals in multivariate setups

u; is (0,X,). In classical factor analysis, X, is diagonal.
P = (A1, Ay, ..., Ay) is the factor loading matrix.
ar is wn (0,02)

I¢ is the information set up to period t.
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Alternative: Literature review

e Hamilton (1989)
@ Diebold and Rudebush (1996)

e Kim and Yoo (1995), Chauvet (1996) and Kim and Nelson
(1998,1999)

e Chauvet and Hamilton (2006), Hamilton (2011)

@ Camacho, Perez-Quiros and Poncela (2012) with mixing frequencies
and ragged ends
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Alternative
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Extracting nonlinear signals in multivariate setups

Let 1 = {(£1)=8

A(fse =g 7y )prob(se = |1 )
problse = jlif) =~
t|el't—1

@ What about the news content of the observations? The filtered linear
common factor is a weighted average of all observations (present and
past)
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A(fse =g 7y )prob(se = |1 )
problse = jlif) =~
t|el't—1

@ What about the news content of the observations? The filtered linear
common factor is a weighted average of all observations (present and
past)

Misspecified common factor estimator
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Extracting nonlinear signals in multivariate setups

@ How observations are weighted?

W;:: = *P/Z;]'
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where ¢; and V,;_; are f (P'L,'P,¢) = f( N A ‘P) '

i=1 g2
1
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Extracting nonlinear signals in multivariate setups

@ How observations are weighted?

1
Wt,t = *P/Z;]'
Ct
1 1 ¢ fort=t—-1,..1
Wepr = — Weopp fort=1t—-1, ..,
t, T CTVT‘T_]. t, T+

_ A2
where ¢; and V,,_; are f (P’ZulP,(p) =f ( N, 0—:24;) .
@ These weights depend on:

o the AR parameter ¢ (depends on the difference in means among
regimes, and the transition and state probabilities)
e the signal to noise ratios

@ High volatile observations have less weight....
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Conclusions

@ More insights into the statistical properties of the model. Do you see
more SV on the observed series or on the unobserved components?
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Conclusions

@ More insights into the statistical properties of the model. Do you see
more SV on the observed series or on the unobserved components?

@ For macro applications: do we need SV in both components (common
and idiosyncratic)?
o Challenge against models that try to capture the same features
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